
15-830 – Control 3: Control of Dynamical
Systems

J. Zico Kolter

November 27, 2012

1



PID Control

• Proportional Integral Derivative

• Remember linear system of generator

θ̇ = ω − ωref

ω̇ =
1

2H
(u− pelec)

• Goal is to achieve/maintain θ = 0

2



• Attempt #1 (feed-forward control):

ut = pelec

0 1 2 3 4 5
−1

−0.5

0

0.5

1

Time (s)

T
ra

ck
in

g 
E

rr
or

 

 
θ
ω − ωref

0 1 2 3 4 5
−1

−0.5

0

0.5

Time (s)

T
ra

ck
in

g 
E

rr
or

 

 
θ
ω − ωref

3



• Attempt #2 (P control):

ut = pelec +Kp(θ
d
t − θt)

= pelec −Kpθt

0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

Time (s)

T
ra

ck
in

g 
E

rr
or

 

 
θ
ω − ωref

Kp = 50

0 1 2 3 4 5
−0.5

0

0.5

Time (s)

T
ra

ck
in

g 
E

rr
or

 

 
θ
ω − ωref

Kp = 100

4



• Attempt #2 (PD Control):

ut = pelec +Kp(θ
d
t − θt) +Kd(θ̇t

d − θ̇t)
= pelec −Kpθt −Kd(ωt − ωref)

0 1 2 3 4 5
−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

T
ra

ck
in

g 
E

rr
or

 

 
θ
ω − ωref

Kp = 100, Kd = 20

0 1 2 3 4 5
−0.2

−0.1

0

0.1

0.2

Time (s)

T
ra

ck
in

g 
E

rr
or

 

 
θ
ω − ωref

Kp = 100, Kd = 50

5



• Looks good, but what if we don’t know pelec beforehand?

ut = Kp(θ
d
t − θt) +Kd(θ̇t

d − θ̇t)

0 1 2 3 4 5
−0.1

−0.05

0

0.05

0.1

Time (s)

T
ra

ck
in

g 
E

rr
or

 

 
θ
ω − ωref

• θ never reaches desired value

6



• Attempt #3 (PID Control):

ut = Kp(θ
d
t − θt) +Kd(θ̇t

d − θ̇t) +Ki

t∑
τ=1

(θdτ − θτ )

= −Kpθt −Kd(ωt − ωref)−Ki

t∑
τ=1

θτ

0 1 2 3 4 5
−0.1

−0.05

0

0.05

0.1

Time (s)

T
ra

ck
in

g 
E

rr
or

 

 
θ
ω − ωref

Kp = 100, Kd = 50, Ki = 15∆t

7



Multi-variate PID control

• PID control works well for controlling “single input, single
output” (SISO) systems

– For second order linear systems, it is the “optimal” method

• For higher-order or multi-variate systems, it is no longer optimal,
but often works well anyway

• Can require a fair amount of tuning

8



• Example: multiple generators and DC power flow approximation

θ̇i = ωi − ωref

ω̇i =
1

2Hi
(ui − pi)

 i ∈ GEN

p = Bθ

• A set of differential algebraic equations, but since algebraic
equations are linear, we can invert them directly to form
ordinary differential equations[

pG
pL

]
=

[
BGG BGL
BLG BLL

] [
θG
θL

]

9



• Eliminate θL variables

pL = BLGθG +BLLθL =⇒ θL = B−1LLpL −B
−1
LLBLGθG

pG = BGGθG+BGLθL = (BGG−BGLB−1LLBLG)θG+BGLB
−1
LLpL

• Results in dynamical system

θ̇ = ω − ωref

ω̇ =
1

2H
(u− (BGG −BGLB−1LLBLG)θ −BGLB−1LLpL)

ω time derivative couples together the dynamics of the different
generators

10



• PID control still works surprisingly well

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

Time (s)

θ 
−

 θ
d

 

 
Gen 1
Gen 2
Gen 3
Gen 4
Gen 5

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

0.4

Time (s)

ω
 −

 ω
re

f

 

 
Gen 1
Gen 2
Gen 3
Gen 4
Gen 5

11



Linear Quadratic Control

• Returning to optimal control formulation

pick u1:T to minimize J =

H∑
t=1

C(xt, ut)

• Remember from intro lecture that we can solve this when
dynamics are linear and costs/constraints are convex

• An important special case: linear dynamics and quadratic costs,
with no control or state constraints: Linear Quadratic Regulator
(LQR)

xt+1 = Axt +But

C(xt, ut) = ‖Qxt‖22 + ‖Rut‖22
12



• Can write as the optimization problem

minimize
x1:T ,u1:T

H∑
t=1

(
‖Qxt‖22 + ‖Rut‖22

)
subject to xt+1 = Axt +But

• However, it turns out for this special case we get an analytical
solution of the form

u?t = Ktxt

for some matrices Kt ∈ Rm×n, t = 1, . . . ,H

• Derivation is a bit involved, but just linear algebra operations

13



• Even more interesting: we can solve the infinite time problem

minimize
x1:T ,u1:T

∞∑
t=1

(
‖Qxt‖22 + ‖Rut‖22

)
subject to xt+1 = Axt +But

and solution is given by steady-state matrix

ut = Kxt

• Intuition: once we achieve xt = 0, ut′ = 0 and xt′ = 0 for all
t′ ≥ t; if system is controllable, we can achieve this in finite
time, so infinite horizon cost is finite

