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Abstract

The focus of this thesis are the theoretical foundations for reasoning about algorithms and pro-
tocols for modern distributed systems. Two important features of models for these systems are
probability and typed mobility: probabilities can be used to quantify unreliable or unpredictable
behaviour and types can be used to guarantee secure behaviour in systems with a mobile struc-
ture. In this thesis we develop algebraic and type-based techniques for behavioural reasoning on
probabilistic and mobile processes.

In the first part of the thesis we study the algebraic theory of a process calculus which combines
both nondeterministic and probabilistic behaviour in the style of Segala and Lynch’s probabilistic
automata. We consider various strong and weak behavioural equivalences, and we provide complete
axiomatisations for finite-state processes, restricted to guarded recursion in the case of the weak
equivalences.

In the second part of the thesis we investigate the algebraic theory of the m-calculus under the
effect of capability types, which are one of the most useful forms of types in mobile process calculi.
Capability types allow one to distinguish between the capability to read from a channel, to write
to a channel, and to both read and write. They also give rise to a natural and powerful subtyping
relation. We consider two variants of typed bisimilarity, both in their late and in their early version.
For both of them, we give complete axiomatisations on the closed finite terms. For one of the two
variants, we provide a complete axiomatisation for the open finite terms.

In the last part of the thesis we develop a type-based technique for verifying the termination
property of some mobile processes. We provide four type systems to guarantee this property. The
type systems are obtained by successive refinements of the types of the simply typed m-calculus.
The termination proofs take advantage of techniques from term rewriting systems. These type
systems can be used for reasoning about the terminating behaviour of some non-trivial examples:
the encodings of primitive recursive functions, the protocol for encoding separate choice in terms of
parallel composition, a symbol table implemented as a dynamic chain of cells.

These results lay out the foundations for further study of more advanced models which may
combine probabilities with types. They also highlight the robustness of the algebraic and type-

based techniques for behavioural reasoning.
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Main Notations

Below are the important notations used in this thesis, with the section number of their first appear-

ance.

Metavariables

U, v, ... names 2.1
4 labels 2.1
a, B actions 2.2.2
XY, ... process variables 2.1
E F, .. process expressions 2.1
PQ,.. m-calculus processes 2.2.2
L sorts 2.2.3
P, q,T probabilities 3.1
n,0 discrete probability distributions 3.1
R,S relations 3.3
A type environments 2.2.5
S, T types 2.2.5

Miscellaneous symbols

bool boolean type 2.2.5
Nat natural number type 2.2.5
g channel type 2.2.5
T channel type with level 5.2
iT, oS, b(T,S) capability types 4.1.1
fov(E) free process variables 2.1
{F/X} substitution of expressions 2.1
{v/u} substitution of names 2.2.2
() free names of specified entities 2.2.2
bn(-) bound names of specified entities 2.2.2
subj () subject of action 2.2.2
obj () object of action 2.2.2
AgP configuration 4.1.2

Process constructions
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indexed nondeterministic choice
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replicated input
if-then-else

condition

labelled transition

strong probabilistic transition
strong combined transition
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normal weak combined transition

equivalences of distributions
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Chapter 1

Introduction

1.1 Background

Computer science aims to explain in a rigorous way how computational systems behave. Nowadays
the notion of computational systems includes not only sequential systems, such as single programs in
free-standing computers, but also concurrent systems, such as computer networks, and even proteins
in biology and particles in physics. Some classical mathematical models (e.g. the A-calculus [Bar84]),
in spite of their success for describing sequential systems, turn out to be insufficient for reasoning
about concurrent systems.

In the 1980’s process calculi (sometimes called process algebras), notably CCS [Mil89a], CSP
[Hoa85] and ACP [BK84, BW90], were proposed for describing and analyzing concurrent systems.
All of them were designed around the central idea of interaction or communication between pro-
cesses. In these formalisms, complex systems are built from simple subcomponents structurally,
by a small set of primitive operators such as prefix, nondeterministic choice, restriction, parallel
composition and recursion. The limitation of these traditional process algebras is that they are not
able to effectively specify mobile systems, i.e., systems with a dynamically changing communication
topology. On the basis of CCS, Milner, Parrow and Walker developed the m-calculus [MPW92],
which achieves mobility by a powerful name-passing mechanism. The m-calculus is a very expres-
sive formalism. It allows to encode data structures [Mil91], the A-calculus [Mil92] and higher-order
communications [San93]. Furthermore, it can be used for reasoning about object-oriented languages
[Wal95].

As no single theory will serve all purposes, a great many variants and extensions of the classical
process calculi have appeared in the literature. In the case of process calculi for distributed systems,

there are three strands of work that have been developed and shown to be extremely important.

e The first strand is concerned with tuning the syntactic constructions of terms in order to better
capture some specific features of concurrent systems such as asynchronous communications,
higher-order communications, localities and migrations. In this respect one can make a long
list: the asynchronous m-calculus [HT91, Bou92], the wl-calculus [San96a], the Lax-calculus
[Mer00], the Fusion calculus [PV98], the x-calculus [Fu99], the Join calculus [Fou98], CHOCS
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[Tho95], HOm [San93], Dr [HR02b], Klaim [DFP98|, the Ambient calculus [CGO0] and its

variants, just to name a few.

e The second strand consists in equipping untyped process calculi with types so that processes
interact in a safer and more efficient way. For example, a number of type systems are de-
signed for the m-calculus; they are used in various applications such as static detection of
errors in concurrent programs [Mil91], compiler optimizations [KPT99], resource access con-
trol [PS96, HRO2b], guaranteeing other security properties such as deadlock-freedom [Kob98],
noninterference [HY05] and termination [YBH04, DS04a].

e The third strand deals with probabilistic process calculi that support reasoning about prob-
abilistic behaviour, as exhibited for instance in randomized, distributed and fault-tolerant
systems. The typical approach is based on extending with probabilities existing models and
techniques that have already proved successful in the nonprobabilistic settings. The usual
feature of probabilistic process calculi is the existence of a probabilistic choice operator, see
for example probabilistic extensions of CCS [GJS90, HJ90, Tof94, YL92], probabilistic CSP
[Low91], probabilistic ACP [And99] and probabilistic asynchronous 7-calculus [HP04].

Briefly speaking, this thesis includes our contributions in the second and third strands.

In order to study a programming language or a process calculus, one needs to assign a consistent
meaning to each program or process under consideration. This meaning is the semantics of the
language or calculus. Semantics is useful to verify or prove that programs behave as intended. Gen-
erally speaking, there are three major approaches for giving semantics to a programming language.
The denotational approach seeks a valuation function which maps a program to its mathematical
meaning. This approach has been very successful in modelling many sequential languages; programs
are interpreted as functions from the domain of input values to the domain of output values. How-
ever, so far denotational interpretation of concurrent programs has not been as satisfactory as the
denotational treatment of sequential programs.

The operational approach is shown to be quite useful for giving semantics of concurrent systems.
The behaviour of a process is specified by its structural operational semantics [Plo81], described via a
set of labelled transition rules inductively defined on the structure of a term. In this way each process
corresponds to a labelled transition graph. The shortcoming of operational semantics is that it is
too concrete, as a transition graph may contain many states which should be intuitively identified.
Thus a lot of equivalences have been proposed and different transition graphs are compared modulo
some equivalence relations.

The axiomatic approach aims at understanding a language through a few axioms and inference

rules. Its importance is motivated by, among others, the following two reasons.

e Sound systems, even if they are not complete, may be useful for human or machine manipu-
lation of terms. By exploiting these systems, a number of practical verification problems can
be addressed.

e Complete systems help gaining insight into the nature of the operators and the equivalences

involved. For example, the difference between two equivalences can be characterised by a
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few axioms, particularly if adding these axioms to a complete system for one equivalence
gives a complete system for the other equivalence. Another way of comparison is to fix a
notion of equivalence and vary the expressions. Sometimes one lifts a complete system from a
sublanguage to the whole language, by adding some extra axioms. Comparisons of both kinds

are carried out in Chapter 3 and Chapter 4.

To explore the connection between operational and axiomatic semantics has always been an
important and active subject in process calculi. Milner [Mil78] was the first person to advocate
the development of an algebra of behaviours which are subject to a number of axioms expressed
as equations. In [Mil80] a direct link is made for the first time between an algebraic theory and
a behavioural equivalence based on an operational semantics. Since then there has been a large
amount of work on algebraic theories of processes, for various behavioural equivalences in a wide
range of process calculi. However, no much attention was paid to probabilistic and typed process

calculi, though they turn out to be very useful in the analysis of modern distributed systems.

1.2 Objectives

This thesis focuses on the theoretical foundations of reasoning about algorithms and protocols for
modern distributed systems. We believe that this kind of reasoning is important because, as happens
too often, if a system is built without rigorous analysis of all the possible interactions between its
components, then its behaviour is frequently incorrect. One witness is the recent discovery of security
flaws in the ITEEE 802.11 and the Bluetooth wireless communication protocols [BGWO01, LL03].

For distributed systems it is interesting to consider models which encompass probabilities. One
reason is that these systems are expected to provide reliable services despite the occurrence of
various types of failure. Probabilistic processes can be used to describe fault-tolerant systems. For
example, probabilistic information can be used for specifying the rate at which faulty communication
channels drop messages and for verifying message-delivery properties of the corresponding system.
In addition, probabilistic modelling can be used to break symmetry in distributed coordination
problems (e.g. dining philosophers’ problem, leader election problem, and consensus problem), to
predict system behaviour based on the calculation of performance characteristics, and to represent
and quantify other forms of uncertainty.

A model for distributed systems should also include the feature of mobility. Physical systems
tend to have a fixed structure. But most systems in the information world are not physical; their
links may be symbolic or virtual. For example, when one clicks on a hypertext in a web page, he
induces a symbolic link between his machine and the remote web server. These symbolic links can
be created or destroyed on the fly. An example of a virtual link is a radio connection, like the linkage
between mobile phones that are roaming around and a network of base stations. Systems like these,
with transient links, have a mobile structure.

With mobility, types turn out to be essential. For example, the theory of the untyped w-calculus
is often insufficient to prove “expected” behavioural properties of processes. The reason is that when
one uses the w-calculus to describe a system, one normally follows a discipline that controls how

names may be used; but this discipline is not explicit in 7w-terms, and therefore it cannot play a role
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in proofs. Types can be used to make such discipline explicit (cf. Part IV of [SWO01]). Furthermore,
types are useful for expressing control of interference, access rights, robust declassification, secure
composition of components, as well as bounds on resource consumptions (e.g. time or memory
allocations).

In fact, there is a strong practical motivation for considering both probability and mobility.
How can a mobile phone system perform to satisfaction if the designer never considers the probable
behaviour of users? A number of probabilistic models have been introduced which are variants of
Markov chains, but for mobility they are at an early stage.

In the literature, probability and typed mobility are usually studied separately. Corresponding
operational techniques have been developed. But very little has been done on algebraic techniques.
However, algebraic techniques are very useful in computer science. For example, in the relational
model for database [Cod70], algebraic laws have served as a basis for query optimisation and queries
could be efficiently implemented through indexing and join techniques [RG02]. In process calculi,
algebraic equations may be considered as rewriting rules for automated term manipulation [vdP01].

In this thesis we investigate algebraic techniques by considering the impact of probability and
type mobility on the algebraic theories of process calculi. As each feature introduces new and non-
trivial problems, to develop algebraic techniques for models that have both probability and typed
mobility would be very complex. Therefore it is better to study them first in isolation. Due to this
reason, in Chapter 3 we consider axiomatisations for a probabilistic calculus without mobility, and
in Chapter 4 we provide axiomatisations for a typed mobile process calculus without probability.
The types that we shall use are capability types [PS96], which distinguish between input capability,
output capability, both input and output capability. This kind of types are one of the most useful and
basic form of types in process calculi. They have been used to ensure type-consistent data exchange
on communication channels, and to control access rights to channels and locations. Variants of
capability types are now present in almost all experimental process calculi such as Klaim [DFP9§],
Spi [Aba99], and the Ambients Calculus [LS00]. Sometimes, they even become part of the syntax,
e.g. in the Join calculus and the La-calculus only output capabilities can be transmitted.

In mobile process calculi, types themselves can be used as a verification technique to analyse var-
ious properties of concurrent programs, such as deadlock [Kob98], livelock [Kob00], and information
flow [HVY00, HRO02a]. In Chapter 5 we develop one such technique for the problem of termination,
which is an important property that many algorithms and protocols in distributed systems need to
guarantee. In the case of symmetric distributed systems, probabilistic algorithms are usually more
efficient than their deterministic counterparts, at the (insignificant) price that certain properties
will happen with probability one but not necessarily with certainty (e.g., when tossing a fair coin,
a “head” will eventually occur with probability one, but not with certainty). For all practical pur-
poses, however, this difference is meaningless. Therefore, it is interesting to talk about probabilistic
termination as well. However, since termination is itself a non-trivial problem, we consider types in
isolation, without probability.

To summarise, in this thesis we develop algebraic and type-based techniques for reasoning about
processes that feature probability and typed mobility. We consider the two features separately,

both in the case of axiomatisations and in the case of termination, but we believe that our work
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contributes building the basis for studying more advanced models which may combine probability
with typed mobility.

Before proceeding to discuss in the following sections the motivations for each research topic
of the thesis, we need to introduce some terminology. We use the general concept aziomatisations
to mean both axiom systems and proof systems. For an equivalence on a set of terms, an axiom
system consists of some equational axioms and the rules of equational reasoning (that is, rules on
reflexivity, symmetry, transitivity, and congruence rules that make it possible to replace any subterm
of a process by an equivalent term). A proof system has, in addition to axioms and rules of equational
reasoning, other inference rules. Usually an axiom system is preferable to a proof system, because
for example general techniques from term rewriting may then be applicable. However, when the
process calculus in question includes non-trivial features such as recursion or types, sometimes it
is hard to get a complete axiom system because we have to use other inference rules, i.e., what we
obtain is actually a proof system. In that case we still call that system an axiomatisation, as in
literature [Mil89b, Par01]. For an axiomatisation, completeness means that if two processes exhibit
similar behaviour, i.e., their transition graphs are equivalent, then they are provably equal in the

axiom system or the proof system; soundness means the converse.

1.3 Axiomatisations for Probabilistic Processes

The last decade has witnessed increasing interest in the area of formal methods for the specification
and analysis of probabilistic systems [Seg95, BH97, AB01, PLS00, Sto02, CS02]. In [vGSS95] van
Glabbeek et al. classified probabilistic models into reactive, generative and stratified. In reactive
models, each labelled transition is associated with a probability, and for each state the sum of the
probabilities with the same label is 1. Generative models differ from reactive ones in that for each
state the sum of the probabilities of all the outgoing transitions is 1. Stratified models have more
structure and for each state either there is exactly one outgoing labelled transition or there are only
unlabelled transitions and the sum of their probabilities is 1.

In [Seg95] Segala pointed out that neither reactive nor generative nor stratified models capture
real nondeterminism, an essential notion for modeling scheduling freedom, implementation freedom,
the external environment and incomplete information. He then introduced a model, the probabilistic
automata (PA), where both probability and nondeterminism are taken into account. Probabilistic
choice is expressed by the notion of transition, which, in PA, leads to a probabilistic distribution
over pairs (action, state) and deadlock. Nondeterministic choice, on the other hand, is expressed
by the possibility of choosing different transitions. Segala proposed also a simplified version of PA
called simple probabilistic automata (SPA), which are like ordinary automata except that a labelled
transition leads to a probabilistic distribution over a set of states instead of a single state.

Figure 1.1 exemplifies the probabilistic models discussed above. In models where both probability
and nondeterminism are present, like those of diagrams (4) and (5), a transition is usually represented
as a bundle of arrows linked by a small arc. [SAV04] provides a detailed comparison between the
various models, and argues that PA subsume all other models above except for the stratified ones.

We shall investigate in Chapter 3 axiom systems for a process calculus based on PA, in the sense
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Figure 1.1: Probabilistic models

that the operational semantics of each expression of the language is a probabilistic automaton®.
Axiom systems are important both at the theoretical level, as they help gaining insight into the
calculus and establishing its foundations, and at the practical level, as tools for systems specification
and verification. Our calculus is basically a probabilistic version of the calculus used by Milner to
express finite-state behaviours [Mil84, Mil89b].

We shall consider two strong equivalences, one weak equivalence common in the literature, plus
one novel notion of weak equivalence having the advantage of being sensitive to divergency. For
recursion-free expressions we provide complete axiomatisations of all the four equivalences. For the
strong equivalences we also give complete axiomatisations for all expressions, while for the weak
equivalences we achieve this result only for guarded expressions.

The reason why we are interested in studying a model which expresses both nondeterministic
and probabilistic behaviour, and an equivalence sensitive to divergency, is that one of the long-term
goals of this line of research is to develop a theory which will allow us to reason about probabilis-
tic algorithms used in distributed computing. In that domain it is important to ensure that an
algorithm will work under any scheduler, and under other unknown or uncontrollable factors. The
nondeterministic component of the calculus allows coping with these conditions in a uniform and
elegant way. Furthermore, in many distributed computing applications it is important to ensure
livelock-freedom (progress), and therefore we will need a semantics which does not simply ignore
divergencies.

We end this section with a discussion about some related work in this research direction. In
[Mil84] and [Mil89b] Milner gave complete axiomatisations for strong bisimulation and observational
equivalence, respectively, for a core CCS [Mil89a]. These two papers serve as our starting point:
in several completeness proofs that involve recursion we adopt Milner’s equational characterisation
theorem and unique solution theorem. In Section 3.4.1 and Section 3.5.2 we extend [Mil84] and

[Mil89b] (for guarded expressions) respectively, to the setting of probabilistic process algebra.

LExcept for the case of deadlock, which is treated slightly differently: following the tradition of process calculi, in

our case deadlock is a state, while in PA it is one of the possible components of a transition.
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In [SS00] Stark and Smolka gave a probabilistic version of the results of [Mil84] by replacing
nondeterministic choice with probabilistic choice. So we extend the results of [SS00] in that we con-
sider also nondeterminism. Note that when nondeterministic choice is added, Stark and Smolka’s
technique of proving soundness of axioms is no longer usable. (See the discussion at the beginning
of Appendix A.2.) The same remark applies also to [AEIOQ] which follows the approach of [SS00]
but uses some axioms from iteration algebra to characterise recursion. In contrast, our probabilis-
tic version of “bisimulation up to” techniques [Mil89a] work well when combined with the usual
transition induction.

In [BSO1] Bandini and Segala axiomatized both strong and weak behavioural equivalences for
process calculi corresponding to SPA and to an alternated-model version of SPA. As their pro-
cess calculus with non-alternating semantics corresponds to SPA, our results in Section 3.6 can be
regarded as an extension of that work to PA.

For probabilistic process algebra of ACP-style, several complete axiom systems have appeared
in the literature. However, in each of the systems either weak bisimulation is not investigated
[BBS95, And99] or nondeterministic choice is prohibited [BBS95, ABO1].

1.4 Axiomatisations for Typed Mobile Processes

The theory of the w-calculus has been studied in depth [Mil99, SW01]. Relevant parts of it are
the algebraic theory and the type systems. Most of the algebraic theory has been developed on
the untyped calculus; the results include axiomatisations that are sound and complete on finite
processes for the main behavioural equivalences: late and early bisimilarity, late and early congruence
[PS95, Lin94, Lin03], open bisimilarity [San96b], testing equivalence [BD95]. But at the same time,
much of the research on types has focused on their behavioural effects. For instance, modifications
of the standard behavioural equivalences have been proposed so as to take types into account
[PS96, SWO1].

We shall study in Chapter 4 the impact of types on the algebraic theory of the w-calculus.
Precisely, we study axiomatisations of the typed m-calculus. Although algebraic laws for typed
calculi of mobile processes have been considered in the literature [SWO01], we are not aware of any
axiomatisation.

The type system that we consider has capability types (sometimes called I/O types) [PS96,
HRO02b]. These types allow us to distinguish, for instance, the capability of using a channel in input
from that of using the channel in output. A capability type shows the capability of a channel and,
recursively, of the channels carried by that channel. For instance, a type a : iobT (for an appropriate
type expression T') says that channel a can be used only in input; moreover, any channel received at
a may only be used in output — to send channels which can be used both in input and in output.
Thus, process a(z).zb.b(y).by.0 (sometimes the trailing 0 is omitted) is well-typed under the type
assignment a : iobT, b : bT. We recall that ab.P is the output at a of channel b with continuation P;
a(x).P is an input at a with z a placeholder for channels received in the input whose continuation
is P.

