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ABSTRACT 
Hidden Markov model speech recognition systems typically use 
Gaussian mixture models to estimate the distributions of decor- 
related acoustic feature vectors that correspond to individual sub- 
word units. By contrast, hybrid connectionist-HMM systems use 
discriminatively-trained neural networks to estimate the probabil- 
ity distribution among subword units given the acoustic observa- 
tions. In this work we show a large improvement in word recog- 
nition performance by combining neural-net discriminative feature 
processing with Gaussian-mixture distribution modeling. By train- 
ing the network to generate the subword probability posteriors, 
then using transformations of these estimates as the base features 
for a conventionally-trained Gaussian-mixture based system, we 
achieve relative error rate reductions of 35% or more on the multi- 
condition Aurora noisy continuous digits task. 

1. INTRODUCTION 

The standard structure of current speech recognition systems con- 
sists of three main stages. First, the sound waveform is passed 
through feature extraction to generate relatively compact feature 
vectors at a frame rate of around 100 Hz. Secondly, these feature 
vectors are fed to an acoustic model which has been trained to as- 
sociate particular vectors with particular speech units; commonly, 
this is realized as a set of Gaussian mixtures models (GMMs) 
of the distributions of feature vectors corresponding to context- 
dependent phones. Finally, the output of these models provides 
the relative likelihoods for the different speech sounds needed for 
a hidden Markov model (HMM) decoder, which searches for the 
most likely allowable word sequence. 

The acoustic model is trained using a corpus of examples 
that have been manually or automatically labeled. For distribu- 
tion Gaussian-mixture models, this can be done according to a 
maximum-likelihood criteria via the EM algorithm. However, 
this is not optimal: typically, we would rather have a discrim- 
inative criteria that optimized the ability to distinguish different 
classes, rather than just the match within each class. The hybrid 
connectionist-HMM framework [ 13 replaces the GMM acoustic 
model with a neural network (NN), discriminatively trained to es- 
timate the posterior probabilities of each subword class given the 
data. Hybrid systems have been shown to have comparable perfor- 
mance to GMM-based systems for many corpora, and are argued 
to give simpler systems and training procedures. 

Because of the different probabilistic basis (likelihoods ver- 
sus posteriors) and different representations for the acoustic mod- 
els (means and variances of mixture components versus network 
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weights), techniques developed for one domain are often difficult 
to transfer to the other. The relative dominance of likelihood-based 
systems has resulted in the availability of very sophisticated tools 
such as HTK [2] offering advanced, mature, and integrated sys- 
tem parameter estimation procedures. On the other hand, discrim- 
inative acoustic model training and certain combination strategies 
facilitated by the posterior representation are much more easily 
implemented within the connectionist framework. 

In this paper we successfully combine these two approaches 
by using the output of a neural network classifier as the input fea- 
tures for the Gaussian mixture models of a conventional speech 
recognizer. The resulting system, which effectively has two acous- 
tic models in tandem - first a neural-net then a GMM - performs 
significantly better than either the hybrid or conventional baselines 
on the Aurora noisy digits task [3], achieving an average 35% rel- 
ative error rate reduction over the multiple test conditions when 
based on the same mel-cepstral features. By exploiting the combi- 
nation schemes available for connectionist models, systems based 
on multiple features streams can also be constructed, with even 
more dramatic reductions in error rate. 

The next section describes this tandem structure in more de- 
tail. Section 3 describes our results on the Aurora task, and sec- 
tion 4 discusses the implications and interpretation of these results, 
which we summarize in the final section. 

2. APPROACH 

The overall system is illustrated in figure I .  The training prbce- 
dure is rather simple. First, a hybrid connectionist-HMM sys- 
tem is trained, which amounts to training the neural network 
acoustic model (a conventional multi-layer perceptron (MLP) 
structure with one hidden layer) to estimate the posterior prob- 
abilities of each possible subword unit (in our case, context- 
independent phones). The network is trained by backpropagation 
with a minimum-cross-entropy criterion to 'one-hot' targets ob- 
tained from either hand labeling or a forced alignment of the train- 
ing data generated using an earlier acoustic model. (For the results 
below, the entire training and realignment process was repeated 
several times to stabilize the labels). The input to the network is a 
context window of several successive frames of the feature vector; 
we typically use a context window of 9 frames, corresponding to 
90 ms of audio at a 10 ms frame rate. 

