15-830 — Machine Learning 3: Classification

J. Zico Kolter

September 25, 2012

Classification

e Regression: predict continuous-valued outputs (y; € R)

e Classification: predict discrete-valued outputs
— Common case, binary classification: y; € {—1,1}

e Binary classification: predictions have yes/no answers
Will the peak demand in be higher than 2GW tomorrow?

— Will a wind turbine operate at max capacity in the next hour?

Will this electric line reach its maximum capacity?

Is the the device plugged into this outlet a refrigerator?

e Even when predicting a numerical quantity, what we really care
about is often the answer to a yes/no question

Understanding building energy consumption

Buildings (residential and commercial) account for 71% of electricity
consumption [Source: US EIA]

e The task: automatically identify appliances from their
(individual) power signals

e Feedback about building energy consumption allows users to
make more informed decisions

e Modified but similar techniques can be used to identify
appliances from just whole-building energy signals

Power (watts)

250

200}

150}

100t

50F

—

s o el

1000

2000 3000 4000 5000 6000 7000

Time (seconds)

Power signal for refrigerator 1

Power (watts)

250

200}

150}

100t

50F

1000 2000 3000 4000 5000 6000 7000
Time (seconds)

Power signal for refrigerator 2

Power (watts)

250

200}

150}

100t

50F

e

1000 2000 3000 4000 5000 6000 7000
Time (seconds)

Constructing inputs from power signal

Output

0.5}

-0.5¢

-1t | | q

150 160 170 180 190 200 210
Power (watts)

Classifying fridge 1 vs. fridge 2 using power as input

2500 ©
O Fridge 1
x Fridge 2
2000
)
©
c
3 1500}
Q
L
5
'E 1000t
]
o
500

150 160 170 180 190 200 210
Power (watts)

Classifying fridge 1 vs. fridge 2 using power and duration as inputs

10

2500 O\

@O\ O Fridge 1
o OV x Fridge 2
2000t A = = = Classifier boundary
w
©
[
8 1500t
[}
&2
5
'+§ 10001
>
a
500

150 160 170 180 190 200 210
Power (watts)

Classification boundary from a linear classifier (here, a support
vector machine)

Formal problem setting

Input: z; e R", ¢=1,...,m

Output: y; € {—1,+1} (binary classification task)
Feature mapping: ¢ : R” — R*

Model Parameters: § ¢ R¥

Predicted output: §; € R = 07 ¢(x;)
— Intuition: for y = +1 we want § >0, fory=—1,9 <0

12

Loss functions
e Loss function: £: R x {—1,4+1} — R,

— Again, ¢(¢,y) measures how “good” the prediction is

e 0-1 Loss
fy=+land y>0,orify=—-1land gy <0
otherwise

0
1
0 y-g=0 N
= i =1{y-
{1 Y i< 0 {y-9 <0}

0
yx ypred

13

e Unfortunately, hard to optimize 0-1 loss

e Many other loss functions are used in practice

Hinge loss:
Squared hinge loss:
Logistic loss:

Exponential loss:

£(9,y) = max{1 —y - 4,0}
(3, y) = max{1—y- 9,0}
(g, y) = log(1 + e ¥Y)
((g,y) =e¥?

14

Loss

0-1 Loss
357 Hinge Loss
3 Logistic Loss
Exponential Loss
25¢
2 L
15t
1 ‘\\\
05¢
O L s
-3 -2 -1 0 1 2
yx ypred

Common loss functions for classification

15

Some typical classification algorithms

e Logistic Regression: minimize logistic loss

mini(’mize Zl log (1 + exp (—y; - HTgb(a;i)))

Hepic - _ _ 1

— Probabilistic interpretation: p(y; = +1|x;) = TTop=0To@)

e Support vector machine (SVM): minimize (regularized) hinge
loss

miniemize Z max {0,1 — y; - 07 p(2;) } + A|0]13
i=1

— If you've seen SVMs before, you may have seen them described
geometrically in terms of maximizing the margin of the linear
classifier; that formulation is equivalent to the above

16

e YALMIP code for logistic regression

theta = sdpvar(n,1);
solvesdp([], sum(log(l+exp(-y.*(Phixtheta)))));

e YALMIP code for SVM

theta = sdpvar(n,1);
solvesdp([], sum(max(0,1-y.*(Phi*theta))) + ...
lambda*norm(theta) "2) ;

