10-601
Machine Learning

Neural Networks (NN)

Mimicking the brain

* In the early days of Al there was a lot of interest In
developing models that can mimic human thinking.

« While no one knew exactly how the brain works (and,
even though there was a lot of progress since, there is
still little known), some of the basic computational units

were known
« A key component of these units is the neuron.

The Neuron

A cell in the brain

Highly connected to other
neurons

Thought to perform
computations by integrating
signals from other neurons

Outputs of these
computation may be
transmitted to one or more
neurons

What can we do with NN?

Classification
Regression
Input: Real valued variables
Output: One or more real values
Examples:

- Predict the price of Google’s stock from Microsoft’'s
stock price

- Predict distance to obstacle from various sensors

Back to NN: Preceptron

« The basic processing unit of a neural net

Input layer Output layer
O

Q

@ W2 | @
@/

Linear regression

Lets start by setting f(> wix;)=> wx;
We are back to linear regression

Unlike our original linear regression
solution, for perceptrons we will use a
different strategy

Why?
- We will discuss this later, for now lets
focus on the solution ...

Gradient descent

2=(f(W)-y)2 Slope = 0z/ ow

W

- Going in the opposite direction to the slope will lead to
a smaller z

 But not too much, otherwise we would go beyond the
optimal w

Gradient descent

- Going in the opposite direction to the slope will lead to
a smaller z

« But not too much, otherwise we would go beyond the
optimal w

» We thus update the weights by setting:

W(—W—ﬂ@
oW

where A is small constant which is intended to prevent
us from passing the optimal w

Gradient descent for linear
regression

« Taking the derivative w.r.t. to each w'for a sample X:

0 (y—Zkakj =-2x'(y—>_w"x*)

avvi

 And if we have n measurements then
a n n]
W;(Yi 'WTXi)Z :_ngij(yi 'WTXi)

where xl. is the j'th value of the i'th input vector

Gradient descent for linear
regression

 If we have n measurements then

a n n)
WZ(Yi 'WTXi)2 :_szij(Yi 'WTXi)
i=1 j=1

« Then our update rule can be written as

w! —w!+ 42> xJ§
=1

Gradient descent algorithm for
linear regression

1.Chose A
2. Start with a guess for w
3.Compute ¢, for all i

4. Foralliset i +/122nlxij5i
i=1
5.1f no improvement for) (y,-w'X;)’
i=1

stop. Otherwise go to step 3

Gradient descent vs. matrix
Inversion

Advantages of matrix inversion

- No iterations

- No need to specify parameters

- Closed form solution in a predictable time
Advantages of gradient descent

- Applicable regardless of the number of parameters
- General, applies to other forms of regression

We can also use the sigmoid
function In NN

Instead of using the probabilistic maximum g(x) =
likelihood target function, we return to least
squares when using the sigmoid in NN

min > (y; —g(w' X;))’

1
1+e™”

Taking the derivative w.r.t. w, we get:

a g'(x) = 9 () (A—g(x))
At 2= 9 X)) /
= ZZ(yi —g(w' X,)g(w" X;)@-g(w' X)) X/

def

= 225igi(];gi)xij

g, =g(w'X;)

——

Revised algorithm for sigmoid
regression

1.Chose A

2. Start with a guess for w
3.Compute o, for all i

4. Foralliset w «w +/122n:5igi(1—gi)xij

5.1f no improvement for _an(yi -g(w' X))’

stop. Otherwise go to step 3

Multilayer neural networks

« So far we discussed networks with one layer.

« But these networks can be extended to combine several
layers, increasing the set of functions that can be
represented using a NN

Input layer Hidden layer Output layer

QU
, 1| vi=g(wTX) *1’
W2

| v2=g(wTX)

Learning the parameters for
multilayer networks

Gradient descent works by connecting the output to the
Inputs.
But how do we use it for a multilayer network?

