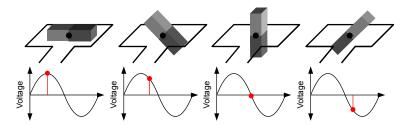

15-830 – Electric Power Systems 2: Generators, Three-phase Power, and Power Electronics

J. Zico Kolter


October 9, 2012

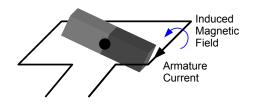
Generators

• Basic AC Generator

• Generator operation

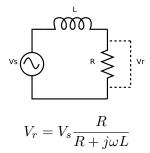
- Rotor rotating element
- **Stator** stationary element on the outside
- Armature wires carrying the current (could be either in rotor or stator, but typically stator)
- Synchronous generator generator moves "in sync" with power in grid
 - I.e., for U.S. AC power, generator spins at 60Hz = 3600 RPM (in practice, can have multiple poles in rotor magnet, allows for slower rotation)

 In practice, typically use electromagnet instead of permanent magnet in the rotor


- Needs a DC current source to create magnet (exciter), can come from seperate generator or from grid
- By increasing/decreasing exciter current, we change strength of magnet, which varies generator voltage
- Also, increase number of windings in armature, increases voltage (by fixed ratio)

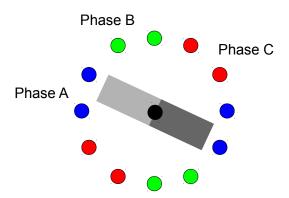
- Typically can directly control two elements of the generator: (real) power and voltage
- Controlling real power:
 - Mechanical power and real power must be equal (ignoring losses)

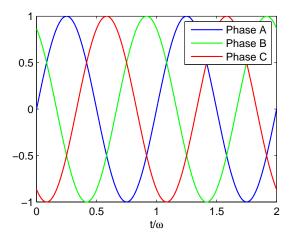
$$P = \operatorname{Re}\{I^*V\} = \operatorname{torque} \cdot \omega$$
 (torque times rotational velocity)


- For synchronous generator, can't change rotational velocity;
 power change must come from change in torque
- Tighly controlled system that applies additional force from "prime mover" (i.e., gas or steam) to maintain rotational velocity

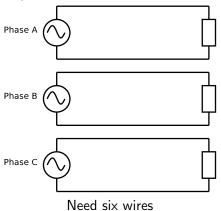
• What causes "force" on rotor?

Armature current itself creates magnetic field opposing rotor revolution, requires force to overcome

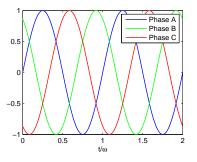

• Indirectly control reactive power via voltage



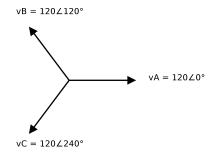
- Voltage across resistor is decreased by adding inductor
- To maintain real power, we need to increase voltage
- Effectively, generator "supplies" reactive power by increasing voltage

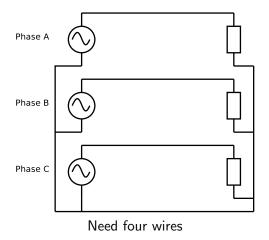

Three phase power

 Most generators use three seperate windings in armature, create three different phases of power

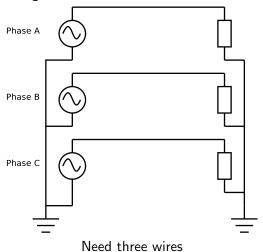


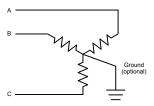
- Why three phase power?
- Hypothetical setup

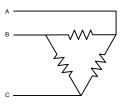

 However, nice property of three phase power is that currents cancel out (assuming all currents in phase with voltages, and that current magnitudes are equal)

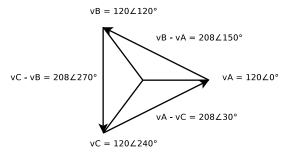

$$i_A(t) + i_B(t) + i_C(t) = 0, \quad \forall t$$

• True for any number of phases ≥ 2 ?

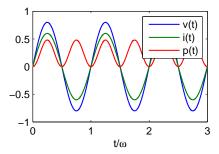

• Can derive this from trignonometric identities, but easy to see using complex representation


• Because of this, we can bring line together and form a single "neutral" return line

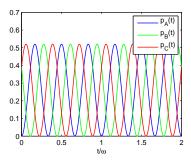

 Because return wire has practically zero voltage, we can even eliminate it altogether


 Attaching three wires in this manner known as a "wye" connection

 Another common possibility is the "delta" connection, also a way of attaching loads with only three lines



 Delta connection is directly connecting two different phases together, not obvious that this produces correct current in loads

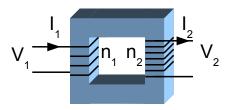


• Delta connector scales observed voltages by $\sqrt{3}$

 Another rational for three phase power: equal power throughout rotation

Power for three phases

- Three sine waves 120 degrees out of phase, add to a constant number
 - Mechanically, this means the generator rotor experiences constant force throughout its revolution
- True for any number of phases ≥ 3 ?

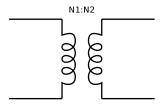

Power Electronics

 Equipment that converts AC-DC voltage/current or AC-AC, DC-DC (but changes voltage)

AC - AC	Transformer (not called power electronics)
AC - DC	Rectifier
DC - AC	Inverter
DC - DC	Buck/Boost Converters

Transformers

• Simple transformer is two coils of wire around a magnet

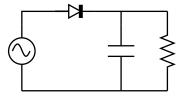

• Voltage scaling is proportional to the number of turns of wire

$$\frac{V_1}{V_2} = \frac{n_1}{n_2}$$

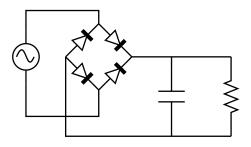
and sine $V_1I_1=V_2I_2$ for lossless transformer

$$\frac{V_1}{V_2} = \frac{n_1}{n_2} = \frac{I_2}{I_1}$$

• Symbol in circuit diagrams

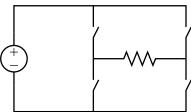

- Actual transformers will have some resistive losses, some amount of inductance
- Can also create three-phase transformers (delta and wye variants on each side) that only need the three lines

Rectifiers

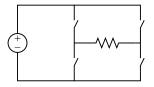

 Basic element of the rectifier (and first non-linear circuit element we encounter is diode)

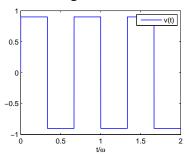
- Diode allows current to flow only in one direction
- Half-wave rectifier

• Full-wave rectifier



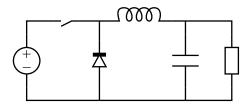
Inverters


 Inverters make use of switches, circuit elements that can be open or closed

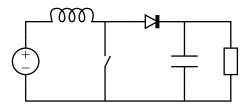

- Switches are typically implemented via solid state electronics (transistors), digitally controlled
- H-bridge inverter

• Alternating between opening and closing diagonal switches

• Results in square wave voltage



Can smooth through capacitors/inductors and also by switching more rapidly


DC-DC Converters

• DC-DC converters also make use of switches, typically at high frequencies (e.g. 10kHz or above)

• Buck converter: DC to lower voltage DC

• Boost converter: DC to higher voltage DC

