
15-830/630 – Problem Set #4

In this problem set, you will bring together several of the elements you have studied this
far in class to solve the problem of scheduling generation and storage to minimize carbon
emissions in a small smart grid setting. The basis for this problem is the IEEE 30 bus test
case, which you saw in Problem Set 3, but instead of having six total generators producing a
fixed amount of power (the slack bus and five PV buses), there are two generators, two energy
storage facilities, and two wind farms. In addition, instead of just computing the solution for
a single instant in time (given fixed demands), you’ll need to use control methods to schedule
generation and storage over time, taking into account varying load and different constraints
of the generation. You’ll combine this with forecasting methods to predict future wind and
demand.

You can load the data for all these problems using the command

load ps4_data.mat

This will load several variables into MATLAB. For reference, all the loaded variables are
listed below, but we’ll also describe them in more detail in the relevant questions

• gen = [1 2] — bus indices of the controllable generators

• storage = [5 8] — bus indices of the storage facilities

• wind = [11 13] — bus indices of the wind farms

• pq — bus indices for all the PQ loads

• winds — matrix of time series data giving power production for the two wind farms
over every hour in a year

• loads — matrix of time series data giving electrical demand for each of the PQ loads
for every hour in a year (following convention, these values are negative to indicate
consumed power)

• Belec — DC power flow approximation susceptance matrix; this matrix relates power
and voltage angles via the DC power flow approximation p = Bθ. Note that for
convenience we include the negative sign (that you saw in the derivation of power flow
for the previous assignment) into B itself, so that you don’t need to include it explicitly.

• G,h — line constraints; these specify constraints on the amount of power than can flow
over different branches in the power network. The line constraints are given in the
form Gθ ≤ h.
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Subsequent questions in this problem set will build upon previous ones, so be sure to
start looking at these problems early!

1. Autoregressive forecasting [35pts] One of the chief challenges in smart grid plan-
ning is obtaining some estimate of future system conditions, be it predicted upcoming
generation of a wind farm or predicted power consumption for a distribution station.
One of the most common methods for forecasting time series data is the autoregressive
model: given a time series

y1, y2, . . . , yT

the (deterministic) autoregressive model stipulates that the next value be some linear
combination of k previous values

yt =
k∑
i=1

θiyt−i.

(a) Show how we can represent the autoregressive model via a linear dynamical sys-
tems

xt+1 = Axt

yt = Cxt
.

Given an explicit definition of the components of the state vector xt, and the
A and C matrices. [Hint: make the state vector consist of a history of the yt
observations.]

(b) Given a sequence of observations

y1, y2, . . . , yT

show how we can learn the θ parameters using least squares. In other words, set
up a least squares task to solve the optimization problem

minimize
θ

T∑
t=p+1

(
yt −

p∑
i=1

θiyt−i

)2

.

Write the solution to θ in terms of the normal equations

θ = (ΦTΦ)−1ΦT z

for properly defined matrices Φ and vector z (we use z here instead of the normal
y we used in the machine learning section to avoid confusion). Write out the
explicit form of Φ and z in terms of the the yt’s.

(c) Given the learned θ parameters, and a sequence of past observed values yt−p, . . . , yt−1,
it is easy to apply the definition of the autoregressive model to forecast the next
value yt. How would you forecast the value after that? Give a formula for fore-
casting the next p values in the time series. Hint: this is easy if you explicitly
form the A matrix mentioned in part (a), and think about powers of this matrix.
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(d) Implement the above least-squares solution for the autoregressive model in MAT-
LAB, as a function of the form

function theta = ar(y,p)

Hint: you might find the MATLAB functions toeplitz or hankel useful for this;
using these functions, you can implement the above ar function in one line of
MATLAB code (this isn’t required for the problem, but it might just make the
problem easier).

(e) The winds and loads variables (loaded from the ps4 data.mat above) contain
hourly time series data for an entire year, given wind power (for the two wind
turbine sites) and electrical demand (for each of the PQ nodes) respectively, where
each time series is contained in a single column of the variable. Use the above ar

function to build forecasting models for each of the time series, using p = 24 (i.e.,
you use a previous days worth of data to predict the next value).

For the first demand time series (loads(1,:), this is the demand over the time
frame t = 4681, . . . , 4752 (three days in the summer):

plot(1:72,-loads(1,4681:4752))
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Use your autoregressive model for this time series to forecast the demand for the
time period t = 4705, . . . , 4728 (the middle day) using the observations from the
time period t = 4681, . . . , 4704 (the first day). Plot the prediction on top of the
actual demand.