On calculi for mobility, capability types have emerged as one of the most useful forms of types,



CHAPTER 1. INTRODUCTION 8

iT oT b<i T, bT> i bT b<0T bT>

N T

bT

(a) (b)

Figure 1.2: An example of subtyping relation, with 7' = unit

and one whose behavioural effects are most prominent. Capabilities are useful for protecting re-
sources; for instance, in a client-server model, they can be used for preventing clients from using
the access channel to the server in input and stealing messages to the server; similarly they can be
used in distributed programming for expressing security constraints [HR02b]. Capabilities give rise
to subtyping: the output capability is contravariant, whereas the input capability is covariant. As
an example, we show a subtyping relation in Figure 1.2, where an arrow from one type to another
means that the source of the arrow is a subtype of the target. There are three forms of types for
channel names: iT,0S and b(T, S); they correspond to the capability to receive values of type T,
send values of type S, or to do both. We use bT as an abbreviation of b(T,T"). The depth of nesting
of capabilities is 1 for all types in diagram (a), and 2 for all types in diagram (b). (The formal
definitions of types and subtyping relation will be given in Section 4.1.1.) Subtyping is useful when
the m-calculus is used for object-oriented programming, or for giving semantics to object-oriented
languages.

To see why the addition of capability types has semantic consequences, consider

P yebe. a(y).(¥ | ¢ Q e be.a(y).(W.c + 7).

These processes are not behaviourally equivalent in the untyped m-calculus. For instance, if the
channel received at a is ¢, then P can terminate after 2 interactions with the external observer. By
contrast, ) always terminates after 4 interactions with the observer. However, if we require that only
the input capability of channels may be communicated at b, then P and @ are indistinguishable in
any (well-typed) context. For instance, since the observer only receives the input capability on ¢, it
cannot resend ¢ along a: channels sent at a require at least the output capability (cf. the occurrence
of 7). Therefore, in the typed setting, processes are compared w.r.t. an observer with certain
capabilities (i.e., types on channels). Denoting with A these capabilities, then typed bisimilarity
between P and @ is written P =aA Q.

In the untyped m-calculus, labelled transition systems (LTS) are defined on processes; the transi-
tion P —— P’ means that P can perform action o and then become P’. In the typed 7-calculus, the
information about the observer capabilities is relevant because the observer can only test processes

on interactions for which the observer has all needed capabilities. Hence typed labelled transition
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systems (TLTS) are defined on configurations, and a configuration AP is composed of a process
P and the observer capabilities A (we sometimes call A the external environment). A transition
A$P - A’4P’ now means that P can evolve into P’ after performing an action a allowed by the
environment A, which in turn evolves into A’.

Capability types have been introduced in [PS96]. A number of variants and extensions have
then been proposed. We follow Hennessy and Riely’s system [HRO02b], in which, in contrast with
the system in [PS96]: (i) there are partial meet and join operations on types; (ii) the typing rule for
the matching construct (the construct used for testing equality between channels) is very liberal, in
that it can be applied to channels of arbitrary types (in [PS96] only channels that possess both the
input and the output capability can be compared). While (i) only simplifies certain technical details,
(ii) seems essential. Indeed, the importance of matching for the algebraic theory of the m-calculus
is well-known (it is the main reason for the existence of matching in the untyped calculus).

Typed bisimilarity and the use of configurations for defining typed bisimilarity have been intro-
duced in [BS98]. We follow a variant of them put forward by Hennessy and Rathke [HR04], because
it uses the type system of [HR02b] and includes the matching construct.

Two important results that we have obtained are a proof system and an axiom system for typed
bisimilarity (=). The proof system has a simple correctness proof but only works on the closed
terms. The axiom system is for all finite processes. The bisimilarity = is a variant of the one in
[HRO4]. For the typed bisimilarity in [HR04] we provide a proof system for the closed terms, and
an indirect axiomatisation of all terms that exploits the system of =. We have not been able to give
a direct axiomatisation: the main difficulties are discussed in Section 4.4.1. All results are given for
both the late and the early versions of the bisimilarities.

The axiomatisations are obtained by modifying some of the rules of the systems for the untyped
m-calculus, and by adding a few new laws. While the proofs of soundness and completeness follow
the general schema of the proofs of the untyped calculus, they have quite different details. An
example of this is the treatment of fresh channels in input actions and the closure under injective
substitutions, that we comment on below.

In the untyped 7-calculus, the following holds:
If P=Q and o is injective on fn(P,Q), then Po = Qo.

Hence it is sufficient to consider all free channels in P, @ and one fresh channel when comparing the
input actions of P and @ in the bisimulation game. This result is crucial in the algebraic theory of
untyped calculi. For instance, in the proof system for (late) bisimilarity the inference rule for input
is:

If P{b/z} = Q{b/x} for all b € fn(P,Q,c), where ¢ is a fresh channel,

then a(z).P = a(x).Q.

For typed bisimilarity the situation is different. Take the processes

def

def a(x:obT).Zcec  Q = a(x: obT).Zc

P

and compare them w.r.t. an observer with capabilities A. Consider what happens when the variable

x is replaced by a fresh channel b, whose type in A is S. By the constraint imposed by types, S
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must be a subtype of the type obT for = (see Figure 1.2 (b)). Now, different choices for S will give
different results. For instance, if S is ob7 itself, then the observer has no input capability on b, thus
cannot communicate with P and @Q at b. That is, from the observer’s point of view the output bc
is not observable and the two processes evolve to equivalent ones. Similarly if S is boT" then the
output € is not observable. However, if S is bb7 then bc.¢ is not equivalent to be, since all outputs
become observable. This example illustrates the essential difficulties in formulating proof systems

for typed bisimilarities:

1. Subtyping appears in substitutions and changes the original type of a variable into one of its

subtypes.
2. The choice of this subtype is relevant for behavioural equivalence.

3. Different subtypes may be incompatible (have no common subtype) with one another (for

instance, boT and bbT in the example above; they are both subtypes of obT).

A consequence of the last two clauses, for instance, is that there is not a “best subtype”, that is a
single type with the property that equivalence under this type implies equivalence under any other
types.

Another example of the consequences brought by types in the algebraic theory is the congruence
rule for prefixes: we have to distinguish the cases in which the subject of the prefix is a channel
from the case in which the subject is a variable. This is a rather subtle and technical difference,

that is discussed in Section 4.3.

1.5 Termination of Mobile Processes by Typability

A term terminates if all its reduction sequences are of finite length. As far as programming languages
are concerned, termination means that computation in programs will eventually stop. In computer
science termination has been extensively investigated in term rewriting systems [DM79, DH95]
and A-calculi [Gan80, Bou03] (where strong normalization is a synonym more commonly used).
Termination has also been discussed in process calculi, notably the m-calculus.

Indeed, termination is interesting in concurrency. For instance, if we interrogate a process, we
may want to know that an answer is eventually produced (termination alone does not guarantee
this, but termination would be the main ingredient in a proof). Similarly, when we load an applet
we would like to know that the applet will not run for ever on our machine, possibly absorbing all
the computing resources (a “denial of service” attack). In general, if the lifetime of a process can
be infinite, we may want to know that the process does not remain alive simply because of non-
terminating internal activity, and that, therefore, the process will eventually accept interactions
with the environment.

Languages of terminating processes are proposed in [YBHO04] and [San05]. In both cases, the
proofs of termination make use of logical relations, a well-known technique from functional languages.
The languages of terminating processes so obtained are however rather “functional”, in that the

structures allowed are similar to those derived when encoding functions as processes. In particular,
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the languages are very restrictive on nested inputs (that is, the possibility of having free inputs
underneath other inputs), and recursive inputs (that is, replications la(x).P in which the body P
can recursively call the guard a of the replication). Such patterns are entirely forbidden in [YBHO04];

nested inputs are allowed in [San05] but in a very restricted form. For example, the process
a(x).10.2.0 | ac.0 (1.1)

is legal neither for [YBHO4] nor for [San05]. The restrictions in [YBHO04, San05] actually rule out

also useful functional processes, for instance

def la(n,b). if n = 1 then b(1) else vc(a(n —1,¢) | c(m).b(m * n)) (1.2)
which represents the factorial function.

To guarantee the termination property of mobile processes we propose several type systems
(which are quite different from the type systems discussed in Section 1.4) for the m-calculus. We
start from a core type system, which adds level information to the types of the simply typed =-
calculus. The level information helps us to construct a measure which decreases along with each
reduction path of a well-typed process. Therefore the well-foundedness of the measure implies the
desired termination property of processes. As the core type system is not very expressive, we extend
it by relaxing some constraints on nested inputs and recursive inputs, thus we obtain three extended
type systems. The usefulness of these type systems are shown by some non-trivial examples. For
instance, it turns out that all primitive recursive functions can be encoded as terminating processes;
the protocol of encoding separate choice in terms of parallel composition proposed in [Nes00, SW01]
does not introduce divergency; each request to the symbol table (implemented as a dynamic chain
of cells) given in [Jon93, San99] is always answered within finite amount of time.

Roughly, for each type system to prove termination we choose a measure which decreases after
finite steps of reduction. To compare two measures, we exploit lexicographic and multiset orderings,
well-known techniques in term rewriting systems [DM79, DJ90]. For the core type system, the
measure is just a vector recording, for each level, the number of outputs (unguarded by replicated
inputs) at channels with that level in the type. For the extended type systems, the ideas are
similar, but the measures become more sophisticated since we allow them to decrease after some
finite (unknown and variable) number of reductions, up to some commutativities of reductions and

process manipulations.

1.6 Outline of the Thesis

The material presented in Chapter 2 is meant to prepare the technical development in the rest of the
thesis. We introduce some basic notions about process calculi, with CCS and the m-calculus as our
templates. We then focus on channel types; we review sorts, simple channel types and subtyping
progressively.

In Chapter 3 we introduce a probabilistic process calculus which includes both nondeterministic
and probabilistic choice, as well as recursion. We give its semantics in terms of Segala and Lynch’s

probabilistic automata. We introduce two strong equivalences and two weak equivalences. We show
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some properties of the equivalences, using a probabilistic version of “bisimulation up to” proof tech-
niques. For the strong equivalences we give complete axiomatisations for all expressions, while for
the weak equivalences we achieve this result only for guarded expressions. We conjecture that in
the general case of unguarded recursion the “natural” weak equivalences are undecidable. In the
completeness proofs, our proof schemas are inspired by [Mil84, Mil89b, SS00], but the details are
more involved due to the presence of both probabilistic and nondeterministic dimensions. Indeed,
it turns out that, to give a complete axiomatisation of observational equivalence, the simple proba-
bilistic extension of Milner’s three 7-laws [Mil89a] would not be sufficient, thus we need a new rule.
At last, for recursion-free expressions we provide axiomatisations of all the four equivalences, whose
completeness proofs are very simple.

In Chapter 4 we study the algebraic theory of a finite 7-calculus with capability types. Firstly we
consider a sublanguage without parallelism. This small language already shows the major obstacles
for axiomatisations. Following [HR04] we give the operational semantics of the language in terms
of a typed labelled transition system, from which we define typed (late) bisimulation. Secondly we
set up a complete proof system for closed terms. Then we present a complete axiom system for
open terms. The schema of the completeness proof is similar to that for the untyped mw-calculus
[PS95]. The details, however, are quite different, due to the rich subtyping relation of the type
system. Thirdly we recall the typed bisimilarity proposed in [HR04], and provide a proof system
for closed terms, together with an indirect axiomatisation for all terms. Fourthly we show that
the difference between late and early bisimilarity can be captured by one axiom. Lastly we admit
parallel composition. Its effect on the axiomatisations is to add an expansion law to eliminate all
occurrences of the operator.

In Chapter 5 we consider several type systems such that well-typed processes under each system
are ensured to terminate. First, we present a core type system, which adds level information to the
types of the simply typed m-calculus. Then we give three refinements of the core system. Nested
inputs and recursive inputs are the main patterns we focus on. For all the type systems (except for
the second one, which can capture primitive recursive functions) we also present upper bounds to
the number of steps well-typed processes take to terminate. Such bounds depend on the structure
of the processes and on the types of the names in the processes. We show the usefulness of the type
systems on some non-trivial examples: the encodings of primitive recursive functions, the protocol
for encoding separate choice in terms of parallel composition from [Nes00, SW01], a symbol table
implemented as a dynamic chain of cells from [Jon93, San99].

In Chapter 6 we summarise the achievements of this thesis and discuss some directions for

potential future work.

Provenance of the material

This thesis is partially based on published material. The presentation of a probabilistic process cal-
culus and the axiomatisations of several probabilistic behavioural equivalences appeared in [DP05];
the study of the typed m-calculus and the axiomatisation of typed bisimilarity were presented in
[DS04b, DS05]; the type systems for ensuring the termination property of m-processes were proposed
in [DS04a].



Chapter 2

Preliminaries

This chapter introduces some basic notions about process calculi. They are going to be lifted to richer
settings in the following chapters by accommodating probabilities and more advanced types. The
presentation is based on CCS and the m-calculus, and partly guided by two textbooks [Mil99, SW01].

2.1 A Calculus of Communicating Systems

We presuppose an infinite set of process variables, Var = {X,Y, ...}, and an infinite set of names,
N = {u,v,...}. We use the set of conames, N = {@ | u € N'}. Given a special name 7, we let
¢ range over the set of labels, L = N'UN U {7}. A label represents an indivisible action that a
communicating system performs, such as reading a datum, or sending a datum. The class of process

expressions Eccs is given by the following grammar:
E,Fu=0|tE|E+F|E|F|wE|X|uxE

The expression 0 represents inaction. The prefir £.F describes the behaviour of first performing
an action labelled ¢ then behaving like E. The sum or nondeterministic choice E + F behaves either
like E or F nondeterministically. The parallel composition E | F allows each of its components to
behave independently, but also to synchronize with each other by a handshake on a complementary
name. The restriction vuFE restricts the scope of u to E. The recursion uxE provides infinite
behaviour by unfolding itself to be E{uxFE/X}. Operator precedence is (1) prefix, restriction,
recursion, (2) parallel composition, and (3) nondeterministic choice.

Note that in CCS [Mil89a] the operators differ a little. The restriction vuFE is written E\u.
There is also a renaming operator E[vy/uq, ..., v, /uy,], which is not present here; its job is largely
done by syntactic substitution of names. We shall write E{v/u} for syntactic substitution of names
v for names u.

We use fpv(FE) for the set of free process variables (i.e., not bound by any pux) in E. As
usual we identify expressions which differ only by a change of bound process variables. We shall
write E{F}, ..., F,/X1, ..., X,,} or E{F/X} for the result of simultaneously substituting F; for each

occurrence of X; in F (1 < i < n), renaming bound variables if necessary.

13
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4 /
act —————— suml %
{F— FE E+F —EF
parl Jofany o oml E—— E F -5 F

E|F-%F|F E|F-5FE|F

Y4 ’ L ’
res ET>+E for u # ¢ rec E{HXE/XE} —F
vuE — vuFE’ uxkE — E'

Table 2.1: The transition rules for Ecg

For operational semantics, we use a labelled transition system

(Ecess L3 {—5C Eces X Eces | L€ L))

with E.cs as the set of states and £ as transition labels. The transition relation is defined as the
smallest relation generated by the rules in Table 2.1. The symmetric rules of suml, parl and coml
are omitted. As can be seen from the rule coml, for a communication between two processes to
take place, one of them must offer an atomic action u, the other its complementary action 4. The
communication results in a 7-action, meaning that the communication serves as synchronisation and
the result is invisible. On the other hand, in some literature on the analysis of distributed systems,
parallel composition is defined as in CSP [Hoa85], where a communication between two processes

occurs if both of them offer the same action u, and the result is still a u-action.

2.2 The m-calculus

We first give the motivation and introduce the untyped 7-calculus. Then we focus on channel types;

we review sorts, simple channel types and subtyping progressively.

2.2.1 From CCS to the m-calculus

A significant limitation of CCS, as argued in [Mil99], is that it is not able to naturally specify
communicating systems with dynamically changing connectivity. For example, let us consider the
system composed of three components P, @ and R as displayed in Figure 2.1(1). Initially P and R
are connected by the link a, while P and @ are connected by b. In the configuration of Figure 2.1(2),
P and Q have evolved into P’ and Q' respectively and the link to R has moved from P to Q. Since
CCS gives us no way of creating new links among existing components, we are not able to specify
the system in (1) as a CCS expression that can evolve into (2). However, this kind of evolution
occurs often in many real systems. For instance, we may imagine R as a critical section that are
accessed by P and @ successively. A natural way of dealing with link mobility like this is to give
actions more structures so that links can be passed around in communicating systems. This is the

method adopted by the w-calculus.
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@ @

Figure 2.1: Link mobility

2.2.2 The Untyped w-calculus

Let the set N of names be defined as in Section 2.1. The set P, of processes is defined by the

following syntax:
PQ:=0|u@).P|uwP|P|Q|P+Q]|vuP| u(x).P

The input prefix u(z).P can receive any name via u and continue as P with the received name
substituted for x. The output prefix uv.P can send v via u and continue as P. The replicated
input lu(z).P can be thought of as an infinite composition u(z).P | u(x).P | ---, and it can encode
recursive definitions [Mil91]. For example, take the simple CCS expression E def px (u.(X | X)),

which has the infinite behaviour:
E-“E|E-SFE|E|E% ..
The same effect can be derived by using a replicated input:

vu(o [l (v | 9))
—_— Z/’U(?j | v |"U’U,(’D | ’D))

—— vo(v|v|v|wu.(v]|v))

All other operators (inaction, sum, restriction, and parallel composition) keep their meaning as in
Section 2.1.

The 7-calculus has two name-binding operators. In the processes u(v).P and vv P the occurrences
of v in P are considered bound with scope P. An occurrence of a name in a process is free if it
is not bound. We write bn(P) (resp. fn(P)) for the set of names that have a bound (resp. free)
occurrence in P. Changing a bound name into a fresh name is called alpha-conversion, and we
identify processes up to alpha-conversion.

A substitution {v/u} is a function on names that maps u to v and acts as identity on other
names. Hence the postfix operator P{v/u} is defined as the result of replacing all free occurrences
of win P by v, possibly applying alpha-conversion to avoid name capture by introducing unintended

bound occurrences of names.

Convention: When considering a collection of processes and substitutions, we assume that each
bound name of the processes is chosen to be unique, i.e., different from other names of the processes

and the substitutions.
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kind a  subj(a) objla)  fn(a) bn(a)
input uw U v {u,v} )
free output v u v {u,v} 0
bound output  (v) u v {u} {v}
internal action T - - 0 0

Table 2.2: Terminology and notation for actions

The early style [MPW92] of operational semantics for processes in P is specified via a labelled

transition system

(Pr, Act, {~25C Py x Py | a € Act})
where Act stands for the set of actions, of which there are four kinds.

1. The internal action 7. As in CCS, P —— @ means that P can evolve into @ without any
interaction with the environment. Internal actions arise from internal communication within

a process.

2. An input action wv. The transition P % () means that P can receive v along u before
evolving into @. This departs from CCS because an input action contains the actual received

value. Input actions arise from input prefixes.

3. A free output action wv. The transition P v, Q@ implies that P can emit the free name v

along name u. Free output actions arise from output prefixes.

4. A bound output action @(v). Intuitively, P ) (@ means that P can emit the private name v
(i.e. v is bound in P) along u before evolving into (). Bound output actions arise from free

output actions which carry names out of their scope, as in the process vv(av.Q) for example.

Table 2.2 displays each kind of action, its subject, its object, its set of free names, and its set of
bound names. We let n(a) def fn(a) U bn(a) denote the set of names occurring in o.

The transition relation — is defined by the rules in Table 2.3. The symmetric rules of suml,
parl, coml and closel are omitted. Some of the rules deserve to be explained. We see from the rule
in that u(x).P can receive any name via u, and when a name is received it is substituted for the
placeholder z in P. The rule open expresses extrusion of the scope of the name v, which can be seen
in the rule closel. A process capable of performing a bound output @(v) can interact with a process
that can receive v via v and in which v is not free. The interaction is represented by a T-transition,
and in the derivative the two components are within the scope of a restriction vv. We may say that
the scope of v is opened via open while closed again via closel. The scope of the restricted name
is extended to include the process that receives it. The side condition in the rule parl is necessary
because it prevents free names in ) from being incorrectly identified as bound names in P’. The
rule rep captures the idea that lu(z).P can spawn infinitely many copies of u(z).P and each copy
can perform an input action as in the rule in.

o

Sometimes we use the notation == which is an abbreviation for (——)* %+ (—)* where (——)*

. . “p . T
is the reflexive and transitive closure of —.
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in o out DT
u(z).P — P{v/x} w.P = P
(03 / g / —
sum1 P#QP/ parl P—P bnga) ﬂ/f”(Q) =0
P+Q— P P|lQ—P|Q
v / uv ’ ﬁ(v) / uv /
com1 P—>PT Q/—)/Q closel £—7F QTHQ - v%fn(Q)
PlQ—P|Q PlQ—w(P[Q)
@ / uv /
reSPHPO‘ugn(a) openP*)P, vFu
vuP — vuP’ voP a(v) P’
rep

u(z).P ~Slu(z).P | P{v/x}

Table 2.3: The transition rules for P,

The capacity to change the connectivity of a network of processes is the crucial difference between
the m-calculus and CCS. Let us consider an example based on Figure 2.1. Suppose two processes
P, Q need to use some resource R in a critical section. Initially only process P has access to the
resource, represented by a communication link a. After an interaction with @ along other link b
this access is transferred to ). This kind of behaviour can be described in the m-calculus as follows:
process P that sends a along b is ba.P’ (suppose a does not appear in P’); process @ that receives
some link along b and then uses it to send data c is b(x).Zc.Q”. The interaction between P and Q
is formulated as:

ba.P' | b(z).zc.Q" — P'| ac.Q".

