
10-601

Machine Learning

Neural Networks (NN)

Mimicking the brain

• In the early days of AI there was a lot of interest in

developing models that can mimic human thinking.

• While no one knew exactly how the brain works (and,

even though there was a lot of progress since, there is

still little known), some of the basic computational units

were known

• A key component of these units is the neuron.

The Neuron

• A cell in the brain

• Highly connected to other

neurons

• Thought to perform

computations by integrating

signals from other neurons

• Outputs of these

computation may be

transmitted to one or more

neurons

What can we do with NN?

• Classification

• Regression

 Input: Real valued variables

 Output: One or more real values

• Examples:

 - Predict the price of Google’s stock from Microsoft’s

stock price

 - Predict distance to obstacle from various sensors

Back to NN: Preceptron

• The basic processing unit of a neural net

y=s(f(wixi))

w0

w1

w2

wk

x1

x2

xk

1

Input layer Output layer

Linear regression

• Lets start by setting f(∑wixi)=∑wixi

• We are back to linear regression

• Unlike our original linear regression

solution, for perceptrons we will use a

different strategy

• Why?

 - We will discuss this later, for now lets

focus on the solution …

y=wixi

w0

w1

w2

wk

x1

x2

xk

1

Gradient descent

z=(f(w)-y)2

w

Slope = z/ w

z

w

• Going in the opposite direction to the slope will lead to

a smaller z

• But not too much, otherwise we would go beyond the

optimal w

Gradient descent
• Going in the opposite direction to the slope will lead to

a smaller z

• But not too much, otherwise we would go beyond the

optimal w

• We thus update the weights by setting:

 where  is small constant which is intended to prevent

us from passing the optimal w

w

z
ww




 

Gradient descent for linear

regression

• Taking the derivative w.r.t. to each wi
 for a sample X:

• And if we have n measurements then

 where xj
i is the j’th value of the i’th input vector

)(2

2

 













k

kj

k

k kk

j
xwyxxwy

w







 n

i

i

T

i

j

i

n

i

i

T

ij
yxy

w 11

2)Xw-(2)Xw-(

Gradient descent for linear

regression

• If we have n measurements then

• Set

• Then our update rule can be written as







 n

j

i

T

i

j
n

i

i

T

ij
yxy

w i

11

2)Xw-(2)Xw-(

)Xw-(i

T

ii y





n

i

i

jjj

i
xww

1

2 

Gradient descent algorithm for

linear regression

1.Chose 

2.Start with a guess for w

3.Compute i for all i

4.For all i set

5. If no improvement for

stop. Otherwise go to step 3





n

i

i

j

i

jj xww
1

2 




n

i

i

T

iy
1

2)Xw-(

Gradient descent vs. matrix

inversion

• Advantages of matrix inversion

 - No iterations

 - No need to specify parameters

 - Closed form solution in a predictable time

• Advantages of gradient descent

 - Applicable regardless of the number of parameters

 - General, applies to other forms of regression

We can also use the sigmoid

function in NN
xe

xg



1

1
)(

 
i

i

T

i Xwgy 2))((min

Instead of using the probabilistic maximum

likelihood target function, we return to least

squares when using the sigmoid in NN

Taking the derivative w.r.t. wi we get:

j

iii

i

i

def

j

ii

T

i

T

i

i

T

i

i

i

T

ij

Xgg

XXwgXwgXwgy

Xwgy
w

)1(2

))(1)(())((2

))((2


















))(1)(()(' xgxgxg 

)(i

T

i Xwgg 

Revised algorithm for sigmoid

regression

1.Chose 

2.Start with a guess for w

3.Compute i for all i

4.For all i set

5. If no improvement for

stop. Otherwise go to step 3




n

i

i

T

i gy
1

2))X(w-(

j

iii

n

i

i

jj xggww)1(2
1

 




Multilayer neural networks
• So far we discussed networks with one layer.

• But these networks can be extended to combine several

layers, increasing the set of functions that can be

represented using a NN

Input layer Output layer Hidden layer

v1=g(wTX)
w0,1

x1

x2

1

v2=g(wTX)

z1=g(wTV)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

Learning the parameters for

multilayer networks

• Gradient descent works by connecting the output to the

inputs.

• But how do we use it for a multilayer network?

• We need to account for both, the output weights and the

hidden layer weights

v1=g(wTX)
w0,1

x1

x2

1

v2=g(wTX)

z1=g(wTV)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

Learning the parameters for

multilayer networks

• Its easy to compute the update rule for the output weights

w1 and w2:

 where

j

ii

n

i

ii

jj vggww)1(2
1

 




)vw(i

T

ii gy 

v1=g(wTX)
w0,1

x1

x2

1

v2=g(wTX)

z1=g(wTV)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

Vj for the i’th input

Learning the parameters for

multilayer networks

• Its easy to compute the update rule for the output weights

w1 and w2:

 where

j

ii

n

i

ii

jj vggww)1(2
1

 




)vw(i

T

ii gy 

v1=g(wTX)
w0,1

x1

x2

1

v2=g(wTX)

z1=g(wTV)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2 But what is the error associated with each of the

hidden layer states?

