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 Based on slide from Tom M. Mitchell 

Computational Learning Theory 



Computational Learning Theory  

• What general laws constrain inductive learning? 

• Want theory to relate 

– Number of training examples 

– Complexity of hypothesis space 

– Accuracy to which target function is approximated 

– Manner in which training examples are presented 

– Probability of successful learning 

 

 



Sample Complexity 

How many training examples suffice to learn target concept 

 

1. If learner proposes instances as queries to teacher? 

  - learner proposes x, teacher provides f(x) 

 

2. If teacher (who knows f(x)) proposes training examples? 

 - teacher proposes sequence {<x1, f(x1)>, … <xn, f(xn)> 

 

3. If some random process (e.g., nature) proposes 

instances, and teacher labels them? 

 - instances drawn according to P(X) 



Sample Complexity (cont.) 

Problem setting: 

• Set of instances 

• Set of hypotheses  

• Set of possible target functions  

• Sequence of training instances drawn at random from  

• Teacher provides noise-free label 

 

Learner outputs a hypothesis             such that 

 

The true (but unknown) 

function that labels objects 



D 

instances 

drawn at random from  

Probability 
distribution P(X) 

training 
examples D 



The true error of h is the probability that it will  

misclassify an example drawn at random from 



Overfitting 

Consider a hypothesis h and its 

• Error rate over training data: 

• True error rate over all data:  

 

We say h overfits the training data if 

 

 

Amount of overfitting =  

Can we bound                     

  in terms of                     ??  

easy to compute 

unknown 



Probability 
distribution P(x) 

training 
examples 

if D was a set of examples drawn from            and independent of 

h, then we could use standard statistical confidence intervals to 

determine that with 95% probability,                    lies in the interval:  

but D is the training data for h …. 
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c: X  {0,1} 



Example: H is Conjunction of up to N Boolean Literals 

Consider classification problem f:XY: 

• instances: X = <X1 X2  X3 X4> where each Xi is boolean 

• Each hypothesis in H is a rule of the form: 

– IF <X1 X2  X3 X4> = <0,?,1,?> ,  THEN Y=1, ELSE Y=0 

– i.e., rules constrain any subset of the Xi 

 

 

 

 



Example 2: H is Decision Tree with depth=2 

Consider classification problem f:XY: 

• instances: X = <X1 … XN> where each Xi is boolean 

• learned hypotheses are decision trees of depth 2 (so 

each can use only three variables). 

 

 

 

 







Any(!) learner 
that outputs 
a hypothesis 
consistent 
with all 
training 
examples 
(i.e., an h 
contained in 
VSH,D) 



What it means 

[Haussler, 1988]: probability that the version space is not -exhausted 

after m training examples is at most  

1. How many training examples suffice? 

Suppose we want this probability to be at most  

2. If                                 then with probability at least (1-): 



Example: Simple decision trees 

Consider Boolean classification problem 

• instances: X = <X1 … XN> where each Xi is Boolean 

• Each hypothesis in H is a decision tree of depth 1 

 

 

 
How many training examples m 

suffice to assure that with probability 

at least 0.99, any consistent learner 

using H will output a hypothesis with 

true error at most 0.05? 



Example: Simple decision trees 

Consider Boolean classification problem 

• instances: X = <X1 … Xn> where each Xi is boolean 

• Each hypothesis in H is a decision tree of depth 1 

 

 

 
How many training examples m 

suffice to assure that with probability 

at least 0.99, any consistent learner 

using H will output a hypothesis with 

true error at most 0.05? 

|H| = 2n,   epsilon = 0.05,  delta = 0.01 



Example: H is Conjunction of Boolean Literals 

Consider classification problem f:XY: 

• instances: X = <X1 X2  X3 X4> where each Xi is boolean 

• Each hypothesis is a rule of the form: 

– IF <X1 X2  X3 X4> = <0,?,1,?> ,  THEN Y=1, ELSE Y=0 

– i.e., rules constrain any subset of the Xi 

 

 

 

 

How many training examples m suffice to assure that with probability 

at least 0.99, any consistent learner will output a hypothesis with true  

error at most 0.05? 



Example: H is Decision Tree with depth=2 

Consider classification problem f:XY: 

• instances: X = <X1 … XN> where each Xi is boolean 

• learned hypotheses are decision trees of depth 2, using 

only two variables 

 

 

 

 
How many training examples m suffice to assure that with probability 

at least 0.99, any consistent learner will output a hypothesis with true  

error at most 0.05? 





Sufficient condition:  

Holds if learner L 
requires only a 
polynomial number of 
training examples, and 
processing per 
example is polynomial 



Question: If H = {h | h: X  Y} is infinite, 

what measure of complexity should we 

use in place of |H| ? 



Question: If H = {h | h: X  Y} is infinite, 

what measure of complexity should we 

use in place of |H| ? 

Answer: The largest subset of X for which H can guarantee 

zero training error (regardless of the target function c) 

 



Question: If H = {h | h: X  Y} is infinite, 

what measure of complexity should we 

use in place of |H| ? 

Answer: The largest subset of X for which H can guarantee 

zero training error (regardless of the target function c) 

 

VC dimension of H is the size of this subset 



a labeling of each 
member of S as 
positive or negative 





VC dimension: examples 

Consider X = <, want to learn c:X{0,1} 

What is VC dimension of 

• Open intervals: 

 

 

 

 

• Closed intervals:  

x 



VC dimension: examples 

Consider X = <, want to learn c:X{0,1} 

What is VC dimension of 

• Open intervals: 

 

 

 

 

• Closed intervals:  

x 

VC(H1)=1 

VC(H2)=2 

VC(H3)=2 

VC(H4)=3 



VC dimension: examples 

What is VC dimension of lines in a plane? 

• H2 = { ((w0 + w1x1 + w2x2)>0    y=1) } 

 

 



VC dimension: examples 

What is VC dimension of 

• H2 = { ((w0 + w1x1 + w2x2)>0    y=1) } 

– VC(H2)=3 

• For Hn = linear separating hyperplanes in n dimensions, 

VC(Hn)=n+1 

 

 



Compare to our earlier results based on |H|: 

How many randomly drawn examples suffice to -exhaust 

VSH,D with probability at least (1-)?  

ie., to guarantee that any hypothesis that perfectly fits the 

training data is probably (1-) approximately () correct 

Sample Complexity based on VC dimension 



For any finite hypothesis space H, can you 

give an upper bound on VC(H) in terms of |H| ? 

(hint: yes) 



More VC Dimension Examples to Think About 

• Logistic regression over n continuous features 

– Over n boolean features? 

 

• Linear SVM over n continuous features 

 

• Decision trees defined over n boolean features 

F: <X1, ... Xn>  Y 

 

• Decision trees of depth 2 defined over n features 

 

• How about 1-nearest neighbor? 