After the interaction, the connection between P and R disappears while a new connection between
Q' and R is built, where @’ is the process ac.Q".

The 7-calculus presented above is monadic in that a message consists of exactly one name.
Sometime we want to send messages consisting of more than one name. So it is useful to allow
polyadic inputs and outputs: w(z1,...,z,).P and @(vy,...,v,).Q. Accordingly we can extend the

transition rules in Table 2.3 to allow for polyadic communication:
w(T).P | a(®).Q — P{v/T} | Q

where  and v have the same length. After the extension we obtain the polyadic m-calculus [Mil91].

2.2.3 Sorts and Sorting

To regulate the use of names, Milner introduced the notion sorting [Mil91], which is essential to avoid
disagreement in the arities of tuples carried by a given name in the polyadic m-calculus. Assume a
basic collection ¥ of sorts. To every name u is assigned a sort ¢, and we write u : t. A sort list over
3 is a finite sequence ¢ = i1, ..., 1, of sorts. 3* is the set of all sort lists over X. We write u : v if

w; : ¢; for all ¢ with 1 < i <mn. A sorting over ¥ is a partial function

f: X=X
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@ @

Figure 2.2: A printer example

and we say that a process respects f if, for every subterm of the form u(v).P or @(v).Q,
if w:ethen v: f(0).
For example, for the process F' in (1.2), let us choose ¥ = {S,, Sy, Nat} with
a:Sq, b:Spe, c: Spe, m:Nat, n:Nat.

Then a sorting f respected by F' is such that

S, +— Nat, S
f:
Spe +— Nat.

2.2.4 A Simple Example

Before proceeding to the formal presentation of type systems for the 7-calculus, we informally explain
the usefulness of types, capability types in particular, by a simple example from [PS96]. Imagine
the common situation in which two processes must cooperate in the use of a shared resource such
as a printer. The printer provides a request channel u on which the client processes send their data
for printing. If one client process has the form @, def uv1.uv2.0, then we expect that executing
the program vu(P | Q1 | Q2) should result in the print jobs represented by v; and vy eventually
being received and processed, in that order, by the printer process P (see Figure 2.2(1), where an
arrow from one process to another means that some data are transmitted from the source of the
arrow to the target). However, this is not necessarily the case: a misbehaving implementation of
Q2 can disrupt the protocol expected by P and @7 simply by reading print requests from u and
throwing them away: Q2 dﬁf!u(v).O (see Figure 2.2(2)). We can prevent this kind of bad behaviour
by distinguishing three kinds of access to a channel — the capability to write values, the capability
to read values, and the capability to do both — and requiring each process to use its channels with
some prescribed capabilities. Here, for instance, the client processes should only be allowed to write
to u. The printer, on the other hand, should only read from w. When we impose this constraint,

process Q2 will be ruled out because it attempts to read from wu.

2.2.5 The Simply Typed 7m-calculus

To begin with, we introduce some terminology and notation concerning types. An assignment of a

type T to a name u is of the form u : T. A type environment is a finite set of assignments of types
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T ==V ‘ L types
Vv = L ‘ bool | Nat value types
L == {V channel types
r == 0 ‘ T,z:T type environments
w = | true, false | 0,1,2,- values
PQ = O‘ux VP‘uwP|P|Q|P+Q|ua LP"ux V).P  processes
. Tru:gV Tz:VEP 'tu:4V TFw:V THFHP .
T-in T-out T-nil ——
F'tu(z:V).P T'Faw.P 'O
TP THQ 'tP THQ Ta:LFP
T-par —M8MMM— T-sum —M8MMM—— T-res ——MM
'-P|Q TEFP+Q 't (va:L)P
Ftu(z:V).P
T-rep
I'Hu(z: V).P

Table 2.4: Processes, types and typing rules of the simply typed m-calculus

to names, where the names in the assignments are all different. We use I'; A to range over type
environments. Sometimes we regard a type environment I' as a partial function from names to types.
Thus we write I'(u) for the type assigned to u by T, and say that the names of the assignments in
I are the names on which I' is defined. We write dom(I") for the set of names of the assignments in
I'. When dom(T") N dom(A) = 0, we write I', A for the union of I and A.

A process type judgment I' - P asserts that process P is well typed under the type environment
T', and a value type judgment I' = w : V that value w has type V under the type assumptions in I'.
We say P is well typed under I' if the judgment I' = P can be derived by using the typing rules of
a given type system.

A channel is a name that may be used to engage in communications. The values are the objects
that can be exchanged along channels. The channel types are the types that can be ascribed to
channels. The value types are the types that can be ascribed to values. In the w-calculus, channel
types can be used as value types. In other words, we allow channels to be transmitted as values,
and hence allow mobility.

Since our purpose in this section is to introduce the type system of the simply typed m-calculus
rather than to propose a pragmatic notation for programming, we adopt an explicitly typed presen-
tation in which every bound name is annotated with a type. The syntax of types and processes as
well as the typing rules are shown in Table 2.4. The syntactic distinction between value types and
channel types is made by the use of V' to range over value types and L over channel types (the letter
C' is reserved for other use later). However, in typing and operational rules, unless important for
the sense we will use only the letters S, 7", which stand for arbitrary types. We observe that in the
simply typed m-calculus there is only one channel type constructor V. A type assignment u : §V

means that u can be used as a channel to carry values of type V. Value types include channel types
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and basic types, thus both channels and basic values are allowed to be communicated. In the above
table, we only display the typing rules for processes. The typing rules for values are the usual ones.

For example, we may have the following rules:

x:Tkrx:T T' - true : bool I'+0:Nat

For simplicity we only consider two basic types: bool, for boolean values, and Nat, for natural
numbers. Values of basic types are said to be of first-order because, unlike channels, they cannot
carry other values. We also assume some basic operations on first-order values. For example, we
may use addition (n+m), subtraction (n —m), multiplication (n#m) for Nat expressions. To avoid
being too specific, we do not give a rigid syntax and typing rules for first-order expressions. We just
assume a separate mechanism for evaluating expressions of type Nat.

The inert process 0 is well typed under any type environment. The parallel composition and the
sum of two processes are well typed if each is well typed in isolation. A process (va : L)P is well
typed if P observes the constraints imposed both by the type environment and by the declared type
L of the new name a. Note that here L is a channel type. In an input u(z : V).P the subject u
should have a channel type, which is compatible with the type of x, moreover, the body P is well
typed under the extension of I' with the type of x. The case for lu(x : V).P is similar. An output
uw.P is well typed if v has a channel type compatible with that of w, and P itself is well typed.

The transition rules for typed processes are similar to those of the untyped processes (Table 2.3).
We just need to annotate bound names with their types. For example, the rule open would take

this form:

PN P a e f(w) \ {i.u)
Vﬂ:f/,a L)w

(l/a:L)P( el pr

Given the operational semantics for typed processes, we can prove the subject reduction property,
which represents the fact that type judgments are invariant under computation. In particular, if
I'F P and P - P’ then it holds that I' - P'.

2.2.6 Subtyping

Subtyping is a preorder on types. If S is a subtype of T then all operations available on values of
type T are also available on values of type S; therefore an expression of type S can always replace
an expression of type 1. The possibility of having operations that work on all subtypes of a given
type is a major advantage of subtyping in a programming language.

We shall write subtype judgments in the form S < T, which asserts that S is a subtype of T'
(equally T is a supertype of S). A type construct is covariant in its i-th argument if the construct
preserves the direction of subtyping in that argument. Dually, a type construct is contravariant
in its i-th argument if the construct inverts the direction of subtyping in that argument. A type
construct is invariant in its i-th argument if it is both covariant and contravariant in that argument.

We now refine channel types by distinguishing between the capabilities of using a channel in

input or in outputs. For this we introduce the types iV and oV, with the intended meanings: iV’
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T<T T <T"

S-ref ——— S-tra S-bi ——
T<T T<T" i < iT
T<T T<T
S-bo ——M — Slf —m8M8M8 —— S-00 —M—
#T < oT iT < iT’ oT’ < oT
T<T T <T
S-bb
i < 4T’
) I'Fu:iV T,z:VFP I'tFu:0V ThHw:V T'EHFP
T-ins T-outs
Ftu(z:V).P 't aw.P
'tu:T T<T
subsum

Ft-w:T

(rules T-ins and T-outs replace T-in and T-out respectively)

Table 2.5: Additional rules on subtyping

is the type of a channel that can be used only in input and that carries values of type V; similar
for oV w.r.t. output. By extending the simply typed m-calculus with the two capability types, we
obtain the simply typed m-calculus with subtyping. For this, we redefine channel types as

L=tV ‘ iV ‘ oV channel types

and use the additional rules reported in Table 2.5.

We briefly comment on the subtyping rules. The rules S-ref and S-tra show that <: is a preorder.
The axioms S-bi and S-bo show that a name of all capabilities can be used in places where only the
input or only the output capability is required. Rule S-ii says that i is a covariant construct, while
S-00 says that o is a contravariant construct. Finally S-bb shows that § is invariant.

The typing rules T-ins and T-outs are similar to the rules T-in and T-out, except that now the
subject of a prefix is checked to have the appropriate input or output capability. The old rules are

derivable from the new ones.



Chapter 3

Axiomatisations for Probabilistic

Processes

In this chapter we study a process calculus which combines both nondeterministic and probabilistic
behaviour in the style of Segala and Lynch’s probabilistic automata. We consider various strong and
weak behavioural equivalences, and we provide complete axiomatisations for finite-state processes,
restricted to guarded recursion in the case of the weak equivalences. We conjecture that in the
general case of unguarded recursion the “natural” weak equivalences are undecidable.

The contents of this chapter are organized as follows. First we briefly recall some basic concepts
and definitions about probabilistic distributions. In Section 3.2 we introduce a probabilistic process
calculus, with its syntax and operational semantics. In Section 3.3 we define the four behavioural
equivalences we are interested in, and we extend the “bisimulation up to” techniques of [Mil89a] to
the probabilistic setting. These techniques are extensively used for the proofs of soundness of some
axioms, especially in the case of the weak equivalences. In Sections 3.4 and 3.5 we give complete
axiomatisations for the strong equivalences and for the weak equivalences respectively, restricted
to guarded expressions in the second case. Section 3.6 gives complete axiomatisations for the four
equivalences in the case of the finite fragment of the language. The interest of this section is that we
use different and much simpler proof techniques. At last we conclude with some discussions about

the conjecture mentioned above.

3.1 Probabilistic Distributions

Let M be a set. A function n: M +— [0, 1] is called a discrete probability distribution, or distribution
for short, on M if the support of 1, defined as spt(n) = {z € M | n(x) > 0}, is finite or countably
infinite and ), n(z) = 1. If 5 is a distribution with finite support and N C spt(n) we use the set

{(si : 7(8i))}s;en to enumerate the probability associated with each element of N. To manipulate

22
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the set we introduce the operator W defined as follows.

{(si - p0)}ier W {(s:p)} <
{ {(si 1 pi) ieny Uis;j : (pj +p)} if s = s; for some j € 1
{(ss 1 pi)}icr U{(s:p)} otherwise.

{(si i p) hier w {(t; : p))Yierm &

({(si 2 pi)tier W {(t1 : p1) ) W{(t) : pj)tie2.m
Given some distributions 71, ..., 7, on S and some real numbers r1, ..., r, € [0,1] with Eiel..n ri =1,

we define the convex combination rim =+ ... + rpny of 11, ...,m, to be the distribution 7 such that

n(s) = > ic1..n TiMi(s), for each s € S.

Lemma 3.1 Ifn is a convex combination of n1,...,n, and each n; (i < n) is a convex combination

of some distributions 01, ...,0,, on S, then n is also a convex combination of 61, ...,0,,.

Proof: Suppose that n = rim1 + ... +rpn, with Y-, ., 7 = 1, and that n; = p;161 + ... + PimbOm

with Y pij = 1, for all ¢ < n. For each s € S, we have that

n(s) = Z rini(s) = Z T4 Z pijti(s) = Z Z ripijf;(s).

1€1l..n 1€l..n JjEL.M jel.miel..n

jeEl..m

So 7 is the convex combination (3, ,, 7iPi1)01 + ... + (2 _;c1. ., TiPim )0m. Indeed it can be checked
that Zjel..m dic1nTiPij = 1. 0

3.2 A Probabilistic Process Calculus

The set Var of process variables and the set £ of labels are defined as in Section 2.1. We let £ range

over the set Var U L. The class of expressions £ is defined by the following syntax:

E,FZZ: @ pzﬂzEz Z Ez

1€1l..n 1€1l..m

X | pxE

Here @, , pili.E; stands for a probabilistic choice operator, where the p;’s represent positive
probabilities, i.e., they satisfy p; € (0,1] and > ,.; . pi = 1. When n = 0 we abbreviate the
probabilistic choice as 0; when n = 1 we abbreviate it as ¢1.F;. Sometimes we are interested in
certain branches of the probabilistic choice; in this case we write @iel”n pili E; as p1l1.FhL ® -+ @
Db Ey or (@iel..(n—l) pili . E;)®pply.Ey, where @iel..(nfl) pil;.E; abbreviates (with a slight abuse

of notation) p141.E1® -+ - ®pp—1€n—1.E,—1. The second construction ) E; stands for indezed

1€1l..m
nondeterministic choice, and occasionally we may write it as F1 + ... + Epy,.

Definition 3.2 The variable X is weakly guarded (resp. guarded) in E if every free occurrence
of X in E occurs within some subexpression (.F (resp. {.F but £ # 1), otherwise X is weakly
unguarded (resp. unguarded) in E.

The operational semantics of an expression FE is defined as a probabilistic automaton whose

states are the expressions reachable from F and the transition relation is defined by the axioms and
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var X — 9(X) psum @iel..npigi'Ei — Lﬂiel_n{(&,Ei :pi)}
E{uxE/X} —n E; —n _
nsum for some j € 1..m
uxE —n Yiet.mli —

Table 3.1: Strong transitions

inference rules in Table 3.1, where E — 7 describes a transition that leaves from F and leads to a
distribution n over (Var U £) x £. We shall use 9¥(X) for the special distribution {(X,0:1)}. It is
evident that F — 9(X) iff X is weakly unguarded in E.

The behaviour of each expression can be visualized by a transition graph. For instance, the
expression (3a ® b) + (3a ® 2¢) + (3b ® 3c) exhibits the behaviour drawn in diagram (5) of
Figure 1.1.

As in [BSO01], we define the notion of combined transition as follows: E —. n if there exists a
collection {7;, r;}ic1.., of distributions and probabilities such that 7, ., 7 = 1,17 = rimi+...4r0,
and F — n;, for each i € 1..n.

Lemma 3.3 If n=r1m + ... + a1 and E —. n; for each i < n, then E —.n.

Proof: Suppose that for each i < n, 7; is a convex combination of 7;1, ..., Nim,, with E — n;; for
j < m;. Let

U ity ooos Mim, } = {01, .-, 0m }

1€1l..n
Clearly each 7; (i < n) is also a convex combination of 6y, ...,60,,. It follows from Lemma 3.1 that
7 is a convex combination of 64, ...,0,,. Note that £ — 6; for each j < m. Therefore we have the
result that F —. n. a

We now introduce the notion of weak transitions, which generalizes the notion of finitary weak
transitions in SPA [Sto02] to the setting of PA. First we discuss the intuition behind it. Given an
expression F, if we unfold its transition graph, we get a finitely branching tree. By cutting away
all but one alternative in case of several nondeterministic candidates, we are left with a subtree
with only probabilistic branches. A weak transition of E is a finite subtree of this kind, called weak
transition tree, such that in any path from the root to a leaf there is at most one visible action. For
example, let E' be the expression u X(%aEB %T.X ). It is represented by the transition graph displayed
in Diagram (1) of Figure 3.1. After one unfolding, we get Diagram (2) which represents the weak
transition E = 1, where n = {(a,0: 3), (1, E : 1)}.

Formally, weak transitions are defined by the rules in Table 3.2. Rule weal says that a weak
transition tree starts from a bundle of labelled arrows derived from a strong transition. The meaning
of Rule wea? is as follows. Given two expressions E, F' and their weak transition trees tr(E), tr(F),
if F' is a leaf of tr(F) and there is no visible action in ¢r(F'), then we can extend tr(F) with tr(F') at
node F. If F} is a leaf of tr(F') then the probability of reaching F} from E is pq;, where p and g; are

the probabilities of reaching F' from E, and F; from F', respectively. Rule wea3 is similar to Rule
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m
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m

2 2

o
m

@ (@]

Figure 3.1: A weak transition

weal 2=
E=n
wea2 27 {6, EBi :p) 1 W{(6Fp)y F=A{(rF:45)}
E={(l Ei: pi) i WAL F :pgj));
wea3 E={{l,Ei:p)hiW{(r,F:p)} F={(h;,Fj:q;)};

E = {(i, B; : pi)}i W {(hy, Fj : pg;)};

E={(r,Ei:p)}i Vi, B = 9(X)
E = 9(X)

wea4

Table 3.2: Weak transitions

wea2, with the difference that we can have visible actions in ¢r(F'), but not in the path from F to
F. Rule wea4 allows to construct weak transitions to unguarded variables. Note that if E = 9(X)
then X is unguarded in E.

For any expression E, we use §(F) for the unique distribution {(7, E : 1)}, called the virtual
distribution of E. We define a weak combined transition: E =>. n if there exists a collection
{ni,ri}ie1.n of distributions and probabilities such that >, . ri =1, n = rim + ... + rpn, and
for each i € 1..n, either E = n; or n; is 6(F). We write E = n if every component of 7 is derived
from a weak transition, namely, £ = n); for all ¢ < n. Note in particular that for any expression £
we can derive a virtual distribution by E =, (F), but E #%. §(E).

Lemma 3.4 1. IfE .1 then 7.E =.n;
2. If E=.9(X) then E = 9(X).

Proof: The first clause is easy to show. Let us consider the second one. If J(X) is a convex
combination of 7y, ..,m, and E = n; for all ¢ € 1..n, then each n; must assign probability 1 to (X, 0),
thus 7, = ¥(X). O

Lemma 3.5 1. Ifn=r1m + ...+ o0y and E =, n; for each i < n, then E = 1.
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2. Ifn=rim + ... +runn and E =, n; for each i < n, then B =, 1.

Proof: Similar to the proof of Lemma 3.3. a

3.3 Behavioural Equivalences

In this section we define four behavioural equivalences, namely, strong bisimulation, strong proba-
bilistic bisimulation, divergency-sensitive equivalence and observational equivalence. We also intro-
duce a probabilistic version of “bisimulation up to” techniques to show some interesting properties
of the behavioural equivalences.

To define behavioural equivalences in probabilistic process calculi, it is customary to consider

equivalence of distributions with respect to equivalence relations on processes.

3.3.1 Equivalence of Distributions

If n is a distribution on M; x M, s € My and N C My, we write n(s, N) for ),y n(s,t). We lift
an equivalence relation on £ to a relation between distributions over (Var U L) x £ in the following

way.

Definition 3.6 Given two distributions n; and ne over (VarUL) x &, we say that they are equivalent

w.r.t. an equivalence relation R on &, written m =r 02, if
VN e E/RVE € VarUL, ni(&,N) =n2(§,N).

Lemma 3.7 Given three distributions m1,n2,n3 and an equivalence relation R, if ;1 =r n2 and

M2 =R N3 then m=rns.
Proof: Straightforward by definition. O

The above lemma says that =5 is transitive. It follows immediately that =5 is an equivalence rela-
tion. Next we report two fundamental lemmas that underpin many other results in the subsequent

sections.
Lemma 3.8 If 11 =g, 12 and R1 C Ro then n1 =g, 12.

