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Abstract

The idea of using articulatory representations for automatic speech recognition (ASR) continues to attract much

attention in the speech community. Representations which are grouped under the label ‘‘articulatory’’ include artic-

ulatory parameters derived by means of acoustic-articulatory transformations (inverse filtering), direct physical mea-

surements or classification scores for pseudo-articulatory features. In this study, we revisit the use of features belonging

to the third category. In particular, we concentrate on the potential benefits of pseudo-articulatory features in adverse

acoustic environments and on their combination with standard acoustic features. Systems based on articulatory features

only and combined acoustic-articulatory systems are tested on two different recognition tasks: telephone-speech con-

tinuous numbers recognition and conversational speech recognition. We show that articulatory feature (AF) systems

are capable of achieving a superior performance at high noise levels and that the combination of acoustic and AFs

consistently leads to a significant reduction of word error rate across all acoustic conditions. � 2002 Elsevier Science

B.V. All rights reserved.

Zusammenfassung

Die Idee, artikulatorische Repr€aasentationen zur automatischen Spracherkennung zu nutzen, erweckt auch weiterhin

großes Interesse in der Sprachverarbeitungsforschung. Repr€aasentationen, die unter dem Schlagwort ‘‘artikulatorisch’’

zusammengefaßt werden, umfassen artikulatorische Parameter, die mit Hilfe von akustisch-artikulatorischen Trans-

formationen (inverser Filterung) erzeugt werden, direkte physikalische Messwerte oder Klassifikationsbewertungen f€uur
pseudo-artiulatorische Merkmale. In dieser Arbeit untersuchen wir die Verwendung von Merkmalen der letzteren

Kategorie. Speziell konzentrieren wir uns dabei auf die m€ooglichen Vorteile pseudo-artikulatorischer Merkmale unter

ung€uunstigen akustischen Bedingungen und auf ihre Kombination mit herk€oommlichen akustischen Merkmalen. Sys-

teme, die auf artikulatorischen Merkmale allein basieren, und kombinierte artikulatorisch-akustische Systeme werden

auf zwei unterschiedlichen Erkennungsaufgaben evaluiert: der Erkennung von Zahlenfolgen in Telephonqualit€aat sowie
der Erkennung spontan gesprochener Sprache. Wir zeigen, daß durch die Verwendung artikulatorischer Merkmale eine

Verbesserung der Leistungsf€aahigkeit bei hohen Ger€aauschpegeln erreicht wird, und daß die Kombination von akusti-

schen und artikulatorischen Merkmalen konsistent zu einer signifikanten Reduktion der Fehlerrate unter allen akus-

tischen Bedingungen f€uuhrt. � 2002 Elsevier Science B.V. All rights reserved.

www.elsevier.com/locate/specom
Speech Communication 37 (2002) 303–319

*Corresponding author.

0167-6393/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-6393 (01 )00020-6



Keywords: Speech recognition; Articulatory representations; Neural networks; Classifier combination

1. Introduction

A major drawback of current automatic speech
recognition (ASR) systems is their lack of robust-
ness in adverse acoustic conditions such as back-
ground noise or channel variability. A variety of
techniques have been investigated to overcome
these problems, e.g., more robust feature extrac-
tion algorithms (Greenberg and Kingsbury, 1997;
Kanadera et al., 1998; Strope and Alwan, 1998),
speech signal enhancement (Berouti et al., 1979;
Boll, 1992; Saleh and Niranjan, 1997) or noise ad-
aptation (Gales and Young, 1996). Another way
of achieving greater robustness is to exploit mul-
tiple sources of information about the speech sig-
nal instead of relying only on a single speech signal
representation. These multiple information sour-
ces may take the form of different sets of acoustic
features extracted by different front-ends (Kings-
bury and Morgan, 1997; Kirchhoff and Bilmes,
1999; Jiang and Huang, 1999) or they may include
input from non-acoustic modalities, such as visual
information (Potamianos and Graf, 1998; Dupont
and Luettin, 1998). In this study, we investigate
the benefits of employing an articulatory repre-
sentation of the speech signal, both as an alter-
native to, and in combination with, standard
acoustic representations. Articulatory information
can be encoded in various ways, such as direct
articulatory measurements obtained e.g., by cine-
radiography (Papcun et al., 1992), articulatory
parameters recovered from the acoustic signal
by inverse filtering (Schroeter and Sondhi, 1994;
Richards et al., 1996, 1997; Krstulovic, 1999) or
articulatory class probabilities obtained by statis-
tical classification of the acoustic signal. In this
study, we focus on the third type of representation.
Articulatory information is expressed in terms of
scores for various articulatory classes or features,
such as voiced, rounded, nasal, etc. These are ab-
stract classes characterizing articulatory gestures
in a highly quantized fashion – they do not pro-
vide a detailed reflection of actual articulatory
processes in the vocal tract. For this reason, they

are often referred to as pseudo-articulatory fea-
tures.

Articulatory feature (AF) representations
have been investigated previously in the context
of speech recognition (e.g., Schmidtbauer, 1989;
Elenius and Tacacs, 1991; Eide et al., 1993; Deng
and Erler, 1992; Deng and Sun, 1994a,b; Stein-
grimsson et al., 1995; Erler and Freeman, 1996).
However, there are several reasons why they
should be revisited in the light of recent develop-
ments in ASR. First, little effort has been spent on
analyzing the performance of AFs in noise or
other adverse acoustic environments. For reasons
to be explained below AF representations may be
of greater benefit in noise than in clean speech.
Furthermore, to our knowledge there has been no
extensive diagnostic comparison across different
acoustic conditions of systems based on standard
acoustic features and AF-based systems. This,
however, is necessary in order to ascertain what
information, if any, can be provided by AFs in
addition to commonly used acoustic features. On
the basis of such an evaluation, strategies for the
optimal combination of acoustic and articulatory
representations might be developed.

