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Machine Learning 

 

Neural Networks (NN)  



Mimicking the brain 

• In the early days of AI there was a lot of interest in 

developing models that can mimic human thinking. 

• While no one knew exactly how the brain works (and, 

even though there was a lot of progress since, there is 

still little known), some of the basic computational units 

were known 

• A key component of these units is the neuron. 

 



The Neuron 

• A cell in the brain 

• Highly connected to other 

neurons 

• Thought to perform 

computations by integrating 

signals from other neurons 

• Outputs of these 

computation may be 

transmitted to one or more 

neurons  



What can we do with NN? 

• Classification 

• Regression 

        Input: Real valued variables 

        Output: One or more real values 

• Examples: 

    - Predict the price of Google’s stock from Microsoft’s 

stock price 

    - Predict distance to obstacle from various sensors     



Back to NN: Preceptron 

• The basic processing unit of a neural net 

y=s(f(wixi)) 
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Linear regression 

• Lets start by setting f(∑wixi)=∑wixi 

• We are back to linear regression 

• Unlike our original linear regression 

solution, for perceptrons we will use a 

different strategy 

• Why? 

    - We will discuss this later, for now lets 

focus on the solution … 
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Gradient descent 

z=(f(w)-y)2 

w 

Slope = z/ w 

z 

w 

• Going in the opposite direction to the slope will lead to 

a smaller z 

• But not too much, otherwise we would go beyond the 

optimal w 



Gradient descent 
• Going in the opposite direction to the slope will lead to 

a smaller z 

• But not too much, otherwise we would go beyond the 

optimal w 

• We thus update the weights by setting: 

 

 

 

 where  is small constant which is intended to prevent 

us from passing the optimal w 

w

z
ww




 



Gradient descent for linear 

regression 

• Taking the derivative w.r.t. to each wi
 for a sample X: 

 

 

 

 

• And if we have n measurements then 

 

 

 

   where xj
i is the j’th value of the i’th input vector 
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Gradient descent for linear 

regression 

• If we have n measurements then 

 

 

• Set  

 

• Then our update rule can be written as 
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Gradient descent algorithm for 

linear regression 

1.Chose  

2.Start with a guess for w 

3.Compute i for all i 

4.For all i set  

 

5. If no improvement for  

 

stop. Otherwise go to step 3  
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Gradient descent vs. matrix 

inversion  

• Advantages of matrix inversion 

    - No iterations 

    - No need to specify parameters 

    - Closed form solution in a predictable time 

• Advantages of gradient descent 

    - Applicable regardless of the number of parameters 

    - General, applies to other forms of regression 



We can also use the sigmoid 

function in NN 
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Instead of using the probabilistic maximum 

likelihood target function, we return to least 

squares when using the sigmoid in NN   

Taking the derivative w.r.t. wi we get: 
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Revised algorithm for sigmoid 

regression 

1.Chose  

2.Start with a guess for w 

3.Compute i for all i 

4.For all i set  

 

5. If no improvement for  

 

stop. Otherwise go to step 3  
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Multilayer neural networks 
• So far we discussed networks with one layer. 

• But these networks can be extended to combine several 

layers, increasing the set of functions that can be 

represented using a NN 

Input layer Output layer Hidden layer 

v1=g(wTX) 
w0,1 

x1 

x2 

1 

v2=g(wTX) 

z1=g(wTV) 

w1,1 

w2,1 

w0,2 

w1,2 

w2,2 

w1 

w2 



Learning the parameters for 

multilayer networks 

• Gradient descent works by connecting the output to the 

inputs. 

• But how do we use it for a multilayer network?  

• We need to account for both, the output weights and the 

hidden layer weights 
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Learning the parameters for 

multilayer networks 

• Its easy to compute the update rule for the output weights 

w1 and w2: 
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Learning the parameters for 

multilayer networks 

• Its easy to compute the update rule for the output weights 

w1 and w2: 
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hidden layer states? 



Backpropagation 

• A method for distributing the error among hidden layer states 

• Using the error for each of these states we can employ gradient 

descent to update them 

• Set 
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Backpropagation 
• A method for distributing the error among hidden layer states 

• Using the error for each of these states we can employ gradient 

descent to update them 

• Set 

 

• Our update rule changes to: 
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Backpropagation 
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The correct error term for each hidden state can be 

determined by taking the partial derivative for each 

of the weight parameters of the hidden layer w.r.t. 

the global error function*: 
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Revised algorithm for multilayered 

neural network 
1.Chose  

2.Start with a guess for w, wj 

3.Compute values vi
j for all hidden layer states j and inputs i 

4.Compute i for all i: 

 

5.Compute                             for all i and j 
6.For all j set 

 

7. For all k and j set  

 

8. If no improvement for                        stop. Otherwise go to 
step 3  
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Neural network encoding 

• Assume we would 

like to learn the 

following (trivial?) 

output function: 

Input  Output 

00000001 00000001 

00000010 00000010 

00000101 00000100 

00001000 00001000 

00010000 00010000 

00100000 00100000 

01000000 01000000 

10000000 10000000 

• Using the following 

network: 

• Can this be done? 



