15-830 — Machine Learning 4: Evaluation

J. Zico Kolter

September 28, 2012

Evaluating algorithms

e How do we determine when an algorithm achieves “good”
performance?

e How should we tune the parameters of the learning algorithms
(regularization parameter, choice of feautres, parameters of
kernel, etc?)

e How do we report the performance of learning algorithms?

e One possibility: just look at the loss function

m

J(O) =D 0" d(xi), i)

i=1
e The problem: adding more features will always decrease the loss

e Example example: random outputs, random features, we can
get zero loss for enough features

m = 500;

y = randn(m,1);

Phi = randn(m,m);

theta = (Phi' * Phi) (Phi' * y);
norm(Phi*theta - y)2

ans =
2.3722e-22

e A better criterion: training and testing loss
— Training set: x; e R"y, e R, i=1,....m

/

— Testing set: z; e R", ¢y, € R, i=1,...,m

e Find parameters by minimizing loss on the training set, but
evaluate on the testing set

. . * . T . .
Training: 6 argmeln;ae o(xi), yi)

!/

1
Evaluation: Average Loss = 55((9*)%@;),%)

— Performance on test set called generalization performance.

e Sometimes, there is a natural breakdown between training and
testing data (e.g., train system on one year, test on the next)

e More common, simply device up the data: for example, use 70%
for training, 30% for testing

% Phi, y, m are all the data
m_train = ceil(0.7*m) ;
m_test = m - m_train;

p = randperm(m) ;

Phi_train = Phi(p(l:m train),:);
y-train = y(p(1:m_train));

Phi_test = Phi(p(m_train+i:end),:);
y-test = y(p(m_traint+i:end));

Peak Hourly Demand (GW)

25

High Temperature (F)
High temperature / peak demand observations

0.09

o
o
©

Average squared loss

o
o
3

o
o
&

o
o
a

o
o
K

Training set

Testing set |1

0 2 4 6 8

Polynomial degree, d
Testing loss versus degree of polynomial

10

10

Training set
Testing set
[}
g
S 10
o
@
>
o
(2]
S
& .0
§ 10
<
10 : : :
0 10 20 30

Polynomial degree, d

40

Testing loss (log-scale) versus degree of polynomial

Training set
Testing set |]

o
o ©
o

o
o
©

o ©o
®»

Average squared loss
o o o

©
o o
NN

0.03¢

0.02— : : : : :
2 4 6 8 10 12
Number of RBFs

Testing loss versus number of RBF bases

10

Training set
Testing set
0
8 o
S 10
g
a
>
o
2]
Q
& .1
§ 10
<
107 ; : ; ;
0 20 40 60 80 100

Number of RBFs
Testing loss (log-scale) versus number of RBF bases

10

10

Training set
Testing set

I
o
(=)

[EY
o
iR

Average squared loss

10°

107 107 10° 10°
Lambda

Testing loss (log-scale) versus regularization parameter (log-scale),
for 70 RBF bases

11

Cross-validation

e A common mistake: split the data into training/testing sets, use
testing set to find best performing features, regularization
parameter, kernel parameters, etc (hyperparameters), then
report the testing error for these best features

12

e This is not a valid method for evaluating error: the problem is
that we effectively used the testing set to “train” the system

e What we need to do instead: break the training set itself into
two sets (training and cross-validation) sets

13

e Cross-validation Procedure:
1. Break all data into training/testing sets (e.g., 70%/30%)

2. Break training set into training/cross-validation set (e.g.,
70%/30% again)

3. Choose hyperparameters using cross-validation set

4. (Optional) Once we have selected hyperparameters, retrain using
all the training set

5. Evaluate performance on the testing set

14

e k-fold cross-validation: Split training set into k different
“folds” (equally sized random subsets)

— For each fold 4, train on k — 1 only folks, evaluate on held out
fold 4

e The extreme case, leave one out cross validation: folds are
individual examples

15

Reporting Errors

e |If we want to report performance of an algorithm, how do we do
this?

e Reporting just test error doesn't give a sense of our
“confidence” in the prediction

— If we have a testing set of size 1000, doesn't this imply more
confidence in result than a testing set of size 107

— What about variance in predictions? Are we getting some almost
completely right and others very wrong?

16

e Setting: in our test set, we have a number of actual labels y/,
and predictions g of our algorithm

e There are really two things we may care about:
1. What is the distribution of our errors y; — 417

2. If we want to report some average loss

’
m

—_— N A'
Average loss = p— Zﬁ(yi,yz)

i=1

how confident are we in this value?

17

Some basic probability notation

We'll use Z to denote a random variable (with distribution D),
and use p(z) to denote the it's probability density

Expected value, or mean:
pw=E[Z] = /zp(z)dz

Variance
o® = E[(Z — p)’]

If you haven’t seen any of this notation before, there are a
number of good reviews available

18

e Suppose we have m samples drawn from the probability
distribution D, written as z1,...,2, ~ D

e Then we can form empirical estimates of the mean and variance
of the distribution

=

=1
A2 1 m 1 m
P ICE P

[You may have seen variance estimates with a ﬁ term
instead; this is needed to make the estimator unbiased, but we'll
typically deal with large m, so there isn't much difference]

19

Reporting errors

e As mentioned before, we might want to know about the
distribution over our prediction errors g — v/

70

60

50

Frequency
Now A
o o o

=
o

o

-0.4 -0.2 0 0.2 0.4 0.6
y pred R

Histogram of errors g} — y.

e Treat y, — y. as samples from a distribution

e Might want to know about the mean (also called bias), or
variance of this distribution

e If we assume prediction errors are zero-mean Gaussian (but this
is not always the case), then

which is the mean squared error

21

e If we want to report some average loss, then we can treat
0(gl,y.) (for any loss) as the random samples (the average loss
is just the mean of these samples)

80
70
60

Frequency
N w D Ul
o o o o

=
o

0 0.2 0.4 0.6 0.8
Y pred V|

Histogram of losses £(4;, y;) for absolute loss

22

e How confident are we in our estimate of the mean (i.e., the
average loss)?

e Here we'll exploit the central limit theorem: If 2y, ...z, are
(independent, identially distributed) samples from any
distribution with mean y and variance o2, then

1 & ‘)
m;zz%/\/(uva /m)

— l.e., the mean of any set of random variables is normally
distributed

e For a normal distribution, 95% of the data falls within 1.96
standard deviations o.

23

e This suggests a method for computing “confidence intervals” of
our estimate of the average loss
1. Form estimate of the mean:

1 m’
:E; ymyl

2. Form estimate of the variance:

U i
6% == (UG v) — ?

=1

3. With 95% confidence, the “true” mean lies within

fi £ 1.966 /v/m/

e This procedure is technically wrong (we should be using the a
different estimate of the variance, and a Student-t distribution
instead of Gaussian), but it is close enough when m/ is
reasonably large, which is usually our setting

24

e Should report errors relative to some baseline (i.e., degree zero
polynomial)

Degree Test Error

0 0.2414 + 0.0039
0.2407 + 0.0027
0.1505 + 0.0013
0.1255 + 0.0009
0.1257 + 0.0009
0.1267 + 0.0009

b wnN R

e A better way of determining how algorithms compare: pairwise
hypothesis testing