This study addresses both of these issues and
demonstrates the potential of an AF representa-
tion with respect to different recognition tasks,
acoustic modeling paradigms, test conditions and
target languages. An initial pilot study was carried
out on the OGI Numbers95 database, which is
an American-English telephone speech corpus con-
sisting of continuously spoken numbers. Baseline
recognition experiments as well as combination
experiments were carried out within the hybrid
modeling paradigm combining hidden Markov
models (HMM) and artificial neural networks
(ANN). The second study is based on the German
Verbmobil database, which consists of sponta-
neous dialogues (studio-quality speech). Recogni-
tion and combination experiments on this task
were carried out within the Gaussian mixture
HMMmodeling paradigm. Our results confirm the
hypothesis that articulatory information by itself
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can lead to improved performance in noisy envi-
ronments. Furthermore, they show that word
recognition benefits from the combination of
acoustic and AFs in nearly all cases. Although the
focus of this study is on AFs derived by means of
statistical classifiers, the evaluation and combina-
tion techniques we present are more general and
may be useful for studying other novel types of
features and feature stream combinations.

2. Articulatory features for acoustic modeling

A standard automatic speech recognition sys-
tems usually consists of three distinct modules
(Fig. 1): preprocessing (acoustic feature extrac-
tion), acoustic model scoring and decoding (i.e.,
lexical search). The approach proposed here, dif-
fers from this architecture in that a cascaded
classifier structure is used in the acoustic modeling
component, as depicted in Fig. 2. In a first step,
AFs are extracted from the acoustic signal by a set
of parallel statistical classifiers for different artic-
ulatory aspects of speech sounds (voicing, manner
of articulation, etc.). In a second step, the scores
computed by the first-level classifiers are mapped
to scores for higher-level recognition units, such as
phones, syllables, etc.

This may be considered a decompositional
(or ‘‘divide-and-conquer’’) approach to acoustic
modeling: the complex task of classifying the
acoustic signal into subword units is decomposed
into a number of smaller, easier tasks, viz. the
classification of AFs. Our hypothesis is that each
of the first-level classifiers is more robust than a
one-step classifier, and that the combination of
their outputs eventually leads to a more robust
overall classification performance. This assump-
tion is based on two facts: first, each AF classifier
only needs to distinguish between a small number
of output classes – typically, AFs take on a small

number of values, ranging from two (e.g., +voice,
)voice) to approximately 10 (for place distinc-
tions). Thus, the complexity of each of the artic-
ulatory classifiers in terms of the number of output
classes is lower than that of a monolithic phone
classifier, which typically uses 40–60 (context-
independent) phone classes. Second, articulatory
classifiers can exploit training data in a more effi-
cient way: since manual AF annotations of speech
signals are difficult and costly to produce, the only
feasible way of generating training material for the
articulatory classifiers is to convert phone-based
training transcriptions to feature transcriptions.
This can be done using a canonically defined
phone-feature conversion table. Since AFs will
generally occur in more than one phone, training
data for these features can effectively be shared
across phones. This in turn leads to a large amount
of training material for each feature classifier,
which often exceeds the amount of phone training
material by an order of magnitude (Kirchhoff,
1999).

It is likely that different aspects of articulation
exhibit different degrees of robustness and do not
deteriorate (in terms of their ability of being rec-
ognized correctly) to the same degree under ad-
verse acoustic conditions. A classifier structure
which is based on the decomposition of speechFig. 1. Standard speech recognition system.

Fig. 2. Articulatory feature approach to acoustic modeling.
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sounds into their articulatory components can
exploit this property by selectively applying
different processing strategies to the different
sub-classifiers independently. These strategies may
involve e.g. the use of different preprocessing or
model adaptation techniques. Voicing distinctions,
for instance, can be detected fairly robustly across
a variety of acoustic conditions (Cohn, 1992).
Place features, by contrast, tend to be less robust
as they are more dependent on speakers’ vocal
tract characteristics. They could thus benefit from
a model adaptation method which is applied to the
place classifier only. Furthermore, the articulatory
classifiers themselves may differ as well: the clas-
sifier type, the complexity (the number of free
parameters) and the initialization or training pro-
cedures may be tuned to the specific task they need
to perform. In addition to using selective pro-
cessing strategies at the first classification stage,
the contributions of the sub-classifiers to the over-
all classification task may be weighted differently
by the combination module depending on the con-
text. The combination module may, for instance,
use confidence values as a basis for assigning
weights to the outputs of the sub-classifiers. For
these reasons, an acoustic modeling approach
which is based on decompositional classification in
terms of AFs is likely to prove more robust in
adverse acoustic conditions.

3. Articulatory features for continuous numbers

recognition: a pilot study

3.1. Corpus and acoustic baseline systems

The database used for the experiments reported
in this section is the OGI Numbers95 corpus (Cole
et al., 1995). This is an American English corpus
consisting of a collection of continuously spoken
numbers – a typical utterance in this corpus is e.g.
two hundred thirty six. The utterance length ranges
between one and ten words with an average of 3.9
words. The corpus was compiled at the Oregon
Graduate Institute by extracting numbers (zip
codes, dates, street numbers, etc.) from various
other telephone speech corpora. The data set used
for training and cross-validation consists of 3590

utterances (3233 for training, 357 for cross-vali-
dation), corresponding to approximately 2 h of
speech. The test set comprises 1206 utterances (40
min). All utterances in these sets were manually
transcribed at the phone level. The recognition
lexicon consists of 32 number words. In addition
to the original test set, four modified versions of
the test set were used. A reverberant version was
created by digitally convolving the signal with an
impulse response function recorded in an echoic
room with a reverberation time of 0.5 s. Four
noisy versions of the test set were created by
adding pink noise from the Noisex database to the
clean speech signal at various signal-to-noise ratios
(SNR): 0, 10, 20 and 30 dB.