Proof: Let N € £/R,. Since Ry is contained in Ry, we know that N is the disjoint union of a
family of sets {N; }ics such that N; € /Ry for each i € I. Tt follows from 1, =g, 12 that

Vi <n,V& € VarUL, m(&,N;) = (&, N;).

Therefore we have
Ul(faN) = ZiGI 771(€,Nz) = Zie] n2(€aNl) = 772(€aN)

Lemma 3.9 Let n =rin1 + ... +7u0n and ' = rimy + o+ ramy, with Y0 ri = 1. If n; =r 0
for each i <mn, thenn=r 7.
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Proof: For any N € £/R and £ € Var U L, we have
NEN) = > rimi&,N) = Y rnj(&, N) =n'(&,N).
1€1l..n 1€1l..n

Therefore n =r 7’ by definition. O

3.3.2 Behavioural Equivalences

Strong bisimulation is defined by requiring equivalence of distributions at every step. Because of the
way equivalence of distributions is defined, we need to restrict to bisimulations which are equivalence

relations.

Definition 3.10 An equivalence relation R C £ x £ is a strong bisimulation if £ R F implies:
o whenever E — 1y, there exists 1o such that F' — ne and 11 =r 1s.

Two expressions E, F are strong bisimilar, written E ~ F', if there exists a strong bisimulation R

st. E R F.

If we allow a strong transition to be matched by a strong combined transition, then we get a

relation slightly coarser than strong bisimulation.

Definition 3.11 An equivalence relation R C € x £ is a strong probabilistic bisimulation if £ R F

implies:
o whenever E — ny, there exists 1o such that F' —. ny and n1 =R 2.
We write E ~. F, if there exists a strong probabilistic bisimulation R s.t. E R F.

To show that ~. is an equivalence relation, we need the following lemma, which can be used to

prove the transitivity of ~..

/

Lemma 3.12 If E ~. F then whenever E —. 1, there exists ' such that F —.1n' andn=._ 1 .

Proof: Suppose that n = rin + ... + rpnn and E — 1; for i < n. Since E ~, F, there exists 7,
for each i < n such that F' —. n, and n; =~, n;. Now let ' = rin} + ... + r»n,,. By Lemma 3.3 we
know that F' —. 1. By Lemma 3.9 it holds that n =._ n’. O

We now consider the case of the weak bisimulation. The definition of weak bisimulation for PA
is not at all straightforward. In fact, the “natural” weak version of Definition 3.10 would be the
following one.

Definition (Tentative). An equivalence relation R C € x £ is a weak bisimulation if E R F

implies:

e whenever E — 1, then either 11 =r §(F) or there exists some 12 such that F' = 1y and

m =r N2

E and F are weak bisimilar, written E < F', whenever there exists a weak bisimulation R s.t.
ERF.
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F G
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12 12
a a a a a a
0 0 0 0 0 0

Figure 3.2: Transition graphs of E, F' and G

Unfortunately the above definition is incorrect because it defines a relation which is not transitive.
That is, there exist E, F and G with £ < F and F =< G but F % G. For example, consider the

following expressions (their transition graphs are displayed in Figure 3.2) and relations:

g (3r.a® it.a)+ (37.a® La)

r %T.aEB %T.a

G ¥ 4
Ra dgf {(EaF)a(FaE)v(EaE)v(FvF)v(aaa)v(oaO)}
R2 dgf {(FvG)v(GvF)v(FvF)v(GvG)v(aaa)v(oaO)}

It can be checked that R and Rs are weak bisimulations according to the tentative definition.
However we have E % G. To see this, consider the transition E — 1, wheren = {(7,a: 1), (a,0: $)}.
From G there are only two possible weak transitions G = 1 and G = 72 with n; = {(7,a : 1)}
and 12 = {(a,0: 1)}. Now, among the three distributions §(G), 1 and 72, none is equivalent to 7.
Therefore, ' and G are not bisimilar. Nevertheless, if we consider the weak combined transition:
G =, ' where n/ = 1 + 1ns, we observe that n =1n'.

The above example suggests that for a “good” definition of weak bisimulation it is necessary
to use combined transitions. So we cannot give a weak variant of Definition 3.10, but only of

Definition 3.11, called weak probabilistic bisimulation.

Definition 3.13 An equivalence relation R C £ x £ is a weak probabilistic bisimulation if E R F

implies:
o whenever E — 1y, there exists na such that F =, N2 and N1 =R M.

We write E =~ F whenever there exists a weak probabilistic bisimulation R s.t. E R F.

The following lemma is indispensable to show the transitivity of .

Lemma 3.14 Let R be a weak probabilistic bisimulation. If E R F then whenever E = n, there
exists ' such that F =.n' and n =g 7'

Proof: See Appendix A.1. O
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Lemma 3.15 Let R = J,{R:i | Ri is a weak probabilistic bisimulation}. Then the equivalence

closure of R, written R*, is a probabilistic weak bisimulation.

Proof: If E R* F then there exist some weak probabilistic bisimulations 71, ...,7, and some
expressions FEy, .., F, such that F = Ey, F,, = F, and for all ¢ with 0 < i < n, we have E; R; E;y1.
If E — 1o then there exists n; such that E; =, n; and 7 =g, M. For all ¢ with 1 < i < n, by
Lemma 3.14 there exists 7,41 such that F;;; =, Ni+1 and 1; =g, Mi+1.- By Lemma 3.8 and the
transitivity of =g« it holds that ng =g« n,. a

Because of the above lemma we can equivalently express ~ as R*, which is the biggest weak
probabilistic bisimulation.

As usual, observational equivalence is defined in terms of weak probabilistic bisimulation.

Definition 3.16 Two expressions E, F' are observationally equivalent, written E ~ F, if
1. whenever E — ny, there exists 1o such that F' =, ny and n1 =~ 12;
2. whenever F' — ns, there exists m1 such that E =.m and n1 =~ 1s.

The following lemma plays the same role as Lemma 3.14, and the proof of the former is similar

to that of the latter. Then it is evident that ~ is an equivalence relation.

/

Lemma 3.17 Suppose E ~ F. If E =.n then there exists ' s.t. F =.n' andn=x17'.

Often observational equivalence is criticised for being insensitive to divergency. We therefore

introduce a variant which does not have this shortcoming.

Definition 3.18 An equivalence relation R C € x £ is a divergency-sensitive equivalence if E R F

implies:
o whenever E — ny, there exists 1o such that F' =, ny and n1 =r 2.
We write E < F whenever there exists a divergency-sensitive equivalence R s.t. E R F.

Here the difference from Definition 3.13 is that we use the transition F' =, 7, in place of F’ =, 72
to match a strong transition. In other words, F' cannot stay idle; it must make some real move.

It is easy to see that ~ lies between ~. and ~. For example, we have that pux(7.X + a) and
7.a are related by ~ but not by ~ (this shows also that ~ is sensitive to divergency), while 7.a
and 7.a + a are related by =< but not by ~.. Further, 7.a and a are not related by =< because the
transition 7.a — {7,a : 1} cannot be matched up by a =, {a,0: 1}. So =~ does not simply detect
divergency, it counts internal moves in a certain sense.

One can check that all the relations defined above (except for <) are indeed equivalence relations

and we have the inclusion ordering: ~ C ~. C =~ C ~ C =~.

3.3.3 Probabilistic “Bisimulation up to” Techniques

In the classical process algebra, the conventional approach to show E ~ F'| for some expressions
E, F, is to construct a binary relation R which includes the pair (E, F'), and then to check that R
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is a bisimulation. This approach can still be used in probabilistic process algebra, but things are
more complicated because of the extra requirement that R must be an equivalence relation. For
example we cannot use some standard set-theoretic operators to construct R, because, even if R
and Ro are equivalences, R1R2 and R U Ry may not be equivalences.

To avoid the restrictive condition and at the same time to reduce the size of the relation R,
we introduce the probabilistic version of “bisimulation up to” techniques, whose usefulness will be
exhibited in the next section.

In the following definitions, for a binary relation R we denote the relation (R U ~)* by R..

Similar for other notations such as R~ and R~.

Definition 3.19 A binary relation R is a strong bisimulation up to ~ if B R F implies:
1. whenever E — n1, there exists e such that F' — 19 and n1 =r_ n2;
2. whenever F' — 19, there exists n1 such that E — m and 1 =g 2.

A strong bisimulation up to ~ is not necessarily an equivalence relation. It is just an ordinary

binary relation included in ~, as shown by the next proposition.

Proposition 3.20 If R is a strong bisimulation up to ~, then R~ is a strong bisimulation and
R Cr~.

Proof: If EF R. F then there exist some expressions Ey, ..., E, such that £ = Ey, E, = F, and
for all ¢« with 1 < ¢ < n we have either F; ~ E;1; or E; R E;y1. Suppose that FE; — n;. If
E; R E;;1 then there exists n;11 such that F;11 — 1,41 and n; =g ni41. If E; ~ FE;41 then
there exists 1;4+1 such that E;11 — m;41 and n; =< m;+1. Since ~C R, we know from Lemma 3.8
that n; =r._ mi+1. So in both cases we have matching transitions and 7; =g, 7;+1, which implies
1o =R Mn by Lemma 3.7. Therefore R~ is a strong bisimulation, i.e., R.. C~. Since R C R, it
follows that R C~. O

One can also define a strong probabilistic bisimulation up to ~. relation and show that it is

included in ~..

Lemma 3.21 Let R be a strong probabilistic bisimulation up ~.. If E 'R F then whenever E —. 1,
there exists ' such that ' —.n" and n=r__ 7'

Proof: Similar to the proof of Lemma 3.12. a

Proposition 3.22 If R is a strong probabilistic bisimulation up to ~., then R Cr,.

Proof: Similar to the proof of Proposition 3.20. The only difference is that when matching

transitions, we use Lemma 3.21 instead of directly applying the definitions. a

For weak probabilistic bisimulation, the “up to” relations can be defined as well, but we need to

be careful.

Definition 3.23 A binary relation R is a weak probabilistic bisimulation up to ~ if E R F' implies:
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1. whenever E = 1y, there exists na such that F =, N2 and N1 =R N2,
2. whenever F' = 19, there exists n1 such that E =, m and N =R, N2.

In the above definition, we are not able to replace the first double arrow in each clause by a simple
arrow. Otherwise, the resulting relation is not included in &. A counterexample is R = {(7.a.0,0)},

as in the nonprobabilistic setting [SM92].
Proposition 3.24 If R is a weak probabilistic bisimulation up to =, then R C~.

Proof: Similar to the proof of Proposition 3.22. a

Definition 3.25 A binary relation R is an observational equivalence up to ~ if E R F implies:
1. whenever E = ny, there exists na such that F' =, n2 and m =r. 125
2. whenever F = ng, there exists m such that E =.m and m1 =r. n2.
As expected, observational equivalence up to =~ is useful because of the following property.
Proposition 3.26 If R is an observational equivalence up to ~, then R C~.

Proof: Note that if R is an observational equivalence up to ~, then it is also a weak probabilistic
bisimulation up to ~. So R~ Ca and it becomes evident that R C~ by the definition of observa-

tional equivalence. a

3.3.4 Some Properties of Strong Bisimilarity

In this section we show some properties of strong bisimilarity, by exploiting the probabilistic “bisim-
ulation up to” techniques introduced in Section 3.3.3 and Milner’s transition induction technique
[Mil89a].

Proposition 3.27 ~ and ~. are congruence relations.

Proof: This is a special version of the proof of Proposition 3.35, to which we shall give detailed

arguments. O

Proposition 3.28 uxE ~ E{uxE/X}.

Proof: Observe that uxE — n iff E{uxE/X} —n. O

Lemma 3.29 If fpu(E) C {X,Z} and Z & fpv(F) then
E{E'/Z}{F/X} = E{F/X{E'{F/X}/Z}.
Proof: By induction on the structure of E. a

We now extend two results seen in nonprobabilistic process algebra [Mil84]. It should be em-
phasized that the “strong bisimulation up to” technique plays an important role in the subsequent
proofs, because in these two cases it is difficult to directly construct an equivalence relation and

prove that it is a strong bisimulation.
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Proposition 3.30 ux(E+ X) ~ uxE.

Proof: We show that the relation
R = {(F{ux(E + X)/X}, F{uxE/X} | F € € and fpo(F) C {X})

is a strong bisimulation up to ~. Below we prove the following two assertions:
1. If F{ux(E+ X)/X} — n then there exists 1y s.t. F{uxE/X} — n2 and n1 = 19;
2. If F{uxE/X} — ny then there exists n; s.t. F{ux(E+ X)/X} —n and 91 =g 2.

We consider (1) by induction on the depth of the inference F{ux (E+X)/X} — . Let us examine

two typical cases, among others.

e ' = X: Then (F+ X){ux(E + X)/X} — m by a shorter inference. Hence, by induction
hypothesis, (F + X){uxE/X} — n2 with 71 =g_ 72. Then we have either uxE — 12 or
E{uxE/X} — n2. From the latter case we can also derive that ux E — 5.

o FF= uzF'": Then F'{ux(E+ X)/XH{F{ux(E + X)/X}/Z} — m by a shorter inference.
By Lemma 3.29 we have F'{F/Z}{ux(E + X)/X} — 1. By induction hypothesis, we have
F'{F/Z}{puxE/X} — n2 s.t. ;1 =g n2. Inversely it is easy to derive that F{uxFE/X} — na.

Similarly (2) can be shown by induction on the depth of the inference F{uxE/X} — 1. For
example, if F = X, then E{uxFE/X} — n2 by a shorter inference. By induction hypothesis, there
exists m s.t. E{ux(E + X)/X} — m and 1 =g._ n2. By rule nsum we have (F + X){ux(F +
X)/X}=FE{ux(F+X)/X}+ X{ux(E+ X)/X} — n. At last by rule rec we infer that ux(E +
X)—mnm. O

The lemma below states that if X is weakly guarded in F, then different substitutions for X do

not affect the first transition of E.

Lemma 3.31 Suppose fpv(E) C {X} and all free occurrences of X in E are weakly guarded. If
E{F/X} — m with m = {(4;, E; : p;)}i then E; takes the form E{F/X}; Moreover, for any G,
E{G/X} — ne withne = {(l;, E{G/X} : pi)}i and m =r_ 12 where

R={(E{F/X},E{G/X})| E €& and fpv(E) C {X}}.

Proof: By transition induction. O

Proposition 3.32 If E ~ F{E/X} and X weakly guarded in F, then E ~ uxF.

Proof: Similar to the proof of Proposition 3.30. Now we take R as:
R = {(G{E/X}, GluxF/X} | G € € and fpu(G) € {X}}
Let us consider the case that G = X. Suppose E — ;. Since E ~ F{E/X}, there exists 7] s.t.
F{E/X} — n} and ;1 =~ n}. By Lemma 3.31 there exists 02 s.t. F{uxF/X} — ne and 0} =r_ n2.
By rule rec we have ux F — 12. By Lemma 3.8 and the transitivity of =x_, we have 1 =r_ 72.

With similar reasoning, one can show that if yux F' — 1y there exists n1 s.t. E — n and n1 =g _ 12.



CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES 33

3.3.5 Some Properties of Observational Equivalence

In this section we report some properties of < and =, especially those concerning recursions. As in

last section, we heavily rely on the “bisimulation up to” techniques and transition induction.
Proposition 3.33 1. Ex~F iff rE~T1.F;
2. IfrE~1.E+F and 7.F ~717.F + E then 7.F ~ 1.F.

Proof: The first clause is straightforward. For the second one, it suffices to prove that F ~ F.

Consider the relation
R={(E,F)|E,Feé,7E~17FE+F and 7.F ~7.F + E}.

We show that R is a weak probabilistic bisimulation up to ~. Suppose that £ = . By the condition
E+ 7.F ~ 7.F and Lemma 3.17, there exists 0’ s.t. 7.F =, n' and n =~ 1. Since 7.F = F', by

Lemma 3.14 there exists 7" s.t. F =, 5" and ¥/ =~ n”. Then it is easy to see that  =r_ 7".

Similar result holds when E and F' exchange their roles. O

Proposition 3.34 If E ~ F then uxFE ~ uxF.
Proof: We show that the relation
R={(G{uxE/X},G{uxF/X}) | E,F,G € £ and E ~ F}

is an observational equivalence up to ~. To achieve this goal, we need to prove the important
property that ~ is closed under all substitutions. See Appendix A.2 for more details. O
Proposition 3.35 ~ is a congruence relation.
Proof: Given E ~ F , we need to show the following three clauses:

1. @, pili-E; ~ @, pili. F;

2. Y et Bi =Y Fi

3. uxEr ~ puxFr.

Among them, the first two clauses are easy to prove; the third one is shown in Proposition 3.34.
O

We use a measure dx (F) to count the depth of guardedness of the free variable X in expression

FE.

dx(X) ¥ o
dx(Y) % o

dx(@.B) ¥ dy(E)+1
dx(r.E) ¥ dx(E)

dx (D, pili.E:) < min{dx (0:.E;)}i
dx (T B:) = min{dx(E)}i
)

= dx(E)
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If dx(F) > 0 then X is guarded in E.

The following Lemma is a counterpart of Lemma 3.31.

Lemma 3.36 Let dx(G) > 1. If G{E/X} =, n then G{F/X} =, 7' such that n =g~ 1’ where
R ={(G{E/X},G{F/X})| for any G € £}.

Proof: See Appendix A.3. O

Proposition 3.37 If E ~ F{E/X} and X is guarded in F then E ~ uxF.

Proof: We show that the relation R = {(G{E/X},G{uxF/X}) | for any G € £} is an observa-

tional equivalence up to ~. That is, we need to show the following assertions:
1. if G{E/X} = n then there exists ' s.t. G{uxF/X} =.n and n=g_ 7;
2. if G{uxF/X} = n' then there exists n s.t. G{E/X} =.nand n=r_ 7.

We concentrate on the first clause since the second one is similar. The proof follows closely the
arguments in proving Proposition 3.34, thus we only consider the case that G = X.

We write G(E) for G{E/X} and G*(E) for G(G(E)). Since E ~ F(E), we have E ~ F?*(E)
since ~ is an congruence relation by Proposition 3.35. If £ = 7 then by Lemma 3.17 there exists
0 st. F?(E) =. 6 and n =~ 6;. Since X is guarded in F, i.e., dx(F) > 0, then it follows
that dx (F?(X)) > 1. By Lemma 3.36, there exists 0 s.t. F?(uxF) =. 02 and 0; =g~ 03. From
Proposition 3.28 we have uxF ~ F?(uxF), thus uxF ~ F?(uxF). By Lemma 3.17 there exists
7 st. uxF =. 1 and 6, =+ 1. From Lemma 3.8 and the transitivity of =g _ it follows that
n=Rr~. 1. O

It is not difficult to see that all the propositions proved in this section for ~, except for Propo-

sition 3.33, are also valid for <. In other words, =< is a substitutive congruence relation.

3.4 Axiomatisations for All Expressions

In this section we provide sound and complete axiomatisations for two strong behavioural equiva-

lences: ~ and ~.. The class of expressions to be considered is £.

3.4.1 Axiomatizing Strong Bisimilarity

First we present the axiom system A,., which includes all axioms and rules displayed in Table 3.3.
We assume the usual rules for equality (reflexivity, symmetry, transitivity and substitutivity), and
the alpha-conversion of bound variables.

The notation A, F E = F (and A, F E = F for a finite sequence of equations) means that the
equation E = F' is derivable by applying the axioms and rules from A,. The following theorem

shows that A, is sound with respect to ~.

Theorem 3.38 (Soundness of A,) If A, - E =FE' then E ~ E'.
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S1 E+0=F

S2 E+FE=F

S3 > i Ei=>,crEy pis any permutation on [

S4 P, pili-Bi = B, Poiylptiy-Epiy p is any permutation on [
S5 (@, pili-E;) & pl.E® ql.E = (P, pili.E;) & (p+ q)l.E

R2 If E=F{FE/X}, X weakly guarded in F, then F = uxF
R3 ux(F+X)=uxkFE

Table 3.3: The axiom system A,

Proof: The soundness of the recursion axioms R1-3 is shown in Section 3.3.4; the soundness of

S1-4 is obvious, and S5 is a consequence of Definition 3.6. a

For the completeness proof, the basic points are: (1) if two expressions are bisimilar then we
can construct an equation set in a certain format (standard format) that they both satisfy; (2)
if two expressions satisfy the same standard equation set, then they can be proved equal by A,.
This schema is inspired by [Mil84, SS00], but in our case the definition of standard format and the
proof itself are more complicated due to the presence of both probabilistic and nondeterministic

dimensions.

