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Evaluating algorithms

• How do we determine when an algorithm achieves “good”
performance?

• How should we tune the parameters of the learning algorithms
(regularization parameter, choice of feautres, parameters of
kernel, etc?)

• How do we report the performance of learning algorithms?
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• One possibility: just look at the loss function

J(θ) =

m∑
i=1

`(θTφ(xi), yi)

• The problem: adding more features will always decrease the loss

• Example example: random outputs, random features, we can
get zero loss for enough features

m = 500;

y = randn(m,1);

Phi = randn(m,m);

theta = (Phi' * Phi) \ (Phi' * y);

norm(Phi*theta - y)^2

ans =

2.3722e-22
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• A better criterion: training and testing loss

– Training set: xi ∈ Rn, yi ∈ R, i = 1, . . . ,m

– Testing set: x′i ∈ Rn, y′i ∈ R, i = 1, . . . ,m′

• Find parameters by minimizing loss on the training set, but
evaluate on the testing set

Training: θ? = argmin
θ

m∑
i=1

`(θTφ(xi), yi)

Evaluation: Average Loss =
1

m′
`((θ?)Tφ(x′i), y

′
i)

– Performance on test set called generalization performance.

4



• Sometimes, there is a natural breakdown between training and
testing data (e.g., train system on one year, test on the next)

• More common, simply device up the data: for example, use 70%
for training, 30% for testing

% Phi, y, m are all the data

m train = ceil(0.7*m);

m test = m - m train;

p = randperm(m);

Phi train = Phi(p(1:m train),:);

y train = y(p(1:m train));

Phi test = Phi(p(m train+1:end),:);

y test = y(p(m train+1:end));
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Cross-validation

• A common mistake: split the data into training/testing sets, use
testing set to find best performing features, regularization
parameter, kernel parameters, etc (hyperparameters), then
report the testing error for these best features
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• This is not a valid method for evaluating error: the problem is
that we effectively used the testing set to “train” the system

• What we need to do instead: break the training set itself into
two sets (training and cross-validation) sets
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• Cross-validation Procedure:

1. Break all data into training/testing sets (e.g., 70%/30%)

2. Break training set into training/cross-validation set (e.g.,
70%/30% again)

3. Choose hyperparameters using cross-validation set

4. (Optional) Once we have selected hyperparameters, retrain using
all the training set

5. Evaluate performance on the testing set
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• k-fold cross-validation: Split training set into k different
“folds”(equally sized random subsets)

– For each fold i, train on k − 1 only folks, evaluate on held out
fold i

• The extreme case, leave one out cross validation: folds are
individual examples
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Reporting Errors

• If we want to report performance of an algorithm, how do we do
this?

• Reporting just test error doesn’t give a sense of our
“confidence” in the prediction

– If we have a testing set of size 1000, doesn’t this imply more
confidence in result than a testing set of size 10?

– What about variance in predictions? Are we getting some almost
completely right and others very wrong?
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• Setting: in our test set, we have a number of actual labels y′i,
and predictions ŷ′i of our algorithm

• There are really two things we may care about:

1. What is the distribution of our errors y′i − ŷ′i?

2. If we want to report some average loss

Average loss =
1

m′

m′∑
i=1

`(ŷ′i, ŷi)

how confident are we in this value?
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Some basic probability notation

• We’ll use Z to denote a random variable (with distribution D),
and use p(z) to denote the it’s probability density

• Expected value, or mean:

µ = E[Z] =

∫
zp(z)dz

• Variance
σ2 = E[(Z − µ)2]

• If you haven’t seen any of this notation before, there are a
number of good reviews available
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• Suppose we have m samples drawn from the probability
distribution D, written as z1, . . . , zm ∼ D

• Then we can form empirical estimates of the mean and variance
of the distribution

µ̂ =
1

m

m∑
i=1

zi

σ̂2 =
1

m

m∑
i=1

(zi − µ)2 ≈
1

m

m∑
i=1

(zi − µ̂)2

[You may have seen variance estimates with a 1
m−1 term

instead; this is needed to make the estimator unbiased, but we’ll
typically deal with large m, so there isn’t much difference]
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Reporting errors

• As mentioned before, we might want to know about the
distribution over our prediction errors ŷ′i − y′i
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• Treat ŷ′i − y′i as samples from a distribution

• Might want to know about the mean (also called bias), or
variance of this distribution

• If we assume prediction errors are zero-mean (but this is not
always the case), then

σ̂2 =
1

m

m∑
i=1

(ŷ′i − y′i)2

which is the mean squared error
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• If we want to report some average loss, then we can treat
`(ŷ′i, y

′
i) (for any loss) as the random samples (the average loss

is just the mean of these samples)
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• How confident are we in our estimate of the mean (i.e., the
average loss)?

• Here we’ll exploit the central limit theorem: If z1, . . . , zm are
(independent, identially distributed) samples from any
distribution with mean µ and variance σ2, then

1

m

m∑
i=1

zi → N (µ, σ2/m)

– I.e., the mean of any set of random variables is normally
distributed

• For a normal distribution, 95% of the data falls within 1.96
standard deviations σ.
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• This suggests a method for computing “confidence intervals” of
our estimate of the average loss

1. Form estimate of the mean:

µ̂ =
1

m′

m′∑
i=1

`(ŷ′i, yi)

2. Form estimate of the variance:

σ̂2 =
1

m′

m′∑
i=1

(`(ŷ′i, y
′
i)− µ̂)2

3. With 95% confidence, the “true” mean lies within

µ̂± 1.96σ̂/
√
m′

• This procedure is technically wrong (we should be using the a
different estimate of the variance, and a Student-t distribution
instead of Gaussian), but it is close enough when m′ is
reasonably large, which is usually our setting
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• Should report errors relative to some baseline (i.e., degree zero
polynomial)

Degree Test Error
0 0.2414 ± 0.0039
1 0.2407 ± 0.0027
2 0.1505 ± 0.0013
3 0.1255 ± 0.0009
4 0.1257 ± 0.0009
5 0.1267 ± 0.0009

• A better way of determining how algorithms compare: pairwise
hypothesis testing
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