We need to account for both, the output weights and the
hidden layer weights

, , vi=g(wTX) *1’
W2

| v2=g(wTX)

Learning the parameters for
multilayer networks

 Its easy to compute the update rule for the output weights

w, and w,:)
W w!+22> 5,0,(1-g;)V/
=1

Vi for the i'th input

where 5| =Yi— g(WTVi)

Learning the parameters for
multilayer networks

 Its easy to compute the update rule for the output weights

w, and w,:)

W w!+22> 5,0,(1-g;)V/
i=1

where 6. —g(w'v,)

W21 \
But What IS the error assoclated with each of the
hidden Iayer states’?

Backpropagation

A method for distributing the error among hidden layer states

Using the error for each of these states we can employ gradient
descent to update them

> Al =w's(1-9;)9,

output error

Backpropagation
A method for distributing the error among hidden layer states

Using the error for each of these states we can employ gradient
descent to update them

=wis (1-g,)g

Our update rule changes to:

Wil wh +122A‘:gij (1-g/))x"

=T

Backpropagation

The correct error term for each hidden state can be
determined by taking the partial derivative for each
of the weight parameters of the hidden layer w.r.t.
the global error function*:

Err, = (y, —g(w' g(w' x))?3

*See RN book for details (pages 746-747)

Revised algorithm for multilayered

neural network

1.Chose A

2.Start with a guess for w, w!

3.Compute values v/ for all hidden layer states j and inputs i
4.Compute ¢, for all I S =Y —g(WTvi)

5.Compute Al =W'6,(1-9,)9; for all i and |
6.For all | set W e w +1236.6,0—g,)V!
=1
7. For all k and | set WSS +/122n:A€gij 1 g)x
=1
8. If no improvement for S57+3 (aly SOP. Otherwise go to
step 3 ==

Neural network encoding

« Assume we would
like to learn the
following (trivial?)
output function:

 Using the following
network:

e Can this be done?

Input

00000001
00000010
00000101
00001000
00010000
00100000
01000000
10000000

Output

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

Learned parameters

Note that each Input Hidden Output
value is assigned Values

the 01000000 — .01 .11 .88 — 01000000

: 00100000 — .01 .97 .27 — 00100000

_corr?spondlng 00010000 — .99 .97 .71 — 00010000

inpu 00001000 — .03 .05 .02 — 00001000

00000100 — .22 .99 .99 — 00000100

00000010 — .80 .01 .98 — 00000010

00000001 — .60 .94 .01 — 00000001

Values for hidden layers

-
i ————

09 r
08 r

V.7

0.6
D3 I
04
D3 I
0.2
0.1 ! : : ;

Examples

UL O AT TR R (R
.] B

:] A fgte 18 18 3L
oo b s £ a

Figure 1. Feedforward ANN designed and tested
for prediction of tactical air combat maneuvers.

| Ehe New JJork Times Science

| WORLD | U.S. N.Y./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION = ARTS

ENVIRONMENT SPACE & COSMOS

Scientists See Promise in Deep-Learning Programs

A voice recognition program translated a speech given by Richard F. Rashid, Microseft's top scientist, into Mandarin
Chinese

By JOHN MARKOFF

Using an artificial intelligence technique inspired by theories about Ei racesook
how the brain recognizes patterns, technology companies are W TWITTER
reporting startling gains in fields as diverse as computer vision, W e

Historical background:
First generation neural networks

* Perceptrons (~1960)
used a layer of hand-
coded features and tried
to recognize objects by
learning how to weight
these features.

— There was a neat
learning algorithm for
adjusting the weights.

— But perceptrons are
fundamentally limited
In what they can learn
to do.

Bomb Toy _
output units

e.g. class labels

non-adaptive
hand-coded
3 features

Input units
e.g. pixels

Sketch of a typical
perceptron from the 1960’s

Second generation neural networks (~1985)

Compare outputs with
correct answer to get
error signal

G OUtpUtS

hidden
\/ layers

<= INpPUt vector

What is wrong with back-
propagation?
* It requires labeled training data.
—Almost all data is unlabeled.

* The learning time does not scale well

— It is very slow In networks with multiple
hidden layers.

* |t can get stuck in poor local optima.

