15-830 – Machine Learning 3: Classification

J. Zico Kolter

September 25, 2012

Classification

- **Regression:** predict continuous-valued outputs $(y_i \in \mathbb{R})$
- Classification: predict discrete-valued outputs
 - Common case, binary classification: $y_i \in \{-1, 1\}$

- Binary classification: predictions have yes/no answers
 - Will the peak demand in be higher than 2GW tomorrow?
 - Will a wind turbine operate at max capacity in the next hour?
 - Will this electric line reach its maximum capacity?
 - Is the the device plugged into this outlet a refrigerator?
- Even when predicting a numerical quantity, what we really care about is often the answer to a yes/no question

Understanding building energy consumption

Buildings (residential and commercial) account for 71% of electricity consumption [Source: US EIA]

- The task: automatically identify appliances from their (individual) power signals
- Feedback about building energy consumption allows users to make more informed decisions
- Modified but similar techniques can be used to identify appliances from just whole-building energy signals

Power signal for refrigerator 1

Power signal for refrigerator 2

Constructing inputs from power signal

Classifying fridge 1 vs. fridge 2 using power as input

Classifying fridge 1 vs. fridge 2 using power and duration as inputs

Classification boundary from a linear classifier (here, a support vector machine)

Formal problem setting

- Input: $x_i \in \mathbb{R}^n$, $i = 1, \dots, m$
- Output: $y_i \in \{-1, +1\}$ (binary classification task)
- Feature mapping: $\phi: \mathbb{R}^n \to \mathbb{R}^k$
- Model Parameters: $\theta \in \mathbb{R}^k$
- Predicted output: $\hat{y}_i \in \mathbb{R} = \theta^T \phi(x_i)$
 - Intuition: for y=+1 we want $\hat{y}>0$, for y=-1, $\hat{y}<0$

Loss functions

- Loss function: $\ell : \mathbb{R} \times \{-1, +1\} \to \mathbb{R}_+$
 - Again, $\ell(\hat{y},y)$ measures how "good" the prediction is
- 0-1 Loss

$$\begin{split} \ell(\hat{y},y) &= \left\{ \begin{array}{ll} 0 & \text{if } y = +1 \text{ and } \hat{y} \geq 0 \text{, or if } y = -1 \text{ and } \hat{y} \leq 0 \\ 1 & \text{otherwise} \end{array} \right. \\ &= \left\{ \begin{array}{ll} 0 & y \cdot \hat{y} \geq 0 \\ 1 & y \cdot \hat{y} < 0 \end{array} \right. \equiv \mathbf{1} \{ y \cdot \hat{y} < 0 \} \end{split}$$

- Unfortunately, hard to optimize 0-1 loss
- Many other loss functions are used in practice

Hinge loss: $\ell(\hat{y}, y) = \max\{1 - y \cdot \hat{y}, 0\}$

Squared hinge loss: $\ell(\hat{y}, y) = \max\{1 - y \cdot \hat{y}, 0\}^2$

Logistic loss: $\ell(\hat{y}, y) = \log(1 + e^{-y \cdot \hat{y}})$

Exponential loss: $\ell(\hat{y}, y) = e^{-y \cdot \hat{y}}$

Common loss functions for classification

Some typical classification algorithms

Logistic Regression: minimize logistic loss

minimize
$$\sum_{i=1}^{m} \log \left(1 + \exp\left(-y_i \cdot \theta^T \phi(x_i)\right)\right)$$

- Probabilistic interpretation: $p(y_i = +1|x_i) = \frac{1}{1 + \exp(-\theta^T \phi(x_i))}$
- Support vector machine (SVM): minimize (regularized) hinge loss

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{m} \max \left\{ 0, 1 - y_i \cdot \theta^T \phi(x_i) \right\} + \lambda \|\theta\|_2^2$$

 If you've seen SVMs before, you may have seen them described geometrically in terms of maximizing the margin of the linear classifier; that formulation is equivalent to the above • YALMIP code for logistic regression

```
theta = sdpvar(n,1);
solvesdp([], sum(log(1+exp(-y.*(Phi*theta)))));
```