2. Generator and storage control [35pts] In this problem, you will schedule gener-
ation and storage to minimize carbon emissions while respecting generator and power
flow constraints. As mentioned above, we will be using a modified version of the IEEE
30 bus test. The grid has the following elements1

1Note that these precise generation and storage quantities do not necessarily represent realistic generators
in terms of the absolute numbers, but they do capture the overall properties and relative strengths and
weaknesses of the different types of generation and storage.
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• There are two generators in the system, at buses 1 and 2. Bus 2 represents an
open-cycle gas turbine (essentially a combustion system that directly burns the
gas to move an electrical turbine); the advantage of such systems is that they
can step up generation very quickly (in this setting, we assume it can change it’s
power generation arbitrarily quickly), but produce more carbon emissions than
other approaches, due to their decreased efficiency. Bus 1 represents a combined-
cycled gas turbine; these systems combine an open-cycle turbine with a steam
generator powered by the exhaust heat of the turbine. The combined systems are
about 60% more efficient that open-cycle systems, but because they rely on steam
power (which has to be boiled before it can produce power), they have to ramp
power up and down more slowly than the open-cycle generators.

• There are two energy storage facilities, a pumped-hydro facility at bus 5 and a
battery storage facility at bus 8. As with generators, there are trade-offs involved:
pumped hydro can store significantly more energy, but has lower efficiency than
batteries; in this example, we assume both types of storage are roughly comparable
in terms of their MW capacity.

• There are two wind farms in our system, at nodes 11 and 13. These wind farms
generate power according to however the wind blows, and cannot be controlled to
generate more power (though they can be turned off to stop generated power if
needed). The power generated by these systems is given by the winds variables,
discussed in the previous problem set.

• Finally, every node that is not one of the above is a PQ load, with power consump-
tion given by the loads variable. Several of these nodes consume no power, which
correspond to internal junction nodes in the network; although they consume no
power, they are treated at PQ nodes because we know the real and reactive power
consumption at the nodes (namely zero).

(a) We will define the state of the system as

xt ∈ R4 =


Power from generator 1
Power from generator 2

Energy stored in pumped storage
Energy stored in battery


and the control input

ut ∈ R6 =


Change in generator 1 power
Change in generator 2 power

Power used to charge pumped storage
Power used to charge battery

Power released by pumped storage
Power released by battery


Write the dynamics of the system in the form of a linear system

xt+1 = Axt +But
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(i.e., explicitly write down A and B), capturing the fact that the pumped storage
and battery storage are 80% and 90% efficiency respectively — i.e., if we put in
1 unit of power, this will only result in 0.8 or 0.9 units of energy stored (when we
take power out of the storage, we assume that 100% of the energy is delivered).

(b) Write a set of constraints on the state and control variables, in the form

u ≤ ut ≤ u, x ≤ xt ≤ x

that captures the constraints that

• The power produced by the generators, as well as the charge of the batteries,
can never be negative.

• The pumped storage has a maximum energy capacity of 10 unit-hours, while
the battery has a maximum capacity of 0.3 unit-hours.

• The combined-cycle generator can change its generator by at most 0.1 units
per hour (we assume the open-cycle turbine can change as much as desired
between hours).

• The pumped storage and battery can consume or produce at most 0.3 units
of power at each hour.

Make sure that the constraints you put in place enforce the fact that the storage
must lose energy: i.e., putting in 1.0 units of power will increase the pumped
storage by 0.8 unit-hours, but you certainly can’t take out 0.8 unit hours to get
1 unit of power.

(c) Let pt ∈ R30 denote the power injections at each bus at time t. Define the elements
pgent , pwind

t , and pstoraget in terms of the state and control variables, and the variable
windt ∈ R2, the wind produced by the wind farms (where we can use all the power
generated by the turbines if desired, but could also use less). The power consumed
by the 24 PQ loads at time t is assumed to be given by the variables loadst ∈ R24,
and cannot be adjusted.

