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e Numerous areas of interest for computation in the future of
sustainable energy

Renewable integration

Grid security and resilience

Smart homes / energy disaggregation

— Demand response

Microgrids

e Many more areas: see e.g. IEEE Transactions on Smart Grid



Renewable integration

e Challenge: many states have ambitious legislation requiring
some fraction of energy to come from renewable sources

— E.g.: California requires 33% of energy from renewable sources
by 2020

e Unlike traditional generation, wind and solar are not
dispatchable, can’t schedule or guarantee them in advance

e You are already looking at a research-level consideration of these
issues in problem set 4



e The basic problem: given current infrastructure, increased
renewable penetration increases the need for regulation and
reserve
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http://www.iso-ne.com/committees/comm_wkgrps/prtcpnts_comm/pac/reports/2010/newis_report.pdf
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e As context, today's maximum forecasted load in NE is 17,500
MW, so this is a sizable fraction of generation (often not doing
anything)


http://www.iso-ne.com/committees/comm_wkgrps/prtcpnts_comm/pac/reports/2010/newis_report.pdf

e How did they come up with these estimates?

— Very similar to what you are doing for the homework: run many
simulations of market planning and dispatch using different wind
conditions, see how much “fast acting generation” is required

e Another line of work: analytical solutions for certain special
cases of renewable dispatch

— Rajagopal et al., Risk-Limiting Dispatch for Integrating
Renewable Power, 2011

— Su and El Gamal, Modeling and analysis of the role of
fast-response energy storage in the smart grid, 2011


http://paleale.eecs.berkeley.edu/~varaiya/papers_ps.dir/dispatch-110915.pdf
http://paleale.eecs.berkeley.edu/~varaiya/papers_ps.dir/dispatch-110915.pdf
http://isl.stanford.edu/~abbas/papers/modeling and analysis of the role of fast response energy storage in the smart grid.pdf
http://isl.stanford.edu/~abbas/papers/modeling and analysis of the role of fast response energy storage in the smart grid.pdf

Grid security and resilience

e "“Security” can mean two things in the smart grid: cybersecurity
(securing grid resources from cyber attack), or system security
(resilience in the face of failures)

— Cyber security, e.g.: Khurana et al., Smart-Grid Security Issues,
2010, McDaniel and McLaughlin, Security and Privacy
Challenges in the Smart Grid, 2009

— Grid resilience, e.g.: Schainker et al., Real-time dynamic security
assessment: fast simulation and modeling applied to emergency
outage security of the electric grid, 2006


http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5403159
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5403159
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5054916
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5054916
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1597996
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1597996
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1597996

e Resilience in the face of generator outages

e Our favorite linear dynamical system

0 =w—w

1

&= g (u— (Boa — BgLBy Bre)0 — BarBypL)

e Pl control for frequency regulation (say we don't care about
absolute voltage angles)

e, =e; + (wi — wref)

U; = —Kp(wi — wref) — Kiei



Under “normal” operation, everything works (system is able to
regulate frequency)
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e Now suppose at time ¢ = 100, generators 1 and 4 go offline
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e Though it's a bit hard to see in the figure, the frequency at all
the buses are unstable (will eventually diverge); “myopic”
solution is just to shut off all generators



e But, system is controllable with only three generators!

e They just need to work together (e.g., LQR control that takes
into account all the states for planning action)
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Demand Response

e Throughout our units on power, load was always treated as fixed

e As communication with loads becomes more possible, we have
the ability to adjust loads to current grid conditions

e Kirschen et al., Factoring the elasticity of demand in electricity
prices, 2000
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http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=867149
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=867149

e An example: controlling thermostatic loads (refrigerators, air
conditioners, etc) to adjust load

e These devices maintain temperature within a given range, but
within that range we could control them to

e One direction of work: look at control that requires only
aggregate monitoring of all the loads, and a single broadcasted
control signal

— Mathieu et al., State Estimation and Control of Electric Loads to
Manage Real-Time Energy Imbalance, 2012

— Koch et al., Modeling and control of aggregated heterogeneous
thermostatically controlled loads for ancillary services, 2011
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http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6246658
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6246658
http://www.eeh.ee.ethz.ch/uploads/tx_ethpublications/Koch_et_al_PSCC_2011_cop.pdf
http://www.eeh.ee.ethz.ch/uploads/tx_ethpublications/Koch_et_al_PSCC_2011_cop.pdf
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Temperature State Evolution for 200 TCLs (randomly chosen out of 1000)
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Figure source: Koch et al., 2011
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Microgrids

e Idea: build all the elements of a typically grid (generation,
distribution, control, and load) on a small scale

e Can ideally provide more efficiency, reliability than existing grid

e Hatziargyriou et al., Microgrids, 2007; Lasseter and Paigi,
Microgrid: a conceptual solution, 2004

17


http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4263070
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1354758
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1354758
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Figure 2 Microgrid

Figure source: Lasseter and Paigi, 2004

e Squares correspond to breaker boxes, can isolate portions of the
system from the larger grid

e Need to ensure that each subsystem has the ability (with
generation, storage) to provide for its consumption over short
periods of time

18