YAI MIP code for SVM

Classification boundary from a support vector machine

Optimizing loss functions in classification

- YALMIP is great for rapid prototyping, and medium-size problems
- For larger problems, we might prefer specialized solution methods, like we used for least-squares
- Logistic regression:

$$J(\theta) = \sum_{i=1}^{m} \log \left(1 + \exp \left(-y_i \cdot \theta^T \phi(x_i) \right) \right)$$

– Differentiable, but cannot analytically solve for $\nabla_{\theta}J(\theta)=0$

Newton's method

- Newton's method is a root-finding algorithm
 - i.e., for some vector-input, vector output function $f:\mathbb{R}^n\to\mathbb{R}^n$, it finds $z\in\mathbb{R}^n$ such that f(z)=0
- 1D case: $f: \mathbb{R} \to \mathbb{R}$
 - Given some initial z, repeat $z \leftarrow z f(z)/f'(z)$;

• To extend to the multi-variate case, for a function $f: \mathbb{R}^n \to \mathbb{R}^m$ we'll define the *Jacobian* $D_z f(z)$,

$$D_z f(z) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f_1(z)}{\partial z_1} & \dots & \frac{\partial f_1(z)}{\partial z_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(z)}{\partial z_1} & \dots & \frac{\partial f_m(z)}{\partial z_n} \end{bmatrix}$$

- Jacobian is like the gradient, but also defined for vector-valued functions
 - For scalar valued functions, $D_z f(z) \in \mathbb{R}^{1 \times n} = (\nabla_z f(z))^T$
- Multi-variate Newton's method: for $f: \mathbb{R}^n \to \mathbb{R}^n$

Repeat:
$$z \leftarrow z - (D_z f(z))^{-1} f(z)$$

- Newton's method applied to optimization: apply Newton's method to find z such that $\nabla_z f(z) = 0$
- The *Hessian* is a matrix of second derivatives of a real-valued function $f: \mathbb{R}^n \to \mathbb{R}$

$$\begin{split} \nabla_z^2 f(z) \in \mathbb{R}^{n \times n} &= \begin{bmatrix} \frac{\partial^2 f(z)}{\partial z_1^2} & \cdots & \frac{\partial^2 f(z)}{\partial z_1 \partial z_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(z)}{\partial z_n \partial z_1} & \cdots & \frac{\partial^2 f(z)}{\partial z_n^2} \end{bmatrix} \\ &= D_z(\nabla_z f(z)) \text{ (Jacobian of the gradient)} \end{split}$$

• Newton's method update:

Repeat:
$$z \leftarrow z - (\nabla_z^2 f(z))^{-1} \nabla_z f(z)$$

Logistic regression:

$$J(\theta) = \sum_{i=1}^{m} \log(1 + \exp(-y_i \cdot \theta^T \phi(x_i)))$$

Gradient and Hessian given by:

$$\nabla_{\theta} J(\theta) = -\Phi^T Z y$$
$$\nabla_{\theta}^2 J(\theta) = \Phi^T Z (I - Z) \Phi$$

where

$$Z \in \mathbb{R}^{m imes m}$$
diagonal, $Z_{ii} = rac{1}{1 + \exp(y_i \cdot heta^T \phi(x_i))}$

MATLAB code for logistic regression

```
function theta = logreg(Phi,y)
k = size(Phi, 2);
theta = zeros(k,1);
g = 1;
while (norm(g) > 1e-10)
  z = 1./(1 + \exp(y.*(Phi*theta)));
  g = -Phi'*(z.*y);
  H = Phi'*diag(z.*(1-z))*Phi;
  theta = theta - H \setminus g;
end
```

- YALMIP code: 20.9 seconds, logreg.m: 0.016 seconds (m = 300, n = 3)
- SVMs are a bit harder to optimize with custom routines; lots of free libraries available (libsvm, svm-light)

Newton's method, iteration 1

Newton's method, iteration 2

Newton's method, iteration 3

Newton's method, iteration 10

Progress of Newton's method

Non-linear classification

 Same idea as for linear regression: non-linear features, either explicit or using kernels

Classifying refrigerator vs. all other devices

Key component of kernels is still just the replacement

$$\theta = \sum_{j=1}^{m} \alpha_j \phi(x_j)$$

YALMIP code for kernelized SVM:

• Can derive Newton's method for kernelized formulation as well

Kernelized SVM, Gaussian kernel

Kernelized SVM, Gassian kernel (smaller bandwidth)