e ———

Machine Learning 10-601

Based on slide from Tom M. Mitchell

Computational Learning Theory




Computational Learning Theory

« What general laws constrain inductive learning?

« Want theory to relate
— Number of training examples
— Complexity of hypothesis space
— Accuracy to which target function is approximated
— Manner in which training examples are presented
— Probability of successful learning



Sample Complexity

How many training examples suffice to learn target concept

1. If learner proposes instances as queries to teacher?
- learner proposes X, teacher provides f(x)

2. If teacher (who knows f(x)) proposes training examples?
- teacher proposes sequence {<x?!, f(x1)>, ... <x", f(x")>

3. If some random process (e.g., hature) proposes
Instances, and teacher labels them?
- Instances drawn according to P(X)




Sample Complexity (cont.)

_ The true (but unknown)
Problem setting: function that labels objects

« Setof instances X
« Set of hypotheses H = {h : X — {0,
« Set of possible target functions C' = {c: X — {0,1}}

« Sequence of training instances drawn at random from P (X))
« Teacher provides noise-free label ()

Learner outputs a hypothesis h € H gych that

h = arg min erTOTrqin(h)



Two Notions of Error

Training error of hypothesis h with respect to
target concept c

e How often h(z) # ¢(x) over training instances D

erTOTtrain = Pr [hx

reD |D|
rxelD
True error of hypothesis h with respect to ¢ Z;Cclxl:r‘\lglges D
e How often h(x) # e(x) over future Instances
drawn at random from P
erroryye(h) = Pr [h( ) # c(z)] Probability

z~P(X) distribution P(X)




True Error of a Hypothesis

Instance space X

Where ¢
and h disagree

The true error of h is the probability that it will
misclassify an example drawn at random from P(X)

errorywe(h) = Pr [h(x) # c(x)]

z~P(X)



Overfitting

Consider a hypothesis h and its / easy to compute
« Error rate over training data; ~ €rT0Tsrqain(h)
« True error rate over all data: errorirye(h)

T unknown

We say h overfits the training data if

erroryye(h) > erroryqim(h)

Amount of overfitting =

erroriyye(h) — erroryeqim(h)

Can we bound error;,.(h)

in terms of errorsqin(h) 22




ETTOT train = :B};rD[h(x) 75 C(a:)] _ Z 5(h($?gé| C(ﬁ))

Training

examples

erroryye(h) = Pr [h(zx) # c(z)]

z~P(X)

Probability
T ———— | distribution P(x)

if D was a set of examples drawn from P(X) and independent of
h, then we could use standard statistical confidence intervals to
determine that with 95% probability error;...(h) lies in the interval:

errorp(h) (1 — errorp(h) )

errorp(h) £ 1.96 -

but D is the training data for h ....




Version Spaces

c: X>{0,1}
A hypothesis h is consistent with a SE/

training examples D of target concept ¢ if and
only if h(zx) = ¢(x) for each training example
(z,c(x)) in D.

Consistent(h, D) = (W{x,c(x)) € D) h(zx) = ¢(x)

The version space, V Sy p, with respect to
hypothesis space H and training examples D,
is the subset of hypotheses from H consistent
with all training examples in D.

VSuyp={h € H|Consistent(h,D)}



Example: H is Conjunction of up to N Boolean Literals

Consider classification problem f:X->Y:
* Instances: X = <X; X, X; X,> where each X; is boolean

« Each hypothesis in H is a rule of the form:
— IF <Xy X, X3 X,>=<0,2,1,2>, THEN Y=1, ELSE Y=0
— l.e., rules constrain any subset of the X



Example 2: H is Decision Tree with depth=2

Consider classification problem f:X->Y:
 Instances: X = <X, ... X, where each X; is boolean

« |earned hypotheses are decision trees of depth 2 (so
each can use only three variables).



Exhausting the Version Space

Hypothesis space H

- -
. ! error=.3
error=. r=4

r=.2

L]
. " error=.2
error=.a r=.3

r=.1

(r = training error, error = true error)

Definition: The version space V. Sy p with respect
to training data D is said to be e-exhausted if every
hypothesis h in V Sy p has true error less than e.

(Vh € VSup) errory.(h) < €




How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988|.

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D 1s not
e-exhausted (with respect to c¢) is less than

|H|E—EWL



How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988|.

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D 1s not
e-exhausted (with respect to c¢) is less than

Any(!) learner
|H|E—Em / that OUTPUTS

a hypothesis

consistent
with all
training
examples
(i.,e.,an h
contained in
VSy,5)

Interesting! This bounds the probability that any
consistent learner will output a hypothesis A with
error(h) > €




What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most |Hle™ ™

Pr[(3h € H)s.t.(erroripqin(h) = O)A(errorirye(h) > €)] < |Hle "

T

Suppose we want this probability to be at most 6

1. How many training examples suffice?

1
m > =(In|H| + In(1/5))
€
2. If errory,qn(h) = O then with probability at least (1-9):

errorirue(h) < %(In |H|+1n(1/6))



Example: Simple decision trees m > %(ln \H| +In(1/6))

Consider Boolean classification problem
 Instances: X = <X, ... X, where each X; is Boolean
« Each hypothesis in H is a decision tree of depth 1

How many training examples m
suffice to assure that with probability
at least 0.99, any consistent learner
using H will output a hypothesis with
true error at most 0.05?