The output of the neural network is a vector of posterior prob- 
abilities, with one element for each phone; one such vector is gen- 
erated for context windows centered on each input feature vector. 
Conventionally, these would go directly to an HMM decoder to 
find the word sequence, but instead we use them as the 'feature' 
inputs for a Gaussian-mixture-based HTK system. Typically, the 
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Figure 1: Block diagram of the tandem speech recognition system, in which a neural network, trained to phone targets, is used to generate 
input features fed to a conventional GMM HTK recognizer. Items in parentheses correspond to the conventional hybrid recognition system. 
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netmodel decoder) - 

number of phones is between 30 and 50, so the total dimensional- 
ity of the feature space is much the same as with normal features 
augmented by deltas and double-deltas. 

Because the posterior probabilities have a very skewed dis- 
tribution, we find it advantageous to warp them into a different 
domain, for instance by taking their logs. An alternative to this 
is to omit the final nonlinearity in the output layer of the neural 
network. We use the “softmax” nonlinearity in this position (ex- 
ponentials normalized to sum to I) ,  so simply skipping it  is very 
close to taking the log of the subsequent probabilities. 

The ‘features’ constituted by the log-posteriors have the rather 
unusual property of tending to contain one large value (corre- 
sponding to the current phone) with all other values much smaller. 
We find that applying a global decorrelation via the Karhunen- 
Loeve (KL) transform improves system performance, presumably 
by improving the match of these features to the Gaussian mixture 
models. 

For our experiments below with the Aurora task, our GMM- 
based HTK system was the baseline defined for that task: 1 1  
whole-word models of 18 states each, and 3 mixture components 
per state, plus a 5 state, 6 mixture silence model. 

The Gaussian mixture system must of course be retrained with 
the new features. This can be done on the same training set as 
was used to train the neural network, although better results should 
be possible by using a second set of utterances held out from the 
original training, to make the features truly representative of the 
behavior of the net on unseen data. This has to be balanced against 
the impact of reducing the training data available to each stage, 
which we did not investigate. 

A more radical approach is to use a completely separate task 
to train the neural network; some results and discussion relating to 
this option are presented below. 

features sound 

3. RESULTS 

Othogonal Subword Tandem system 
probabilities) 

features likelihoods output 
HTK 

Our results are summarized in table 1. The Aurora task consists 
of connected digit strings (from Tldigits) mixed with four differ- 
ent kinds of background noise at 7 different signal-to-noise ratios 
(SNRs) from clean to -5 dB, for a total of 28 test conditions. For 
clarity, we report just three word-error-rate (WER) figures for each 
system, averaged across the four noise conditions and spanning 
several SNR levels. For a single figure-of-merit, we report the av- 
erage per-condition ratio of word-error rate to the baseline HTK 
system using the plain mel-frequency cepstral coefficient (MFCC) 
features plus deltas and double-deltas. All the other systems in 
table 1 are also based on the 14 MFCC features plus deltas and 
double-deltas, and use the same neural network model which took 
a context window of 9 frames for a total of 378 input units feeding 

orthogn’n G l L t d e l  -L 

Pre-nonlinearity + 
outputs decoder 

L -  I 

HTK baseline I 1.4 3.7 15.9 I 100.0 
Hvbrid baseline I 1.6 2.6 8.7 I 84.6 

Svstem 

I I I Tandem 10m I 0.9 2.2 9.0 I 69.1 I 

WER% / SNR Baseline 
Clean 15dB 5dB ratio% 

-. 
Tandem lino 
Tandem logp+KL 
Tandem lino+KL 

Table 1: Word error rates and average WER-to-baseline ratios for 
different systems, all based on MFCC features. The first line is 
the standard HTK GMM baseline defined for the Aurora task. The 
second line is a conventional hybrid system, based on the posterior 
estimates generated by the neural-net acoustic model. The remain- 
ing four lines are the results of tandem systems, feeding versions of 
the posteriors into the HTK system; “logp” indicates that the log of 
the posteriors are taken, whereas “lino” systems use the neural-net 
outputs directly, before the final nonlinearity is applied. “+KL” 
indicates that a full-rank Karhunen-Loeve orthogonalization was 
applied before passing the values to the HTK system. 

1.2 2.5 9.3 81.4 
1.1 2.1 9.3 71.0 
0.9 2.1 8.0 64.5 

a hidden layer of 480 units then an output layer of 24 units, one for 
each of the phones used in our pronunciation models for this task. 

From the table, we see that the baseline hybrid system has, 
on average, only about 85% of the word errors of the HTK base- 
line, although it performs insignificantly worse in the clean con- 
dition. (Since there are 13,159 words in each per-SNR test, 5% 
significance requires a difference of about 0.25% in WER). The 
best tandem system, using the pre-nonlinearity outputs of the net- 
work plus Karhunen-Loeve orthogonalization, manages to reduce 
the baseline word error rate by more than a third overall, for a very 
significantly improved performance. 

