Machine Learning 10-601

Based on slide from Tom M. Mitchell

Computational Learning Theory

Computational Learning Theory

- What general laws constrain inductive learning?
- Want theory to relate
 - Number of training examples
 - Complexity of hypothesis space
 - Accuracy to which target function is approximated
 - Manner in which training examples are presented
 - Probability of successful learning

Sample Complexity

How many training examples suffice to learn target concept

- If learner proposes instances as queries to teacher?
 learner proposes x, teacher provides f(x)
- 2. If teacher (who knows f(x)) proposes training examples?
 teacher proposes sequence {<x¹, f(x¹)>, ... <xⁿ, f(xⁿ)>
- 3. If some random process (e.g., nature) proposes instances, and teacher labels them?

- instances drawn according to P(X)

Sample Complexity (cont.)

Problem setting:

The true (but unknown) function that labels objects

- Set of instances X
- Set of hypotheses $H = \{h : X \to \{0, 1\}\}$
- Set of possible target functions $C \stackrel{\checkmark}{=} \{c : X \rightarrow \{0, 1\}\}$
- Sequence of training instances drawn at random from P(X)
- Teacher provides noise-free labe c(x)

Learner outputs a hypothesis $h \in H$ such that

$$h = \arg\min_{h \in H} \ error_{train}(h)$$

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances D

 How often h(x) ≠ c(x) over future instances drawn at random from D

$$error_{true}(h) \equiv \Pr_{x \sim P(X)}[h(x) \neq c(x)]$$
 Probability
distribution P(X)

True Error of a Hypothesis

The *true error* of h is the probability that it will misclassify an example drawn at random from P(X)

$$error_{true}(h) \equiv \Pr_{x \sim P(X)}[h(x) \neq c(x)]$$

Overfitting

Consider a hypothesis h and its

- Error rate over training data:
- True error rate over all data:

We say h overfits the training data if

$$error_{true}(h) > error_{train}(h)$$

Amount of overfitting =

$$error_{true}(h) - error_{train}(h)$$

Can we bound $error_{true}(h)$ in terms of $error_{train}(h)$

if D was a set of examples drawn from P(X) and <u>independent</u> of h, then we could use standard statistical confidence intervals to determine that with 95% probability $error_{true}(h)$ lies in the interval:

$$error_{\mathbf{D}}(h) \pm 1.96 \sqrt{\frac{error_{\mathbf{D}}(h)(1 - error_{\mathbf{D}}(h))}{n}}$$

but D is the *training data* for h

Version Spaces

 \checkmark c: X \rightarrow {0,1}

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

 $Consistent(h,D) \equiv (\forall \langle x,c(x)\rangle \in D) \ h(x) = c(x)$

The **version space**, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

 $VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$

Example: H is Conjunction of up to N Boolean Literals

Consider classification problem $f:X \rightarrow Y$:

- instances: $X = \langle X_1 X_2 X_3 X_4 \rangle$ where each X_i is boolean
- Each hypothesis in H is a rule of the form:
 - IF $\langle X_1 X_2 X_3 X_4 \rangle = \langle 0, ?, 1, ? \rangle$, THEN Y=1, ELSE Y=0
 - i.e., rules constrain any subset of the X_i

Example 2: H is Decision Tree with depth=2

Consider classification problem $f:X \rightarrow Y$:

- instances: $X = \langle X_1 \dots X_N \rangle$ where each X_i is boolean
- learned hypotheses are decision trees of depth 2 (so each can use only three variables).

Exhausting the Version Space

(r = training error, error = true error)

Definition: The version space $VS_{H,D}$ with respect to training data D is said to be ϵ -exhausted if every hypothesis h in $VS_{H,D}$ has true error less than ϵ .

 $(\forall h \in VS_{H,D}) \ error_{true}(h) < \epsilon$

How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \ge 1$ independent random examples of some target concept c, then for any $0 \le \epsilon \le 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

 $|H|e^{-\epsilon m}$

How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \ge 1$ independent random examples of some target concept c, then for any $0 \le \epsilon \le 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

 $|H|e^{-\epsilon m}$

Interesting! This bounds the probability that any consistent learner will output a hypothesis h with $error(h) \geq \epsilon$

<u>Any(!)</u> learner that outputs a hypothesis consistent with all training examples (i.e., an h contained in VS_{HD})

What it means

[Haussler, 1988]: probability that the version space is not ε -exhausted after *m* training examples is at most $|H|e^{-\epsilon m}$

Pr[$(\exists h \in H)s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)$] $\leq |H|e^{-\epsilon m}$ Suppose we want this probability to be at most δ

1. How many training examples suffice?

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

2. If $error_{train}(h) = 0$ then with probability at least (1- δ):

$$error_{true}(h) \leq \frac{1}{m}(\ln|H| + \ln(1/\delta))$$

Example: Simple decision trees

$$m \geq \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))$$

Consider Boolean classification problem

- instances: $X = \langle X_1 \dots X_N \rangle$ where each X_i is Boolean
- Each hypothesis in H is a decision tree of depth 1

How many training examples *m* suffice to assure that with probability at least 0.99, *any* consistent learner using H will output a hypothesis with true error at most 0.05?