Example: Simple decision trees m > %(ln \H| +In(1/6))

Consider Boolean classification problem
 Instances: X = <X, ... X,> where each X; is boolean
« Each hypothesis in H is a decision tree of depth 1

How many training examples m
suffice to assure that with probability
at least 0.99, any consistent learner
using H will output a hypothesis with
true error at most 0.05?

IH| = 2n, epsilon = 0.05, delta=0.01



Example: H is Conjunction of Boolean Literals

m > 2(In|H| + In(1/8))
Consider classification problem f:X->Y: €

* Instances: X = <X; X, X; X,> where each X; is boolean

« Each hypothesis is a rule of the form:
— IF <X; X, X3 X,>=<0,7,1,?>, THEN Y=1, ELSE Y=0
— l.e., rules constrain any subset of the X

How many training examples m suffice to assure that with probability
at least 0.99, any consistent learner will output a hypothesis with true
error at most 0.057



Example: H is Decision Tree with depth=2

Consider classification problem f:X->Y:
 Instances: X = <X, ... X,> where each X; is boolean

» |earned hypotheses are decision trees of depth 2, using
only two variables

How many training examples m suffice to assure that with probability
at least 0.99, any consistent learner will output a hypothesis with true
error at most 0.057



PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < e < 1/2, and § such that
0<8<1/2,

learner L will with probability at least (1 — §)
output a hypothesis h € H such that
errorp(h) < €, in time that is polynomial in
1/e, 1/, n and size(c).




PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using Sufficient condition:
H if for all ¢ € C, distributions D over X, ¢ Holds if learner L

such that 0 < e < 1/2, and § such that requires only a
0<d<1/2, polynomial number of

training examples, and

learner L will with probability at least (1 /4 ) processing per

output a hypothesis h € H such that example is polynomial

errorp(h) < €, in time that is polynomial in
1/e, 1/, n and size(c).




m > ~(In |H| +In(1/8))

Question: If H={h | h: X = Y} Is Infinite,
what measure of complexity should we
use In place of |[H| ?



m > Z(In |H| + In(1/8))

Question: If H={h | h: X = Y} Is Infinite,
what measure of complexity should we
use In place of |[H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)




m > Z(In |H| + In(1/8))

Question: If H={h | h: X = Y} Is Infinite,
what measure of complexity should we
use In place of |[H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)

VC dimension of His the size of this subset



Shattering a Set of Instances

a labeling of each
_ / member of S as
Definition: a dichotomy of a set S 18 a positive or negative
partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.

Instance space X




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.



VC dimension: examples

Consider X = <, want to learn c:X->{0,1}
What is VC dimension of o
* Open intervals:

H1l: if £ > a then y =1 else y =

O
H2: if £ >a then y=1 else y =0
or, ifx>atheny=0e¢else y=1

Closed intervals:
H3: ifa<x<btheny=1e¢else y=0

H4: ifa<ax <bthen y=1else y =0
or, ifa<x<btheny=0e¢else y=1

O



VC dimension: examples

Consider X = <, want to learn c:X->{0,1}
What is VC dimension of o o X

* Open intervals:

H1l: if x > a then y =1 else y = VC(H1)=1

O
H2: if £ > a then y =1 else y =0 VC(H2)=2
1

or, if x > a then y =0 else y

 Closed intervals:
H3: ifa<xz<btheny=1else y=0 VC(H3)=2

H4: ifa<z<btheny=1else y=0 VC(H4)=3
or, ifa<xz<btheny=O0e¢elsey=1



VC dimension: examples

What is VC dimension of lines in a plane?
* Hy={((wy +wx; +Wyx;)>0 > y=1) }

T~



VC dimension: examples

What is VC dimension of

* Hy={((wg +wyx; + wyx;)>0 = y=1) }
— VC(H,)=3

« For H, = linear separating hyperplanes in n dimensions,
VC(H,)=n+1



Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-6)?

le., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-8) approximately (g) correct

m > ~(41095(2/5) + 8V C(H)10g5(13/6))

Compare to our earlier results based on |H|:

m > 1(In(l/cS) + In |H])



For any finite hypothesis space H, can you
give an upper bound on VC(H) in terms of |H| ?
(hint: yes)



More VC Dimension Examples to Think About

* Logistic regression over n continuous features
— Over n boolean features?

 Linear SVM over n continuous features

 Decision trees defined over n boolean features
Fi<X,.X>>Y

« Decision trees of depth 2 defined over n features

« How about 1-nearest neighbor?