3.1. Feature stream combination 

One approach that has shown itself to be beneficial time and again 
in hybrid systems is feature stream combination via simple aver- 
aging of the log posterior probabilities from several independent 
acoustic model networks [4, 51. Since this generates a posterior 
probability stream comparable to the output of a single network, 
we can similarly use it as input to an HTK system, either by taking 
log probabilities followed by orthogonalization, or by simply sum- 
ming the pre-nonlinearity network outputs, which is mathemati- 
cally very similar as discussed above. To illustrate, table 2 gives 
some example results of comparing two different feature streams, 
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r I WER% 1 SNR I Baseline 1 
System 
HTK MFCC baseline 
Tandem Aurora-PLP 

I System I Clean 15dB 5dB I ratio % 
r Hybrid PLP 1 2.6 2.8 10.6 I 89.6 I 

Clean 20dB 15dB ratio % 
1.0 5.3 11.0 100.0 
1.0 2.1 4.4 72.1 Hibrid MSG 

Tandem PLP+MSG 
Hybrid PLP+MSG 

Table 2: Word error rates and,average WER-to-baseline ratios for 
different Aurora systems based on PLP and MSG features. “Hy- 
brid”, and “Tandem” have the same meanings as the previous ta- 
ble. Feature combination for the hybrid system was by averaging 
log posteriors; for the tandem system, it was by summing pre- 
nonlinearity outputs. The tandem system also uses KL orthogo- 
nalization. 

2.1 2.9 11.6 87.1 

0:7 1.5 7.2 47.2 
123 1.9 8.5 60.6 

PLP [6] and modulation-filtered spectrogram (MSG, [7]). These 
are two components of our full Aurora system, which is described 
in more detail in [8]. (Note that the quoted results are for an ear- 
lier system that used per-utterance normalization of all features; 
this tends to hurt the clean case, but help the high-noise cases. 
More important, however, are the comparative results between the 
systems in the table). 

These results show again the great benefits obtained in com- 
bining features as distinct as PLP and MSG. These gains not only 
carry over into the tandem system, but we again see a relative im- 
provement of approximately 20% in the overall ratio-to-baseline 
figure by adding the GMM stage onto the base neural network. 

3.2. Cross-corpus results:, 

All tandem systems presented so far have used the same Aurora 
multi-condition training set for both the neural network and the 
GMM training. For a number of reasons, including the effort re- 
quired to build a system for a new task, i t  would be desirable to 
have “task-independent” version of the neural-net stage, consti- 
tuting a single “black-box” ’feature extractor, similar to MFCCs, 
which could be applied in a wide range of circumstances. To in- 
vestigate this possibility, wettrained a network of the same size as 
our previous examples on thedarge-vocabulary OGI Stories corpus 
(which we have used previously as a source of general-purpose 
acoustic models [9]). Since the Stories corpus contains only clean 
speech, we tested on a modified Aurora task using only the clean 
utterances for training the HTK system, and testing only on clean 
and SNRs of 20 and 15 dB. These results are shown in table 3. 

Note that although all thC HTK trainings and the Stories net- 
work were based on clean data only, the comparison Aurora-based 
network was trained over th&full range of noise conditions, and 
hence permits much better performance for the non-clean condi- 
tions. Unfortunately, we seetthat the Stories-based network per- 
forms much worse, and significantly worse than the MFCC-based 
HTK baseline. This result is discussed in the next section. 

4. DISCUSSION 

This is far from being the first time that neural networks have 
been proposed as feature preprocessors for speech recognition. 
Bengio [lo] suggested using them to increase state likelihoods in 
HMM systems, and Rigoll and Willet [ 1 I ]  showed significant im- 

I I Baseline I WER% I SNR 

Tandem Stories-PLP I 1.3 10.3 16.3 I 144.6 

Table 3: Word error rates and average WER-to-baseline ratios 
comparing tandem systems based on neural networks based on 
PLP features and trained over the full multi-noise Aurora set 
(Aurora-PLP) or the separate, clean OGI Stories corpus (Stories- 
PLP). All GM models were trained on clean data only, although 
the Aurora-PLP net was trained on the full range of conditions. 

provements from an MLP inserted as a feature preprocessor into 
a previously-trained Gaussian-model HMM system, again train- 
ing the net based on the HMM state. Fontaine et al. [ 121 use the 
first 3 layers of a four-layer net as a form of “non-linear discrimi- 
nant analysis” (NLDA), to emphasize the relationship to the better- 
known linear discriminant analysis (LDA). They achieved a 20- 
25% relative error reduction for the Phonebook large-vocabulary 
isolated-word corpus. However, training of four layer networks is 
typically rather demanding, and the unknown structure of the rep- 
resentation employed in the hidden layer precludes the kinds of 
combinations described above. 