Two different acoustic baseline systems were
used, which are distinguished by different prepro-
cessing strategies for clean as opposed to noisy and
reverberant speech. The recognition system for
clean speech uses eight log-RASTA-PLP coeffi-
cients (Hermansky and Morgan, 1994), delta co-
efficients and normalized log-energy. These are
extracted every 10 ms using a window of 25 ms.
The recognition system for the reverberant and
noisy test conditions uses 15 modulation spectro-
gram (MODSPEC) coefficients. MODSPEC pre-
processing was developed specifically for noisy and
reverberant speech and has demonstrated superior
performance under these conditions (Greenberg
and Kingsbury, 1997; Kingsbury et al., 1998). The
characteristic properties of MODSPEC prepro-
cessing are the suppression of fine phonetic details
such as onsets and transitions and the emphasis
of the gross distribution of energy across time
and frequency. The MODSPEC representation
enhances frequency modulations between 0 and 8
Hz, with a peak at 4 Hz, corresponding roughly to
the syllabic rate of speech.

All recognizers used for the experiments re-
ported in this chapter are hybrid HMM/ANN
systems combining multi-layer-perceptrons (MLPs)
for the estimation of local class probabilities with
HMMs used to perform the global alignment of
the sequence of observation vectors with the se-
quence of acoustic models (cf. e.g. Morgan and
Bourland, 1995). The MLPs used in this study
consist of three layers (one input layer, one output
layer, and one hidden layer) and are fully con-
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nected. The activation function of the output layer
is the softmax function,

f ðxiÞ ¼
expðxiÞPK
k¼1 expðxkÞ

; ð1Þ

where K is the number of output units in the final
layer. The MLPs are trained using backpropaga-
tion to minimize the relative entropy between the
probability distributions over the network outputs
and the target phones. Both acoustic baseline
systems use a context window consisting of nine
input frames. The RASTA-based system uses 400
hidden units in the hidden layer, the MODSPEC-
based system uses 560 hidden units. Table 1 sum-
marizes the details of the acoustic baseline systems.

Decoding is carried out by a Viterbi-based first-
best beam search using a back-off bigram and a
recognition lexicon containing the most frequent
pronunciation variants.

3.2. Articulatory feature baseline systems

The AF systems use the same preprocess-
ing parameters as the acoustic baseline systems
described above, i.e., log-RASTA-PLP for clean
speech and MODSPEC for noisy/reverberant
speech. A set of MLPs then estimate probabilities
for the 28 AFs shown in Table 2. The AFs are
divided into five different groups corresponding to
the articulatory dimensions of voicing, manner of
articulation, place of articulation, the position of
the tongue on the front-back axis and lip round-
ing.

Each phone can be converted to a set of AFs
based on a canonically defined rule-based map-
ping, e.g. the features assigned to /u:/ are h voiced,
vowel, high, back, +round i. The value ‘‘nil’’ is

assigned whenever a given AF dimension is not
relevant for the phone in question (e.g. lip
rounding for consonantal phones). The resulting
feature transcriptions and the parameterized
speech signals constitute the training material for
a set of five parallel MLPs, each of which estimates
probabilities for the classes in a given feature
group. Each network receives the same acoustic
input as the other networks but is trained using its
own specific set of labels. Thus, each MLP has the
possibility of focusing on those aspects of the
acoustic input space which provide the most rele-
vant information about its articulatory output
classes. The AF networks use temporal context
windows on the acoustic input which typically
range between five and nine frames.

In a second step, the AF probabilities are con-
catenated and used as input to a higher-level MLP
which maps them to phone probabilities. The
higher-level MLP also uses a context window
spanning several input frames, which enables the
MLP to learn, within certain limits, the temporal
patterns of co-occurrence of AF probabilities. This
may be regarded as a data-driven way of forming
abstract generalizations about the shapes and
overlaps of articulatory gesture trajectories. The
optimal context window size for the combining
MLP was experimentally determined to be 15
frames; however, in order to balance the trade-off
between the number of parameters and recogni-
tion accuracy, a window of nine frames was used
for the experiments reported below.

The heuristically selected AF set contained
28 features whereas the acoustic feature sets are
15-dimensional (MODSPEC) or 18-dimensional
(RASTA-PLP). In order to ensure that systems
were comparable with respect to the number of

Table 1

Characteristics of acoustic baseline systems

Clean Noisy/reverberant

Preprocessing Log-RASTA-PLP MODSPEC

Energy Yes No

Deltas Yes No

# Basic coeffs. 8 15

# Context

frames

9 9

# Hidden units 400 560

Table 2

Articulatory features for Numbers95

Feature group Feature values

Voicing +Voiced, )voice, silence
Manner Vowel, lateral, nasal, fricative,

approximant, silence

Place Dental, coronal, labial, retroflex,

velar, glottal, high, mid, low, silence

Front-back Front, back, nil, silence

Rounding +Round, )round, nil, silence
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parameters, the AF space was subjected to a
data-driven information-theoretic feature selection
algorithm (Koller and Sahami, 1996). This algo-
rithm selects features on the basis of their relations
to the class set X, i.e. the set of phone classes. The
overall goal is to successively eliminate features
from the basic feature set F, leading to a smaller
set G. The selection criterion is to minimize the
distance between the class distribution given the
original feature set, l ¼ PðX jF Þ, and the distri-
bution resulting from the reduced set, r ¼ P ðX jGÞ.
This distance is measured by relative entropy,
DðlkrÞ,

DðlkrÞ ¼
X
x

lðxÞ log lðxÞ
rðxÞ ; ð2Þ

where lðxÞ ¼ P ðX jF Þ and rðxÞ ¼ PðX jGÞ. The
feature selection algorithm iteratively removes a
feature from the set F such that, at each iteration,
DðlkrÞ increases as little as possible. It has the
effect of eliminating those features which are either
not relevant for the classification task or whose
information is already subsumed by other features
in the feature set. The application of this algorithm
with the goal of removing 10 AFs from the origi-
nal feature set eliminated all silence features, the
features approximant, dental, front-back-nil and all
voicing features. It was found that the reduced
feature set did not seriously compromise word
recognition: the absolute increase in word error
rate compared to the recognition result obtained
using the full feature set was 0.1%. The phone
classifier based on the reduced feature space had
approximately the same number of parameters as
the classifier in the corresponding acoustic baseline
system.