• So common, there is a MATLAB routine for this

K = dlqr(A, B, Q'*Q, R'*R);

14



• Example: generator control

θ̇ = ω − ωref

ω̇ =
1

2H
(u− (BGG −BGLB−1LLBLG)θ −BGLB−1LLpL)

• Write as linear systems

ẋ = Ax+Bu+ a

x =

[
θ
ω

]
A =

[
0 I

− 1
2H (BGG −BGLB−1LLBLG) 0

]
B =

[
0
1
2H I

]
a =

[
−ωref1

− 1
2HBGLB

−1
LLpL

]
15



• Convert to discrete-time system

xt+1 = (I + ∆tA)xt + ∆tBx+ ∆ta

= Ãxt + B̃xt + at

• Given some equilibrium point x?, u?

x? = Ãx? +Bu? + a

we can convert this affine system to a linear system in the
variables ∆xt = xt − x?, ∆ut = ut − u?

∆xt = Ã∆xt + B̃∆ut

• Define a cost function on deviation from optimal state

C(xt, ut) = ‖Q(xt−x?)‖22+‖R(ut−u?)‖22 = ‖Q∆xt‖22+‖R∆ut‖22

• Then optimal LQR solution given by

∆ut = K∆xt ⇔ ut = u? +K(xt − x?)
16



• Notice that the LQR solution

ut = u? +K(xt − x?)

is a generalization of the PD controller with feedforward control

ut = u? +
[
−KpI −KdI

]
(xt − x?)

• However, if K is full, then LQR controller accounts for
interdependence of state variables

• Also, it can be much more intuitive to specify the cost function

C(xt, ut) = ‖Q(xt − x?)‖22 + ‖R(ut − u?)‖22

than to guess control gains (cost specifies what we actually
want to optimize)

17



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

Time (s)

θ 
−

 θ
d

 

 
Gen 1
Gen 2
Gen 3
Gen 4
Gen 5

0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

Time (s)

ω
 −

 ω
re

f

 

 
Gen 1
Gen 2
Gen 3
Gen 4
Gen 5

18



Issues with LQR

• Sometimes, it is difficult to express the costs/constraints of a
control task with just a quadratic cost function

• Control inputs from LQR controller

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

Time (s)

G
en

er
at

or
 p

ow
er

 

 
Gen 1
Gen 2
Gen 3
Gen 4
Gen 5

Inputs are similar for the above PD/PID controller

19



• LQR cannot enforce bounds on control inputs, cannot enforce
hard constraints on resulting states

• Some heuristics for dealing with these issues

– Take LQR controls and clip them to allowable region

– Tune quadratic penalties (possibly varying over time), to ensure
desired behavior

• Ultimately, little can be said about how well these methods will
perform

20



Control via Optimization

• An alternative solution: return to the paradigm of control as
optimization

• Recall LQR was just solving the (convex) optimization problem

minimize
x1:T ,u1:T

H∑
t=1

(
‖Qxt‖22 + ‖Rut‖22

)
subject to xt+1 = Axt +But

x1 = xinit

21



• We can easily augment this to include explicit bounds on states
and controls

minimize
x1:T ,u1:T

H∑
t=1

(
‖Qxt‖22 + ‖Rut‖22

)
subject to xt+1 = Axt +But

x1 = xinit

u ≤ ut ≤ u, x ≤ xt ≤ x

• This is a Quadratic Program, can solve using YALMIP or
specialized solvers

22



• Example: generator control with power limited to nominal power
output ±0.5 p.u.

x = sdpvar(2*N, T);

u = sdpvar(N, T);

C = [x(:,2:end) == A*x(:,1:end-1) + B*u(:,1:end-1) + a;

x(:,1) == [zeros(n,1); omega_ref*ones(N,1)];

u_star - 0.5 <= u;

u_star + 0.5 >= u;]

solvesdp(C, norm(x-x_star,’fro’)^2 + ...

1e-3*norm(u-u_star,’fro’)^2);

• Takes about 10 seconds to solve with YALMIP (for T = 10000)

• Output is a sequence of optimal control actions u1:T , not a
feedback controller ut = Kxt

23



0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

Time (s)

θ 
−

 θ
d

 

 
Gen 1
Gen 2
Gen 3
Gen 4
Gen 5

0 2 4 6 8 10
−2

−1

0

1

2

3

Time (s)

G
en

er
at

or
 p

ow
er

 

 
Gen 1
Gen 2
Gen 3
Gen 4
Gen 5

24



• Many advantages and disadvantages to PID, LQR, and
optimization (many others in addition to these)

Pros Cons
PID Easy to implement (even

without model)
Gain tuning can be “art”;
cannot always apply to
multi-variate systems

LQR Gives feedback controller
ut = Kxt; easy to com-
pute (with MATLAB)

Can’t incorporate con-
straints; requires model

Opt Can incorporate con-
straints; directly solves
optimal control problem

More time consuming;
doesn’t give feedback
controller

25