(d) Combining the parts above, write down the model predictive control task as a
linear optimization problem over the variables x1:T , u1:T , p1:T , θ1:T . The objective
of the optimization problem is to minimize carbon emissions, which are equal to
the sum of (xt)1+2(xt)2 over all time (the power of the combined-cycled generator
plus two times the power of the open-cycle generator, to take into account the fact
that it is less efficient). You will want to include all the constraints mentioned
above, plus the fact that x1 equals some constant xinit at all indices except the
second generator2 (this accounts for the fact that the second generators power can
be adjusted arbitrarily, and will need to be adjusted at the first state to ensure
the total generation equals the total demand), and also the power flow constraints

pt = Belecθt, (θt)1 = 0, Gθt ≤ h. ∀t
2Important: The initial version of this problem set used the convention x0 for the initial

state, but this caused some confusion, since the dynamics would have to be adjusted slightly
from their above form. Instead, forget everything from the initial version about the x0 state,
and just optimize over x1:T as normal, but also be sure not to constrain the second element
(x1)2 to be equal to xinit

2 (i.e., just enforce the constraint for the indices 1,3, and 4).
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where Belec is the DC power flow susceptance matrix (denoted with the superscript
“elec” just to avoid confusing with the “B” matrix from the dynamics) and where
G and h enforce line flow constraints (in our case, the fact that no line can transmit
than 1 unit of power). You can write the objective and constraints in whatever
form is easiest (you don’t need to put the problem into standard form).

(e) Implement the above optimization problem as a MATLAB function of the form

[f,X,U,P,Theta] = optimize_power(x0, wind, loads, Belec, G, h, ...

gen, storage, wind, pq)

where x0 is the initial state of the system; winds and loads are respectively a
2×T and matrix of future wind powers and a 24×T matrix of future loads (either
true or forecasted in both cases); Belec, G, and h are matrices that capture the
power flow constraints mentioned above; and gen, storage, wind, and pq are the
indices of the different bus types. You should infer the length of the horizon T by
inspecting the size of these input variables. For the output variables, f should be
a scalar value indicating the objective function at the solution; X should be a 4×T
dimensional matrix of all the states; U a 6 × T matrix of all chosen controls; P a
30× T matrix of all power injections; and Theta a 30× T variable of all voltage
angles in the DC power flow approximation.

You should use YALMIP to solve this optimization problem, and you’ll find the
problem much easier to solve if you define all the output variables (other than f)
directly as matrix variables, i.e.,

U = sdpvar(6,T);

and write as many constraints as possible in matrix form.

(f) Use the function above to solve two different cases:

i. Solve the control problem using the real future values of power consumption
and wind, starting at time t = 4681 with a time horizon T = 24 and an initial
state of x = (0, 0, 0, 0), i.e., using the call

[f,X,U,P,Theta] = optimize_power(zeros(4,1), winds(:,4681:4740), ...

loads(:,4681:4704), Belec, G, h, ...

gen, storage, wind, pq)

ii. Solve the problem using the same settings as above, but with the forecasted
wind and load data (over the horizon T = 24 from your auto-regressive model
in Question 1).

In both cases, report the resulting states and controls. Qualitatively describe the
actions taken by this controller (e.g., how does the solution trade off between
the two types of generation, when does it use the battery, etc). Does using the
forecasted values change the behavior of the controller?

3. (15-830 only) Model predictive control [30pts]

(a) Because we are continually solving optimization problems many times, model
predictive control is one settings where we often really do want very fast solutions
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to the optimization problems. With this as our motivation, rewrite the above
optimization problem and MATLAB function as a linear program in standard
form (this is actually a bit different from the standard form, since we explicitly
include upper and lower bounds for the variables, but most solvers can directly
include these constraints without having to write them in terms of the remaining
inequality constraints)

minimize
z

cT z

subject to Az ≤ b

Aeqz = beq

l ≤ z ≤ u

where z is the optimization variable, and c, A, b, Aeq, beq, l, and u are optimization
variables. You can then solve the problem using, for example, the CPLEX LP
solver:

[z,f] = cplexlp(c, A, b, Aeq, beq, l, u);

Verify that your solution gives the same answer as the part you developed in
question 2. It is important to use sparse matrices for A and Aeq: you can con-
struct these using the MATLAB commands sparse, speye, and spdiags (see the
MATLAB help page for the documentation for these functions).

(b) Equipped with your fast solver, run model predictive control to determine how
to schedule power for the period t = 3505, . . . , 5520, starting from an initial state
x = 0. Recall that the procedure for applying MPC is as follows:

For t = 3505, . . . , 5520:

• Use the previous t− 24, . . . , t− 1 time steps to forecast wind and load (using
the autoregressive model) at each bus for the upcoming t, . . . , t + 23 time
steps.

• Solve the control optimization problem (the LP formulation) to get a series
of desired controls and states.

• Execute the first returned control action, u1.

Plot a graph of the power produced or consumed by the generators, storage, and
wind farms over the period. Also report the final objective function,that is:

f =
5520∑
t=3505

((xt)1 + 2(xt)2)
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