3.3. Recognition results and error analysis

Table 3 shows the word error rates obtained
under different acoustic test conditions. Statisti-
cally significant differences between the acoustic
and articulatory systems are shown in boldface. 1

As we can see, the performance of the acoustic and
articulatory systems is fairly similar under clean
and moderately noisy conditions (30 dB SNR).
The articulatory system shows a slightly superior
performance in reverberation and 20 dB noise and
achieves a significantly lower word error rate at
high noise levels (10 dB and 0 dB SNR).

Why does the articulatory system perform bet-
ter in noise? A possible answer to this question is
provided by the accuracy rates of the individual
feature classifiers compared to those of the phone
classifiers, shown in Table 4. As expected, the most
striking difference between the phone recognition
accuracy of the acoustic and articulatory systems
can be observed in the 10 dB and 0 dB SNR noise
conditions: the accuracy rate of the acoustic phone
classifier declines more strongly than that of the
articulatory classifier. Furthermore, the individ-
ual feature detectors deteriorate to varying de-
grees in noise: the accuracy rates for voicing,
rounding and front–back features do not drop as
sharply as those for manner and place features.
This fact may be related to the number of output
classes in each network versus the amount of
training material.

Our assumption that all individual feature net-
works should have a higher recognition accuracy
than the acoustic phone classifier turns out to be
correct for this particular classification task. The
combination of the feature networks’ decisions in
turn leads to a higher phone classification accuracy
in reverberant and noisy speech, but not in clean
speech. The reason may be that the errors of the
individual AF classifiers may be too correlated and
thus prevent the higher-level articulatory classifier
from making a more accurate decision than the
acoustic classifier. Additional factors which might

Table 3

Word error rates (%) obtained by the acoustic (AC) and ar-

ticulatory (AF) systems on clean, reverberant and noisy speech

Test set AC AF

Clean 8.4 8.9

Reverberant 24.7 23.7

Noise 30 dB 17.2 17.4

Noise 20 dB 22.8 21.7

Noise 10 dB 32.7 30.0

Noise 0 dB 50.2 43.6

1 Statistical significance was measured using a difference of

proportions significance test. A level 6 0.05 was considered

significant.
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contribute to the beneficial effects of the AF
acoustic modeling scheme in noise are:
• The use of context information at lower levels in

the decision process. In the AF system, not only
the higher-level merging classifier but also the
lower-level classifiers themselves make use of
context information, which enhances robust rec-
ognition in highly noisy conditions;

• Noise suppression. The acoustic-articulatory
transformation performed by the AF networks
can be interpreted as a filter which discards irrel-
evant properties of the signal introduced by
background noise;

• The additive effect of noise within the acoustic
phone classifier. Various disturbances of the
spectrum may have a cumulative effect on the
classification result of the acoustic phone classi-
fier, whereas they have more localized effects on
the articulatory classifiers, which can then be
weighted selectively by the higher-level classifier.
This effect would even be more pronounced if
the higher-level classifier was trained or adapted
on noisy/reverberant speech.

In order to quantify the differences between the
acoustic and articulatory systems, the correlation
of the frame-level phone classification decisions as
well as the percentage of different errors were
computed (Table 5).

As expected, in clean conditions systems are
strongly correlated and most of the errors are
identical, both at the frame level and at the word
level. However, as the acoustic environment dete-
riorates, the correlation decreases and the amount
of different errors increases.

It is not surprising that the classifiers increas-
ingly disagree in the presence of noise – the ques-
tion is whether this disagreement exhibits a distinct
qualitative pattern. It might be assumed, for in-
stance, that the articulatory systems produces
confusions which are more interpretable in pho-
netic or articulatory terms. In order to identify any
qualitative differences between the acoustic and
articulatory systems, the frame-level phone con-
fusion matrices of each system were analyzed. It
turned out that the different systems were good at
classifying different sounds; however, there was no
uniform pattern of errors revealing characteristic
strengths or weaknesses of the different systems
across all acoustic conditions.

3.4. Combining acoustic and articulatory informa-
tion

Given that the acoustic and articulatory rec-
ognition systems produce different errors, a

Table 5

Correlation coefficient (q) of frame-level outputs and percentages of different errors at frame and word level

Test set q Frame-level different errors Word-level different errors

Clean 0.77 38.1 29.9

Reverberant 0.62 47.3 42.1

Noise, 30 dB 0.63 42.1 32.6

Noise, 20 dB 0.56 48.3 35.1

Noise, 10 dB 0.47 57.6 43.7

Noise, 0 dB 0.36 63.3 48.3

Table 4

Frame-level accuracies (%) of feature and acoustic (AC) and articulatory (AF) phone classifiers

Network Clean Reverberant Noise 30 Noise 20 Noise 10 Noise 0

Voicing 89.1 79.8 81.6 78.4 73.5 68.7

Manner 82.0 67.1 71.6 67.3 61.0 54.0

Place 77.2 61.0 67.2 63.4 57.3 48.7

Front-back 83.0 71.0 75.6 72.6 67.8 61.1

Rounding 83.2 70.9 76.6 73.6 68.8 62.3

Phone AC 77.1 64.6 62.7 57.2 49.3 38.8

Phone AF 75.2 63.9 68.3 64.1 56.4 46.2
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combination of both systems might be beneficial
as one system might compensate for the errors
made by the other system and vice versa. Speech
recognizers may be combined at various levels in
the recognition process: at the feature level, the
frame level, the word level or the utterance level.
Here, we concentrate on frame-level combination,
which, in the current context of hybrid recognition
systems, involves combining the outputs of the
phone MLPs (i.e., the posterior phone probabili-
ties) of the different systems. Various combination
methods were investigated; the optimal combina-
tion schemes – in terms of the trade-off between
computational effort and recognition perfor-
mance – turned out to be simple linear probability
combination rules: assume that there are K output
classes, x1;x2; . . . ;xK , and N recognizers based on
N different feature representations – in this case, N
equals 2. The following equations specify how to
combine the individual posterior class probabili-
ties to an overall probability score:
• Product rule:

P ðxk jx1; . . . ; xN Þ ¼
QN

n¼1 P ðxk jxnÞPK
k¼1

QN
n¼1 P ðxk jxnÞ

; ð3Þ

• Sum rule:

