15-884/15-484 — Linear Algebra and Matrix Calculus Review

J. Zico Kolter

September 5, 2013

- Linear algebra notation is used extensively in machine learning, optimization, power systems
- This lecture reviews some basic notation and methods, and introduces matrix calculus used in class
- For more advanced material (mainly matrix calculus), we will
 present the methods again when used, but these slides serve as
 a single reference for all the methods we will use

Linear equations

• Set of linear equations (two equations, two unknowns)

$$\begin{array}{rcl}
4x_1 & -5x_2 & = & -13 \\
-2x_1 & +3x_2 & = & 9
\end{array}$$

• Set of linear equations (two equations, two unknowns)

$$\begin{array}{rcl}
4x_1 & -5x_2 & = & -13 \\
-2x_1 & +3x_2 & = & 9
\end{array}$$

• Can represent compactly using matrix notation

$$Ax = b$$

with

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

Basic notation

ullet A matrix with real-valued entries, m rows, and n columns

$$A \in \mathbb{R}^{m \times n}$$

 A_{ij} denotes the entry in the *i*th row and *j*th column

• A (column) vector with n real-valued entries

$$x \in \mathbb{R}^n$$

 x_i denotes the ith entry

The transpose

 \bullet The transpose operator A^T switches rows and columns of a matrix

$$A_{ij} = (A^T)_{ji}$$

 \bullet For a vector $x \in \mathbb{R}^n$, $x^T \in \mathbb{R}^{1 \times n}$ would represent a row vector

Elements of a matrix

• Can write a matrix in terms of its columns

$$A = \left[\begin{array}{cccc} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{array} \right]$$

• Careful, a_i here corresponds to an entire vector $a_i \in \mathbb{R}^m$, not an element of a vector

• Similarly, can write a matrix in terms of rows

$$A = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots \\ - & a_m^T & - \end{bmatrix}$$

• $a_1 \in \mathbb{R}^n$ here and $a_1 \in \mathbb{R}^m$ from previous slide are *not* the same vector

Matrix addition

• For two matrices of the same size and type, $A, B \in \mathbb{R}^{m \times n}$ addition is just sum of corresponding elements

$$A + B = C \in \mathbb{R}^{m \times n} \iff C_{ij} = A_{ij} + B_{ij}$$

• Addition is undefined for matrices of different sizes $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times q}$

Matrix multiplication

• For two matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, their product is

$$AB = C \in \mathbb{R}^{m \times p} \iff C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

• Multiplication is undefined when number of columns in A doesn't equal number or rows in B (one exception: cA for $c \in \mathbb{R}$ taken to mean scaling A by c)

- Some special cases:
 - Inner product, $x, y \in \mathbb{R}^n$

$$x^T y \in \mathbb{R} = \sum_{i=1}^n x_i y_i$$

- Matrix-vector product, $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n \iff Ax \in \mathbb{R}^m$

$$A = \begin{bmatrix} | & | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | & | \end{bmatrix}, \quad Ax \in \mathbb{R}^m = \sum_{i=1}^n a_i x_i$$

- Some imporant properties
 - Associative: $(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times q})$

$$A(BC) = (AB)C$$

- Distributive: $(A \in \mathbb{R}^{m \times n}, B, C \in \mathbb{R}^{n \times p})$

$$A(B+C) = AB + AC$$

 NOT commutative: (the dimensions might not even make sense, but this doesn't hold even when the dimensions are correct)

$$AB \neq BA$$

- Transpose of matrix product: $(AB)^T = B^T A^T$

Special matrices

The identity:

$$I \in \mathbb{R}^{n \times n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

(ones on the diagonal, zeros everywhere else)

ullet Has the property that for any $A \in \mathbb{R}^{m \times n}$

$$AI = A = IA$$

(note that the identity matrices on the left and right are different sizes, $n \times n$ or $m \times m$, to make the multiplication work)

The zero matrix

$$0 \in \mathbb{R}^{m \times n} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

• Useful in defining block forms for matrices; e.g. $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times q}$

$$C \in \mathbb{R}^{(m+p)\times(n+q)} = \left[\begin{array}{cc} A & 0 \\ 0 & B \end{array} \right]$$

• The all-ones vector

$$1 \in \mathbb{R}^n = \left[\begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right]$$

