Deep Generative Models with Learnable Knowledge Constraints

Overview

- Rich deep generative models (DGMs): GANs, VAEs, auto-regressive nets
- Difficult to exploit problem structures and domain knowledge (e.g., human body structure in image generation, Fig.1) in these DGMs.

Existing approaches:

- A popular way of adding structured knowledge with deep neural networks is to design specialized neural architectures
 - E.g., Conv-pooling architecture of ConvNet to hard-code translation-invariance of image classification
- Usually only applicable to specific knowledge, models, or tasks
- Posterior Regularization (PR) is a principled framework to impose knowledge constraints on posterior distributions of probabilistic models [1] or neural networks [2]. But with difficulties:
 - Many of the DGMs are not formulated with the probabilistic Bayesian framework and do not possess a posterior distribution or even meaningful latent variables
 - Require a priori fixed constraints. Users have to fully specify the constraints beforehand — impractical due to heavy engineering; suboptimal without adaptivity to the data and models.

This paper:

- A general means of incorporating arbitrary structured knowledge with any types of deep (generative) models in a principled way.
- Formal connections between PR and reinforcement learning (RL)
- Extends PR to learn constraints as the extrinsic reward in RL

Connecting Posterior Regularization (PR) to RL

1) (Adapted) PR for Deep Generative Models (DGMs)

- Consider a generative model \(x \sim p(x) \) with parameters \(\theta \)
- Consider constraint function \(f(x) \in \mathbb{R} \). A higher \(f(x) \) value indicates a better \(x \) in terms of the particular knowledge.
- PR assumes a variational distribution \(q \), and the objective:

\[
\min_{q_{\theta}} \mathcal{L}(\theta, q) = KL(q(x)\|p(x)) - \alpha E_q[f(x)],
\]

which is solved with an EM-style procedure:

E-step: \(q(x) = p(x) \exp\{\alpha f(x)/Z\} / Z \),

M-step: \(\min_{q_{\theta}} KL(q(x)\|p(x)) = \min_{q_{\theta}} -E_q[\log p(x)] + \text{const.} \) (2)

- In PR, constraint \(f \) is fixed. It’s sometimes desirable or necessary to enable learnable constraints so that practitioners are allowed to specify only the known components of \(f \) while leaving any unknown or uncertain components automatically learned (e.g., the human part parser in Fig.1).
- Denote the constraint function with learnable components as \(f_{\phi}(x) \)

2) Entropy-Regularized Policy Optimization (ERPO)

- ERPO augments policy gradient with information theoretic regularizers e.g., KL divergence between new and old policies for stabilized learning.
- Assume state \(s \), action \(a \), policy \(p_a(s,a) \), reward \(R(s,a) \in \mathbb{R} \)
- Let \(x = (s,a) \) denote the state-action pair, and \(p_\pi(x) = \mu^\pi(s)p_a(s,a) \) where \(\mu^\pi(s) \) is the stationary state distribution.
- Let \(q_\pi(x) \) be the new policy, \(p_\pi(x) \) the old. In some ERPO such as relative entropy policy search, \(q_\pi \) is non-parametric. Objective:

\[
\min_{q_\pi} \mathcal{L}(q_\pi) = KL(q_\pi(x)\|p_\pi(x)) - \alpha E_{q_\pi}[R(x)].
\]

Close resemblance between Eq. (1) and Eq. (3):

- Generative model \(p_\pi(x) \) in PR ⇔ reference (old) policy \(p_\pi(x) \)
- Constraint \(f \) in PR ⇔ reward \(R \)
- Solution for \(q_\pi \) is in the same form of Eq.(2)

3) Maximum-Entropy Inverse Reinforcement Learning (MaxEnt IRL)

- Learns reward \(R(\cdot) \) with unknown parameters \(\phi \)
- Assumes \(p_\phi \) a uniform \(\Rightarrow q_\phi(x) := \exp\{\alpha R(\cdot)/Z_\phi \} \). Learns \(\phi \) with:

\[
\phi^* = \arg \max_{\phi} E_{q_\phi}[\log q_\phi(x)].
\]

Algorithm

With the connection between PR and RL, we can transfer the MaxEnt IRL technique of reward learning for constraint learning. The resulting algorithm alternates the optimization of constraint \(f_\phi \) and model \(p_\pi \).

Learning the Constraint \(f_\phi \)

Use the same objective of MaxEnt IRL (Eq.1), replacing \(q_\pi \) with \(q(x) \) from Eq.2:

\[
\nabla_x E_{\pi(x)} \log q(x) = \nabla_x [E_{\pi(x)}[\alpha f_\phi(x)] - \log Z_\phi] = E_{\pi(x)}[\alpha \nabla_x f_\phi(x)] - E_{\phi} [\alpha \nabla_x f_\phi].
\]

Learning the Generative Model \(p_\pi \)

Given the current parameter state \((\theta, \phi^*) \), and \(q(x) \) evaluated at the parameters, we continue to update the generative model.

- For explicit model, we use the M-step as in Eq.(2):

\[
\min_{q_{\theta}} KL(q(x)\|p(x)) = \min_{q_{\theta}} -E_q[\log p(x)] + \text{const.}
\]

- For implicit model that permits only simulating samples but not evaluating density, we propose to minimize the reverse KL divergence:

\[
\min_{q_{\theta}} KL(p_\pi(x)\|q(x)) = \min_{q_{\theta}} -E_{q_\pi}[\log p_\pi] + KL(p_\pi\|p_\phi) + \text{const.}
\]

See paper for efficient approximations and connections to GANs.

Experiments

<table>
<thead>
<tr>
<th>Method</th>
<th>SSIM</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy-based GAN</td>
<td>0.716</td>
<td>–</td>
</tr>
<tr>
<td>Base model</td>
<td>0.676</td>
<td>0.03</td>
</tr>
<tr>
<td>W/ fixed constraint</td>
<td>0.676</td>
<td>0.12</td>
</tr>
<tr>
<td>W/ learned constraint</td>
<td>0.727</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Table 2: Results of Human Pose Image Generation (Right, Fig.2) and Template Guided Sentence Generation (Right, Fig.2(b)). Pls see the paper for more details.

References