P ðxk jx1; . . . ; xN Þ ¼
1

N

XN
n¼1

Pðxk jxnÞ; ð4Þ

• Max rule:

P ðxk jx1; . . . ; xN Þ ¼
maxn P ðxk jxnÞPK
k¼1 maxn Pðxk jxnÞ

; ð5Þ

• Min rule:

P ðxk jx1; . . . ; xN Þ ¼
minn Pðxk jxnÞPK
k¼1 minn P ðxk jxnÞ

: ð6Þ

The product rule multiplies the different recog-
nizers’ posterior probabilities for the same class
and normalizes by the sum over all classes whereas
the sum rule computes the average of the posterior
probabilities. The max and the min rule select the
maximum or the minimum output, respectively,
and normalize by the sum over all classes. Whereas
maximum and minimum combination have not
been extensively used in speech recognition, the
product and the sum rule have been employed
previously for the combination of phone proba-
bilities or likelihoods (Halberstadt and Glass,
1998; Wu et al., 1998; Kingsbury and Morgan,
1997; McMahon and Court, 1998). In all studies, a
product of linear likelihoods/probabilities or the
equivalent sum of log-likelihoods is reported as the
optimal combination scheme. This may appear
surprising because product combination schemes
involve the assumption of statistical independence
of the different representations x1; . . . ; xN given the
class k – an assumption which is in most cases not
true. Furthermore, it has recently been shown
(Kittler et al., 1998) that the sum combination
scheme can be expected to be more robust towards
estimation errors in the individual recognizers. The
combination results are shown in Table 6.

It is noticeable that the different combination
rules produce widely differing word error rates.
Moreover, we observe that the product rule con-
sistently produces the lowest word error rates,
followed by the min rule, the sum rule and the max
rule. What is the explanation for the large devia-
tions among the word error rates produced by the
different combination rules?

In order to analyze the results of the different
combination schemes, we computed the frame
error rates of the combined classifiers, as well as
the entropy ratios of the distributions generated by

Table 6

Word error rates (%) obtained by different linear combination rules

Test set Sum Product Max Min AC AF

Clean 7.8 7.3 7.9 7.8 8.4 8.9

Reverberant 24.5 21.1 25.7 21.7 24.7 23.7

Noise, 30 dB 17.4 15.1 18.2 16.0 17.2 17.4

Noise, 20 dB 21.8 18.8 22.7 19.7 22.8 21.7

Noise, 10 dB 31.0 28.3 32.7 29.0 32.7 30.0

Noise, 0 dB 48.3 41.6 49.6 45.1 50.2 43.6
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the different combination rules. The frame error
rate is the percentage of correctly classified frames
out of the total number of frames, where a frame is
counted as correct when the index of the output
unit with the maximum activation value in the
MLP corresponds to the class label for that frame.
The entropy ratio ER is defined as

ER ¼ Hc

Hi

; ð7Þ

where Hc and Hi are the average entropy values
for all correctly and incorrectly classified frames,
respectively. The average entropy value is

H ¼ 1

F

XF
f¼1

"
�
XK
k¼1

logðpkf Þpkf

#
; ð8Þ

where F is the number of frames in the set, K is the
number of phone classes and pkf is the probability
of the kth phone class at frame f.

The entropy of a distribution indicates the cer-
tainty of the classifier’s decision. A sharply peaked,
low-entropy distribution indicates a higher confi-
dence of the classification decision than a flatter,
high-entropy distribution. Ideally, the classifier
should produce a low-entropy distribution in the

case of a correct decision and a high-entropy dis-
tribution otherwise. The reason is that, with a view
to the higher-level decoding procedure, the possi-
bility of confusing the correct class with incorrect
classes should be minimized – in the case of a wrong
frame-level decision, however, the correct class
might still remain in the search beam if its score is
close enough to that of the best class. The entropy
ratio thus defines a suitable measure of the confi-
dence and quality of the frame-level decisions –
better systems should have lower entropy ratios.

Word error rates, frame error rates and entropy
ratios are plotted in Fig. 3 for all combination
rules and acoustic conditions. We can see that
the differences between the various combination
rules with respect to frame error rate are very
slight (1–2% absolute). A better indication of why
the different rules have a highly variable impact on
word error rate is provided by the entropy ratios:
the product rule and the min rule, which achieve
the best results at the word level, also consistently
exhibit the lowest entropy ratios, whereas the en-
tropy ratios of the sum rule and the max rule are
markedly higher.

Further improvements of the combined systems
might be achieved by weighting the individual

Fig. 3. Word error rates (WER), frame error rates (FER) and entropy ratios (ER, scaled by a factor of 100.0) for different combination

rules and recognition conditions.
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contributions of the acoustic and articulatory
classifiers. In preliminary experiments, we weigh-
ted each system based on the confidence of its
classification decision, measured in terms of the
entropy of the output probability distribution.
However, performance did not improve signifi-
cantly. Other weighting schemes, e.g. weights
trained according to a minimum classification
error criterion, might be more successful.

4. Conversational speech recognition

In this section, we describe the extension of the
AF approach to a medium-sized conversational
speech recognition task, viz. the German Verb-
mobil corpus. We give an overview of the acoustic
and articulatory baseline systems and present
word recognition results as well as an error anal-
ysis. In addition to investigating the combination
of the two systems at the frame level, we analyze
word-level and feature-level combination schemes.

4.1. Corpus and baseline recognition systems

The German Verbmobil corpus (Kohler et al.,
1994) is a collection of spontaneous dialogues
within the domain of appointment scheduling. The
data consists of full-bandwidth studio-quality
speech. The training set used for the present study
comprises approximately 31 h of speech (13567
utterances); the test set (the official 1996 Verb-
mobil evaluation task) consists of 41 min (343
utterances). The recognition lexicon contains 5333
entries; the bigram perplexity is 64.2. The total
number of speakers in the combined training and
test set is 749.