• Useful, for example, in compactly representing sums

$$a \in \mathbb{R}^n, \ 1^T a = \sum_{i=1}^n a_i$$

- Symmetric matrix: $A \in \mathbb{R}^{n \times n}$ with $A = A^T$
- Arise naturally in many settings
 - For $A \in \mathbb{R}^{m \times n}$, $A^T A \in \mathbb{R}^{m \times m}$ is symmetric
 - Many matrices in power systems will be symmetric

• Diagonal matrix: for $d \in \mathbb{R}^n$

$$\operatorname{diag}(d) \in \mathbb{R}^{n \times n} = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

• For example, the identity is given by I = diag(1)

• Inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ denoted A^{-1}

$$AA^{-1} = I = A^{-1}A$$

 May not exist (non-singular matrix has inverse, singular matrix does not)

$$A^{-1}$$
 exists $\iff Ax \neq 0$ for all $x \neq 0$

Notation for matrix functions

•
$$f(x) = x^2$$
, $f: \mathbb{R} \to \mathbb{R}$

• Function with matrix inputs/outputs

$$f: \mathbb{R}^{m \times n} \to \mathbb{R}^{p \times q}$$

• Transpose: $f(A) = A^T$

$$f: \mathbb{R}^{m \times n} \to \mathbb{R}^{n \times m}$$

• Inverse: $f(A) = A^{-1}$

$$f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$$

• Multiplication: f(x) = Ax for $A \in \mathbb{R}^{m \times n}$

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

- ullet A vector norm is any function $f:\mathbb{R}^n \to \mathbb{R}$ with
 - 1. $f(x) \ge 0$ and $f(x) = 0 \Leftrightarrow x = 0$
 - 2. f(ax) = |a|f(x) for $a \in \mathbb{R}$
 - 3. $f(x+y) \le f(x) + f(y)$
- ℓ_2 norm: $\|x\|_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$
- ℓ_1 norm: $||x||_1 = \sum_{i=1}^n |x_i|$

Putting equations in matrix form

• Given $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$ for i = 1, ..., m, $f : \mathbb{R}^n \to \mathbb{R}$

$$f(x) = \sum_{i=1}^{m} (a_i^T x - b_i)^2$$

• Given $f: \mathbb{R}^n \to \mathbb{R}^n$

$$f(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ \vdots \\ x_n^2 \end{bmatrix}$$

Eigenvalues and eigenvectors

• For $A\in\mathbb{R}^{n\times n}$, $\lambda\in\mathbb{C}$ is an eigenvalue and $x\in\mathbb{C}^n\neq 0$ an eigenvector if

$$Ax = \lambda x$$

 \bullet Write equations for all n eigenvalues as

$$A \begin{bmatrix} | & & | \\ x_1 & \cdots & x_n \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ x_1 & \cdots & x_n \\ | & & | \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

- Write as $AX = X\Lambda \iff A = X\Lambda X^{-1}$ (if X invertible)
- An example: Given $A \in \mathbb{R}^{n \times n}$, what can we say about A^k as $k \to \infty$?

Matrix Calculus

• The *Jacobian*: for vector-input, vector-output function $f: \mathbb{R}^n \to \mathbb{R}^m$

$$D_x f(x) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \dots & \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix}$$

• Example: $f: \mathbb{R}^3 \to \mathbb{R}^2$

$$f(x) = \left[\begin{array}{c} x_1^2 x_2 + x_3 \\ x_2/x_3 \end{array} \right]$$

what is $D_x f(x)$?

• The gradient: for vector-input, scalar-output function $f: \mathbb{R}^n \to \mathbb{R}$

$$\nabla_x f(x) \in \mathbb{R}^n = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix} = (D_x f(x))^T$$

Important rules and common gradient

$$\nabla_x (af(x) + bg(x)) = a\nabla_x f(x) + b\nabla_x g(x), \quad (a, b \in \mathbb{R})$$
$$\nabla_x (x^T A x) = (A + A^T) x, \quad (A \in \mathbb{R}^{k \times k})$$
$$\nabla_x (b^T x) = b, \quad (b \in \mathbb{R}^k)$$

• The *Hessian*: for vector-input, scalar-output function $f: \mathbb{R}^n \to \mathbb{R}$

$$\begin{split} \nabla_x^2 f(x) \in \mathbb{R}^{n \times n} &= \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix} \\ &= D_x(\nabla_x f(x)) \text{ (Jacobian of the gradient)} \end{split}$$

• Example: $f: \mathbb{R}^n \to \mathbb{R}$

$$f(x) = x^T A x$$

what is $\nabla_x^2 f(x)$?