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Control Problems

• Thus far in the course, we have focused on allocation problems
(e.g., optimal power flow) that are static in time

• Many tasks in sustainability have large temporal components

• We’ll use the term “control tasks” to talk broadly about settings
where we take actions over time in a dynamical system to
minimize some total cost
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• Control tasks are ubiquitous in energy/sustainability problems

– Heating/cooling of buildings in response to occupancy

– Storing electrical power in response to renewable resources and
electricity pricing

– Maximum power point tracking for renewable energy systems

– Scheduling generation over time in the power grid
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Some definitions

• State: x ∈ Rn

– Captures those elements of system that are relevant to its
evolution but not controlled by agent

• Control input: u ∈ Rm

– Captures elements that are directly specified by the agent

• Policy/controller: π : Rn → Rm

– u = π(x) prescribes input u as a function of state x
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Dynamical Systems

• A dynamical system describes how state evolves over time, in
response to control inputs

• Typical setting: first-order dynamics (next state or time
derivative depends only on current state and control)

– Discrete-time: xt+1 = f(xt, ut)

– Continuous-time:
dx

dt
≡ ẋ = f(x, u)

– Can (approximately) transform between these two via Euler
integration

xt+1 = xt + (∆t)f(xt, ut)
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• Lots of extensions and special cases of dynamical systems (we
will cover these in more detail in the next lecture)

– Partially observable systems: can’t observe state xt directly, just
some observation yt ∈ Rp

yt = h(xt)

– Stochastic systems: some uncertainty or noise in the dynamics

xt+1 = f(xt, ut) + εt

– Markov Decision Processes: a setting with general dynamics and
stochasticity, typically applied to discrete state / discrete action
settings
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Control as Optimization

• Basis of optimal control is the notion of a cost function

C : Rn × Rm → R+

– C(x, u) captures “badness” of being in state x and executing
action u.

• Goal is to pick actions that minimize the sum of costs over some
horizon T (also called cost-to-go, value function)

J(u1:T ) =

T∑
t=1

C(xt, ut) subject to xt+1 = f(xt, ut)

J(u1:T ) =

∫ T

0
C(x, u)dt subject to ẋ = f(x, t)
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• Optimization formulation of (deterministic) optimal control

minimize
x1:T ,u1:T

T∑
t=1

C(xt, ut)

subject to xt+1 = f(xt, ut), t = 1, . . . , T − 1

g(x1:T , u1:T ) ≤ 0, (arbitrary inequality constraints)

h(x1:T , u1:T ) = 0, (arbitrary equality constraints)

• A very general way of formulating optimal control, but solving
the optimization problem is still hard, except for special cases of
systems
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• Today, we’ll focus on a specific case that can be solved
efficiently: affine system + convex cost and constraints

minimize
x1:T ,u1:T

T∑
t=1

C(xt, ut)

subject to xt+1 = Axt +But + at, t = 1, . . . , T − 1

g(x1:T , u1:T ) ≤ 0

h(x1:T , u1:T ) = 0

• Can again be solved using our off-the-shelf solvers (e.g.
YALMIP)
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Example 1: Building Heating

• Maintain building temperature within setpoints:
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• Heat transfer dynamics (temperature T )

ρcpV
dT

dt
= −UA(T − T (external))

• Define state space and control

xt = internal temperature at time t

ut = additional injected energy (i.e., heating) at time t

• Leads to discrete time approximation

xt+1 = xt + k(T
(external)
t − xt) + but

– A linear dynamical system

– Physical constants and time step all folded into constants k, b
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• Time-based pricing of electricity:
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• Task: minimize cost of electricity while maintaining building
withing heating bounds
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• Formulate this as the optimization problem (LP):

minimize
x,u

cTu

subject to xt+1 = xt + k(T
(external)
t − xt) + but

x1 = T1

Tl ≤ x ≤ Tu
0 ≤ u ≤ 1

• MATLAB code:

x = sdpvar(T,1);

u = sdpvar(T,1);

C = [x(1) == 55];

for i=1:T-1,

C = [C; x(i+1) == x(i) + k*(Te(i)-x(i)) + b*u(i)];

end

C = [C; x >= Tl; x <= Tu];

C = [C; u >= 0; u <= 1];

solvesdp(C, c'*u);
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Example 2: Energy Storage for Wind
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• Lacking storage, we need to just sell energy generated at time t
at the current market price

• If we have an energy storage system attached to the turbine, we
can store energy if price is low, sell when high
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• State space and control:

xt = total energy stored in battery at time t

ut = energy put into or taken out of battery at time t

• System dynamics

xt+1 = xt + ut (0 ≤ xt ≤ Emax)

• External variables:

et = wind energy generated at time t

ct = cost of electricity at time t
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• Optimization formulation

minimize
x,u

cT (e− u)

subject to xt+1 = xt + ut, t = 1, . . . , T − 1

0 ≤ x ≤ Emax

− Eramp ≤ u ≤ Eramp

e− u ≥ 0
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• Solution (energy stored over the day):
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In this case, make 17% more money from including storage (but
real advantage is when wind penetration high, for avoiding

spinning reserve)
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A preview of issues to come

• These example were very simple dynamical systems; how do we
handle more complex dynamics?

• In our optimization problems we assumed the dynamics were
deterministic and future was known; how do we deal with
stochasticity and uncertain predictions?

• Exact optimal solutions will often be impossible to obtain, but
approximate methods like Model Predictive Control often work
very well in practice.
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