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Dynamical Systems
e Many extensions or special cases possible for the general
dynamical system
Ter1 = (2, ue)
1. Linear systems
2. Partially observable systems
3. Differential algebraic equations

4. Stochastic systems, MDPs

5. Many others



Linear Dynamical Systems
Already seen a brief mention of (discrete time) linear systems
T = Az + Buyg
A simple extension: affine systems
xiy1 = Az + Bug + aq
Continuous-time analogue

z = Ax + Bu

Often, one of the few cases where we can solve optimal control
problems exactly



e More complex example: multi-room heating

Outside
Te
Room 1 Room 2
T1 T2
Room 3 Room 4
T3 T4

Ty =2k(T, — T) + k(T — Th) + k(T3 — T1) + duy



e Let x; = T;, assume heaters/coolers in rooms one and two;
dynamics are given by

-4k k k 0
k -4k 0 k
Tip1 = x¢ + At k 0 Ak k Tt
0 k k. —4k
2kT, d 0
2kT, 0 d
+ At kT, + At 00 Ut
2kT, 0 0

Tt €R4, Ut ERQ

e Interesting question: with just these two heaters/coolers, can we
control the temperature any way desired?



Questions for linear systems

e Controllability: Given linear system
Tiy1 = Axy + By

is it possible to reach some state x* from some initial state x;
in k time steps?

Tyl = (A(A$1 + Bul) + Bug + .. )

U1

— Abg 1+ [ A'B 2B .. B

Uf;

e Can reach any state after k steps if
[ Ak-lB A*2B ... B]

is full rank (can find n independent columns)



Stability: Given some controller u; = Kx¢, does the
autonomous system

Tyl = Axy + BKx = fil‘t

go to zero as or does it diverge to oco?

Can understand this by looking at the eigenvalues of A
A= SAS™! (A diagonal)
This implies that

AF = SASTISAS™! ... = SA"S!

Since A is diagonal, A¥ is just each entry raised to kth power
— So, if all eigenvalues have |\;| < 1, 2 — 0



e Lots of use for theory of linear systems, even for systems that
aren't linear

e Consider non-linear system
Tt4+1 = f($t7ut)
and equilibrium point
ot = f(z%, u")
e Then the controllability/stability of the system around this point
is the same as that of the linear system

A= D,f(x*,u*), B= Dyf(x*,u")



Partially observable systems

e In many situations, it is not possible to directly observe all the
state variables of a system

e Can formulate this as a partially observable system with output
Yt € RP

Tep1 = (2, ue)
yr = h(xy)

e Typically the case that p < n (or h is not invertible), so we
cannot directly obtain z; given y;



A fundamental question for partially observable systems: given a

sequence of measurements, can we determine the state of the
system? (state estimation, filtering, many other names)

Let x; be the initial (unknown) state of the system

Y1 h(x1)
Y2 | h(f(x1,u1))

ys | — | h(f(f(21,w),u2))

For k observations, n unknowns (x1) and kp knowns

When kp > n, we might be able to recover state (for example
using Newton's method)

— Lots of subtleties involved for general non-linear systems
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Partially observable linear systems

e As before, a very useful special case
T = Az + Buyg

yr = Cay

e Example: room heating with four rooms and only two
thermostats
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e Observability: When can we estimate state in linear system?

e For simplicity, assume u; = 0 (easy to extend to the case of
known inputs also)

n C
Y2 CA

e We can identify the state of the system after observing &

outputs so long as
C

CA

C A*

is full rank (i.e., we can find n independent rows)
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Differential Algebraic Equations

e Sometimes, we want to include both dynamics and equality
constraints in a dynamical system

e Typically formulated in continuous time as a combination of
both time derivatives and algebraic equations

T = f(x,z,u)

0=g(z,z,u)

x € R"™ (state variables)

z € RP (state algebraic variables)

f:R®" xRP x R™ — R" (state dynamics equations)
g :R" x RP x R™ — RP (state algebraic equations)
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e Solution idea: states x, controls u, and algebraic equations g
determine the algebraic variables y

e Suppose we could directly invert g
y=9""(z,u)
then dynamics reduce to a pure differential equation

z = f(x’g_l(xvu)vu)

e In practice, often can't invert g, but we can use Newton's
method to find y such that g(z,y,u) = 0, then plug this into f.
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Example: generator and power flow dynamics

e Two relevant states for a generator
f# = voltage angle , w = frequency

[recall that generator will spin according to v(t) = cos(wt + 6)]

e Dynamics of a generator are given by

7(pmech _ pelec)

where H € R is generator moment of inertia (physical
constant).
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e Generator states and power must obey power flow

N

(where we use N now to denote the number of buses)
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e Putting it all together, dynamics are DAE

91' = W; — wref

W = 7(p§nech _ pglec)

state variables = 0;,w; 7 € GEN

pglec’ qeleci i € GEN

control inputs = pin%h,'f)i, 1 € GEN

algebraic variables = {
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Stochastic systems

e Often the state of a system does not evolve deterministically
(or, we have only imperfect predictions of how it will evolve)

e These settings can be captured by stochastic dynamical systems
Ty = f(we,ur) + €

where ¢; € R" is a zero-mean random variable

e A completely general model (assuming €; can depend on state of
control)
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e Issues of controllability and observability become even more
difficult in general stochastic systems

e Basic problem: even if noise is zero mean, after putting it
through the dynamics, it may not be zero mean

Ele;] =0 # E[f(z: + e, u)] = (o, ue)

e In the general case, we need to maintain a general distribution
p(x;) at each time
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e An important special case (again): linear Gaussian systems
(linear or affine dynamics with multi-variate Gaussian noise)

Ti41 = A.Z't + B'LLt + €, €~ N(O, E)

e Key fact: by linearity of expecattion, we do have

E[zi41] = E[Az: + Bus + €]
= A$t + But + E[Gt]
= Al‘t + But

e In this case, optimal control strategy can be to just ignore
stochasticity, proceed as if system were deterministic
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e Linear Gaussian case also applies to partially observable setting

T4l = Axy + Bug + ¢ € ~ N(O, E)
ye=Cxi+q g ~ N(0,Q)

e In this case, we can never estimate x; exactly from past
measurements, but we can get the best possible estimate (in a
least squares sense)

— Known as the Kalman filter, just (weighted) least squares to
estimate current state from past measurements
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Markov Decision Processes

A general description of non-linear stochastic systems, but
where we can typically only get exact solutions for discrete
states and controls

State: z; € {1,2,...,n}

Control: u; € {1,2,...,m}

Transition probabilities: P¥ € R™*" u=1,...,m
P(xig1 = jloe =d,up = k) = Pf;
Cost: C: {1,...,n} x{1,...,m} - R
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