Backpropagation

• A method for distributing the error among hidden layer states

• Using the error for each of these states we can employ gradient

descent to update them

• Set

iii

jj

i ggw)1( 

output error

weight

v1=g(wTX)
w0,1

x1

x2

1

v2=g(wTX)

z1=g(wTV)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

Backpropagation
• A method for distributing the error among hidden layer states

• Using the error for each of these states we can employ gradient

descent to update them

• Set

• Our update rule changes to:

k

i

j

i

n

i

j

i

j

i

jkjk xggww)1(2
1

,,  




iii

jj

i ggw)1( 

v1=g(wTX)
w0,1

x1

x2

1

v2=g(wTX)

z1=g(wTV)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

Backpropagation

kjij

n

j

ijijikik xggww ,,

1

,,,,)1(2  




The correct error term for each hidden state can be

determined by taking the partial derivative for each

of the weight parameters of the hidden layer w.r.t.

the global error function*:

2j))xw(w((
T

ggyErr T

ii 

*See RN book for details (pages 746-747)

Revised algorithm for multilayered

neural network
1.Chose 

2.Start with a guess for w, wj

3.Compute values vi
j for all hidden layer states j and inputs i

4.Compute i for all i:

5.Compute for all i and j
6.For all j set

7. For all k and j set

8. If no improvement for stop. Otherwise go to
step 3





s

i

j

i

n

i

i

1

2

1

2)(

)vw(i

T

ii gy 

iii

jj

i ggw)1( 

j

ii

n

i

ii

jj vggww)1(2
1

 




k

i

j

i

n

i

j

i

j

i

jkjk xggww)1(2
1

,,  




Neural network encoding

• Assume we would

like to learn the

following (trivial?)

output function:

Input Output

00000001 00000001

00000010 00000010

00000101 00000100

00001000 00001000

00010000 00010000

00100000 00100000

01000000 01000000

10000000 10000000

• Using the following

network:

• Can this be done?

Learned parameters

Note that each

value is assigned

to the edge from

the

corresponding

input

Values for hidden layers

Examples

Figure 1: Feedforward ANN designed and tested

for prediction of tactical air combat maneuvers.

Deep learning

Historical background:
First generation neural networks

• Perceptrons (~1960)
used a layer of hand-
coded features and tried
to recognize objects by
learning how to weight
these features.

– There was a neat
learning algorithm for
adjusting the weights.

– But perceptrons are
fundamentally limited
in what they can learn
to do.

non-adaptive

hand-coded

features

output units

e.g. class labels

input units

e.g. pixels

Sketch of a typical

perceptron from the 1960’s

Bomb Toy

Second generation neural networks (~1985)

input vector

hidden

layers

outputs

Back-propagate

error signal to

get derivatives

for learning

Compare outputs with

correct answer to get

error signal

What is wrong with back-

propagation?

• It requires labeled training data.

– Almost all data is unlabeled.

• The learning time does not scale well

– It is very slow in networks with multiple

hidden layers.

• It can get stuck in poor local optima.

Overcoming the limitations of

back-propagation

• Keep the efficiency and simplicity of using a gradient

method for adjusting the weights, but use it for modeling

the structure of the sensory input.

– Iteratively learn the different layers.

– Adjust the weights to maximize the probability that a

generative model would have produced the sensory

input.

– Learn p(image) not p(label | image) for the lower

layers.

Iterative learning of layers

Input

Hidden

Reconstruction

Iterative learning of layers

Input

Hidden

Reconstruction

Hidden

The final 50 x 256 weights

Each neuron grabs a different feature.

Reconstruction

from activated

binary features Data

Reconstruction

from activated

binary features Data

How well can we reconstruct the digit images

from the binary feature activations?

New test images from

the digit class that the

model was trained on

Images from an

unfamiliar digit class

(the network tries to see

every image as a 2)

Training a deep network
(the main reason RBM’s are interesting)

• First train a layer of features that receive input directly

from the pixels.

• Then treat the activations of the trained features as if

they were pixels and learn features of features in a

second hidden layer.

• It can be proved that each time we add another layer of

features we improve a variational lower bound on the log

probability of the training data.

– The proof is slightly complicated.

– But it is based on a neat equivalence between an

RBM and a deep directed model (described later)

Samples generated by letting the associative

memory run with one label clamped. There are

1000 iterations of alternating Gibbs sampling

between samples.

What you should know

• Linear regression

 - Solving a linear regression problem

• Gradient descent

• Perceptrons

 - Sigmoid functions for classification

• Multilayered neural networks

 - Backpropagation

Deriving g’(x)

• Recall that g(x) is the sigmoid function so

• The derivation of g’(x) is below

xe
xg




1

1
)(

The Energy of a joint configuration


ji

ijji whvv,hE
,

)(

weight between

units i and j

Energy with configuration

v on the visible units and

h on the hidden units

binary state of

visible unit i

binary state of

hidden unit j

ji

ij

hv
w

hvE







),(

Using energies to define

probabilities
• The probability of a joint

configuration over both visible

and hidden units depends on

the energy of that joint

configuration compared with

the energy of all other joint

configurations.

• The probability of a

configuration of the visible

units is the sum of the

probabilities of all the joint

configurations that contain it.








gu

guE

hvE

e

e
hvp

,

),(

),(

),(











gu

guE
h

hvE

e

e

vp

,

),(

),(

)(

partition

function

A picture of the maximum likelihood learning

algorithm for an RBM

0 jihv  jihv

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity





jiji

ij

hvhv
w

vp 0)(log

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in

parallel and updating all the visible units in parallel.

a fantasy

A quick way to learn an RBM

0 jihv 1 jihv

i

j

i

j

t = 0 t = 1

)(10  jijiij hvhvw 

Start with a training vector on the

visible units.

Update all the hidden units in

parallel

Update the all the visible units in

parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it

works well. It is approximately following the gradient of another

objective function (Carreira-Perpinan & Hinton, 2005).

reconstruction data

