Evaluating classifiers: Model and feature selection
Model selection issues

- We have seen some of this before …
- Selecting features (or basis functions)
 - Linear regression
 - Logistic regression
 - SVMs
- Selecting parameter value
 - Prior strength
 - Naïve Bayes, linear and logistic regression
 - Regularization strength
 - Linear and logistic regression
 - Decision trees
 - depth, number of leaves
 - Clustering
 - Number of clusters
- More generally, these are called Model Selection Problems
Training and test set error as a function of model complexity
Simple greedy model selection algorithm

• Pick a dictionary of features
 – e.g., polynomials for linear regression

• Greedy heuristic:
 – Start from empty (or simple) set of features $F_0 = \emptyset$
 – Run learning algorithm for current set of features F_t
 • Obtain h_t
 – Select next best feature X_i^*
 • e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 – $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
 – Recurse
Greedy model selection

- Applicable in many settings:
 - Linear regression: Selecting basis functions
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Logistic regression: Selecting features (basis functions)
 - Decision trees: Selecting leaves to expand

- Only a heuristic!
 - But, sometimes you can prove something cool about it
Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature** X_i^*
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
 - Recurse

**When do you stop???

- When training error is low enough?
- When test set error is low enough?

But how can we tell what is the test error?
Validation set

• In general, for evaluating a classifier we **randomly** split a dataset into two parts:
 – Training data – \(\{x_1, \ldots, x_{N_{\text{train}}} \} \)
 – Test data – \(\{x_1, \ldots, x_{N_{\text{test}}} \} \)

• Why not use the test data to determine the correct model? Or when to stop?

• **Test data must always remain independent!**
 – Never ever ever ever learn on test data, including for model selection

• Given a dataset, **randomly** split it into three parts:
 – Training data – \(\{x_1, \ldots, x_{N_{\text{train}}} \} \)
 – Validation data – \(\{x_1, \ldots, x_{N_{\text{valid}}} \} \)
 – Test data – \(\{x_1, \ldots, x_{N_{\text{test}}} \} \)

• Use validation data for tuning learning algorithm, e.g., model selection
 – Save test data for very final evaluation
Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature** X_i^*
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
 - Recurse

When do you stop??

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?

Sometimes, but there is an even better option …
Validating a learner, not a hypothesis (intuition only, not proof)

- With a validation set, we can estimate the error of 1 hypothesis on 1 dataset
 - e.g. Should I use a polynomial of degree 3 or 4

- However, what we really want is to estimate the error of learner over multiple datasets

\[E_{\{x,y\}}[h_t] \]

Expected error over all datasets

Our current model / classifier
(LOO) Leave-one-out cross validation

• Consider a validation set with 1 example:
 – D – training data
 – $D\setminus i$ – training data with i th data point moved to validation set

• Learn classifier $h_{D\setminus i}$ with the $D\setminus i$ dataset

• Estimate true error as:
 – 0 if $h_{D\setminus i}$ classifies i th data point correctly
 – 1 if $h_{D\setminus i}$ is wrong about i th data point
 – Seems really bad estimator, but wait!

• LOO cross validation: Average over all data points i:
 – For each data point you leave out, learn a new classifier $h_{D\setminus i}$
 – Estimate error as:

$$\text{error}_{LOO} = \frac{1}{m} \sum_{i=1}^{m} 1 \left(h_{D\setminus i}(x^i) \neq y^i \right)$$
LOO cross validation is (almost) unbiased estimate of true error!

- When computing LOOCV error, we only use $m-1$ data points
 - So it’s not an estimate of true error of learning with m data points
 - Usually pessimistic, though – learning with less data typically gives worse answer

- **LOO is almost unbiased!**
 - Let $\text{error}_{\text{true},m-1}$ be true error of learner when you only get $m-1$ data points
 - LOO is unbiased estimate of $\text{error}_{\text{true},m-1}$:
 \[
 E_D[\text{error}_{\text{LOO}}] = \text{error}_{\text{true},m-1}
 \]

- **Great news!**
 - Use LOO error for model selection!!!
Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature** X_i^*
 - e.g., X_j that results in lowest training error learner
 when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
 - Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- **STOP WHEN** error_{LOO} IS LOW!!!
LOO cross validation error
Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
 - Learns in only 1 second
- Computing LOO will take about 1 day!!!
 - If you have to do for each choice of basis functions, it will take forever!
Solution: Use \textit{k}-fold cross validation

- Randomly \textbf{divide training data into \textit{k} equal parts}
 - \(D_1, \ldots, D_k\)
- For each \(i\)
 - Learn classifier \(h_{D\setminus D_i}\) using data point not in \(D_i\)
 - Estimate error of \(h_{D\setminus D_i}\) on validation set \(D_i\):
 \[
 error_{D_i} = \frac{k}{m} \sum_{(x^j, y^j) \in D_i} 1 (h_{D\setminus D_i}(x^j) \neq y^j)
 \]