Learned parameters 

Note that each 

value is assigned 

to the edge from 

the 

corresponding 

input 



Values for hidden layers 



Examples 

Figure 1: Feedforward ANN designed and tested 

for prediction of tactical air combat maneuvers.  



Deep learning 



Historical background: 
First generation neural networks 

• Perceptrons (~1960) 
used a layer of hand-
coded features and tried 
to recognize objects by 
learning how to weight 
these features. 

– There was a neat 
learning algorithm for 
adjusting the weights. 

– But perceptrons are 
fundamentally limited 
in what they can learn 
to do. 

non-adaptive 

hand-coded 

features 

output units  

e.g. class labels 

input units 

e.g. pixels 

Sketch of a typical 

perceptron from the 1960’s 

Bomb Toy 



Second generation neural networks (~1985) 

input vector 

hidden 

layers 

outputs 

Back-propagate                

error signal to 

get derivatives 

for learning 

Compare outputs with 

correct answer to get 

error signal 



What is wrong with back-

propagation? 

• It requires labeled training data. 

– Almost all data is unlabeled.  

• The learning time does not scale well 

– It is very slow in networks with multiple 

hidden layers. 

• It can get stuck in poor local optima. 

 
 



Overcoming the limitations of  

back-propagation 
 

• Keep the efficiency and simplicity of using a gradient 

method for adjusting the weights, but use it for modeling 

the structure of the sensory input.  

– Iteratively learn the different layers.  

– Adjust the weights to maximize the probability that a 

generative model would have produced the sensory 

input.  

– Learn p(image)  not  p(label | image) for the lower 

layers. 

 



Iterative learning of layers 

Input 

Hidden 

Reconstruction 



Iterative learning of layers 

Input 

Hidden 

Reconstruction 

Hidden 



The final 50 x 256 weights 

Each neuron grabs a different feature.  



Reconstruction 

from activated 

binary features Data 

Reconstruction 

from activated 

binary features Data 

How well can we reconstruct the digit images 

from the binary feature activations? 

New test images from 

the digit class that the 

model was trained on 

Images from an 

unfamiliar digit class 

(the network tries to see 

every image as a 2) 



Training a deep network 
(the main reason RBM’s are interesting) 

• First train a layer of features that receive input directly 

from the pixels. 

• Then treat the activations of the trained features as if 

they were pixels and learn features of features in a 

second hidden layer. 

• It can be proved that each time we add another layer of 

features we improve a variational lower bound on the log 

probability of the training data. 

– The proof is slightly complicated.  

– But it is based on a neat equivalence between an 

RBM and a deep directed model (described later) 



Samples generated by letting the associative 

memory run with one label clamped. There are 

1000 iterations of alternating Gibbs sampling 

between samples. 



What you should know 

• Linear regression 

    - Solving a linear regression problem 

• Gradient descent 

• Perceptrons 

    - Sigmoid functions for classification 

• Multilayered neural networks 

    - Backpropagation 

 



Deriving g’(x) 

• Recall that g(x) is the sigmoid function so 

 

 

• The derivation of g’(x) is below  
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The Energy of a joint configuration 
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Using energies to define 

probabilities 
• The probability of a joint 

configuration over both visible 

and hidden units depends on 

the energy of that joint 

configuration compared with 

the energy of all other joint 

configurations. 

 

• The probability of a 

configuration of the visible 

units is the sum of the 

probabilities of all the joint 

configurations that contain it. 
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A picture of the maximum likelihood learning 

algorithm for an RBM 
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Start with a training vector on the visible units. 

Then alternate between updating all the hidden units in 

parallel and updating all the visible units in parallel. 

a fantasy 



A quick way to learn an RBM 
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Start with a training vector on the 

visible units. 

Update all the hidden units in 

parallel 

Update the all the visible units in 

parallel to get a “reconstruction”. 

Update the hidden units again.  

This is not following the gradient of the log likelihood. But it 

works well. It is approximately following the gradient of another 

objective function (Carreira-Perpinan & Hinton, 2005). 

reconstruction data 