The Verbmobil experiments were carried out
using a tied-mixture HMM-based recognition
system (Fink, 1999). The core of the acoustic
modeling component in this system is a vector-
quantization codebook with a pre-specified num-
ber of classes, each of which is modeled by a
Gaussian probability density function (pdf). The
emission probability of an observation vector x
given HMM state qi, pðx jqiÞ, is computed by
evaluating the mixture of the codebook pdfs,

pðxt jqiÞ ¼
XM
m¼1

cmiNðxt; lm;RmÞ; ð9Þ

where lm and Rm are the mean vector and co-
variance matrix, respectively, of the mth Gaussian
mixture component of the codebook and cmi is the
mixture weight of state qi for that component. The
codebook is globally shared by all HMM
states; different states are distinguished by differ-
ent mixture weights. The LBG algorithm (Linde
et al., 1980) is used to compute an initial code-
book. Subsequently, the state-dependent mixture
weights, the transition probabilities and the prob-
ability densities are jointly reestimated in several
iterations of Baum–Welch training. After the ini-
tial training iteration, the set of context-dependent
phones are clustered using an entropy-based bot-
tom-up agglomerative state clustering procedure
(Lee, 1989). Word recognition is carried out using
an incremental one-best stack decoder using a tree-
structured recognition lexicon. The language
model is a back-off bigram model. It should be
noted that the incremental decoding strategy pre-
vents the use of N-best word lattices or word
graphs – this leads to faster recognition but typi-
cally reduces word accuracy by a small amount.

The acoustic baseline system uses 12 MFCC
coefficients, energy and the first and second de-
rivatives of these, resulting in a 39-dimensional
feature space. Simple channel adaptation is per-
formed by Cepstral mean subtraction. The acous-
tic codebook contains 256 classes, each of which is
modeled by a mean vector and a full covariance
matrix.

The articulatory baseline system uses a set of
AFs similar to those used for the American En-
glish task described in the previous chapter (c.f.
Table 2). Certain features, such as dental are
missing from the feature set since they are not
relevant for describing German sounds; others,
such as palatal, have been added. The total num-
ber of features is 26.

The feature training labels were generated based
on an automatic phone labeling produced at the
Institute of Phonetics and Speech Communication
at the University of Munich. This system incor-
porates phonetic pronunciation rules and has been
reported to achieve an agreement with human la-
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belers of approximately 90% (Wesenick and Kipp,
1996). Based on the Numbers95 experiments and
some preliminary feature recognition experiments
on the present corpus, the number of hidden units
was set to 100 and the number of context frames
was fixed at nine frames. A set of 10,000 utterances
was used for feature training and 1000 utterances
were used for cross-validation. The feature prob-
abilities were subsequently concatenated and used
as data for codebook training as described above.
It was found that some difficulties were created by
the form of the distribution of the AF networks’
outputs: the final output function in the MLPs is
the softmax function (see Eq. (1) above), which
constrains the range of the output values to the
interval [0; . . . ; 1] and enforces all values to sum to
1. It thus is frequently the case that one output
value is close to 1 whereas all others are close to 0.
For this reason, the resulting output distribution
has a strongly bimodal character, resembling that
of a binary variable. This distribution is not well
matched by the Gaussian modeling assumption
underlying the design of the codebook. Therefore,
the final non-linear activation function of the
MLPs was omitted when generating the input data
for the second-level classifier and the pre-softmax
values were used instead. This does not have an
effect on the classification decisions of the feature
networks – the softmax output function is a
monotonic function affecting all feature dimen-
sions. Its removal does not change the ranking of
the output classes. The distribution of the pre-
softmax output values, though not being strictly
Gaussian, is bell-shaped and therefore matches the
modeling assumption better than the bimodal
distribution of the probabilities used previously.

The class labels used for training the codebook
were identical to those which were used for train-

ing the acoustic baseline system. After testing
various codebook design choices, the number of
classes was fixed at 384. Full covariance matrices
were used (see Table 7).

4.2. Recognition results and error analysis

Table 8 shows the word error rates on the
Verbmobil test set obtained by the MFCC and the
AF systems. 2

The word error rate of the MFCC system ex-
ceeds that of the AF system by a total of 1.5%.
This difference is statistically significant.

In order to ascertain the cause of the inferior
performance of the articulatory system, an error
analysis was carried out according to the proce-
dure suggested by Chase (1997), which is based on
identifying and classifying error regions in the
output of the recognition system. This method
allows errors to be classified as either search errors
or modeling errors and, in the latter case, as errors
caused by the language model, the acoustic models
or both. This analysis revealed that the poorer
performance of the articulatory system was mainly
due to a larger percentage of confusions between
different acoustic models. The fact that the artic-
ulatory-feature acoustic models tend to be less
discriminative on this task was also evidenced by
the higher average entropy of the state mixture
weights, HðQÞ, computed as

HðQÞ ¼ 1

K

XK
k¼1

"
�
XN
1¼n

ckn logðcknÞ
#
; ð10Þ

Table 7

Articulatory features for German

Feature group Feature values

Voicing +Voiced, )voice, silence
Manner Stop, vowel, lateral, nasal, fricative, silence

Place Labial, coronal, palatal, velar, glottal,

high, mid, low, silence

Front-back Front, back, nil, silence

Rounding +Round, )round, nil, silence

Table 8

Word error rates (%) on the Verbmobil test set obtained by the

baseline MFCC and AF systems

MFCC AF

29.0 30.5

2 It should be pointed out that, in order to speed up the

development of the AF and combined systems, a deliberately

simple acoustic baseline system was chosen. This system uses a

comparatively small acoustic codebook, a baseform lexicon

without pronunciation variants and a first-best decoder instead

of a lattice decoder. Furthermore, no additional adaptation

such as vocal tract length normalization was used.
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where K is the number of HMM states, N is the
number of mixture components in the codebook
and ckn is the weight of state qk for mixture com-
ponent n. The average state entropy values are
listed in Table 9 for both the AF and the MFCC
system; as expected, the MFCC system shows a
lower average state entropy. The lack of discrimi-
nability in the acoustic system can be traced back
further to the properties of the feature space itself.
A discriminant ratio was computed for the AFs
and the MFCC coefficients. This measure, defined
as

Q ¼ V 2

V 2 þ D2
; ð11Þ

where

V 2 ¼
XK
k¼1

Pktrace½Rk� ð12Þ

and

D2 ¼ 1

1�
PK

k¼1 P
2
k

XK
k¼1

XK
j¼1

PkPjðlk � ljÞ
Tðlk � ljÞ;

ð13Þ

computes the ratio of the within-class scatter (V 2)
to the sum of the between-class scatter and the
within-class scatter ðV 2 þ D2Þ. In this context, lk,
Rk and Pk are the mean vector, covariance matrix
and prior probability, respectively, of phone class
k. Q ranges from 0 to 1; better separability is in-
dicated by a value closer to 0. We can see from
Table 9 that the acoustic features provide better
class separability than the AFs.

