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Non-linear regression
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High temperature / peak demand observations for all days in 2008-2011
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• Central idea of non-linear regression: same as linear regression,
just with non-linear features

E.g. φ(xi) =

 x2i
xi
1


• Two ways to construct non-linear features: explicitly (construct

actual feature vector), or implicitly (using kernels)
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Observed Data
d = 2

Degree 2 polynomial
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Observed Data
d = 3

Degree 3 polynomial
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Observed Data
d = 4

Degree 4 polynomial
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Constructing explicit feature vectors

• Polynomial features (max degree d)

Special case, n=1: φ(z) =


zd

zd−1

...
z
1

 ∈ Rd+1

General case: φ(z) =

{
n∏
i=1

zbii :

n∑
i=1

bi ≤ d

}
∈ R(n+d

n )
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• Radial basis function (RBF) features

– Defined by bandwidth σ and k RBF centers µj ∈ Rn,
j = 1, . . . , k

φj(z) = exp

{
−‖z − µj‖2

2σ2

}
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Difficulties with non-linear features

• Problem #1: Computational difficulties

– Polynomial features,

k =

(
n+ d

d

)
= O(dn)

– RBF features; suppose we want centers in uniform grid over
input space (w/ d centers along each dimension)

k = dn

– In both cases, exponential in the size of the input dimension;
quickly intractable to even store in memory
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• Problem #2: Representational difficulties

– With many features, our prediction function becomes very
expressive

– Can lead to overfitting (low error on input data points, but high
error nearby)

10



0 20 40 60 80 100

1.5

2

2.5

3

High Temperature (F)

P
ea

k 
H

ou
rly

 D
em

an
d 

(G
W

)

 

 
Observed Data
d = 1
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Observed Data
d = 2

0 20 40 60 80 100

1.5

2

2.5

3

High Temperature (F)

P
ea

k 
H

ou
rly

 D
em

an
d 

(G
W

)

 

 
Observed Data
d = 4
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Observed Data
d = 50

Least-squares fits for polynomial features of different degrees
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Observed Data
num RBFs = 2
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Observed Data
num RBFs = 4
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Observed Data
num RBFs = 10
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Observed Data
num RBFs = 50, λ = 0

Least-squares fits for different numbers of RBFs
12



• A few ways to deal with representational problem:

– Choose less expressive function (e.g., lower degree polynomial,
fewer RBF centers, larger RBF bandwidth)

– Regularization: penalize large parameters θ

minimize
θ

m∑
i=1

`(ŷi, yi) + λ‖θ‖22

λ: regularization parameter, trades off between low loss and
small values of θ (often, don’t regularize constant term)

– We’ll come back to this issue when talking about evaluating
machine learning methods
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Observed Data
num RBFs = 50, λ = 0

0 20 40 60 80 100

1.5

2

2.5

3

High Temperature (F)

P
ea

k 
H

ou
rly

 D
em

an
d 

(G
W

)

 

 
Observed Data
num RBFs = 50, λ = 2
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Observed Data
num RBFs = 50, λ = 50
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Observed Data
num RBFs = 50, λ = 1000

RBF fits varying regularization parameter (not regularizing constant term)
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Implicit feature vectors (kernels)

• One of the main trends in machine learning in the past 15 years

• Kernels let us work in high-dimensional feature spaces without
explicitly constructing the feature vector

• This addresses the first problem, the computational difficulty
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• Simple example, polynomial feature, n = 2, d = 2

φ(z) =



1√
2z1√
2z2
z21√
2z1z2
z22


• Let’s look at the inner product between two different feature

vectors

φ(z)Tφ(z′) = 1 + 2z1z
′
1 + 2z2z

′
2 + z21z

′
1
2

+ 2z1z2z
′
1z
′
2 + z22z

′
2
2

= 1 + 2(z1z
′
1 + z2z

′
2) + (z1z

′
1 + z2z

′
2)

2

= 1 + 2(zT z′) + (zT z′)2

= (1 + zT z′)2
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• General case: (1 + zT z′)d is the inner product between two

polynomial feature vectors of max degree d (
(
n+d
d

)
-dimensional)

– But, can be computed in only O(n) time

• We use the notation of a kernel function K : Rn ×Rn → R that
computes these inner products

K(z, z′) = φ(z)Tφ(z′)

• Some common kernels

polynomial (degree d): K(z, z′) = (1 + zT z′)d

Gaussian (bandwidth σ): K(z, z′) = exp

{
−‖z − z′‖22

2σ2

}
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Using kernels in optimization

• We can compute inner produucts, but how does this help us
solve optimization problems?

• Consider (regularized) optimization problem we’ve been using

minimize
θ

m∑
i=1

`(θTφ(xi), yi) + λ‖θ‖22

• Representer theorem: The solution to above problem is given by

θ? =

m∑
i=1

αiφ(xi), for some α ∈ Rm, (or θ? = ΦTα)
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• Notice that

(ΦΦT )ij = φ(xi)
Tφ(xj) = K(xi, xj)

• Abusing notation a bit, we’ll define the kernel matrix
K ∈ Rm×m

K = ΦΦT , (Kij = K(xi, xj))

can be computed without constructing feature vectors or Φ
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• Let’s take (reguarlized) least squares objective...

J(θ) = ‖Φθ − y‖22 + λ‖θ‖22

• and substitute θ = ΦTα

J(α) = ‖ΦΦTα− y‖22 + λαTΦΦTα

= ‖Kα− y‖22 + λαTKα

= αTKKα− 2yTKα+ yT y + λαTKα

• Taking the gradient w.r.t. α and setting to zero

∇αJ(α) = 2KKα− 2Ky + 2λKα⇒ α? = (K + λI)−1y
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• How do we compute prediction on a new input x′?

ŷ′ = θTφ(x′) =

(
m∑
i=1

αiφ(xi)

)T
φ(x′) =

m∑
i=1

αiK(xi, x
′)

• Need to keep around all examples xi in order to make a
prediction; non-parametric method
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• MATLAB code for polynomial kernel

% computing alphas

d = 6;

lambda = 1;

K = (1 + X*X').^d;

alpha = (K + lambda*eye(m)) \ y;

% computing prediction

k_test = (1 + x_test*X').^d;

y_hat = k_test*alpha;

• Gaussian kernel

sigma = 0.1;

lambda = 1;

K = exp(-0.5*sqdist(X', X')/sigma^2)

alpha = (K + lambda*eye(m)) \ y;
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Observed Data
d = 4, λ = 0.01
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Observed Data
d = 10, λ = 0.01
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Observed Data
σ = 2, λ = 0.01
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Observed Data
σ = 40, λ = 0.01

Fits from polynomial and RBF kernels
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• Kernels can also be used with other loss functions; key element
is just the transformation θ = ΦTα.

• Absolute loss

alpha = sdpvar(m,1);

solvesdp([], sum(abs(K*alpha - y)));

• Some advanced algorithms possible: deadband loss + kernels =
“support vector regression”
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