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Dynamical Systems

• Many extensions or special cases possible for the general
dynamical system

xt+1 = f(xt, ut)

1. Linear systems

2. Partially observable systems

3. Differential algebraic equations

4. Stochastic systems, MDPs

5. Many others
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Linear Dynamical Systems

• Already seen a brief mention of (discrete time) linear systems

xt+1 = Axt +But

• A simple extension: affine systems

xt+1 = Axt +But + at

• Continuous-time analogue

ẋ = Ax+Bu

• Often, one of the few cases where we can solve optimal control
problems exactly
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• More complex example: multi-room heating

Ṫ1 = 2k(Te − T1) + k(T2 − T1) + k(T3 − T1) + du1
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• Let xi = Ti, assume heaters/coolers in rooms one and two;
dynamics are given by

xt+1 = xt + ∆t


−4k k k 0
k −4k 0 k
k 0 −4k k
0 k k −4k

xt

+ ∆t


2kTe
2kTe
2kTe
2kTe

+ ∆t


d 0
0 d
0 0
0 0

ut
xt ∈ R4, ut ∈ R2

• Interesting question: with just these two heaters/coolers, can we
control the temperature any way desired?
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Questions for linear systems

• Controllability: Given linear system

xt+1 = Axt +But

is it possible to reach some state x? from some initial state x1
in k time steps?

xk+1 = (A(Ax1 +Bu1) +Bu2 + . . .)

= Akx1 +
[
Ak−1B Ak−2B · · · B

]

u1
u2
...
uk


• Can reach any state after k steps if[

Ak−1B Ak−2B · · · B
]

is full rank (can find n independent columns)
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• Stability: Given some controller ut = Kxt, does the
autonomous system

xt+1 = Axt +BKxt ≡ Ãxt

go to zero as or does it diverge to ∞?

• Can understand this by looking at the eigenvalues of Ã

Ã = SΛS−1 (Λ diagonal)

• This implies that

Ãk = SΛS−1SΛS−1 . . . = SΛnS−1

• Since Λ is diagonal, Λk is just each entry raised to kth power

– So, if all eigenvalues have |λi| < 1, xk → 0
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• Lots of use for theory of linear systems, even for systems that
aren’t linear

• Consider non-linear system

xt+1 = f(xt, ut)

and equilibrium point

x? = f(x?, u?)

• Then the controllability/stability of the system around this point
is the same as that of the linear system

A = Dxf(x?, u?), B = Duf(x?, u?)
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Partially observable systems

• In many situations, it is not possible to directly observe all the
state variables of a system

• Can formulate this as a partially observable system with output
yt ∈ Rp

xt+1 = f(xt, ut)

yt = h(xt)

• Typically the case that p < n (or h is not invertible), so we
cannot directly obtain xt given yt
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• A fundamental question for partially observable systems: given a
sequence of measurements, can we determine the state of the
system? (state estimation, filtering, many other names)

• Let x1 be the initial (unknown) state of the system
y1
y2
y3
...

 =


h(x1)

h(f(x1, u1))
h(f(f(x1, u1), u2))

...


• For k observations, n unknowns (x1) and kp knowns

• When kp ≥ n, we might be able to recover state (for example
using Newton’s method)

– Lots of subtleties involved for general non-linear systems
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Partially observable linear systems

• As before, a very useful special case

xt+1 = Axt +But

yt = Cxt

• Example: room heating with four rooms and only two
thermostats

yt =


1 0
0 1
0 0
0 0


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• Observability: When can we estimate state in linear system?

• For simplicity, assume ut = 0 (easy to extend to the case of
known inputs also) 

y1
y2
y3
...