4.3. Combination experiments

Although the articulatory representation led to
a worse performance in the baseline recognition
experiments it nevertheless provides information
not contained in the MFCC features – we observed

that the percentage of different errors at the word
level was close to 60%. It thus again seemed
promising to combine both representations. Here,
we investigated word-level and feature-level com-
bination in addition to state-level combination.

4.3.1. State-level combination
In our first combination experiment, the state-

level emission probabilities from the two different
recognition systems were combined by means of
the linear combination rules described in the pre-
vious chapter. In the case of hybrid recognizers,
these rules were applied to the posterior phone
probabilities output by the different phone MLPs.
In this case they were applied to state likelihoods
computed by the Gaussian mixture classifier,
pðx jqÞ. These likelihoods cannot be combined di-
rectly because they have differing ranges due to the
different dimensionalities of the feature spaces.
They therefore need to be normalized by dividing
them by the likelihood of the acoustic observa-
tions, pðxÞ, which can be expressed as the sum
of the acoustic likelihoods over all (active) states
q1; . . . ; qN , assuming uniform priors,

pðxÞ ¼
XN
i¼1

pðx jqiÞ: ð14Þ

Table 10 shows the results obtained by the differ-
ent combination rules. Again, we observe that
the product rule produces the best results, which
is consistent with our previous observations. In
all experiments both recognizers were weighted
equally. However, a weighted combination rule
may be applied, where the individual contributions
are weighted by exponents c1; . . . ; cN .

P ðxk jx1; . . . ; xN Þ ¼
QN

n¼1 P ðxk jxnÞcnPK
k¼1

QN
n¼1 Pðxk jxnÞcn

: ð15Þ

Experimentally determined weights of 0.8 for the
acoustic system and 0.2 for the articulatory system
further reduced the word error rate to 27.4%.

4.3.2. Word-level combination
Typically, word recognition hypotheses can be

assigned greater confidence than frame-level hy-
potheses because a wider temporal context has

Table 9

Measures of discriminability for MFCC and AF systems

System Discriminant ratio Average state entropy

MFCC 0.525 3.23

AF 0.675 3.54
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been taken into account. In a second experiment,
we therefore focused on combining the best word
sequences output by the two different systems. To
this end, we used a modified version of the RO-
VER algorithm (Fiscus, 1997), which combines the
best word sequences from different recognition
systems into a word transition network which is
then rescored by a voting module. The construc-
tion of the word transition network is done by
arbitrarily selecting one word sequence as the
reference string and then aligning it with all
other word sequences by dynamic programming.
The rescoring module then chooses the best path
through the word transition network based on
simple voting or by taking into account the con-
fidence values associated with the word hypothe-
ses. Our modified algorithm constructs the word
transition network by aligning word hypotheses
based on their actual time stamps – this was nec-
essary because the original algorithm was found to
produce incorrect alignments in cases where a
compound word in one system’s recognition out-
put corresponded to a sequence of component
words in the other system’s recognition output.
For rescoring the resulting word graph, we use the
normalized acoustic scores of the word hypotheses
in combination with the bigram scores associated
with word pairs in the word transition network.
Again, scaling values of 0.8 for the acoustic and
0.2 for the articulatory system were applied. The
best result obtained by the modified ROVER
combination method was 27.9%, which was mar-
ginally worse than the best result obtained by
state-level combination.

4.3.3. Feature-level combination
Both state-level and word-level combination are

computationally expensive because they require
training two complete recognition systems plus,
possibly, two recognition passes. It would there-
fore be more desirable to combine the acoustic and
articulatory representations at the feature level

and to build a single recognition system based on
the combined feature space. In order to obtain the
best combination of features from both the
acoustic and the AF sets, we applied a feature
selection algorithm in order to identify the most
discriminative subset of the combined set. To this
end, we first trained a bootstrap system based on
the 65-dimensional feature space obtained by
concatenating the acoustic and AF vectors. In
order to limit the developmental effort, we used a
simple system based on a 256-class diagonal-co-
variance codebook. The acoustic models of this
system were then used for aligning a representative
subset of the training data (about 30%) at the
HMM state level. The feature selection program
which was then applied is a ‘‘wrapper’’ algorithm
which uses a backward elimination procedure:
First, the algorithm is initialized with the entire
combined feature set. While the dimension d of the
current feature set is larger than the desired di-
mension, the algorithm constructs new feature
vectors and acoustic models for all possible subsets
of size d � 1 by deleting a feature dimension from
the input vectors and the models’ mean vectors
and covariance matrices. Each subset Si, i ¼
1; . . . ; d � 1, is then evaluated by computing the
discriminative criterion DðX ;KiÞ, in Eq. (16),
where X is the sequence of observations in the
training set and Ki is the set of acoustic models
corresponding to subset i. That subset which
produces the highest DðX ;KÞ is selected as the new
current feature set. The evaluation criterion is de-
fined as

DðX ;KÞ ¼ 1

N

XN
n¼1

� logðpðxn jkjÞÞ

þ 1

K � 1

XK
k¼1;
k 6¼j

logðpðxn jkkÞÞ

2
64

3
75; ð16Þ

where K is the number of classes (states), N is the
number of frames in the training set, j is the index

Table 10

Word error rates (%) on Verbmobil test set obtained by different linear probability combination rules

AF MFCC Product Max Min Sum

30.47 29.03 27.65 30.63 28.73 31.98
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of the correct class for the observation in question
(the state label assigned by the forced alignment
procedure), and xn is the nth observation vector.
This criterion describes the average distance of the
correct class to all incorrect classes and is similar
to the misclassification measure usually employed
in the context of minimum classification error
discriminative training (Juang and Katagiri, 1992).

