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Non-linear regression
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e Central idea of non-linear regression: same as linear regression,
just with non-linear features

Eg o(z;) = | =

e Two ways to construct non-linear features: explicitly (construct
actual feature vector), or implicitly (using kernels)
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Constructing explicit feature vectors

e Polynomial features (max degree d)

Special case, n=1: ¢(z) = : e R

General case:  ¢(z) = {H zfi : Zbi < d} e r(")



e Radial basis function (RBF) features
— Defined by bandwidth o and k RBF centers p; € R",

ji=1,...,k
— [z = pll?
d)j(z) = exp{ 202 ’

1 N

Feature Value
o o
(2] [ee]

N
~

o
)

Input



Difficulties with non-linear features

e Problem #1: Computational difficulties
— Polynomial features,

k= (”zd) = O(d")

— RBF features; suppose we want centers in uniform grid over
input space (w/ d centers along each dimension)

k=d"

— In both cases, exponential in the size of the input dimension;
quickly intractable to even store in memory



e Problem #2: Representational difficulties

— With many features, our prediction function becomes very
expressive

— Can lead to overfitting (low error on input data points, but high
error nearby)
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Least-squares fits for polynomial features of different degrees
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e A few ways to deal with representational problem:

— Choose less expressive function (e.g., lower degree polynomial,
fewer RBF centers, larger RBF bandwidth)

— Regularization: penalize large parameters 6

. . . é AZ‘ i A 9 2
mmlemlze; (Gi> yi) + AlO]5

A: regularization parameter, trades off between low loss and
small values of 6 (often, don't regularize constant term)

— We'll come back to this issue when talking about evaluating
machine learning methods
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Implicit feature vectors (kernels)

e One of the main trends in machine learning in the past 15 years

e Kernels let us work in high-dimensional feature spaces without
explicitly constructing the feature vector

e This addresses the first problem, the computational difficulty
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e Simple example, polynomial feature, n =2, d = 2

1
V22
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2

e Let's look at the inner product between two different feature
vectors

d(2)T o) =14 2212] + 22025 + 2%2’12 + 22120212 + 25252

=14 2(212) + 202h) + (212} + 202b)?
=1+2(z72) 4 (212)?
= (1+272")?
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e General case: (14 272')% is the inner product between two

polynomial feature vectors of max degree d (("gd)—dimensional)

— But, can be computed in only O(n) time

e We use the notation of a kernel function K : R™ x R™ — R that
computes these inner products

K(z,2) = ¢(2)" ¢(")
e Some common kernels
polynomial (degree d): K(z,2') = (1 + 2T72")¢
_ 12
Gaussian (bandwidth o): K (z,2') = exp {M}

202
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Using kernels in optimization

e We can compute inner produucts, but how does this help us
solve optimization problems?

e Consider (regularized) optimization problem we've been using

e T () 0 2
mlmemlzeZE(Q (i), y:) + M|0]|3

=1

e Representer theorem: The solution to above problem is given by

0 = Zaigb(:ci), for some o € R™, (or * = ®Tq)
i=1
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e Notice that
(@2")i; = ¢(z)" d(z)) = K (2, ;)

e Abusing notation a bit, we'll define the kernel matrix
K ¢ Rmxm

K =03 (K, = K(z;,x;))

can be computed without constructing feature vectors or ®
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e Let's take (reguarlized) least squares objective...

J(0) = (|20 — ylI3 + l|6]3

e and substitute § = &7«
J(a) = [|[®@"a —y|5 + ra" 2"
= |Ka—y|3+ MTKa
=ol'KKa—2y" Ka+yly+ Mol Ka
e Taking the gradient w.r.t. « and setting to zero

Vod(a) =2KKa — 2Ky + 2 \Ka = o = (K + XI) 'y
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e How do we compute prediction on a new input z'?

T m
= HT(;S = (Z a;ip(x;) ) o(x') = ZaiK(xi,x’
i=1

e Need to keep around all examples z; in order to make a
prediction; non-parametric method
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e MATLAB code for polynomial kernel

% computing alphas

d = 6;

lambda = 1;

K= (1 + XxX')."d;

alpha = (K + lambdaxeye(m)) \ y;

% computing prediction
k_test = (1 + x_test*X')."d;
y_hat = k_test*alpha;

e Gaussian kernel

sigma = 0.1;

lambda = 1;

K = exp(-0.5%sqdist (X', X')/sigma~2)
alpha = (K + lambda*eye(m)) \ y;
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e Kernels can also be used with other loss functions; key element
is just the transformation § = &7«

e Absolute loss

alpha = sdpvar(m,1);
solvesdp([], sum(abs(K*alpha - y)));

e Some advanced algorithms possible: deadband loss + kernels =
“support vector regression”
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