Definition 3.39 Let X = {X1,..;, X} and W = {Wy,Wa, ...} be disjoint sets of variables. Let
H = {Hi, ..., Hy,} be expressions with free variables in XUW. In the equation set C : X = I;',
we call X formal variables and W free variables. We say C is standard if each H; takes the form
> Erigy + 22 Wiy where Epgi gy = @, Py licige)-Xatigk) - We call ¢ weakly guarded if
there is no H; s.t. H; — 9¥(X;). We say that E provably satisfies ¢ if there are expressions
E={Ey,...Ey}, with By = E and fpv(E) C W, such that A, - E = H{E/X}.

We first recall the theorem of unique solution of equations originally appeared in [Mil84]. Adding

probabilistic choice does not affect the validity of this theorem.

Theorem 3.40 (Unique solution of equations I) If( is a weakly guarded equation set with free
variables in W, then there is an expression E which provably satisfies (. Moreover, if F' provably
satisfies ¢ and has free variables in W, then A, - E=F.

Proof: Exactly as in [Mil84]. O

Below we give an extension of Milner’s equational characterisation theorem by accommodating

probabilistic choice.

Theorem 3.41 (Equational characterisation I) For any expression E, with free variables in
W, there exist some expressions E = {E1,...; B}, with By = E and fpv(E) C W, satisfying m
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equations

AbEi= Y Erapn+ >, Wiy (i <m)
jel..n(i) jeL.1(3)

where Et(; j) = @rer. o) Priigk) e,k -Eotige -
Proof: By induction on the structure of E, similar to the proof in [Mil84]. O

The following completeness proof is closely analogous to that of [SS00]. It is complicated some-
what by the presence of nondeterministic choice. For example, to construct the formal equations, we
need to consider a more refined relation L;;;;» underneath the relation Kj;; while in [Mil84, SS00]

it is sufficient to just use K.
Theorem 3.42 (Completeness of A.) If E ~ E' then A, - E=F'.

Proof: Let E and E' have free variables in W. By Theorem 3.41 there are provable equations
such that £ = Fy, E' = E] and

AbEi= Y Eripn+ >, Waay (i <m)
j€l.n(i) JEL.1(3)
ArFEy= Y Eppgpyt D, Wwag (@ <m’)
J€l ! (30) GrELU (i)
with
Erijy= B prasmlicim Bagn
kel..o(i,5)
/ — / ! /
Ef/(,i/,j/) = @ pf/(i/7j/,k/)‘gf/(i/7j/,k/).Eg/(,i/,j/7k;/).

k'el..o'(,5')
Let I = {(i,i) | E; ~ El,}. By hypothesis we have Ey ~ Ef, so (1,1) € I. Moreover, for each
(i,i") € I, the following holds, by the definition of strong bisimilarity:

1. There exists a total surjective relation K;;» between {1,...,n(i)} and {1,...,n/(i")}, given by

Kii/ = {<.77]/> | <f(lv.])7f/(l/7]/)> S I}

Furthermore, for each (j,j') € K,y there exists a total surjective relation L;;;; between
{1,...;0(i,5)} and {1,...,0'(¢, j')}, given by

Liji’j’ = {<k,k/’l> | Ef(i,j,k) = glf’(i’,j’,k’) and (g(’i,j,k),gl(’t'l,j/, k/» S I}

2. A+ Zjel..l(i) Wh(m‘) = Zj’el..l’(i’) Wh’(i’,j’)-
-1

Now, let L;jirj (k) denote the image of k € {1, ...,0(4, j) } under L;jirj and Ly,
of K S {1, ceey O/(i/,j/)} under Liji/j/- We write [k]iji’j’ for the set L_% Y (Liji’j’ (k)) and [k/]iji’j’ for

171’ g
Lijiry(Lijir 5 (K)). Tt follows from the definitions that

(k') the preimage

2. If q1 € [klijirjr and gz € [Klijirjr, then p j g1y = Cr(ijgs) and Eg(ijgr) ~ Eg(ijg)-
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Define v, = qu[k]-.-/./ Py(ijq for any @', j" such that (i,4') € I and (j,j') € Ki»; define
ey
Vi = Zq’e[k/]m/j/ Pyigir jr oy for any i, j such that (i,i') € I and (j,j') € Kjir. It is easy to see
that whenever <’L, ’LI> el, (j,jl> € K;;» and (k/’, k/> S Liji’j’ then Vijk = Vz{/j’k/'

We now consider the formal equations, one for each (i,4') € I:
Xiv= Y. Hiapron+ Y, Wien
G EK i JET1()

where /
Pr(i,g. k)Pt 5 k)

Vijk

Hyajpwin= B |

(k,k"YeL

) rGi.s k) Xo(i.3.k).07 1 5 )-

ijil §!

These equations are provably satisfied when each X;; is instantiated to E;, since K;; and Ljj
are total and the right-hand side differs at most by repeated summands from that of the already
proved equation for ;. Note that each probabilistic branch py; ; x)€s(i,jx)-Eg(i,j,k) in Ei becomes

the probabilistic summation of several branches like

/
Pri5,k) Py (it 57 47
P ¢ )5 (igk) - Eg(i g k)

Uis
q' €[k ;550 5 gk

in Hf(i,j),f’(i’,j’){Ei/Xi,i/}i7 where <i,i/> SR <j,]/> € K,y and <k,k/> € L;jyjy. But they are

provably equal because

/
PrGg,0)Pyrt, i7" _ Piigk) /
que[k/]iji’j’( Vijk ) - Vijk que[k/]iji/;j’ pf’(ilvj'qql)
—  PrG.g.k)

A = i
and then the axiom S5 can be used. Symmetrically, the equations are provably satisfied when each
X, is instantiated to E; this depends on the surjectivity of K, and Jij ;.
Finally, we note that each X ;s is weakly guarded in the right-hand sides of the formal equations.
It follows from Theorem 3.40 that - E; = E/, for each (i,i') € I, and hence - E = E'. O

3.4.2 Axiomatizing Strong Probabilistic Bisimilarity
The difference between ~ and ~. is characterised by the following axiom:

C Z @pijgij-Eij = Z @pijfij-EijJr @ @Tipijfij-Eij

i€l.n j i€l.n j i€l.n j

where >,
probabilistic bisimilar. We denote A, U {C} by A,..

r; = 1. It is easy to show that the expressions on the left and right sides are strong

Theorem 3.43 (Soundness and completeness of A,.) E~. E' iff A,.+ E=F'.

Proof: The soundness part follows immediately by the definition of —.. Below we focus on the
completeness part.
Let E and E’ have free variables in . By Theorem 3.41 there are provable equations such that
E=F,, E'=FE] and
Ao FE; = A; (1 <m)
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A F E, = A, (i" <m')
where A; = Zjel..n(i) E¢ig) + Zjel..l(i) Whiij) and

Erin= @ praimlicinLosn
k€l..0(i,j)
Similar for the form of A,.
Next we shall use axiom C to saturate the right hand side of each equation with some summands
so as to transform each A; (resp. A},) into a provably equal expression B; (resp. Bj,) which satisfies

the following property:

(*) For any C1,Cy € B U B’ with Cy ~c Oy, if C1 — m1 then there exists some 12 s.1.
Coy —my and n1 =~ M2.

Initially we set B=Aand B = A. Let V = {(C1,Cq) | C1 ~. Cy and C1,Cs € /TUE}
Clearly the set V is finite because there are finitely many expressions in AU A'. Without loss of
generality, we take a pair (Cy,C2) from V such that C; = A}, € A’ and Cy = A; € A (we do
similar manipulations for other three cases, namely (i) C1,Cy € A; (i) C1,Cy € A/; (iii) C; € A
and Cy € ;17) If Af, — n’ then for some n we have A, —. n and n =~_ 7', by the definition of ~..
If A; — n (obviously we are in this case if n = 9(X)) we do nothing but go on to pick another pair
from V to do the analysis. Otherwise n is a convex combination n =1 + ... + 7,7, and 4; — n;
for each j < n. Hence each 7); must be in the form {(£¢; j k), Eg(ijk) * Pijk)) fre and Epq jy is a

summand of A; (so it is also a summand of B;). By axiom C we have

AretBi=Bi+ @ @ ripsiimlein Eotin-
jel.n k

Now we update B; to be to the expression on the right hand side of last equation. To this point we
have finished the analysis to the pair (C1,C2). We need to pick a different pair from V to iterate
the above procedure. When all the pairs in V' are exhausted, we end up with B and B’ which are
easy to be verified to satisfy property (*). Observe that only axiom C is involved when updating

B;, so we have the following results:

Ave - B, = B (i <m')

1;/
From now on, by using the above equations as our starting point, the subsequent arguments are like

those for Theorem 3.42, so we omit them. a

3.5 Axiomatisations for Guarded Expressions

Now we proceed with the axiomatisations of the two weak behavioural equivalences: ~ and ~. We
are not able to give a complete axiomatisation for the whole set of expressions (and we conjecture
that it is not possible, see Section 3.7), so we restrict to the subset of £ consisting of guarded
expressions only. An expression is guarded if for each of its subexpression of the form pxF', the
variable X is guarded in F' (cf. Definition 3.2).
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R2' If E=F{FE/X}, X guarded in F, then F = uxF

T1 @,pi7(Ei+X) =X + @, pi7.(Ei + X)

T2 (@, pils-Ei) ©pr.(F + @, a;hy-Fy) + (B, pits-E:) © (D, pajh;-Fy)
= (@, pili-E;) © pr.(F + @; ¢jh; . F)

T3 (D, pili-Ei) & pl.(F + @, ¢;.F)) + (@, pili-Bi) & (D, pa;l.Fy)
= (B, pili-E;) & pl.(F + D, ¢;7-F})

Table 3.4: Some laws for the axiom system Agq

3.5.1 Axiomatizing Divergency-Sensitive Equivalence

We first study the axiom system for <. As a starting point, let us consider the system A,.. Clearly,
S1-5 are still valid for =, as well as R1. R3 turns out to be not needed in the restricted language
we are considering. As for R2, we replace it with its (strongly) guarded version, which we shall
denote as R2’ (see Table 3.4). As in the standard process algebra, we need some 7-laws to abstract
from invisible steps. For =~ we use the probabilistic 7-laws T1-3 shown in Table 3.4. Note that T3
is the probabilistic extension of Milner’s third 7-law ([Mil89b] page 231), and T1 and T2 together
are equivalent, in the nonprobabilistic case, to Milner’s second 7-law. However, Milner’s first 7-law
cannot be derived from T1-3, and it is actually unsound for ~. Below we let 4,4 ={R2’, T1-3}
UA,\{R2-3}.

Theorem 3.44 (Soundness of Ayq) If Aga- E =E' then EX E'.

Proof: The rule R2’ can be shown to be sound as Proposition 3.37. The soundness of T1-3, and

therefore of A,q, is evident. O

For the completeness proof, it is convenient to use the following saturation property, which relates
operational semantics to term transformation, and which can be shown by using the probabilistic

7-laws and the axiom C.
Lemma 3.45 (Saturation) 1. If E = n with n = {((;,E; : pi)}si, then Aga W E = E +
P, pili-E;;

3. If E= 9(X) then Ay - E=FE + X.

Proof: The first and third clauses are proved by transition induction on the inference of £ = n;
the second clause can be considered as a corollary of the first one. See Appendix A.4 for more
details. 0

To show the completeness of Agq, we need some notations. Given a standard equation set
¢ : X = H, which has free variables W, we define the relations —¢cC X x P((Var U L) x X) (the

notation P(V') represents all distributions on V) as X; —¢ n iff H; — 7. From —, we can define
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the weak transition = in the same way as in Section 3.2. We write X; ~¢ X iff X; =¢ n, with
n=A{;,X; :pj)}ies, k € J and & = 7. We shall call { guarded if there is no X; s.t. X; ~¢ X;.
We call { saturated if for all X € X, X = 1 implies X —¢ 7. The variable W is guarded in ( if it
is not the case that X1 —¢ 9(W) or Xy ~¢—¢ H(W).

For guarded expressions, the equational characterisation theorem and the unique solution theo-

rem given in last section can now be refined, as done in [Mil89b].

Theorem 3.46 (Equational characterisation II) Every guarded expression E with free vari-
ables W provably satisfies a standard guarded equation set ( with free variables in w. Moreover, if
W is guarded in E then W is guarded in C.

Proof: By induction on the structure of £. Consider the case that E = @, ; pils.F;. For
each ¢ € I, let X; be the distinguished variable of the equation set (; for E;. We can define ( as
{X =B, pili-Xi} Ul G, with the new variable X distinguished. All other cases are the same
as in [Mil89b]. O

Lemma 3.47 Let E provably satisfies the standard guarded equation set (. Then there is a satu-
rated, standard, and guarded equation set ' provably satisfied by E.

Proof: Let ¢ be the equation set X = H and Agq F E = H{E/f(} By using Lemma 3.45,
we show that if X; = n then Agq - E; = E; + @, p;l;-E; when n = {({;,X; : pj)};, and
Agq b E; = E; + X when n = 9¥(X). Repeat this procedure for all weak transitions of E;, at last
we get Agq - E; = H{{E’/)N(} Hence we can take (' to be the equation set X = H'. O

Theorem 3.48 (Unique solution of equations II) If { is a guarded equation set with free vari-

ables in W, then there is an expression E which provably satisfies (. Moreover, if F provably satisfies
¢ and has free variables in W, then Aga - E = F.

Proof: Nearly the same as the proof of Theorem 3.40, just replacing the recursion rule R2 with
R2'. O

The completeness result can be proved in a similar way as Theorem 3.42. The main difference
is that here the key role is played by equation sets which are not only in standard format, but also
saturated. The transformation of a standard equation set into a saturated one is obtained by using
Lemma 3.45.

Theorem 3.49 (Completeness of Ayq) If E and E' are guarded expressions and E < E' then
A E=E.

Proof: By Theorem 3.46 there are provable equations such that F = E;, E' = E{ and
Arcl_Ei:Ai (@Sm)
Are B E, = Al (i <m')

For any C € AU Zl/’, we assume by Lemma 3.47 that C is saturated. Therefore it is easy to show
that C = 1 implies C —. 7. Let ¢’ € AU A’. We note the interesting property that if C = C’



CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES 41

T4 (7.E=(F
T5 IfrE=7F+Fand7F=7F+ FE then 7.E = 7.F.

Table 3.5: Two 7-laws for the axiom system Ay,

and C — 7 then there exists ' s.t. ¢/ —. ' and n == n’. Thanks to this property the remaining

arguments are quite similar to that in Theorem 3.43, thus are omitted. a

3.5.2 Axiomatizing Observational Equivalence

In this section we focus on the axiomatisation of ~. In order to obtain completeness, we can
follow the same schema as for Theorem 3.42, with the additional machinery required for dealing
with observational equivalence, like in [Mil89b]. The crucial point of the proof is to show that,
if F ~ F, then we can construct an equation set in standard format which is satisfied by F and
F. The construction of the equation is more complicated than in [Mil89b] because of the subtlety
introduced by the probabilistic dimension (cf. Theorem 3.53). Indeed, it turns out that the simple
probabilistic extension of Milner’s three 7-laws would not be sufficient, and we need an additional
rule for the completeness proof to go through. We shall further comment on this rule at the end of
Section 3.6.

The probabilistic extension of Milner’s 7-laws are axioms T1-4, where T1-3 are those introduced
in previous section, and T4, defined in Table 3.5, takes the same form as Milner’s first 7-law [Mil89b].
In the same table T5 is the additional rule mentioned above. We let Ay, = A,4U{T4-5}.

Theorem 3.50 (Soundness of Ay,) If Ajo - E=F then E~F.

Proof: Rule T5 is proved to be sound in Proposition 3.33. The soundness of T4, and therefore of
Ago, is straightforward. O

The rest of the section is devoted to the completeness proof of Ag,. First we need two basic

properties of weak combined transitions.
Lemma 3.51 1. If ES.n then T.E =.1;
2. If E . 9(X) then E = 9(X).

Proof: The first clause is easy to show. Let us consider the second one. If 9(X) is a convex
combination of 7y, ..,m, and E = n; for all ¢ € 1..n, then each n; must assign probability 1 to (X, 0),
thus n; = 9(X). O

Lemma 3.52 If E =, n withn = {({;, E; : p;)}i then Aga b 7.E = 7.E + D, piti.E;.

Proof: It follows from Lemma 3.51 and Lemma 3.45. O

The following theorem plays a crucial role in proving the completeness of 4,.
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Theorem 3.53 Let E provably satisfy ¢ and F provably satisfy (', where both  and (' are standard,
guarded equation sets, and let E ~ F. Then there is a standard, guarded equation set (" satisfied
by both E and F'.

Proof: Suppose that X = {X1,.., X}, Y = {Y1,...,Y,} and W= {W1, W, ...} are disjoint sets
of variables. Let
(: X=H
¢ Y=J
with fpv(f[) C XuWw, fpv(j) C Y UW, and that there are expressions £ = {F1,...; B} and
F= {Fy,...,F,} with By = E, F; = F, and fpv(E) Ufpv(Fv) C W, so that
Ago - E = H{E/X}
Ago b F = J{F/Y}.
Consider the least equivalence relation R C (X UY) x (X UY) such that
1. whenever (Z,Z') € R and Z — 7, then there exists 7/ s.t. Z’ =, n' and n =g 7';
2. (X1,Y1) € R and if X; — n then there exists 7' s.t. Y1 =. 7' and n=x 7/'.

Clearly R is a weak probabilistic bisimulation on the transition system over XU }7, determined by

HdﬁfHC U —¢ . Now for two given distributions n = {(4;, X; : p:) bier, W' = {(h;,Y; : ¢;) }jes, with

1n =g 1, we introduce the following notations:

Ky, = {(@,j)|itel, jed, {;i=hjand (X;,Y;) € R}
v, = Z{pi' | = I, uy = Ei, and (Xi,Xi/) (S R} foriel
vi = YApjy i €J, vy =hy and (V;,Yy) eR}  forje ]

Since n =g 7’ it follows by definition that if (¢, j) € K, ,/, for some 7,7, then v; = v;. Thus we can

define the expression

Gy o @ piqj I2WAT
()€K oy
which will play the same role as the expression Hy(; ;) /(i j+) in the proof of Theorem 3.42. On the
other hand, if n = ' = ¥(X) we simply define the expression G, f x.

Based on the above R we choose a new set of variables Z such that
Z={Zj| XieX, Y;eY and (X,,Y;) € R}.

Furthermore, for each Z;; € Z we construct three auxiliary finite sets of expressions, denoted by

A;j, Bi; and Cjj, by the following procedure.
1. Initially the three sets are empty.

2. For each n with X; — 7, arbitrarily choose one (and only one — the same principle applies
in other cases too) n’ (if it exists) satisfying n =g n’ and Y; = 7/, construct the expression
G,y and update A;; to be A;; U{G, . }; Similarly for each " with Y; — #’, arbitrarily choose
one 7 (if it exists) satisfying n =r n' and X; =, 7, construct G, ,, and update A;; to be
Ay U {Gnm’}-
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3. For each n with X; — 7, arbitrarily choose one 7’ (if it exists) satisfying n =g 7/, Y; = '
but not Y; =, 7/, construct the expression G,,,y and update B;; to be B;; U{Gy,}.

4. For each 7/ with Y; — ', arbitrarily choose one 7 (if it exists) satisfying n =g 7/, Xi; =. 1
but not X; = 7, construct G, , and update C;; to be Cj; U{G, .}

Clearly the three sets constructed in this way are finite. Now we build a new equation set
" Z=1L
where ({| is the distinguished variable and
Lij _ { ZGEAU G lf Bij U Cij = @
T'(ZGeAijuBijucij G) otherwise.
We assert that E provably satisfies the equation set ”’. To see this, we choose expressions
=
! 7.F; otherwise
and verify that Ay, - Gy = Lij{G/Z}.

In the case that B;; U C;; = 0, all those summands of Lij{é /Z} which are not variables are of

the forms:

@ pi?j EzEz or @ szJ ElTEl

. Vi - Vi
(1,9)EK,, (4,0)EK,,
By T4 we can transform the second form into the first one. Then by some arguments similar to

those in Theorem 3.42, together with Lemma 3.45, we can show that
Ago b Lij{G/Z} = H{E/X} = E;.

On the other hand, if B;; UCy; # 0, we let C;; = {D1,...,D,} (Ci; = 0 is a special case of the
following argument) and D =}, Di{G/Z}. As in last case we can show that

Ago b Lij{G)Z} = .(H,{E/X} + D).