- \(k\)-fold cross validation error is average over data splits:
 \[
 error_{k\text{-fold}} = \frac{1}{k} \sum_{i=1}^{k} error_{D_i}
 \]

- \(k\)-fold cross validation properties:
 - \textbf{Much faster to compute} than LOO
 - \textbf{More (pessimistically) biased} – using much less data, only \(m(k-1)/k\)
Regularization

• Model selection 1 (using CV): **Greedy**
 – Pick subset of features that have yield low LOO error

• Model selection 2: **Regularization**
 – Include all possible features!
 – Penalize “complicated” hypothesis
Regularization in linear regression

• Overfitting usually leads to very large parameter choices, e.g.:

 \[-2.2 + 3.1 X - 0.30 X^2\]
 \[-1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + \ldots\]

• Regularized least-squares (a.k.a. ridge regression):

\[w^* = \arg \min_w \sum_j (w^T x_j - y_j)^2 + \lambda \sum_i w_i^2\]
Other regularization examples

- **Logistic regression** regularization
 - Maximize data likelihood minus **penalty for large parameters**
 \[
 \arg \max_w \sum_j \ln P(y_j^j | x_j^j, w) - \lambda \sum_i w_i^2
 \]
 - Biases towards small parameter values

- **Naïve Bayes** regularization
 - **Prior** over likelihood of features
 - **Biases away from zero probability** outcomes

- **Decision tree** regularization
 - Many possibilities, e.g., Chi-Square test
 - Biases towards smaller trees

- **Sparsity**: find good solution with few basis functions, e.g.:
 - Simple greedy model selection from earlier in the lecture
 - L1 regularization, e.g.:
 \[
 w^* = \arg \min_w \sum_j (w^T x_j - y_j)^2 + \lambda \sum_i |w_i|
 \]
Regularization and Bayesian learning

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

• For example, if we assume a zero mean, Gaussian prior for \(w \) in a logistic regression classification we would end up with an L2 regularization
 - Why?
 - Board …
 - What is \(\lambda \)?

• Similar interpretation for other learning approaches:
 – Linear regression: Also zero mean, Gaussian prior for \(w \)
 – Naïve Bayes: Directly defined as prior over parameters
How do we pick magic parameter λ?

Cross Validation!!!
Occam’s Razor

• William of Ockham (1285-1349) *Principle of Parsimony*:
 – “One should not increase, beyond what is necessary, the number of entities required to explain anything.”

• Regularization penalizes for “*complex explanations*”

• Alternatively (but pretty much the same), use *Minimum Description Length (MDL) Principle*:
 – minimize $\text{length}(\text{misclassifications}) + \text{length}(\text{hypothesis})$

• $\text{length}(\text{misclassifications})$ – e.g., #wrong training examples
• $\text{length}(\text{hypothesis})$ – e.g., size of decision tree
Minimum Description Length Principle

• MDL prefers small hypothesis that fit data well:

\[h_{MDL} = \arg \min_h L_{C_1}(D \mid h) + L_{C_2}(h) \]

 – \(L_{C_1}(D \mid h) \) – description length of data under code \(C_1 \) given \(h \)
 • Only need to describe points that \(h \) doesn’t explain (classify correctly)
 – \(L_{C_2}(h) \) – description length of hypothesis \(h \)

• Decision tree example
 – \(L_{C_1}(D \mid h) \) – #bits required to describe data given \(h \)
 • If all points correctly classified, \(L_{C_1}(D \mid h) = 0 \)
 – \(L_{C_2}(h) \) – #bits necessary to encode tree
 – Trade off quality of classification with tree size
What you need to know about Model Selection, Regularization and Cross Validation

- Cross validation
 - (Mostly) Unbiased estimate of true error
 - LOOCV is great, but hard to compute
 - k-fold much more practical
 - Use for selecting parameter values!
- Model selection
 - Search for a model with low cross validation error
- Regularization
 - Penalizes for complex models
 - Select parameter with cross validation
 - Really a Bayesian approach
- Minimum description length
 - Information theoretic interpretation of regularization
Feature selection

• Choose an optimal subset from the set of all N features
 - Only use a subset of a possible words in a dictionary
 - Only use a subset of genes
• Why?
• Can we do model selection to solve this? – 2^n models
eg. Microarray data

Courtesy: Paterson Institute
Two approaches: 1. Filter

- Independent of classifier used
- Rank features using some criteria based on their relevance to the classification task
- For example, mutual information:

\[
I(X; Y) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x, y)}{p_1(x) p_2(y)} \right),
\]

- Choose a subset based on the sorted scores for the criteria used
2. Wrapper

• Classifier specific
• Greedy (large search space)
• Initialize $F = \text{null set}$
 – At each step, using cross validation or an information theoretic criteria, choose a feature to add to the subset [training should be done with only features in $F +$ new feature]
 – Add the chosen feature to the subset
• Repeat until no improvement to CV accuracy