17

2500
O Fridge 1
X Fridge 2
2000 = = = Classifier boundary
m
©
c
3 1500t
(O]
Q2
5
'E 1000
>
a)
500

150 160 170 180 190 200 210
Power (watts)

Classification boundary from a support vector machine

18

Optimizing loss functions in classification

e YALMIP is great for rapid prototyping, and medium-size
problems

e For larger problems, we might prefer specialized solution
methods, like we used for least-squares

e Logistic regression:

J(0) = Z log (1 + exp (—yi . Gngﬁ(xi)))

i=1

— Differentiable, but cannot analytically solve for Vo J(6) =0

19

Newton’s method

e Newton's method is a root-finding algorithm

— i.e., for some vector-input, vector output function f : R® — R"™,
it finds z € R™ such that f(z) =0

e IDcase: f:R—R

— Given some initial z, repeat z + z — f(2)/f'(2);

20

e To extend to the multi-variate case, for a function f: R" — R™
we'll define the Jacobian D, f(z),

ofi(z) . A=)
021 Ozn
D.f(z) e R™" = oo
Ofm(2) .. Ofm(2)
0z1 0zn

e Jacobian is like the gradient, but also defined for vector-valued

functions
— For scalar valued functions, D, f(z) € RY" = (V, f(2))T

e Multi-variate Newton's method: for f : R" — R"

Repeat: z <+ z — (D, f(2)) 1 f(2)

e Newton's method applied to optimization: apply Newton's
method to find z such that V. f(z) =0

e The Hessian is a matrix of second derivatives of a real-valued
function f: R®” - R

Pf(z) .. 2f()
023 0210zn
emao| L
9 f(2) 9 f(2)
02ndz1 0z2

= D,(V.f(z)) (Jacobian of the gradient)

e Newton's method update:

Repeat: z « 2z — (V2f(2))"'V.f(2)

22

e Logistic regression:
J(0) =) log(1+ exp(—yi - 0" ¢(x7)))
i=1
e Gradient and Hessian given by:
VoJ(0) = —0T zy
Vi) =aTZ(I - 2)®

where

1
Z € R"™ ™diagonal, Z;; =

1+ eXp(yi . QTqb(Il))

23

e MATLAB code for logistic regression

function theta = logreg(Phi,y)
k = size(Phi,2);

theta = zeros(k,1);

g=1

while (norm(g) > 1le-10)
z = 1./(1 + exp(y.*(Phi*xtheta)));
g = —-Phi'x(z.*y);
H = Phi'*diag(z.*(1-z))*Phi;
theta = theta - H \ g;

end

e YALMIP code: 20.9 seconds, logreg.m: 0.016 seconds
(m =300, n =3)

e SVMs are a bit harder to optimize with custom routines; lots of
free libraries available (1ibsvm, svm-1ight)

24

Duration (seconds)

2500

2000

1500+

1000+

500

160 170 180 190
Power (watts)

Newton's method, iteration 1

25

Duration (seconds)

2500

2000

1500+

1000+

500

160 170 180 190
Power (watts)

Newton's method, iteration 2

26

Duration (seconds)

2500

2000

1500+

1000+

500

160 170 180 190
Power (watts)

Newton's method, iteration 3

27

Duration (seconds)

2500

2000

1500+

1000+

500

160 170 180 190
Power (watts)

Newton's method, iteration 10

28

Norm of gradient

[N
o

2 4 6 8 10
Iteration

Progress of Newton’'s method

Non-linear classification

e Same idea as for linear regression: non-linear features, either
explicit or using kernels

2500 1<) o)
O Other devices
% Refrigerator

2000
00

1500

1000

Duration (seconds)

500

Power (watts)

Classifying refrigerator vs. all other devices

30

e Key component of kernels is still just the replacement
m
0= ajo(z;)
j=1

e YALMIP code for kernelized SVM:

K
K

(X*X' + 1).°d; % polynomial kernel
exp(-sqdist (X',X')/(2*sig~2)); ’ Gaussian kernel

alpha = sdpvar(m,1);
solvesdp([], lambda*alpha'*K*alpha + ...
sum(max(1 - y.*(Kxalpha), 0)));

e Can derive Newton's method for kernelized formulation as well

31

Duration (seconds)

2500

2000

1500

1000

500

Power (watts)

Kernelized SVM, Gaussian kernel

32

2500

2000

1500

1000

Duration (seconds)

500

120 180 200 220
Power (watts)

Kernelized SVM, Gassian kernel (smaller bandwidth)

33