For any [ with 1 < [ < o, let DZ{CNJ/Z} = @, prur.Er. It is easy to see that E; =. 1 with
1N = {(uk, Bx : pr)}x. So by Lemma 3.52 it holds that

Ago b 7.E; = 7.E; + Di{G/ Z}.
As a result we can infer
Ago FT7.E; =7.E;+D =1.E; + (E; + D).
by Lemma 3.45. Similarly,
Ago F7.(E; + D) =71.(E; + D)+ E;.
Consequently it follows from T5 that

Ago b 7.E; = 7.(E; + D) = 7.(H;{E/X} + D) = L;{G/Z}.
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Figure 3.3: Observationally equivalent states X1,Y; and Z

(i, 5) ‘ Aij ‘ Bi; ‘ Cij
(1,1) {1a.Z2 & 3a.Zs3} 0 0
(1,2) {a.Za3} 0 {r.Z13}
(1,3) {a.Z} 0 0
(2,1) {%a.Zgg @ %G.ZQ3} {ia.Zgg @ ia.Zg3 P %T.ZH} 0
(2,2) | {a.Za3, %G.Zgg D %7‘.213} ] {1.Z23}
(2,3) {a.Z22} {3a.Z22 ® 37213} )

Table 3.6: The construction of sets A;j;, Byj;, C;

In the same way we can show that F' provably satisfies ¢”. At last " is guarded because ¢ and ¢’

are guarded. 0

To help understanding the proof of the above theorem, we illustrate the construction of the

equation set ¢” by a simple example. Consider the equation sets ¢ and ¢’ as follows.

¢: X1 = aXo ¢: W = %a.YQ &) %a.Y3
Xo = a.Xo+ %G.XQ &) %T.Xl Yo = aY3+7.Y3
Yg = a.}/g

The two equation sets describes the transition graphs in Figure 3.3 (1) and (2) respectively. Note
that if Fy, Es provably satisfy ¢, and Fy, Fs, F3 provably satisfy ¢/, then By ~ Fy ~ uz(a.Z) (cf.
Figure 3.3 (3)).

Let R be the equivalence relation that has a unique equivalence class { X7, Xo, X3, Y7,Y2}. Tt is
easy to check that R is a weak bisimulation on the transition system over X UY. Now we take new
variables {Z;; | 1 < ¢ < 2,1 < j < 3} and form the sets A;;, B;; and C;; for each variable Z;;, as
displayed in Table 3.6, by using the procedure presented in the above proof.



CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES 45

We construct the equation set (", based on all expressions shown in Table 3.6.

" Zy o= %a.Zgg D %G.Zgg
Z12 = T1.(a.Za3+ T.713)
Z13 = a.Zx
= T.(%G.ZQQ &) %G.Zgg + ia.Zgg @ ia.Zg3 ® %T.Zn)
Zay = T.(a.Zoz+ 1a.Zos ® L1213+ 7. Z23)
Zas = T1.(a.Zao + %a.Zgg D %T.Zlg)

We can see that Fj provably satisfies ¢ by substituting Ei, 7.F1, E1, 7.Fa, 7.Es, 7.E5 for
Zh1, Z19, Z13, Zo1, Loz, Zos, respectively; similarly Fy provably satisfies (" by substituting Fy, 7.F5,

F3, 7.Fy, 7.F5, 7.F3 for these variables.

Theorem 3.54 (Completeness of A,,) If E and F' are guarded expressions and E ~ F, then
AprE=F.

Proof: A direct consequence by combining Theorem 3.46, 3.53 and 3.48. a

3.6 Axiomatisations for Finite Expressions

In this section we consider the recursion-free fragment of &£, that is the class £ of all expressions
which do not contain constructs of the form pxF. In other words all expressions in £ have the
form: ), G}J. Dijuij-Eij + > X

We define four axiom systems for the four behavioural equivalences studied in this paper. Basi-
cally Aq, Ase, Apa, Ajo are obtained from A,, A, Aga, Ago respectively, by cutting away all those

axioms and rules that involve recursions.

A, {S1-5) Ase
Au ¥ A,U{T1-3} Ao

def

def

A;U{C}
© A»U{T4-5}
Theorem 3.55 (Soundness and completeness) For any E, F € &,

1. E~Fiff AcF E=F;

2. E~. Fiff A FE=F;

3. EXFiff Ay E=F;

4. ExF iff Ajy W E=F.

The soundness part is obvious. The completeness can be shown by following the lines of previous
sections. However, since there is no recursion here, we have a much simpler proof which does not

use the equational characterisation theorem and the unique solution theorem. Roughly speaking,
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all the clauses are proved by induction on the depth of the expressions. We define the depth of a

process, d(E), as follows.

d(0) = 0
dX) = 1

d(X2; Ei) = maz{d(E;)}s
The completeness proof of Ay, is a bit tricky. In the classical process algebra the proof can
be carried out directly by using Hennessy Lemma [Mil89a], which says that if E ~ F then either
7. EFE~For EF~F or F~r1F. In the probabilistic case, however, Hennessy Lemma does not hold.
For example, let

1 1
E¥q and F&a+ (57.(1 @ §a).

We can check that: (1) 7 E £ F, (2) E#£F, (3) E % 7.F. In (1) the distribution {(7, E : 1)} cannot
be simulated by any distribution from F. In (2) the distribution {(7,a : 3),(a,0 : 1)} cannot be
simulated by any distribution from E. In (3) the distribution {(7, F : 1)} cannot be simulated by
any distribution from F.

Fortunately, to prove the completeness of Ay,, it is sufficient to use the following weaker property.
Lemma 3.56 (Promotion) For any E,F € &, if E~ F then Ap, - 7. E =T1.F.

Proof: By induction on d = d(E) + d(F'). We consider the nontrivial case that d > 0.

If X is a nondeterministic summand of E, then £ — 9(X). Since F = F it holds that F' =,
Y(X). By Lemma 3.51 we have 7.F = 9(X). It follows from (the recursion-free version of)
Lemma 3.45 that A¢qg - 7.F =7.F + X.

Let @,c;pili-E; be any summand of E. Then we have £ — 0, with n = {({;, E; : p;)}ier.
Since E ~ F, there exists 7/, with 7' = {(hj, F} : ¢;)}jes st. F =.n' and n = n’. For any
k,l € I with ¢, = ¢, and E}, = Ey, it follows from T4 and induction hypothesis that Ay, - ¢ . By =
lp.T.Ey = 01.7.E) = {1.E;. By S5 we can derive that Af, = @,c; pili- B = @, cp 0Ly Ej,, where
the process on the right hand side is “compact”, i.e., for any k',!’ € I', if ¢, = ¢}, and E}, = E},
then k' = I'. Similarly we can derive Ay, - @jeJ gjh;. F; = @j,EJ, q; h’y FY, with the process on
the right hand side “compact”. From 7 =~ 1’ and the soundness of Ayq, it is easy to prove that
Ago - @y 0yl By = ®j/€J’ q;-,h;-,.Fj(, since each probabilistic branch of one process is provably
equal to a unique branch of the other process. It follows that A, F @ie[piei'Ei = @jeJ qjh;. F;.
By (a recursion-free version of) Lemma 3.52 we infer Ag, = 7.F' = 7.F + @, ; ¢;h;.Fy = 7.F +
D pili-Ei.

In summary Ay, - 7.F = 7.F' + E. Symmetrically Af, - 7.FE = 7.E+ F. Therefore A¢, - 7.E =
T7.F by T5. O

The promotion lemma is inspired by [FY03], where a similar result is proved for a language of
mobile processes.

At last, the completeness part of Theorem 3.55 (4) can be proved as Lemma 3.56. Note that
for any k,l € I with ux = w; and Ej, = Ej, we derive Ay, b up. By = w;.E; by using T4 and the

promotion lemma instead of using induction hypothesis.
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S1 E+0=FE

S2 E+E=FE

S3 Ziel E; = Ziel E,) pis any permutation on [

S4 D, pili-Bi = @,crPpiiyloi)-Epsy  p is any permutation on I

S5  (D;pili-Ei) ©pl. E® ql.E = (D, pili-Ei) ® (p+ Q)l.E

C  Yietn®pilis-Bij = Yier.n ®;pislis-Bij + Dier.n ©; riviglis Lij

Tl @,pim(Ei+X) =X +@,pi.(E: + X)

T2 (D, pili-Ei) & pr.(F + D, 4;h;-Fj) + (B; piti-Ei) & (B, pash; - Fj)
= (@, pili-E;) © pr.(F + @, ¢;h;.F)

T3  (D;pili-Ei) ®pl.(F + D, ¢;7.F;) + (D, pili-Ei) & (D, pa;l-Fy)
= (B, pili-E;) & pl.(F + D, ¢;7.F})

T4 (7.E=(F

T5 Ifr.E=7E+F and .F=7F+E then 7.E =1.F.

Rl  uxE=E{uxE/X}

R2 If E=F{E/X}, X weakly guarded in F, then F = uxF
R2 If E=F{E/X}, X guarded in F, then F = uxF

R3 jpux(E+X)=uxFE

In C, there is a side condition 1.

icl.nTi =

Table 3.7: All the axioms and rules

It is worth noticing that rule T5 is necessary to prove Lemma 3.56. Consider the following two
expressions: 7.a and T.(a + (%T.a ® %a)). It is easy to see that they are observational equivalent.
However, we cannot prove their equality if rule T5 is excluded from the system Ay,. In fact, by using
only the other rules and axioms it is impossible to transform 7.(a + (17.a ® $a)) into an expression
without a probabilistic branch p7.a occurring in any subexpression, for some p with 0 < p < 1. So

it is not provably equal to 7.a, which has no probabilistic choice.

3.7 Summary

In this chapter we have proposed a probabilistic process calculus which corresponds to Segala and
Lynch’s probabilistic automata. We have presented strong bisimilarity, strong probabilistic bisimi-
larity, divergency-sensitive equivalence and observational equivalence. Sound and complete inference
systems for the four behavioural equivalences are summarized in Table 3.8.

Note that we have axiomatized divergency-sensitive equivalence and observational equivalence
only for guarded expressions. For unguarded expressions whose transition graphs include 7-loops,
we conjecture that the two behavioural equivalences are undecidable and therefore not finitely

axiomatizable. The reason is the following: in order to decide whether two expressions F and F' are
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strong equivalences | finite expressions all expressions
~ As: S1-5 A,: S1-5,R1-3
~e¢ Ase: S1-5,C A.: S1-5,R1-3,C
weak equivalences | finite expressions guarded expressions
~ Ayq: S1-5,C,T1-3 | Agq: S1-5,C,T1-3,R1,R2’
~ Aygo: 81-5,C,T1-5 | Ag: S1-5,C,T1-5,R1,R2’

Table 3.8: All the inference systems

observationally equivalent, one can compute the two sets
Se={nlE=n} and Sp={n|F=n}

and then compare them to see whether each element of Sg is related to some element of Sr and vice
versa. For guarded expressions F and F', the sets Sg and Sr are always finite and thus they can
be compared in finite time. For unguarded expressions, these sets may be infinite, and so the above
method does not apply. Furthermore, these sets can be infinite even when we factorize them with
respect to an equivalence relation as required in the definition of weak probabilistic bisimulation.
For example, consider the expression £ = p X(%a &3] %T.X ). It can be proved that Sg is an infinite

set {n; | i > 1}, where
1 1

m={(0,0: (1= 3:)), (B s 5)}.

Furthermore, for each ¢,j > 1 with ¢ # j we have 7; #r n; for any equivalence relation R which
distinguishes F from 0. Hence the set Sp modulo R is infinite.

It should be remarked that the presence of 7-loops in itself does not necessarily cause non-
decidability. For instance, the notion of weak probabilistic bisimulation defined in [Seg95, CS02]
is decidable for finite-state PA. The reason is that in those works weak transitions are defined in
terms of schedulers, and one may get some weak transitions that are not derivable by the (finitary)
inference rules used in this paper. For instance, consider the transition graph of the above example.
The definition of [Seg95, CS02] allows the underlying probabilistic execution to be infinite as long
as that case occurs with probability 0. Hence with that definition one has a weak transition that
leads to the distribution § = {(a,0: 1)}. Thus each 7; becomes a convex combination of  and §(FE),
i.e. these two distributions are enough to characterise all possible weak transitions. By exploiting
this property, Cattani and Segala gave a decision algorithm for weak probabilistic bisimulation in
[CS02].

In this chapter we have chosen, instead, to generate weak transitions via (finitary) inference rules,
which means that only finite executions can be derived. This approach, which is also known in the
literature ([SL94]), has the advantage of being more formal, and in the case of guarded recursion
it is equivalent to the one of [Seg95, CS02]. In the case of unguarded recursion, however, we feel
that it would be more natural to consider also the “limit” weak transitions of [Seg95, CS02]. The

axiomatisation of the corresponding notion of observational equivalence is an open problem.



Chapter 4

Axiomatisations for Typed Mobile

Processes

In this chapter we study the impact of types on the algebraic theory of the w-calculus. The type
system has capability types, which give rise to a natural and powerful subtyping relation — the main
source of challenges and interests of this chapter. We consider two variants of typed bisimilarity,
both in their late and in their early version. For both of them, we give complete axiomatisations
for the closed finite terms. For one of the two variants, we provide a complete axiomatisation for
the open finite terms.

The contents of this chapter are presented in the following order. In Section 4.1 we introduce
the syntax, semantics and typed bisimilarity for a version of the m-calculus without parallelism.
This small language already shows the major obstacles for axiomatisations and hence makes the
presentation of our ideas neater. In Section 4.2 we set up a complete axiomatisation for closed terms.
In Section 4.3 we axiomatize the typed bisimilarity for all finite terms. In Section 4.4 we examine
other equivalences and relate their axiomatisations to the results obtained in the previous sections.
In Section 4.5 we show how the operator of parallel composition is admitted in the language. The
effect on the axiomatisations is to add an expansion law to eliminate all occurrences of the operator.

Finally we end this chapter with some concluding remarks.

4.1 A Fragment of The Typed n-calculus

In this section we review the m-calculus (without parallelism), capability types, the usual operational

semantics, typed labelled transition system as well as typed bisimilarity.

4.1.1 Standard Operational Semantics

We assume an infinite set of channels, ranged over by a, b, . . ., and an infinite set of variables, ranged
over by z,y,.... We write * for the unit value (we shall use unit as the only base type). Channels,

variables and * are the names, ranged over by u, v, .... Below is the syntax of finite processes (also

49
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called terms).

PQ := 0 | T.P | u(z: T).P | uv.P | P+Q ‘ (va:T)P ‘ ePQ
p u= [u=v]|p|ery
It has the usual constructors of finite monadic w-calculus: inaction, prefix, sum and restriction.
The match constructor is replaced by a more general condition, ranged by ¢, 1 etc, and produced
by match, negation and conjunction. Mismatching like [u # v] abbreviates —[u = v]. We also use
V, which can be derived from A as usual. Here ¢ P(@ is an if-then-else construct on the boolean
condition ¢. We omit the else branch @) when it is 0. We have not included an operator of recursion
because our main results in this chapter are about axiomatisations for finite terms. However, all
results and definitions in Section 4.1 remain valid when recursion is added.

There is a channel-binding and a variable-binding operator. In (va : S)P the displayed occur-
rence of channel a is binding with scope P. In u(x : T).P the occurrence of variable x is binding
with scope P. An occurrence of a channel (resp. variable) in a process is bound if it lies within
the scope of a binding occurrence of the channel (resp. variable). An occurrence of a channel or a
variable in a process is free if it is not bound. We write fn(P) and fv(P) for the set of free names
and the set of free variables, respectively, in P. We use n(y) for all names appearing in ¢. When ¢
has no variables, [¢] denotes the boolean value of .

When fo(P) # 0, P is an open term. We can make open terms closed by the use of closing
substitutions, ranged over by o, 0,04, -+, which are substitutions mapping variables to channels
and acting as identity on channels (thus similar to the concept of ground substitution used in term
rewriting systems [Zan03]). In the calculus, the distinction between channels and variables simplifies
certain technical details; see for instance the discussion on the rules for substitutivity of prefixes
in Section 4.3: the rules are different depending on whether the prefixes use channels or variables.
(This is not the case in the untyped case: for instance, [PS95] does not distinguish between variables
and channels, but it is quite straightforward to adapt the work to the case where there is such a
distinction.)

The standard operational semantics is presented in the late style in Table 4.1. The symmetric
rule of sum is omitted. In a transition P — P’, the closed term P may become open in P’ after
performing the action a. As usual there are four forms of actions: 7 (interaction), a(x : T') (input),
ab (free output), a(b: T') (bound output). We also use « to range over the set of extended prefixes,
which contains the tau, the input prefixes, the output prefixes and the bound output prefixes. The
bound output %(a : T).P is an abbreviation of (va : T)ua.P. As in Section 2.2.2 we use subj(a),
bn(a) and n(a) to stand for the subject, bound name and names of . As usual we identify terms
up to alpha-conversion.

We recall the capability types, as from [HR04, HR02b]. The subtyping relation <: and the typing
rules for processes are displayed in Table 4.2. We write 1" :: TYPE to mean that T is a well-defined
type. There are three forms of types for channel names: iT,0S and b(T,S), they correspond to
the ability to receive values of type T', send values of type S, or to do both. For simplicity we often
abbreviate b(T,T) to bT (which is actually the simple channel type T given in Section 2.2.5). As
shown in [HRO2b], this extension to the original I/O types (cf. Section 2.2.6) makes it possible to

define two partial operators meet (M) and join (U). But the definitions of the two operators are
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in out

a(z:T).P "5 p ab.P 2% p
tau e — sum Lﬁ
T.P— P P+rQ = P
— @ / o a ’
true [e] = ]CCrue aP P—I> P false [e] = 1;;1156 QQ T) Q
o PQ— P Q—Q
open P2 p a#b res PP bdn(a)
wb: )P ““D pr (b T)P = (vb: T)P'

Table 4.1: Transition rules

rather long, so we do not repeat them and recommend the reader to consult Section 6 of [HR02b].!

Intuitively, the meet (resp. join) of T" and S is the union (resp. intersection) of their capabilities.

Proposition 4.1 Given types 11,15 and S with T < Tb.
1. If T; M S are defined, fori=1,2, then T1 S < ToMS;
2. If T; U S are defined, fori=1,2, then Ty US < ToUS;
3 TyNTy =Ti;
4. Ty UTy =Ty,

Proof: Following the definitions of meet and join, the result is straightforward by structural

induction on types. O

A type environment A is a partial function from channels and variables to types; we write A
and A, for the channel and variable parts of A, respectively. A type environment is undefined on
infinitely many channels and variables (to make sure it can always be extended). We will often
view, and talk about, A. as a set of assignments of the form a : T, describing the value of A, on all
the channels on which A, is defined. Similarly for A,. If A(u) is defined and takes the form iT or
b(T, S), then the predicate A(u)|; holds and we write A(u); for T, otherwise the predicate A(u)};
holds, indicating that A has no input capability on w. Similarly for A(u), and A(u)], (output
capability). Notice that A(u)|;

i is contravariant.

is covariant and A(u)|,

Proposition 4.2 Suppose that u,v € dom(A) and A(u) < A(v).
1. If A(v)|; then A(u); < A(v)i;

2. If A(w)], then A(v), < A(u),.

1The only modification we have made is as follows. If two channel types T and S have no common capability,
then in our setting 7'U S is undefined, while in [HRO02b] T'U S is defined to be a maximal type, which is a supertype

of every channel type.



CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES 52

Types:
T :: TYPE T,5§:TYPE S<T
unit :: TYPE iT, oT :: TYPE b(T,S) :: TYPE
Subtyping:
T<T T <T T<T
T<T T<T" iT < i1’
T<T T<T T<T
oT" < oT b(T,S) < iT’ b(S,T") < oT
T<T S<8
b(T,S") < b(T",S)
Typing rules:
Nu)<T 'P T'HQ x:THP T'Fwu:iT
F'tu:T r-P+Q Pru(z:T).P
la:THP 'Fu:0T T'Fov:T TEHP
r+o 'k (va:T)P It av.P
L' P I'P THQ n(p) C dom(D)
IFr.P Ty PQ

Table 4.2: Types and typing rules

The typing rules for processes are standard except for conditions. We impose no constraint for
the types of names appearing in conditions. The reason is discussed in Section 1.4. This mild

modification does not affect the proofs of the following two results [PS96, HR02b, HR04].
Lemma 4.3 (Substitution) IfT'+a:T and T,z : T+ P, then T F P{a/z}.
Theorem 4.4 (LTS subject reduction) Suppose I' - P and P -~ P'.

1. ifa=171 then'+ P'.

2. ifa=a(x:T) thenT(a) |; and T,z : T+ P’.

3. ifa=ab thenT(a) l,, THb:T(a), and T+ P'.

