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Evaluating algorithms

e How do we determine when an algorithm achieves “good”
performance?

e How should we tune the parameters of the learning algorithms
(regularization parameter, choice of feautres, parameters of
kernel, etc?)

e How do we report the performance of learning algorithms?



e One possibility: just look at the loss function

m

J(O) =D 0" d(xi), i)

i=1
e The problem: adding more features will always decrease the loss

e Example example: random outputs, random features, we can
get zero loss for enough features

m = 500;

y = randn(m,1);

Phi = randn(m,m);

theta = (Phi' * Phi) (Phi' * y);
norm(Phi*theta - y)2

ans =
2.3722e-22



e A better criterion: training and testing loss
— Training set: x; e R"y, e R, i=1,....m

/

— Testing set: z; e R", ¢y, € R, i=1,...,m

e Find parameters by minimizing loss on the training set, but
evaluate on the testing set

. . * . T . .
Training: 6 argmeln;ae o(xi), yi)

!/

1
Evaluation: Average Loss = 55((9*)%@;),%)

— Performance on test set called generalization performance.



e Sometimes, there is a natural breakdown between training and
testing data (e.g., train system on one year, test on the next)

e More common, simply device up the data: for example, use 70%
for training, 30% for testing

% Phi, y, m are all the data
m_train = ceil(0.7*m) ;
m_test = m - m_train;

p = randperm(m) ;

Phi_train = Phi(p(l:m train),:);
y-train = y(p(1:m_train));

Phi_test = Phi(p(m_train+i:end),:);
y-test = y(p(m_traint+i:end));
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Cross-validation

e A common mistake: split the data into training/testing sets, use
testing set to find best performing features, regularization
parameter, kernel parameters, etc (hyperparameters), then
report the testing error for these best features
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e This is not a valid method for evaluating error: the problem is
that we effectively used the testing set to “train” the system

e What we need to do instead: break the training set itself into
two sets (training and cross-validation) sets
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e Cross-validation Procedure:
1. Break all data into training/testing sets (e.g., 70%/30%)

2. Break training set into training/cross-validation set (e.g.,
70%/30% again)

3. Choose hyperparameters using cross-validation set

4. (Optional) Once we have selected hyperparameters, retrain using
all the training set

5. Evaluate performance on the testing set
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e k-fold cross-validation: Split training set into k different
“folds” (equally sized random subsets)

— For each fold 4, train on k — 1 only folks, evaluate on held out
fold 4

e The extreme case, leave one out cross validation: folds are
individual examples
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Reporting Errors

e |If we want to report performance of an algorithm, how do we do
this?

e Reporting just test error doesn't give a sense of our
“confidence” in the prediction

— If we have a testing set of size 1000, doesn't this imply more
confidence in result than a testing set of size 107

— What about variance in predictions? Are we getting some almost
completely right and others very wrong?

16



e Setting: in our test set, we have a number of actual labels y/,
and predictions g of our algorithm

e There are really two things we may care about:
1. What is the distribution of our errors y; — 417

2. If we want to report some average loss

’
m

—_— N A'
Average loss = p— Zﬁ(yi,yz)

i=1

how confident are we in this value?
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Some basic probability notation

We'll use Z to denote a random variable (with distribution D),
and use p(z) to denote the it's probability density

Expected value, or mean:
pw=E[Z] = /zp(z)dz

Variance
o® = E[(Z — p)’]

If you haven’t seen any of this notation before, there are a
number of good reviews available
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e Suppose we have m samples drawn from the probability
distribution D, written as z1,...,2, ~ D

e Then we can form empirical estimates of the mean and variance
of the distribution

=

=1
A2 1 m 1 m
P ICE P

[You may have seen variance estimates with a ﬁ term
instead; this is needed to make the estimator unbiased, but we'll
typically deal with large m, so there isn't much difference]
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Reporting errors

e As mentioned before, we might want to know about the
distribution over our prediction errors g — v/
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e Treat y, — y. as samples from a distribution

e Might want to know about the mean (also called bias), or
variance of this distribution

e If we assume prediction errors are zero-mean Gaussian (but this
is not always the case), then

which is the mean squared error
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e If we want to report some average loss, then we can treat
0(gl,y.) (for any loss) as the random samples (the average loss
is just the mean of these samples)
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e How confident are we in our estimate of the mean (i.e., the
average loss)?

e Here we'll exploit the central limit theorem: If 2y, ...z, are
(independent, identially distributed) samples from any
distribution with mean y and variance o2, then

1 & ‘ )
m;zz%/\/(uva /m)

— l.e., the mean of any set of random variables is normally
distributed

e For a normal distribution, 95% of the data falls within 1.96
standard deviations o.
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e This suggests a method for computing “confidence intervals” of
our estimate of the average loss
1. Form estimate of the mean:

1 m’
:E; ymyl

2. Form estimate of the variance:

U i
6% == (UG v) — ?

=1

3. With 95% confidence, the “true” mean lies within

fi £ 1.966 /v/m/

e This procedure is technically wrong (we should be using the a
different estimate of the variance, and a Student-t distribution
instead of Gaussian), but it is close enough when m/ is
reasonably large, which is usually our setting
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e Should report errors relative to some baseline (i.e., degree zero
polynomial)

Degree Test Error

0 0.2414 + 0.0039
0.2407 + 0.0027
0.1505 + 0.0013
0.1255 + 0.0009
0.1257 + 0.0009
0.1267 + 0.0009

b wnN R

e A better way of determining how algorithms compare: pairwise
hypothesis testing



