
15-884/15-484 – Linear Algebra and Matrix
Calculus Review

J. Zico Kolter

September 5, 2013

1



• Linear algebra notation is used extensively in machine learning,
optimization, power systems

• This lecture reviews some basic notation and methods, and
introduces matrix calculus used in class

• For more advanced material (mainly matrix calculus), we will
present the methods again when used, but these slides serve as
a single reference for all the methods we will use
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Linear equations

• Set of linear equations (two equations, two unknowns)

4x1 − 5x2 = −13
−2x1 + 3x2 = 9
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• Set of linear equations (two equations, two unknowns)

4x1 − 5x2 = −13
−2x1 + 3x2 = 9

• Can represent compactly using matrix notation

Ax = b

with

A =

[
4 −5
−2 3

]
, x =

[
x1
x2

]
, b =

[
−13

9

]

4



Basic notation

• A matrix with real-valued entries, m rows, and n columns

A ∈ Rm×n

Aij denotes the entry in the ith row and jth column

• A (column) vector with n real-valued entries

x ∈ Rn

xi denotes the ith entry
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The transpose

• The transpose operator AT switches rows and columns of a
matrix

Aij = (AT )ji

• For a vector x ∈ Rn, xT ∈ R1×n would represent a row vector
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Elements of a matrix

• Can write a matrix in terms of its columns

A =

 | | |
a1 a2 · · · an
| | |


• Careful, ai here corresponds to an entire vector ai ∈ Rm, not an

element of a vector
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• Similarly, can write a matrix in terms of rows

A =


– aT1 –
– aT2 –

...
– aTm –


• a1 ∈ Rn here and a1 ∈ Rm from previous slide are not the same

vector
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Matrix addition

• For two matrices of the same size and type, A,B ∈ Rm×n

addition is just sum of corresponding elements

A+B = C ∈ Rm×n ⇐⇒ Cij = Aij +Bij

• Addition is undefined for matrices of different sizes A ∈ Rm×n,
B ∈ Rp×q
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Matrix multiplication

• For two matrices A ∈ Rm×n, B ∈ Rn×p, their product is

AB = C ∈ Rm×p ⇐⇒ Cij =

n∑
k=1

AikBkj

• Multiplication is undefined when number of columns in A
doesn’t equal number or rows in B (one exception: cA for c ∈ R
taken to mean scaling A by c)

10



• Some special cases:

– Inner product, x, y ∈ Rn

xT y ∈ R =

n∑
i=1

xiyi

– Matrix-vector product, A ∈ Rm×n, x ∈ Rn ⇐⇒ Ax ∈ Rm

A =

 | | |
a1 a2 · · · an
| | |

 , Ax ∈ Rm =

n∑
i=1

aixi
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• Some imporant properties

– Associative: (A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×q)

A(BC) = (AB)C

– Distributive: (A ∈ Rm×n, B,C ∈ Rn×p)

A(B + C) = AB +AC

– NOT commutative: (the dimensions might not even make sense,
but this doesn’t hold even when the dimensions are correct)

AB 6= BA

– Transpose of matrix product: (AB)T = BTAT
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Special matrices

• The identity:

I ∈ Rn×n =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


(ones on the diagonal, zeros everywhere else)

• Has the property that for any A ∈ Rm×n

AI = A = IA

(note that the identity matrices on the left and right are
different sizes, n×n or m×m, to make the multiplication work)
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• The zero matrix

0 ∈ Rm×n =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


• Useful in defining block forms for matrices; e.g. A ∈ Rm×n,
B ∈ Rp×q

C ∈ R(m+p)×(n+q) =

[
A 0
0 B

]
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• The all-ones vector

1 ∈ Rn =

 1
...
1


• Useful, for example, in compactly representing sums

a ∈ Rn, 1Ta =

n∑
i=1

ai
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• Symmetric matrix: A ∈ Rn×n with A = AT

• Arise naturally in many settings

– For A ∈ Rm×n, ATA ∈ Rm×m is symmetric

– Many matrices in power systems will be symmetric
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• Diagonal matrix: for d ∈ Rn

diag(d) ∈ Rn×n =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn


• For example, the identity is given by I = diag(1)
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• Inverse of a square matrix A ∈ Rn×n denoted A−1

AA−1 = I = A−1A

• May not exist (non-singular matrix has inverse, singular matrix
does not)

A−1 exists ⇐⇒ Ax 6= 0 for all x 6= 0
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Notation for matrix functions

• f(x) = x2, f : R→ R

• Function with matrix inputs/outputs

f : Rm×n → Rp×q
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• Transpose: f(A) = AT

f : Rm×n → Rn×m

• Inverse: f(A) = A−1

f : Rn×n → Rn×n

• Multiplication: f(x) = Ax for A ∈ Rm×n

f : Rn → Rm
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• A vector norm is any function f : Rn → R with

1. f(x) ≥ 0 and f(x) = 0⇔ x = 0

2. f(ax) = |a|f(x) for a ∈ R

3. f(x+ y) ≤ f(x) + f(y)

• `2 norm: ‖x‖2 =
√
xTx =

√∑n
i=1 x

2
i

• `1 norm: ‖x‖1 =
∑n

i=1 |xi|
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Putting equations in matrix form

• Given ai ∈ Rn, bi ∈ R for i = 1, . . . ,m, f : Rn → R

f(x) =

m∑
i=1

(aTi x− bi)2

• Given f : Rn → Rn

f(x) =


x21
x22
...
x2n


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Eigenvalues and eigenvectors

• For A ∈ Rn×n, λ ∈ C is an eigenvalue and x ∈ Cn 6= 0 an
eigenvector if

Ax = λx

• Write equations for all n eigenvalues as

A

 | |
x1 · · · xn
| |

 =

 | |
x1 · · · xn
| |


 λ1 · · · 0

...
. . .

...
0 · · · λn


• Write as AX = XΛ ⇐⇒ A = XΛX−1 (if X invertible)

• An example: Given A ∈ Rn×n, what can we say about Ak as
k →∞?
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Matrix Calculus

• The Jacobian: for vector-input, vector-output function
f : Rn → Rm

Dxf(x) ∈ Rm×n =


∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

· · · ∂fm(x)
∂xn


• Example: f : R3 → R2

f(x) =

[
x21x2 + x3
x2/x3

]
what is Dxf(x)?
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• The gradient: for vector-input, scalar-output function
f : Rn → R

∇xf(x) ∈ Rn =


∂f(x)
∂x1
∂f(x)
∂x2

...
∂f(x)
∂xn

 = (Dxf(x))T

• Important rules and common gradient

∇x(af(x) + bg(x)) = a∇xf(x) + b∇xg(x), (a, b ∈ R)

∇x(xTAx) = (A+AT )x, (A ∈ Rk×k)

∇x(bTx) = b, (b ∈ Rk)
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• The Hessian: for vector-input, scalar-output function
f : Rn → R

∇2
xf(x) ∈ Rn×n =


∂2f(x)
∂x2

1
· · · ∂2f(x)

∂x1∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂x2

n


= Dx(∇xf(x)) (Jacobian of the gradient)

• Example: f : Rn → R

f(x) = xTAx

what is ∇2
xf(x)?
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