4o ifa=a(b:T) thenT(a) lo, T,b:TFb:T(a) and T,b: T+ P

4.1.2 Typed Labelled Transition System

Two known TLTSs were presented in [BS98, HR04], both of them were given in early style. We

prefer to write a TLTS in late style, so as to define the late version of bisimilarity in a concise way.
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Red P%’P/ - Out ébA(a) li
AtpP—AgP Atab.P =5 ANb: Afa); £ P
ab / /
In A(f()leo) Open AﬂP—»Aaﬂ(bi) a#b
Ata(z:T)P —= Az:THP Agwh:T)P — A" ¢ P
Res AtP A 4P agn() Sum AtP-5S AP
At (va:T)P -5 A f (va:T)P AtP+Q-5 A g P
o a ’ ’ o a ’ ’
True l¢] = True A&Pl—»A/ﬂP False[[ga]]fFalse AiQ/—»AIﬁQ
AfpPQ— A" §P At pPQ — A §Q

Table 4.3: Typed LTS

First we extend the subtyping relation to type environments, but only considering the types
of channels. So I' << A means that Ty = Ay, dom(A.) C dom(T¢) and T'c(a) < Ac(a) for all
a € dom(A.).

Definition 4.5 A configuration is a pair AP which respects some type environment I, i.e., T' < A
and I' - P.

The above definition implies the condition fv(P) C dom(A), because we have fu(P) C dom(Ty)
by I' b P and dom(T'y) = dom(A,) by T <: A. Since alpha-conversion is implicitly used throughout
this thesis, we may assume bn(P) N dom(A) = (). Here there exists a mild difference from the
definitions of configuration given in [BS98, HR04]. We do not require the environment to have
knowledge of all the free channels used by P. The less knowledge it grasps, the weaker testing
power it owns when observing the behaviour of P. In Table 4.3, we present a transition system built
on this definition. In the premise of rule Red, P —— P’ stands for the standard reduction relation
of the typed w-calculus, as given in Table 4.1.

Using the partial meet operation, we can extend a type environment A to A Mw : T, which is
just Ayu T if w € dom(A), otherwise it differs from A at name u because the capability of this
name is extended to be A(u) T (if A(u)M7T is undefined, then so is AMw : T'). In this way we can
define Ay M Ay as the meet of two environments A; and As. In rule Out, the process sends channel
b to the environment, so the latter should be dynamically extended with the capability on b thus

received. For this, we use the meet operator, and exploit the following property on types:
R<T and R< S imply TS defined and R << T TS

for any type T,S and R. (This property does not hold for the capability types as in Section 2.2.6.)

The next three fundamental lemmas describe various properties of the TLTS. They underpin
many later results. The well-definedness of our TLTS is based on Lemma 4.6. The close relationship
between processes and configurations is reflected by their corresponding transitions, as can be seen
in Lemma 4.7. Finally Lemma 4.8 says that the more capabilities an environment owns, the more

behaviours it can observe on a process.
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Lemma 4.6 (TLTS subjection reduction) If A4P is a configuration which respects T and AfP —~
AP’ then A'§P’ is also a configuration, respecting I, where

1. ifa=7then A=A andI" =T,

2. ifa=alx:T) then A =Ajx:T and " =T,2:T.
3. ifa=ab then A’ =AMNb: A(a); and TV =T.

4. ifa=ab:T) then A" =A,b: Aa); andT" =T,b:T.

Proof: By induction on depth of inference. LTS subject reduction theorem is needed. a

Lemma 4.7 Suppose that AfP is a configuration.

1. AﬂPL)AﬂP' iﬁPLP’,
2 AP " A a THP A AW) Lo and P

3. AP % ANb: Aa):tP' iff Aa) s and P P,
4 AP U A b Aa) st P iff Ala) |; and P YD P

Proof: By induction on depth of inference. a

Lemma 4.8 Suppose that AfP —— A'4P’', T' <: A and T#P is a configuration. Then T4P —= I'§P’
and IV < A,

Proof: Straightforward by using the preceding lemma. O

4.1.3 Typed Bisimilarity

When comparing two typed actions, to require them to be syntactically the same is too restrictive.
For example one would not be able to say (va : T1)ua is bisimilar to (rva : Tz)@a under the environ-
ment A = u : bobT’, where T} = boT',T» = bbT. Therefore we do not check types in the bisimulation
game. We shall write |« for the action a where its type annotations have been stripped off.

P = Q reads “P and @ are bisimilar under type environment A”. The type environment A is
used as follows: A, shows the channels that are known to the external observer testing the processes
in the bisimulation game, and the types with which the observer is allowed to use such channels. By
contrast, A, shows the set of variables that may appear free in the processes and the types for these
variables show how the observer can instantiate such variables (in closing substitutions). Therefore:
the channels of A, are to be used by the observer, with the types indicated in A.; the variables
in A, are to be used by the processes, but the observer can instantiate them following the types
indicated in A,.

A process is closed if it does not have free variables; similarly a type environment is closed if it
is only defined on channels. Otherwise, processes and type environments are open. We first define
= on the closed terms, then on the open terms. Bisimilarity is given in the late style; we consider

the early style in Section 4.4.2.
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Definition 4.9 A family of symmetric binary relations over closed terms, indexed by type envi-
ronments, and written {Ra}a, is a typed bisimulation whenever P Ra Q implies that, for two
configurations AfP and AfQ,

1. if A§P % A'$P’ and « is not an input action, then for some Q', AfQ N AQ', |a|=| 0]
and P' Rar Q.

2. if AP “C AP then for some @', A4Q “TS AMHQ! and for all b with Ac F b Aa)e it
holds that P'{b/x} Ra Q'{b/z}.

Two processes P and Q are typed A-bisimilar, written P =a Q, if there exists a typed bisimulation
{Ra}a such that P Ra Q.

The difference w.r.t. typed bisimilarity as in [BS98, HR04] is that, in the input clause, the
type environment A is not extended. In other words, the knowledge of the external observer does
not change through interactions with the process in which the value transmitted is supplied by the
observer itself (by contrast, the knowledge does change when the value is supplied by the process;
cf. rule Out in Table 4.3). Therefore =4 is optimised for reasoning on finite systems. To deal with
infinite systems, it is more suitable to use the alternative equivalence where the environment can be
extended. We shall turn to this topic in Section 4.4.1.

Definition 4.10 Two processes P and Q are bisimilar under the environment A = A., T : T,
written P =a Q, if AP, AfQ are configurations and, for all b with A¢ + b f, it holds that

P{b/z} =a, Q{b/T}.

The intuition behind the above definition is that channels are capabilities while variables are
obligations of the environment. The environment is obliged to fill in the variables at the specified
types. Once the obligations are determined, they cannot be strengthened or weakened. That’s why
variables are invariant in the subtyping relation on type environments given before.

Below we report three basic properties of typed bisimilarity.
Lemma 4.11 If P = Q and A < A, then P =x/ Q.
Proof: By Lemma 4.7, 4.8 and the definition of typed bisimilarity. a

The intuition behind this lemma is quite clear. When two processes exhibit similar behaviours
under an environment with stronger discriminating power, they are also indistinguishable by a
weaker environment. In the presence of distinction between channels and variables, we have the

following interesting property for typed bisimilarity.
Lemma 4.12 If P =p .7 Q and S < T then P = 2.5 Q.
Proof: It follows easily from the definition of typed bisimilarity on open terms. O

As we said before in Section 1.4, generally speaking, typed behavioural equivalences are not closed
under injective substitutions. Nevertheless, if a substitution only maps channels and variables to
other channels and variables of the same types respectively (called type-preserving substitution), we
do have the property seen in untyped m-calculus, as expressed by the lemma below. (With a slight

abuse of notation, here we use o to stand for type-preserving substitutions.)
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Lemma 4.13 If P =A Q then Po =a, Qo for o injective on fn(P,Q) U dom(A) and Ao is the
type environment which maps o(u) to A(u) for all u € dom(A).

Proof: Similar to the proof in untyped setting. It follows from the fact that A§P —— A’4P’

implies ActPo =% A'otP’o, for injective type-preserving substitution o. a

Since all processes are finite, and we do not use recursive types, in P =A @, the environment
A can always be taken to be finite (i.e., defined only on a finite number of channels and variables):
it is sufficient that A has enough names fresh w.r.t. P and @, for all relevant types. This can be
proved with a construction similar to that in Lemma 4.34. In the remainder of the chapter all type
environments are assumed to be finite. (If A is infinite, our proof systems in Section 4.2 and 4.4.1
remain sound and complete; the axiom system in Section 4.3 is still sound, but its completeness proof
relies on the finiteness of A.) We should stress, however, that all results and definitions presented
up to this section are also valid for non-finite processes (i.e., processes extended with recursion) and

for infinite type environment.

4.2 Proof System for the Closed Terms

In this section we present a proof system for the closed terms.

The proof system P for typed bisimilarity is composed of all inference rules and axioms in
Table 4.4. Whenever we write P =a @ it is intended that both AP and AfQ are configurations
(see Definition 4.5 and the explanations immediately follow the definition), and in this section P, @
are deemed to be closed terms. The rules are divided into six groups, namely those for: substitutivity,
sums, looking up the type environment, conditions, restrictions and alpha-conversion. The rules that
are new or different w.r.t. those of the untyped w-calculus are marked with an asterisk.

Tin* shows that an input prefix is not observable if the observer has no output capability on
the subject of the input. This comes as no surprise because the only means that the observer uses
for testing a process is to communicate with it. When no communication happens, he/she simply
regards the process being tested as 0. Tout* is the symmetric rule, for output. Twea* gives
us weakening for type environments, corresponding to Lemma 4.11. In Ires*, the side condition
a & dom(A) is added for the sake of clarity, but formally it is not needed because of the definition
of configurations and our convention on bound names. Note that different types 17,75 are used for

the processes in the conclusion. We cannot replace Ires* with two simpler rules such as
o If P=x Q@ then (va:T)P =a (va:T)Q
o (va:T1)P =a (va:T3)P,

for equalities like (vb : biT)ab.b(z : iT).0 =4.1007 (¥ : boT)ab.b(z : 0T").0 could not be derived (due
to the constraints given by the well-typedness of processes). Similarly for rule Iinc*.

Iinc* and Iout* are the rules for substitutivity for input and output prefixes. In Iinc*, the
well-definedness of the two configurations Afa(z : T1).P and Afa(x : T3).Q) implies the condition:
A(a)o < T; for : = 1,2. In Tout™®, the observer knowledge of the type of b may increase when the
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Iinc*

Iout*
Itau
Isum

Ires*

If P{b/x} =a Q{b/x} for all b with A;Fb: A(a), then
a(x :T1).P = a(z : T3).Q.

If P =aAmrp:a(a), @ then ab.P =4 ab.Q)

If P=A Q then 7.P =a 7.Q
IfP=AQthen P+ R=AQ+R

If P=aA Q then (va:T1)P =a (va:T2)Q a¢ dom(A)

S1
S2
S3
S4

P+0=AP

P+P=AP
P+Q=AQ+P
P+(Q+R)=a(P+Q)+R

Tin*
Tout*

Twea*

If A(a)), then a(z: T).P=a0
If A(a)); then au.P =A 0
If P=aAQand A <A’ then P =a' Q

Cb

P Q=aP if[p] = True
e P Q=aQ if[p] = False

R1
R2
R3
R4
R5

(va:T)0=a0

va:T)a.P =50 if subj(a) =a
(va:T)wb:S)P=a (vb:S)(va:T)P
(va:T)(P+Q)=a (va:T)P+ (va:T)Q
(va:T)a.P =a a.(va:T)P if a & n(«a)

P =A @Q if P alpha-equivalent to @

Table 4.4: The proof system P for the closed terms
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processes emit b themselves (for the type under which b is emitted is composed with the possible
type of b in A).
Compared with the proof system for untyped m-calculus [PS95], Tin* and Tout* are the main

differences.
Theorem 4.14 (Soundness of P) IfPF P =x Q then P =x Q.

Proof: By constructing appropriate bisimulations. a

The completeness proof uses a standard strategy. By using the axioms S1-4, R1-5 and Ca-b,
we can transform each closed term into a canonical form ), a;.P;. If P and @Q are bisimilar, their

canonical forms P’ and @)’ are provably equal by induction on the depth of P’ + @’.

Theorem 4.15 (Completeness of P) If P = Q then P F P =a Q, where P and @ are closed

terms.

Proof: This proof differs from the completeness proof of untyped 7-calculus [MPW92] in one place:
instead of showing that each summand of P is provably equivalent to a summand in @, we only
require that each active summand of P is matched by an active summand of @, and vice versa.
By active summand, we mean that the prefix can perform actions allowed by the environment A.
More precisely, if a;(z; : T;).P; is a summand of P and A(a;)|, then this is an active input prefix.
Similarly for output prefixes. Inactive summand is provably equivalent to 0 by Tin* and Tout*,
thus can be consumed by S1. After finite steps of transformation, we have P+ P = Y I | ;. F;
and P Q =a 27:1 B;.Q;, where all summands in P and @) are active.

Suppose that o; = a(b : T1). Then AP e Ty) Ab: A(a)itP;. Hence there is some 8; = a(b: %)
such that P; =A p.a(q), &j- Since the depth of P; + @Q; is less than the depth of P + @, we can
use induction hypothesis to derive P = P; =4 p:a(q), @j- By A we assume that the bound name
b¢ dom(A), so A, b: A(a); = AMNb: A(a);. Therefore we have Pt ab.P; =a ab.QQ; by Iout™®, and
furthermore P+ a(b: Th).P; =a a(b : T2).Q; by Ires*.

Suppose that «; = a(x : Ty). Then AfP aleh) A'tP;. There must exist a ; = a(z : T»)
such that Pi{b/z} =a Q;{b/z}, for all b s.t. A; F b: A(a),. Now observe that the depth of
Pi{b/z} + Q;{b/x} is less than the depth of P + @, thus it follows from induction hypothesis that
Pt P{b/z} =a Q;{b/x}. Using Iinc* we infer that P F a(z : T1).P; =4 a(x : T2).Q;.

Other cases can be analyzed similarly. As a result, each active summand of P is provably equal

to some active summand of ). Symmetric arguments also hold. O

4.3 Axioms for Typed Bisimilarity

In this section we give an axiom system for typed bisimilarity and prove its soundness and com-
pleteness. This axiomatisation is for all finite terms of the language given in Section 4.1, including

both open and closed terms.
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4.3.1 The Axiom System

The axiom system A for typed bisimilarity is presented in Table 4.5. Roughly speaking, it is obtained
from P by adding some axioms for dealing with conditions. In open terms usually the conditions
cannot be simply eliminated by Ca-b, so we need the axioms C1-7 and R6-7 to manipulate them.
We use the notation ¢ = 1 to mean that ¢ logically implies ¢; in C1 the condition ¢ <= 1
means that ¢ and 1 are logically equivalent. In view of C3 and R6, axiom R1 is redundant. The
rule Tinc* of P now becomes the concise axiom Iin* in A. Tvar* shows that a variable can only
be instantiated with channels that in the type environment have types compatible with that of
the variable. Tpre* is used to replace names underneath a match. It implies, in the presence of
other axioms of A, a more powerful axiom: [z = a]P =a [z = a]P{a/z} if A(a) < A(z), which
substitutes through P. In the untyped setting, Tpre* has no side condition. Here we need one to
ensure well-typedness of the process resulting from the substitution, since the names in the match
can have arbitrary — and possibly unrelated — types.

The following axioms and rules are derivable from {S1-S4, C1-C6, Tvar*}. More derived

rules are given in Appendix B.1.

C8 P =A oP +—pP C9 ©PQ =a P + —¢Q

C10 [pVY|P=ppP+yP Cl11 (P +Q)=a¢P+¢Q
Cnnl [a=bP=a0ifa#b Tvnl [x=a]P=a0ifad dom(A)
Conn2 [a#bP=aAPifa#b Tvn2 [x#a]lP=aPifa¢ dom(A)
Tvl P =A .7 0 if there exists no a € dom(A) s.t. Ala) < T

Note that in Iin* and Tout*, the free names of the input and output prefixes are channels rather

than variables. Below we discuss:

1. the unsoundness of the rules in which (some or all) the channels are replaced by variables;
2. other rules, that are valid for variables;
3. why these other rules are not needed in the axiom system.

Intuitively the reason for (1) is the different usage of channels and variables that appear in a type
environment: the information on channels tells us how these channels are to be used by the external
environment, while the information on variables tells us how these variables are to be instantiated
inside the tested processes.

To see that Iin* is unsound when the subject of the prefix is a variable, take A, def boT,b: oT

and A % Ag,z : b{oT,bT). Then we have

[y = b]T iA,y:A(z)o 0

because A(x), = bT and no ¢ in A satisfies the condition A; F ¢ : bT and can therefore instantiate
y. However,
x(y : oT).ly = b7 #a z(y : oT).0.

To see this, let us look at the possible closing substitutions. In dom(A.), a is the only channel

satisfying Ac F a : A(x), and so the only substitution we need to consider is {a/z}. After applying
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Iin* If P=a4:A(), @ then a(x : T1).P =4 a(z : T).Q

Icon If P=a Q then o P = pQ

Tvar* [z #a1] - [x# an]P =a 0if {b € dom(A:) | AD) < Ax)} C {ar, -, am}
Tpre* [z =a]la.P =a [z =al(afa/z}).P if Ala) < Ax)

C1 wP=Ayp P ifo<=y

C2 [a=0bP=aAla=0Q ifa#b

C3 0P P=xP

C4  ¢PQ=swQP

Cs p(YP) =a [p NY|P

Cé6 0 (P14 P) (Qi+Q2) =ap PLQ1+¢ P> Q>
Cr7 ¢ (a.P) =a ¢ (a.pP) if bn(a) Nn(p) =0

R6 (va:T)a=ulP=a0 ifa#u

R7 (va:T)u=v]P=a [u=v|(va:T)P if a # u,v

P\{Iinc*, Ca-b, R1}

Table 4.5: The axiom system A

this substitution, the resulting closed terms are not bisimilar:

a(y : oT).[y = b|T #a a(y : oT).0

This holds because the observer can send b along a and, after the communication, y is instantiated
to be b, thus validating the condition y = b and liberating the prefix 7. When the subject of the

prefix is a variable, the following rule is needed in place of Iin*:
Ivl If P =a ya@), @ then z(y : T1).P =a x(y : T2).Q

In rule Iout*, both the subject and object of the output prefix are channels. The rule is also
valid when the object is a variable. However, it is not valid if the subject is a variable. As a

counterexample, let A def . iT,b: bbT and A def Ac,z : b(iT,bT). Then we have a =ang.i7 0

but Za.a #a Ta.0 because, under the substitution {b/x}, it holds that ba.a #a ba.0. When the

subject of the prefix is a variable, we need the following rule:
Iv2 If P =Anu:A(e), @ then Zv.P =a Tv.Q)

We show, by means of an example, why rules Iin* and Tout* are sufficient in the axiom system

(rules Iv1 and Iv2 are derivable, see Appendix B.1). Consider the equality
x(y : 1iT).y =a z(y : 10T).0
where A < ¢ . bibT, b : ibT,x : bibT. First, we infer
y=a0 for A'=Ay:ibT (1)

proceeding as follows:
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y =a ly=0ty+ly#y by C8
=a [y="0bly by Tvar*
=ar [y=10]b by Tpre*
=a [y="5]0 by Tin*
=a 0 by C3

Then we derive x(y : iiT).y =a x(y : 10T).0 in a similar way:

x(y :1iT).y
A |x=alz(y:iiT).y + [z # alz(y : iiT).y by C8
=aA [rz=a]z(y:iiT).y by Tvar*
=aA [z=adla(y:iiT).y by Tpre*
=a [z =adala(y:ioT).0 by (1), Iin*, Icon
=a z(y:ioT).0 by Tpre*, Tvar*, C8

4.3.2 Soundness and Completeness

The soundness of the axioms displayed in Table 4.5, and therefore of A, is easy to be verified.
Theorem 4.16 (Soundness of A) If A- P =x Q then P = Q.

