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Classification

e Regression: predict continuous-valued outputs (y; € R)

e Classification: predict discrete-valued outputs
— Common case, binary classification: y; € {—1,1}



e Binary classification: predictions have yes/no answers
Will the peak demand in be higher than 2GW tomorrow?

— Will a wind turbine operate at max capacity in the next hour?

Will this electric line reach its maximum capacity?

Is the the device plugged into this outlet a refrigerator?

e Even when predicting a numerical quantity, what we really care
about is often the answer to a yes/no question



Understanding building energy consumption

Buildings (residential and commercial) account for 71% of electricity
consumption [Source: US EIA]



e The task: automatically identify appliances from their
(individual) power signals

e Feedback about building energy consumption allows users to
make more informed decisions

e Modified but similar techniques can be used to identify
appliances from just whole-building energy signals
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Classifying fridge 1 vs. fridge 2 using power and duration as inputs
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Classification boundary from a linear classifier (here, a support
vector machine)



Formal problem setting

Input: z; e R", ¢=1,...,m

Output: y; € {—1,+1} (binary classification task)
Feature mapping: ¢ : R” — R*

Model Parameters: § ¢ R¥

Predicted output: §; € R = 07 ¢(x;)
— Intuition: for y = +1 we want § >0, fory=—1,9 <0
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Loss functions
e Loss function: £: R x {—1,4+1} — R,

— Again, ¢(¢,y) measures how “good” the prediction is

e 0-1 Loss
fy=+land y>0,orify=—-1land gy <0
otherwise

0
1
0 y-g=0 N
= i =1{y-
{1 Y i< 0 {y-9 <0}

0
yx ypred
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e Unfortunately, hard to optimize 0-1 loss

e Many other loss functions are used in practice

Hinge loss:
Squared hinge loss:
Logistic loss:

Exponential loss:

£(9,y) = max{1 —y - 4,0}
(3, y) = max{1—y- 9,0}
(g, y) = log(1 + e ¥Y)
((g,y) =e¥?
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Some typical classification algorithms

e Logistic Regression: minimize logistic loss

mini(’mize Zl log (1 + exp (—y; - HTgb(a;i)))

Hepic - _ _ 1

— Probabilistic interpretation: p(y; = +1|x;) = TTop=0To@)

e Support vector machine (SVM): minimize (regularized) hinge
loss

miniemize Z max {0,1 — y; - 07 p(2;) } + A|0]13
i=1

— If you've seen SVMs before, you may have seen them described
geometrically in terms of maximizing the margin of the linear
classifier; that formulation is equivalent to the above
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e YALMIP code for logistic regression

theta = sdpvar(n,1);
solvesdp([], sum(log(l+exp(-y.*(Phixtheta)))));

e YALMIP code for SVM

theta = sdpvar(n,1);
solvesdp([], sum(max(0,1-y.*(Phi*theta))) + ...
lambda*norm(theta) "2) ;
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Classification boundary from a support vector machine
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Optimizing loss functions in classification

e YALMIP is great for rapid prototyping, and medium-size
problems

e For larger problems, we might prefer specialized solution
methods, like we used for least-squares

e Logistic regression:

J(0) = Z log (1 + exp (—yi . Gngﬁ(xi)))

i=1

— Differentiable, but cannot analytically solve for Vo J(6) =0
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Newton’s method

e Newton's method is a root-finding algorithm

— i.e., for some vector-input, vector output function f : R® — R"™,
it finds z € R™ such that f(z) =0

e IDcase: f:R—R

— Given some initial z, repeat z + z — f(2)/f'(2);
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e To extend to the multi-variate case, for a function f: R" — R™
we'll define the Jacobian D, f(z),

ofi(z) . A=)
021 Ozn
D.f(z) e R™" = oo
Ofm(2) .. Ofm(2)
0z1 0zn

e Jacobian is like the gradient, but also defined for vector-valued

functions
— For scalar valued functions, D, f(z) € RY" = (V, f(2))T

e Multi-variate Newton's method: for f : R" — R"

Repeat: z <+ z — (D, f(2)) 1 f(2)



e Newton's method applied to optimization: apply Newton's
method to find z such that V. f(z) =0

e The Hessian is a matrix of second derivatives of a real-valued
function f: R®” - R

Pf(z) .. 2f()
023 0210zn
emao| L
9 f(2) 9 f(2)
02ndz1 0z2

= D,(V.f(z)) (Jacobian of the gradient)

e Newton's method update:

Repeat: z « 2z — (V2f(2))"'V.f(2)
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e Logistic regression:
J(0) =) log(1+ exp(—yi - 0" ¢(x7)))
i=1
e Gradient and Hessian given by:
VoJ(0) = —0T zy
Vi) =aTZ(I - 2)®

where

1
Z € R"™ ™diagonal, Z;; =

1+ eXp(yi . QTqb(Il))
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e MATLAB code for logistic regression

function theta = logreg(Phi,y)
k = size(Phi,2);

theta = zeros(k,1);

g=1

while (norm(g) > 1le-10)
z = 1./(1 + exp(y.*(Phi*xtheta)));
g = —-Phi'x(z.*y);
H = Phi'*diag(z.*(1-z))*Phi;
theta = theta - H \ g;

end

e YALMIP code: 20.9 seconds, logreg.m: 0.016 seconds
(m =300, n =3)

e SVMs are a bit harder to optimize with custom routines; lots of
free libraries available (1ibsvm, svm-1ight)
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Newton's method, iteration 1
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Newton's method, iteration 2
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Newton's method, iteration 3
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Non-linear classification

e Same idea as for linear regression: non-linear features, either
explicit or using kernels
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e Key component of kernels is still just the replacement
m
0= ajo(z;)
j=1

e YALMIP code for kernelized SVM:

K
K

(X*X' + 1).°d; % polynomial kernel
exp(-sqdist (X',X')/(2*sig~2)); ’ Gaussian kernel

alpha = sdpvar(m,1);
solvesdp([], lambda*alpha'*K*alpha + ...
sum(max(1 - y.*(Kxalpha), 0)));

e Can derive Newton's method for kernelized formulation as well
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