Given the quite dramatic gains shown by the tandem architec- 
ture, i t  is worth spending a little time discussing what is actually 
going on. Our view of these neural network classifiers is that they 
focus their modeling power on the small patches of feature space 
that lie on the boundaries between phones, since these represent 
the most difficult cases in the training set [ 131. Thus, we can imag- 
ine the neural network performing some kind of global remapping 
of feature space in which these boundaries are vastly magnified 
and sensitively mapped, whereas all the mid-class regions are dis- 
counted and only coarsely reflected in the output. This is exactly 
what you want from a feature space: that it emphasizes significant 
variation and minimizes or removes irrelevant detail. However, 
this usually comes at the price of task specificity, as discussed be- 
low. 

Although i t  is easy to accept that this discriminative transfor- 
mation confers performance advantages, this doesn’t explain why 
the tandem arrangement of GMM after neural-net should perform 
better than the the conventional hybrid system using the neural net- 
work outputs directly. We can only speculate about the cause of 
this additional gain, but we note (a) the Gaussian models do intro- 
duce a large number of additional parameters, evidently in a useful 
way; (b) in these experiments, the HTK system used whole-word 
models rather than phone models, which may have provided an 
alternative, advantageous perspective on the training data; and (c) 
the HTK system does a full re-estimation of all HMM parameters, 
whereas the simpler hybrid system used fixed transition penalties, 
state durations etc. In the past we have seen little or no cost to this 
simpler structure, but it may have been poorly matched to this task. 

As an alternative to conventional feature calculation, the 
features-plus-neural-net has several distinctive characteristics: 

Since the net is trained to discriminate specific phone tar- 
gets, it is intrinsically language dependent; indeed, in the small- 
vocabulary Aurora task, the net will not really be learning ‘context- 
independent’ phones at all, but rather the phones in the few specific 
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contexts in which they are observed. We attempted to evaluate to 
what extent we were taking advantage if ihis property in the cur- 
rent work by training the feature network on the larger variety of 
speech material in the OGI Stories corpus, and, as shown in the 
table 3, observed a large increase in the error rate for the noisy 
conditions. 

It may be of an interest that in our earlier work [9] we also 
compared corpus-dependent and corpus-independent nets and ob- 
served only about 25-30% increase in the error rate from the use 
of the corpus-independent feature net. Both corpora contained rel- 
atively clean telephone speech and differed only in the vocabulary 
(i.e. the development and test sets were collected under identical 
conditions). Such an increase is consistent with the current re- 
sult for the clean condition (the first column in the table 3). Thus, 
we still believe that a corpus-independent version of this approach 
should be feasible but would require better understanding of issues 
involved in training of the feature mapping net. 

The amount of additional calculation involved is also rather 
large compared to ‘conventional’ feature extraction. Our neural 
networks have in the region of 200,000 parameters, which cor- 
responds the number of multiply/adds required to generate each 
feature vector. This is probably an order of magnitude larger than 
the FIT and summations involved in calculating MFCCs. I t  is, 
however, comparable to the calculations performed in the acoustic 
classifier (since i t  is in fact an acoustic classifier), so the overall 
impact on the entire recognition process is not enormous. In [8], 
we show positive results with this approach but using much smaller 
nets of about 28,000 weights in total. 

One of our motivations in pursuing this work is to develop 
a framework able to exploit the advantages of both GMM and 
neural-net based systems. Although that is demonstrated in our 
results, there are other techniques that may not combine so well. 
For instance, condition and speaker adaptation is often achieved 
in GMM systems by adjusting the means (and perhaps vari- 
ances) of the mixture components, treating these variations as low- 
dimensional transformations of feature space. If, however, these 
variations shift the basic acoustic features away from the regions 
of ‘high magnification’ provided by the neural network, no amount 
of mixture-shifting in the subsequent GMMs will be able to bring 
the overall system back to optimal performance. 

5. CONCLUSION 

Historically, the use of neural-net acoustic models in the hybrid 
connectionist-HMM speech recognition framework has been seen 
as a rival altemative to the mainstream GMM-HMM approach. In 
this work, however, we have shown a simple scheme that com- 
bines both modeling approaches to achieve gratifying benefits. 
This work is at an early stage: it  begs many questions over ex- 
actly where the benefits are coming from, and how broadly they 
may be applicable. However, given this very encouraging start, 
we are strongly encouraged to continue investigating such tandem 
NN-GMM acoustic modeling. 
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