Example: Simple decision trees

$$m \geq \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))$$

Consider Boolean classification problem

- instances: $X = \langle X_1 \dots X_n \rangle$ where each X_i is boolean
- Each hypothesis in H is a decision tree of depth 1

How many training examples *m* suffice to assure that with probability at least 0.99, *any* consistent learner using H will output a hypothesis with true error at most 0.05?

|H| = 2n, epsilon = 0.05, delta = 0.01

Example: H is Conjunction of Boolean Literals $m \ge \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))$

Consider classification problem $f:X \rightarrow Y$:

- instances: $X = \langle X_1 X_2 X_3 X_4 \rangle$ where each X_i is boolean
- Each hypothesis is a rule of the form:
 - IF $\langle X_1 X_2 X_3 X_4 \rangle = \langle 0, ?, 1, ? \rangle$, THEN Y=1, ELSE Y=0
 - i.e., rules constrain any subset of the X_i

How many training examples *m* suffice to assure that with probability at least 0.99, *any* consistent learner will output a hypothesis with true error at most 0.05?

Example: H is Decision Tree with depth=2

Consider classification problem $f:X \rightarrow Y$:

- instances: $X = \langle X_1 \dots X_N \rangle$ where each X_i is boolean
- learned hypotheses are decision trees of depth 2, using only two variables

How many training examples *m* suffice to assure that with probability at least 0.99, *any* consistent learner will output a hypothesis with true error at most 0.05?

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in

 $1/\epsilon$, $1/\delta$, n and size(c).

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c). Sufficient condition:

Holds if learner L requires only a polynomial number of training examples, and processing per example is polynomial

 $m \geq \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H| ?

 $m \geq \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H| ?

Answer: The largest subset of X for which H can guarantee zero training error (regardless of the target function c)

 $m \geq \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H| ?

Answer: The largest subset of X for which H can guarantee zero training error (regardless of the target function c)

VC dimension of H is the size of this subset

Shattering a Set of Instances

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

a labeling of each member of S as positive or negative

Definition: a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

Instance space X

The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space Hdefined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

 \xrightarrow{X}

Consider X = <, want to learn c:X \rightarrow {0,1} What is VC dimension of

• Open intervals:

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$

H2: if
$$x > a$$
 then $y = 1$ else $y = 0$
or, if $x > a$ then $y = 0$ else $y = 1$

- Closed intervals:
 H3: if a < x < b then y = 1 else y = 0
 - H4: if a < x < b then y = 1 else y = 0or, if a < x < b then y = 0 else y = 1

 \xrightarrow{X}

Consider X = <, want to learn c:X \rightarrow {0,1} What is VC dimension of

• Open intervals:

H1: if x > a then y = 1 else y = 0 VC(H1)=1

- H2: if x > a then y = 1 else y = 0 VC(H2)=2 or, if x > a then y = 0 else y = 1
- Closed intervals:
 H3: if a < x < b then y = 1 else y = 0 VC(H3)=2
 - H4: if a < x < b then y = 1 else y = 0 VC(H4)=3 or, if a < x < b then y = 0 else y = 1

What is VC dimension of lines in a plane?

•
$$H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$$

What is VC dimension of

- $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$ - VC(H₂)=3
- For H_n = linear separating hyperplanes in n dimensions, VC(H_n)=n+1

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ϵ -exhaust VS_{H,D} with probability at least (1- δ)?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably (1- δ) approximately (ϵ) correct

$$m \geq \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

Compare to our earlier results based on |H|:

$$m \geq \frac{1}{\epsilon} (\ln(1/\delta) + \ln|H|)$$

For any finite hypothesis space H, can you give an upper bound on VC(H) in terms of |H| ? (hint: yes)

More VC Dimension Examples to Think About

- Logistic regression over n continuous features
 Over n boolean features?
- Linear SVM over n continuous features
- Decision trees defined over n boolean features
 F: <X₁, ... X_n> → Y
- Decision trees of depth 2 defined over n features
- How about 1-nearest neighbor?