Feature selection was applied with the goal of
reducing the combined feature set to 39 dimen-
sions. It turned out that, out of the AF set, only
seven features were retained, viz. labial, coronal,
palatal, velar, fricative, )round, back and )voice.
The MFCCs which were eliminated in favor of
these AFs are the first derivative of the 12th
cepstral coefficient and the second derivatives of
the 4th, 6th, 7th, 9th, 11th and 12th cepstral co-
efficients. This result confirms the low relevance
of delta–delta coefficients observed previously
(Bocchieri and Wilpon, 1993) and the importance
of the place of articulation dimension gener-
ally acknowledged in phonetics. The resulting 39-
dimensional feature set was used to train another
recognition system with a 256-class full-covariance
codebook. The best word error rate obtained by
this system was 28.9%. Table 11 summarizes all
combination results for the Verbmobil task.

The best combination method turns out to be
the state-level merging of acoustic scores, which is
consistent with results obtained independently on
a different task (Jiang and Huang, 1999).

Feature-level combination might produce better
results if different feature selection techniques were
employed. Linear discriminant analysis, for in-
stance, offers the additional advantages of decor-
relating and weighting the input features. It should
be emphasized that the current selection algorithm
was preferred because it preserves the interpreta-
tion of the individual feature vector components,

whereas the features obtained by a linear trans-
formation of the input vectors are not interpret-
able in a straightforward manner. It is, however,
clear that our technique can lead to suboptimal
results due to the heuristic search strategy: it is
possible that the best feature subsets may never be
tested if one or several of the component features
are pruned too early in the search. This may be the
reason for the poorer performance of the feature-
level combination scheme as opposed to state-level
and word-level combination.

5. Summary and conclusion

We have revisited the use of pseudo-articulatory
features derived from acoustic features as a speech
signal representation, both in isolation and in
combination with standard acoustic features. In
contrast to previous approaches we have concen-
trated on analyzing the performance of AFs in
adverse acoustic environments and on identifying
feasible techniques of combining both types of
features.

It was shown that the performance of an ar-
ticulatory-feature based systems on a small con-
tinuous numbers recognition task was comparable
though not superior to that of an acoustics-only
system in clean conditions. In highly noisy condi-
tions, however, the articulatory system showed a
distinct advantage over an acoustic feature repre-
sentation which had specifically been designed to
handle noisy and reverberant speech. This may be
a consequence of the variable noise sensitivity of
the different AFs, which can be accommodated
more effectively by the decompositional classifica-
tion approach described in Section 1. When both
systems were combined by linearly merging the
outputs of the neural network phone classifiers,
word error rates were significantly reduced in all
test cases. An analysis of various combination
rules indicated that the most successful combina-
tion scheme was that which decreased the entropy
of the phone probability distribution for correct
decisions while enhancing it in the case of incorrect
decisions.

On a medium-sized clean conversational speech
recognition task the articulatory system performed

Table 11

Summary of combination results

System WER

Acoustic baseline 29.0

Articulatory baseline 30.5

Word-level combination 28.0

State-level combination 27.4

Feature-level combination 28.9
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slightly but significantly worse than the MFCC
baseline system. The error analysis showed that the
class discriminability was poorer in the AF space
than in the MFCC feature space, which adversely
affected the discriminative potential of acoustic
models at higher levels in the system. In addition
to state-level combination techniques, feature-
level and word-level combination were applied.
Although all methods achieved an improvement
over the MFCC baseline system, the best combi-
nation method turned out to be state-level combi-
nation by means of a weighted product rule.

There are two main conclusions to be drawn
from these experiments. First, using pseudo-artic-
ulatory representations for speech recognition in
noisy environments clearly warrants further in-
vestigation. Second, AF representations contain
information which is partially complementary to
the information provided by standard acoustic
speech features and which can successfully be in-
tegrated into the recognition process. Some insight
into the nature of this information is provided by
the outcome of the feature selection procedure in
Section 4.3.3: most of the relevant AFs refer to the
place of articulation of consonants. It seems that
the information needed to identify consonantal
places of articulation is best represented not by
MFCCs and their derivatives directly but by a
more complex function of sequences of MFCC
vectors. This function can be learned by general
function approximators such as MLPs.

Naturally, the articulatory representations used
in this study have some limitations. When articu-
latory features are derived by means of neural
network classifiers, all networks operate on the
same input. They thus do not introduce new in-
formation but merely apply additional transfor-
mations to the acoustic input features, which may
even lead to a loss of information. Under noisy
conditions it seems to be the case that the acoustic-
articulatory transformation filters out unwanted,
non-discriminative information; in clean condi-
tions, however, it obviously suppresses relevant
information, which may be responsible for the
poorer class discriminability observed on clean
speech.

This limitation could be overcome if the in-
dividual feature networks were enriched with spe-

cialized input representations, i.e., acoustic features
specifically designed to enhance the discrimina-
tion of certain articulatory classes. Such special-
ized preprocessing techniques can be developed
based on explicit phonetic knowledge about
acoustic-articulatory relations (Bitar and Espy-
Wilson, 1996, 1997); on the other hand, the artic-
ulatory feature networks themselves can be used as
information detectors. The acoustic-articulatory
mapping functions encoded by the trained feature
networks are important for our understanding of
speech; however, they are obscure and inaccessible
to human inspection. Rule extraction techniques
(e.g. Craven, 1996) can be used to convert trained
neural networks into more explicit representations
like if–then rules or decision trees. The knowledge
thus extracted might then be used to modify the
basic acoustic preprocessing module to include
articulatory information.

Finally, this study has laid out a framework for
the principled combination of articulatory repre-
sentations with standard acoustic feature repre-
sentations. Naturally, the combination techniques
presented here are not restricted to articulatory
features but generalize to other novel types of
features as well.
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