 =


C
CA
CA2

...

x1
• We can identify the state of the system after observing k

outputs so long as 
C
CA

...
CAk


is full rank (i.e., we can find n independent rows)
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Differential Algebraic Equations

• Sometimes, we want to include both dynamics and equality
constraints in a dynamical system

• Typically formulated in continuous time as a combination of
both time derivatives and algebraic equations

ẋ = f(x, z, u)

0 = g(x, z, u)

x ∈ Rn (state variables)

z ∈ Rp (state algebraic variables)

f : Rn × Rp × Rm → Rn (state dynamics equations)

g : Rn × Rp × Rm → Rp (state algebraic equations)
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• Solution idea: states x, controls u, and algebraic equations g
determine the algebraic variables y

• Suppose we could directly invert g

y = ĝ−1(x, u)

then dynamics reduce to a pure differential equation

ẋ = f(x, ĝ−1(x, u), u)

• In practice, often can’t invert g, but we can use Newton’s
method to find y such that g(x, y, u) = 0, then plug this into f .
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Example: generator and power flow dynamics

• Two relevant states for a generator

θ = voltage angle , ω = frequency

[recall that generator will spin according to v(t) = cos(ωt+ θ)]

• Dynamics of a generator are given by

θ̇ = ω − ωref

ω̇ =
1

2H
(pmech − pelec)

where H ∈ R+ is generator moment of inertia (physical
constant).
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• Generator states and power must obey power flow

peleci = v̂i

N∑
k=1

v̂k(Gik cos(θi − θk) +Bik sin(θi − θk))

qeleci = v̂i

N∑
k=1

v̂k(Gik sin(θi − θk)−Bik cos(θi − θk))

(where we use N now to denote the number of buses)
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• Putting it all together, dynamics are DAE

θ̇i = ωi − ωref

ω̇i =
1

2H
(pmech

i − peleci )

peleci = v̂i

N∑
k=1

v̂k(Gik cos(θi − θk) +Bik sin(θi − θk))

qeleci = v̂i

N∑
k=1

v̂k(Gik sin(θi − θk)−Bik cos(θi − θk))

where

state variables = θi, ωi i ∈ GEN

algebraic variables =

{
peleci , qeleci i ∈ GEN
v̂i, θi i ∈ LOAD

control inputs = pmech
i , v̂i, i ∈ GEN
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Stochastic systems

• Often the state of a system does not evolve deterministically
(or, we have only imperfect predictions of how it will evolve)

• These settings can be captured by stochastic dynamical systems

xt+1 = f(xt, ut) + εt

where εt ∈ Rn is a zero-mean random variable

• A completely general model (assuming εt can depend on state of
control)
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• Issues of controllability and observability become even more
difficult in general stochastic systems

• Basic problem: even if noise is zero mean, after putting it
through the dynamics, it may not be zero mean

E[εt] = 0 6⇒ E[f(xt + εt, ut)] = f(xt, ut)

• In the general case, we need to maintain a general distribution
p(xt) at each time
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• An important special case (again): linear Gaussian systems
(linear or affine dynamics with multi-variate Gaussian noise)

xt+1 = Axt +But + εt, εt ∼ N (0,Σ)

• Key fact: by linearity of expecattion, we do have

E[xt+1] = E[Axt +But + εt]

= Axt +But + E[εt]

= Axt +But

• In this case, optimal control strategy can be to just ignore
stochasticity, proceed as if system were deterministic
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• Linear Gaussian case also applies to partially observable setting

xt+1 = Axt +But + εt εt ∼ N (0,Σ)

yt = Cxt + qt qt ∼ N(0, Q)

• In this case, we can never estimate xt exactly from past
measurements, but we can get the best possible estimate (in a
least squares sense)

– Known as the Kalman filter, just (weighted) least squares to
estimate current state from past measurements
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Markov Decision Processes

• A general description of non-linear stochastic systems, but
where we can typically only get exact solutions for discrete
states and controls

• State: xt ∈ {1, 2, . . . , n}

• Control: ut ∈ {1, 2, . . . ,m}

• Transition probabilities: P u ∈ Rn×n, u = 1, . . . ,m

p(xt+1 = j|xt = i, ut = k) = P k
ij

• Cost: C : {1, . . . , n} × {1, . . . ,m} → R
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