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PID Control

e Proportional Integral Derivative

e Remember linear system of generator

0=w—we

e Goal is to achieve/maintain § =0



o Attempt #1 (feed-forward control):

Tracking Error
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e Attempt #2 (P control):
Uy = pelec + Kp(eg — (915)
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e Attempt #2 (PD Control):

w = p° + K, (607 — 0,) + Kd(étd —6y)
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e Looks good, but what if we don’t know peleC beforehand?

up = Kp(08 — 0,) + Kq(6," — 6,)
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e O never reaches desired value



Attempt #3 (PID Control):

t
= K0 — 0,) + Ka(0," — 6) + K (02 - 6,)
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Multi-variate PID control

e PID control works well for controlling “single input, single
output” (SISO) systems

— For second order linear systems, it is the “optimal” method

e For higher-order or multi-variate systems, it is no longer optimal,
but often works well anyway

e Can require a fair amount of tuning



e Example: multiple generators and DC power flow approximation

0; = w; — wet

. 1 (u ) t € GEN
7 2HZ 7 p’L
p= Bo

e A set of differential algebraic equations, but since algebraic
equations are linear, we can invert them directly to form
ordinary differential equations

[pG]:[BGG BGL][QG]
DL Bre Brr 0r



e Eliminate 0}, variables
pL = Brgbc + Brif, = 0, = B;;pL — B;;Brcbc

pc = Boac+Barbr = (Bao—BerBr i Brc)0c+BeLBripL

e Results in dynamical system

. 1
w= 2H(U_(BGG’ BerB;}Bra)0 — BarBr L)

w time derivative couples together the dynamics of the different
generators
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e PID control still works surprisingly well
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Linear Quadratic Control

e Returning to optimal control formulation

H
pick u1.7 to minimize J = ZC(mt,ut)
t=1

e Remember from intro lecture that we can solve this when
dynamics are linear and costs/constraints are convex

e An important special case: linear dynamics and quadratic costs,
with no control or state constraints: Linear Quadratic Regulator

(LQR)
Tiy1 = Az + Buy
Clar,ur) = [|Qe|l3 + || Ru3
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e Can write as the optimization problem
H
minimize Y _ (/|Q¢|3 + | Ru[3)
t=1

Z1.7,U1:T

subject to a1 = Axy + Buy

e However, it turns out for this special case we get an analytical
solution of the form
uf = Ktl't

for some matrices Ky € R"™*" t=1,...,H

e Derivation is a bit involved, but just linear algebra operations
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e Even more interesting: we can solve the infinite time problem

o0
C . 2 2
minimize Y ([|Qz¢]3 + [ Rus3)
Z1.7,U1:T
t=1
subject to x;+1 = Axy + Buy
and solution is given by steady-state matrix
Ut 22}($t
e Intuition: once we achieve z; =0, uy = 0 and z = 0 for all

t' > t; if system is controllable, we can achieve this in finite
time, so infinite horizon cost is finite

e So common, there is a MATLAB routine for this

K = dlqr(A, B, Q'*Q, R'*R);
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e Example: generator control
0=w—we
1

w= 2H(u_ (BGG BGLBLLBLG)G BGLBLLpL)

e Write as linear systems

T=Ax +Bu-+a
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Convert to discrete-time system
xpp1 = (I + AtA)xy + AtBx + Ata
= flxt + B:Ut + ag

Given some equilibrium point x*, u*

¥ = Ax*+ Bu* +a
we can convert this affine system to a linear system in the
variables Az; = z; — o™, Aup = up — u*

ALEt = /Nlet + BAut

Define a cost function on deviation from optimal state

C(ae,ur) = [|Q(ze—2™) 3+ R(ue—u*)[3 = |QAZ|3+]| RAw[3

Then optimal LQR solution given by
Aug = KAzy < w =u* + K(zy — x)
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e Notice that the LQR solution
up = u* + K(x¢ — 2¥)
is a generalization of the PD controller with feedforward control

up = u* + [ —-K,I —K4I ] (x4 — x¥)

e However, if K is full, then LQR controller accounts for
interdependence of state variables

e Also, it can be much more intuitive to specify the cost function
Clz,ue) = Qe — 2|3 + [[R(us — )3

than to guess control gains (cost specifies what we actually
want to optimize)
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Issues with LQR

e Sometimes, it is difficult to express the costs/constraints of a
control task with just a quadratic cost function

e Control inputs from LQR controller
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e LQR cannot enforce bounds on control inputs, cannot enforce
hard constraints on resulting states

e Some heuristics for dealing with these issues

— Take LQR controls and clip them to allowable region

— Tune quadratic penalties (possibly varying over time), to ensure
desired behavior

e Ultimately, little can be said about how well these methods will
perform
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Control via Optimization

e An alternative solution: return to the paradigm of control as
optimization

e Recall LQR was just solving the (convex) optimization problem

H
minimize Z (HQ%H% + ||RUtH§)

Z1.7,U1:T
t=1

subject to x;41 = Axy + Buy

T1 = Tinit
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e We can easily augment this to include explicit bounds on states
and controls

H
minimize Z (||Q$t|\% + HRUtH%)

Z1: 7u H
1:7,U1.T =1
subject to xy4+1 = Axy + Buy
T1 = Tinit

u<u<uU, x<x:<T

e This is a Quadratic Program, can solve using YALMIP or
specialized solvers
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e Example: generator control with power limited to nominal power
output £0.5 p.u.

]
]

sdpvar (2*N, T);

= sdpvar (N, T);

= [x(:,2:end) == A*x(:,1:end-1) + B*u(:,1:end-1) + a;
x(:,1) == [zeros(n,1); omega_refx*ones(N,1)];
u_star - 0.5 <= u;
u_star + 0.5 >= u;]

solvesdp(C, norm(x-x_star,’fro’)"2 + ...

le-3*norm(u-u_star,’fro’)"2);

Qe
[

e Takes about 10 seconds to solve with YALMIP (for 7' = 10000)

e Qutput is a sequence of optimal control actions uy.7, not a
feedback controller u; = Kay
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Generator power
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e Many advantages and disadvantages to PID, LQR, and
optimization (many others in addition to these)

Pros Cons

PID | Easy to implement (even | Gain tuning can be “art”;
without model) cannot always apply to

multi-variate systems

LQR | Gives feedback controller | Can't incorporate con-
u; = Kz, easy to com- | straints; requires model
pute (with MATLAB)

Opt | Can incorporate con- | More time consuming;
straints; directly solves | doesn’t give feedback
optimal control problem | controller
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