Overcoming the limitations of
back-propagation

« Keep the efficiency and simplicity of using a gradient
method for adjusting the weights, but use it for modeling
the structure of the sensory input.

— Iteratively learn the different layers.

— Adjust the weights to maximize the probability that a
generative model would have produced the sensory
Input.

— Learn p(image) not p(label | image) for the lower
layers.

lterative learning of layers

Reconstruction

Hidden

/ BN
Input é%/g \Q\be

lterative learning of layers

Reconstruction |OO OO OO O

N 7

N

Hidden \é

Hidden

s -e N\
Input é%/g \Q\be

The final 50 X 256 weights

Y
- .
] '
£
-
n
i
'q
‘E’ 4 o L]
2]
-

Each neuron grabs a different feature.

How well can we reconstruct the digit images
from the binary feature activations?

Reconstruction
from activated
Data binary features

New test images from
the digit class that the
model was trained on

Reconstruction
from activated
Data binary features

Images from an
unfamiliar digit class
(the network tries to see
every image as a 2)

Training a deep network

(the main reason RBM'’s are interesting)

* First train a layer of features that receive input directly
from the pixels.

 Then treat the activations of the trained features as if

they were pixels and learn features of features in a
second hidden layer.

It can be proved that each time we add another layer of
features we improve a variational lower bound on the log
probability of the training data.

— The proof is slightly complicated.

— But it is based on a neat equivalence between an
RBM and a deep directed model (described later)

Samples generated by letting the associative
memory run with one label clamped. There are
1000 iterations of alternating Gibbs sampling
between samples.

O ¢ 06 o 0O 0 0 0 9D

<N eanluwyer~NQ
DoNgFyIr—
VY O~
DN e gy —
DN e a0~

/
pi
J
A
>
b
=
3
I

o Q- o~ LN N
QO] NV RPN~

!
2
5

f
5
6
T
€
?

Do~d v € WS

What you should know

Linear regression

- Solving a linear regression problem
Gradient descent

Perceptrons

- Sigmoid functions for classification
Multilayered neural networks

- Backpropagation

Deriving g'(x)

- Recall that g(x) is the sigmoid function so

1
1+e

g(x) =

—X

» The derivation of g’(x) is below

First. notice g'(x)=glx)i1-glx))
— _J'-
Because: glx)= 1 < SO glx)= < 7
l+e f —x)
[\1—2 {
—y . .
1w _ | L
_ 1-1-¢ B 1 __ 1 _ 1 [1— 1 = —g(x)1—g(x))
—1:\2 —x)" 1+e T 1+e U 14e Y
[1+e * | | 1+e I ' '

The Energy of a joint configuration

binary state of binary state of
visible unit i hidden unit |

\ /
E(V,h) - Zvithij
/ N

Energy with configuration weight between
v on the visible units and units i and |
h on the hidden units
OE (v, h)
= v;h,

J

Using energies to define

probabllities
—E(v h)
« The probability of a joint p(v h) _
configuration over both visible Ze E(u,g)
and hidden units depends on
the energy of that joint part,t,on
configuration compared with function
the energy of all other joint
configurations.
Z a~E(v.h)
« The probability of a
configuration of the visible (V)
units is the sum of the ~E(u,q9)
orobabilities of all the joint Z c

configurations that contain it.

A picture of the maximum likelihood learning
algorithm for an RBM

O

O ODO

OROJORO O :
<v;h j7 \ \ / °o .<Vihj>/ a/fantasy
JO| [@Wo] [To DO

t=0 t=1 t=2 t = infinity

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

dlog p(v)
OW;

<Vihj>0 —<Vihj>OO

A quick way to learn an RBM

Q @ Q O Start with a training vector on the

visible units.

<vihj>/ <V'hJ Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

t=0 t=1
data reconstruction Update the hidden units again.

AWij = 8(<Vihj>o —<Vihj>l)

This is not following the gradient of the log likelihood. But it
works well. It is approximately following the gradient of another
objective function (Carreira-Perpinan & Hinton, 2005).

