PathBLAST: a tool for alignment of protein interaction networks

Ajay G.H
M.S Computational Biology
Introduction

- Protein network alignment tool
- Comparison of protein networks between two different organisms

Goal:
- To identify:
 - Similar protein pathways
 - Conserved protein complexes
What are the challenges in PPI?

- High dimensionality of the data
- Complexity of information
- How to separate true PPI or protein DNA interactions from false positives?
- How to functionally annotate the networks?
- How to effectively use the large network information in building or understanding different models?
Why Network Alignment?

- Excellent way of cross species comparison
- Comparison of two networks
 - Identification of conserved signal
 - High evolutionary significance
 - Identification of variations in the pathways
Description

- **PathBLAST:**
 - Query pathway aligned against target network
 - Goal:
 - Similar pathways in target network
 - Query:
 - 2-5 proteins long
 - Protein sequences or ID’s
 - Target:
 - Complex protein networks
 - Currently 7 different targets
 - DIP database
Targets

- *Saccharomyces cerevisiae*
- *Helicobacter pylori*
- *Escherichia coli*
- *Caenorhabditis elegans*
- *Drosophila melanogaster*
- *Mus musculus*
- *Homo sapiens*
- Excellent cross species information
 - Coli to humans
Alignment

- PathBLAST searches for high scoring pathway alignment
- Proteins of the first path are paired with putative orthologs occurring in the same order in the second path
- Incorporation of evolutionary significance?
 - Gaps and mismatches are allowed
Gaps and Mismatches

- **Gap:**
 - Common protein
 - Interactions in one path may skip over a protein in other pathway introducing a gap

- **Mismatch:**
 - Proteins in similar position that are dissimilar in sequence introduce mismatches
BLAST in PathBLAST

- Identification of homologous proteins between query and target
- Based on e-value
- Narrows down the unwanted interactions that usually have a high e-value
Algorithm

- Pathways are combined as a global alignment graph
- Each node represents a homologous protein pair
- Links represent protein interaction relationships
- Three types of relationships:
 - Direct interaction
 - Gap (one interaction is indirect)
 - Mismatch (both interactions are indirect)
Homologous protein pairs

Interactions
The score is given by:

\[S(P) = \sum_{v \in P} \log_{10} \frac{p(v)}{p_{\text{random}}} + \sum_{e \in P} \log_{10} \frac{q(e)}{q_{\text{random}}}, \]

- where \(p(v) \) is the probability of true homology within the protein pair represented by \(v \).
- \(q(e) \) is the probability that the protein–protein interactions represented by \(e \) are real, i.e., not false-positive errors.
- The background probabilities \(p_{\text{random}} \) and \(q_{\text{random}} \) are the expected values of \(p(v) \) and \(q(e) \) over all vertices and edges in the global alignment graph.
Web interface

<table>
<thead>
<tr>
<th>Protein ID</th>
<th>Protein Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>and/or</td>
</tr>
<tr>
<td>B</td>
<td>and/or</td>
</tr>
<tr>
<td>C</td>
<td>and/or</td>
</tr>
<tr>
<td>D</td>
<td>and/or</td>
</tr>
<tr>
<td>E</td>
<td>and/or</td>
</tr>
</tbody>
</table>
Please select the **Target Organism Network**:

- Escherichia coli
- Saccharomyces cerevisiae
- Helicobacter pylori
- Caenorhabditis elegans
- Drosophila melanogaster
- Mus musculus
- Homo sapiens

Show Advanced Options

BLAST!

RESET
Results

- Text and graph: useful hyperlinking
- Text results

Alignment 1 6.035

<table>
<thead>
<tr>
<th>Query</th>
<th>Match</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>YKL023W (MYO1)</td>
<td>YKL129C</td>
<td>myosin I</td>
</tr>
<tr>
<td></td>
<td>YJR065C</td>
<td>actin-related gene</td>
</tr>
<tr>
<td>YFL039C (ACT1)</td>
<td></td>
<td>dispensable for mitosis, involved in middle/late stage of meiosis, required for spore wall formation</td>
</tr>
<tr>
<td>YHL007C (STD20)</td>
<td>YDE523C</td>
<td></td>
</tr>
</tbody>
</table>

Alignment 2 6.035

<table>
<thead>
<tr>
<th>Query</th>
<th>Match</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>YHL007C (STD20)</td>
<td>YDE523C</td>
<td>dispensable for mitosis, involved in middle/late stage of meiosis, required for spore wall formation</td>
</tr>
<tr>
<td>YFL039C (ACT1)</td>
<td>YJR065C</td>
<td>actin-related gene</td>
</tr>
<tr>
<td></td>
<td>YKL129C</td>
<td>myosin I</td>
</tr>
<tr>
<td>YGR023W (MYO1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Graph results

Sample Alignment

<table>
<thead>
<tr>
<th>Alignment 37 5.900</th>
</tr>
</thead>
<tbody>
<tr>
<td>YHL007C (Ste20) YJL095W (BCK1) bypass requirement for protein kinase C homolog</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>YHR023W (Myo1) YKL129C (MYO3) myosin I</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>YFL039C (Act1) YJR065C (ARP3) actin-related gene</td>
</tr>
</tbody>
</table>

Hyperlinked Complex

<table>
<thead>
<tr>
<th>STE20</th>
<th>CMK1</th>
<th>BKC1</th>
<th>MKK2</th>
<th>CMK2</th>
<th>CLA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYO1</td>
<td>MYO3</td>
<td>MYO5</td>
<td>MYO4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT1</td>
<td>ARP3</td>
<td>ARP2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Alignment

<table>
<thead>
<tr>
<th>Alignment 82 5.290</th>
</tr>
</thead>
<tbody>
<tr>
<td>YHL007C (Ste20) YFR014C (CMK1) Calmodulin-dependent protein kinase</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>YHR023W (Myo1) YAL029C (MYO4) Required for mother-specific HO expression, needed for the accumulation in daughter nuclei of Ashlp</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>YFL039C (Act1) YDL029W (ARP2) Involved in endocytosis and membrane growth and polarity accumulation in daughter nuclei of Ashlp</td>
</tr>
</tbody>
</table>

Best PATHWAY ALIGNMENT SCORE Worst
Yeast network
Cross species importance

- Cross species comparisons
- Application:
 - study and treatment of disease
 - directing drugs to pathways that are present in a pathogenic organism but absent in human host
 - Denovo pathway
Thank You