The remainder of the section is devoted to proving the completeness of A. The schema of the
proof is similar to that for the untyped m-calculus [PS95]. The details, however, are quite different.
An example of this is the manipulation of terms underneath input and output prefixes mentioned
above. We discuss below another example, related to the issue of invariance of bisimilarity under
injective substitutions. In the untyped case, the process z | @ (the operational semantics of parallel
composition is standard and will be given in Section 4.5) is equal to x.a+a.z+7 when z is instantiated
to a, to x.a+a.x otherwise. This can be expressed by expanding the process by means of conditions:
that is, using conditions to make a case analysis on the possible values that the variable may take.
Thus, z | @ is expanded to [z =a](z | @)+ [z # a](z | @). Now, underneath [x = a] we know that x will
be a, and therefore x | @ can be rewritten as x.a+a.x+7, whereas underneath [z # a] we know that x
will not be a and therefore = | @ can be rewritten as z.a +a.x. In general, the expansion of a process
with a free variable 2 produces a summand [z # a1]- - [¢ # a,]P where ay,---,a, are all channels
(different from z) that appear free in P. The mismatch [¢#aq] - - [z # ay] tells us that = in P will
be instantiated to a fresh channel, which is sufficient for all manipulations of P involving z, since
bisimulation is invariant under injective substitutions. In the typed calculus, by contrast, knowing
that x is fresh may not be sufficient: we may also need the information on the type with which z
will be instantiated. This type may be different from the type T of x in the type environment: x
could be instantiated to a fresh channel whose type is a subtype of T' (the behavioural consequences
of this type information can be seen in the example at the end of Section 4.4.1). We have therefore
adopted a strategy different from that in the proof for untyped calculi: rather than manipulating
processes that begin with “complete” sequences of mismatches — as in the untyped case — we try
to cancel them, using rule Tvar*; further, the conditional expansion of a process takes into account

also the names that appear in the type environment.
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Definition 4.17 A condition ¢ is satisfiable if [po] = True for some closing substitution o. Given
a set of names V', a condition ¢ is complete on V if for some equivalence relation R on V, called
the equivalence relation corresponding to ¢, it holds that ¢ = [u = v] iff uRv and ¢ = [u # v] iff
—(uRwv), for any u,v € V.

In the untyped setting which does not distinguish channels from variables, like in [PS95], every
complete condition is satisfiable, and two substitutions satisfying the same complete condition relate
to each other by some injective substitution. In this chapter, however, due to the distinction
between variables and channels and the concept of closing substitution, there exist some conditions
which are complete but not satisfiable. For instance, ¢ = [x = a] A [a = b] A [b # ] is complete
on V = {z,a,b,c}, with the equivalence classes {{z,a,b},{c}}. This condition is not satisfiable
because closing substitutions do not map channels to other channels, then o(a) = a # b = o(b) for
any closing substitution o, i.e., [po] = False. In a typed setting, there are even fewer conditions
which are satisfiable. For a given type environment A = A, T : T we are only interested in closing
substitutions of the form (called legal substitution on A): o = {b/Z} where Ac F b: T. As to the
simple condition [z; = a], with z;,a € dom(A), if A(a) &£ T;, the substitution {a/z;} is illegal and

not considered. So no legal substitution can satisfy [x; = al, i.e., the condition is not satisfiable.

Lemma 4.18 If ¢ is complete on dom(A) and O C dom(A,) C dom(A), there is at most one legal

substitution which satisfies .

Proof: Since ¢ is complete, there is a corresponding equivalence relation R. For ¢ to be satisfiable
by a closing substitution o on dom(A), each equivalence class of R, say {u1,---,u,}, must meet

the following two conditions.

e Not all u; are variables. Otherwise, for any a € dom(A.),¢ = [u; # a]. Then po =
[0(u;) # a] for all a € dom(A.), contradicting the definition of closing substitution, which

maps variables to channels, i.e., o(u;) € dom(A.).

e There is no more than one channel in any equivalence class. Otherwise, let a, b be two channels

and ¢ = [a = b], then po = [a = b, i.e., [¢o] = False.

As aresult, in each equivalence class there is one and only one channel, possibly with some variables.
So the class looks like {a, 21, -, 2,—1} where n > 1. The substitution which satisfies ¢ must map
all the variables in the equivalence class into its unique channel. Moreover, to ensure that ¢ is

satisfied by a legal substitution, there is a third constraint imposed on the equivalence class:
o Ala) < A(z;) for alli <n —1.

All these conditions determine the uniqueness of the legal substitution, if it exists. a

Lemma 4.19 If ¢ and ¢ are complete conditions on dom(A) and are satisfied by the same legal
substitution on A, then ¢ <= 1.

Proof: ¢ A1 is also satisfiable by the same legal substitution. Then ¢ <= ¢ A 1) <= 1 because

 and 1 are complete conditions. a
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The following lemma shows that in the presence of complete conditions, it is sufficient to test

one substitution for typed bisimilarity of open terms.

Lemma 4.20 Let P = P’ and Q = ¢Q’, with ¢ complete on dom(A). If o is a legal substitution
on A, o satisfies ¢ and Po =a_ Qo, then P =a Q.

Proof: By Lemma 4.18, besides o there is no other substitution p = {¢/Z} with A, - ¢: T which
can satisfy ¢. In other words, (pP')p =a. 0 =a_ (¢Q’)p. Therefore we have P =a @ by the
definitions of typed bisimilarity. a

As in [PS95], the definition of head normal form exploits complete conditions. Here the difference
is that we only consider those conditions which can be satisfied by some legal substitutions, while

in [PS95] all complete conditions are involved because all of them are satisfiable.

Definition 4.21 (head normal form) We say that P is in head normal form w.r.t. A if P is of

the form
> i giP;
where for all 1,
1. bn(ay) & dom(A);
2. p; is complete on dom(A) and satisfiable by some legal substitution on A;
3. @b =, if a; is an input or free action;
4. i = i N Npedomala # v]) of i = (a: T).

The proof of completeness is established by induction on the depth, d(P), of a head norm form
(hnf) P. Its depth is defined as:

d0) « o
A" piidiP) 14 maz{d(P)|1<i<n}

Lemma 4.22 For each process P and environment A, with fo(P) C dom(Ay), there is some H of
no greater depth than P and in hnf w.r.t. A, such that A+ P =a H.

Proof: By structural induction on processes. Let V = dom(A). We consider two interesting cases.

The first is when P = a.P’. Let « be any variable in V. If for each channel a € V, A(a) £ A(x),
then we use Tvl to derive that A H P =a 0. Otherwise, suppose V,, = {ai1,---,a,} collects
all channels in V' such that A(a;) < A(z). As in the untyped setting [PS95] we can infer that
AE P =a>" ¢aa); P, where each ¢; is complete on V, but not necessarily satisfiable by some

legal substitution on A. There are two occasions where 1; is not satisfiable.
1. If ¢; = [a =] for a,b € dom(A.) and a # b, we use Cnnl to get A ;a.1p; P =a 0.

2. f; = [z # a1]- - [z # an] we can use Tvar* to derive that A+ ¢;a.¢); P = 0.
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So we can remove the summand ;.1p; P’ if 1); is not satisfiable. All other summands are satisfiable
by some legal substitutions because ¢; = [x = a;] for one a; € V,, and ¢; = [x # b] for any other
b e dom(A.).

The second case is when P = ¢ () R. By induction hypothesis () and R can be transformed
into hnf w.r.t. Ar Ak Q =a Y11, ¥ii9)jQ; and AF R =a Y70, thja; 0 R;. Let us examine the
general case that n,m > 0. By C9 and C11, it is easy to see that

Ab P =n Y [ A]as Qi+ D[~ Adhyla; 4 R;.
i=1 j=1
Clearly ¢ can be reduced to a disjunctive normal form \/}_,; /\L1 i where s,t > 1 and ¢y is

a match [ug = vg] or mismatch [ug # vg]. Let Q) = a;..Q;. We transform each summand
[ A ;]Q} as follows.

AR AYQF =2 [(Vies Ai_i om) Ai]Q) by C1
=2 [Vio (i AN om)]Q; by C1
=a Sho i AN erQ) by C10

Now we assert that each summand [1); A /\}f:1 rt]Q} is provably equal to 0 or ¥, Q).
Let ¢ = /\f:2 R if t > 1, and ¢, = True if t = 1. So by C1 we have A F [¢); A /\?:1 erQE =a
[pr1 A i A;]Q%. Here ¢r; may be a match or mismatch. We look at match first. Let ¢r; = [uk; =

vgz] for some wugy, vg; s.b. Ugs F Vgg-

1. If ugy, v € V, then [prs A ¢ A ;] is semantically equivalent either to False or to [¢r A ;]
because 1); is complete on V. That is, we can infer A F [prs A o A Y]QF =a 0 or A F

[ A o A i) Qf =a [pr A il Q5

2. If ugs,vp; € V, then wugs,vr; are channels because fu(P) C V. By Cnnl we get A
[ors N ok AYi]Q5 =4 0.

3. If ug; € V and vg; € V, then vy is a channel but uy; can be either a channel or a variable.

a) ug; is also a channel. We infer A F [pr; A o A 1;]Q% = 0 by Cnnl.
¥ i

(b) wg; is a variable, i.e., ug; € . We infer Ak [prr A ¢ A 1]Q5 =a 0 by Tvnl.

When @y, is a mismatch [ux; # vgs] we apply similar arguments. In Case 1 the result is the same.
In the last two cases, using Cnn2 or Tvn2 we infer that A b [prs A dr A 0]Q% =a [dr A 1:])Q%.
Since there are only ¢t components in /\le k1, We can repeat this inference for at most ¢ times and
eventually get either A F [1; A Aj_; pr]@% =a 0 or Ak [t A N, ou] Q) =a QL

Similar result can be got for [—¢) A 9] R; as well.

In summary we have shown that each summand of P can either be removed or put into the form

of the summands of a hnf. O

Theorem 4.23 (Completeness of A) If P =a Q then AF P =a Q.
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Proof: Let A = A.,T: T. If there is no legal substitution on A, i.e., no a with A. Fa : T, then
by Tv1l we have that AF P =A 0=a Q.

Below we suppose that there exist legal substitutions on A. By Lemma 4.22 we assume that P
and (Q are in hnf w.r.t. A. Let

A"P:A Z(pzalPl and A"Q:A ijﬁ_]@]
i J

For any summand @;«;.P; of P, let o; be a legal substitution on A which satisfies ¢; (actually
o; is the only legal substitution satisfying ¢;, according to Lemma 4.18). So if ¢; = [z = d]
then A(a) < A(z) and zo; = a. By using Tpre* we can transform the action «; into ajo;
which contains no free variable. For example, if oy = Zy and ¢; = [z = a] A [y = b], then
piTy.P; =aA pixoyo;. Py = pab.P;. Furthermore, if the action «;0; is disallowed by the environment
(e.g., ajo; = ab and A(a));, similar for input actions), then by Tin* and Tout* the summand
;. P; is provably equal to 0 and thus can be consumed by S1. After finite steps of transformation,
all remaining summands are active, i.e., can perform some actions allowed by A. We do similar
transformation for Q).

Now we prove by induction on the depth of P + @) that each active summand of P is provably
equal to some active summand of ). An active summand p;a;.P; of P gives rise to a transition
AcPo; 2% Al#P;o;. Since P =a @, we have Po; =a, Qo;. So there is a matching transition
AAQo; Pioy AZ4Q;0; contributed by some active summand v;3;.Q; of Q, with ¢; satisfied by o;.
By Lemma 4.19 we know that ¢; <= 1;. From the definition of = we have:

1. if ;0 = ﬂjo—i = 7 then PiO'Z' A ngi;
2. if ajo; = Bjo; = ab, for some channels a, b, then Pio; =a rp:a(a), @i0i;

3. if ayoy = a(b: T1) and Bo; = a(b : Ty) for some channels a, b then Pio; =a_p.A(a), @504

S

. if ayo; = a(z : 1) and Bjo; = a(x : Ta), for some a and z, then for all ¢ with A¢ F ¢ : A(a),
it holds that Po;{c/x} =a, Q;oi{c/x}.

Let us analyze the last two cases in details. In Case 3, o; is also a legal substitution on
A,b : A(a);. By Lemma 4.20 one can infer that P; = p.a@e), @;. By induction hypothesis
A P =apa@); Q- By Iout*, Ires*, Icon and C1 it can be inferred that A F @;a(b :
T1).P; = vja(b: T2)Q;. The required result is got by using Tpre*.

In Case 4, we have that Po;{c/z} =a, Q,jo:{c/z} for all ¢ satisfying the condition A; F ¢ :
A(a),. Note that P; = ¢; P/ and Q; = ¢;Q}. By Lemma 4.18, any substitution p = {¢/7,d/z},
with Ac F¢:T,d: A(a),, which can satisfy ¢; and 1;, must coincide with o on variables z. That
is, p = o{d/x}. Therefore P;p =, Q;p. For any other substitution, say p’, [¢:p'] = [¥;p'] = False,
and so P;p’ =a, 0 =a, Q;p’. Consequently for all p we have Pip =, Qjp, i.e., P; =a z.A(a), @j-
Now applying induction hypothesis, A = P; =a ;.a(a), @;- It follows that AF a(x : T1).P; =a a(x :
T5).QQ; by Iin*. Then we can infer A F @;0;.P; =a ¥;3;.QQ; by using Icon, C1 and Tpre*, in the
listed order. O
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4.4 Other Equivalences

In this section we study a variant bisimilarity proposed in [HR04], which allows extension of en-
vironments and enjoys a nice contextual property. Proof systems for closed terms are given. An
indirect axiomatisation is got by resorting to the system A of Section 4.3. We also show that the

difference between late and early style of typed bisimilarity is characterised by one axiom.

4.4.1 Hennessy and Rathke’s Typed Bisimilarity
Proof System for Closed Terms

In the input clause of = (Definition 4.9), the type environment A is not extended. By contrast,
extensions are allowed in the bisimilarity used in [HR04]. We denote with < the variant of =a
which allows extension; its definition is obtained from that of = by using the following input clause:

o if AP ") AP then for some @, AtQ “UY AYHQ! and A, A" F b : A(a)o implies

P{b/x} Ra an Q'{b/x}, for any channel b and closed type environment A" with dom(A”")N
(fa(P,Q) U dom(A)) = 0.

Similarly, A can be extended in the definition on open terms.
Lemma 4.24 If P <A Q then P = Q.

In <A, the environment collects the knowledge of the observer relative to the tested processes,
in the sense that the environment only tells us what the observer knows of the free channels of
the processes. In contrast, in =a, the environment collects the absolute knowledge of the observer,
including information on channels that at present do not appear in the tested processes, but that
might appear later — if the observer decides to send them to the processes. The main advantage
of = is that the environment is allowed to invent an unbounded number of distinct names, so
it is more suitable for infinite systems. On the other hand, =a allows us to express more refined
interrogations on the equivalence of processes, for it gives us more flexibility in setting the observer
knowledge. Indeed, while <-equivalences can be expressed using = (Lemma 4.24), the converse is

false. For instance, the processes

P a(z:vol).x=ylr Q@ def a(z : boT).0
are in the relation =x, for A f . oboT', b : bbT,y : obT. However, they are not in a relation <,
for any I': the observer can always create a new channel of type boT, and use it to instantiate both
z and y, thus validating the condition [z =y].
In the following lemma we give two properties of <. They are analogous to Lemma 4.11 and

4.13 respectively, and can be proved as their counterparts.
Lemma 4.25 1. If P<a Q and A < A/, then P <A/ Q.

2. If P <A Q then Po <a, Qo for o injective on fn(P,Q) U dom(A) and Ac is the type

environment which maps o(u) to A(u) for all u € dom(A).
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An important property which is enjoyed by < but not by =x is as follows.
Lemma 4.26 If P <A Q and a & fn(P,Q) U dom(A), then P <a o1 Q.

This lemma says that increasing capabilities on irrelevant channels does not raise an observer’s
discriminating power. The reason is that the observer already has the ability to create new channels,
since in the definitions of bisimulations we test all channels with appropriate types for the case of

input.

Lemma 4.27 It holds that a(x : T1).P <a a(x : T2).Q, if the following two conditions are satisfied.
(i) P{b/x} <A Q{b/x} for all b with Ac F b: A(a),;
(i1) given ¢ & fn(P,Q) U dom(A), P{c/x} <a v Q{c/z} for all T < A(a),.

Proof: The action of the configuration Afa(z : T1).P can be matched by that of Afja(x : Ts).Q.
So we only show that P{b/z} <a ar Q{b/x} for any b and A" with dom(A’) N fn(P,Q) = 0 and
A, A" F b: A(a),. There are two possibilities:

1. b € dom(A). When A’ = (), the result follows from the hypothesis (i). For other A’; we get
the result indirectly by using Lemma 4.26.

2. b & dom(A). We consider the case that A’ = b : T with T" < A(a),. Base on this case,
the result for other A’ with A’ = b : T, A” can be inferred from Lemma 4.26. From (ii)
we know that P{c/z} <a 1 Q{c/x}. Since bisimulation is insensitive to injective type-
preserving substitutions by Lemma 4.25 (2), we have P{c/x}{b/c} < p.7 Q{c/x}{b/c}. That
is, P{b/x} <A ar Q{b/x}, which is the required result.

O

We can derive a proof system for < with a simple modification of that for = in Section 4.2. Let
P’ be the system obtained from P by replacing rule Iinc* with Tinc':
Iinc’ If o P{b/x}=n Q{b/x} for all b with Ac Fb: A(a),, and
e given ¢ & fn(P,Q) U dom(A),
P{c/x} =acr Q{c/x} for all T < A(a)s,,
then a(z : T1).P =a a(z : Tb).Q.
The quantification on 7" in the premises is finite: any type has only finitely many subtypes.

Theorem 4.28 P' P =A Q iff P <A Q, where P and Q are closed.

Proof: According to Lemma 4.27, rule Iinc’ is sound. The soundness of other rules is easy to

show. The completeness proof is similar to that of P (Theorem 4.15). O

Indirect Axiomatisation

The previous definition of <= involves infinitely many substitutions. Nevertheless we show in the
following lemma that there exists an efficient characterisation of the equivalence which employs

only finitely many substitutions. This characterisation result relies on the assumption that the set
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of subtypes of any type is finite and the environment contains finitely many variables (the terms
could even be extended with non-finite operators such as recursion, as long as they contain finitely
many free variables). First, we introduce a notation. Let T = T1,---,T,. There are only finitely
many different types, say Si, ..., Sn, each of which is a subtype of some T; for ¢ < n. Then we pick
n fresh names (which do not appear in A, P and Q) a1, - -, a; for each type S; and extend A in
the following way.

def

Env(A,T,P,Q) <= AU {aix: S |0<i<m,0<k<n,ay ¢ fn(A P,Q)}

Lemma 4.29 Suppose A def A, T : T. If for each legal substitution o on Env(A,Tv, P,Q) it holds
that Po % Bno(AaT,P.Q) Qo, then P <A Q.

Proof: Let A; = Env(AC,T7 P,Q), and the length of the tuple T be n with n > 0. We prove
a stronger result P <, -5 ( and then conclude by Lemma 4.25 (1). We shall show that
P{b/7} TALLA Q{b/%} for any b and closed environment A’ s.t. dom(A’) N fa(P,Q) = 0 and
A, A b:T. We proceed by induction on the number of names appearing in b but not in dom(Ay),

which is defined as follows.

num(@) = 0
~  def num(by - bp—1)+1 if b, & dom(Aq)
num(b) =
num(by -+ bp_1) otherwise

e Base step. Suppose num(b) = 0. When A’ = (), the result follows from the hypothesis. For other
A’ the result is got indirectly by using Lemma 4.26.
e Inductive step. Suppose that the result holds for all b which satisfy the conditions in the hypothesis
and num(b) < k. Given another b with num(b) = k + 1. Without loss of generality we assume that
there exists a ¢ € dom (A1) and I < n such that by = by = --- = b; = ¢ and b; # ¢ for all ¢ > [. Then
A1, A’ can be rewritten as Ao, c : S; for some Ay and S; s.t. S; < Tj for all j < [. Choose one
name from {a;1,---,an}, say a;;, which is different from any names in bj11,- -, by, and construct
a substitution

o={aij/z1, -, i/, big1 /g1, bn/Tn}
Obviously Ao b aij : Th, -+, a5 Ty bivr = Ty, -+ -, by 2 Ty and num(aig, - -, Gig, big1, -+, bn) < k.
By induction hypothesis Po <a, Qo. From Lemma 4.25 (2) we have

Po{c/aij} “ayic/ai;y Qo{c/aij}

ie., P{b/T} Sa,(c/a,y QIb/T). As ai; & dom(Az{c/ay;}), by Lemma 4.26 we get P{b/T} <a,
Q{b/%} for Az = Ao{c/aij}, a5+ S; = Aq, A’ which is just the required result. O

Below we establish a property of =a, corresponding to Lemma 4.26 for <. It allows the
extension of A in a limited way. The proof employs the concept of depth of a process P, written
d(P), which we define as follows.

0 dP+Q) = maz{d(P),dQ)}
de.P) ¥ 1+4(p) d(ePQ) ¥ maz{d(P),d(Q)}
d((va:S)P) = d(P) dP|Q) = d(P)+dQ)
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One can verify that if AfP —+ A’§P’ then d(P) > d(P’) and fn(P’") C fn(P) U bn(a).

Lemma 4.30 Given two closed terms P and @Q, let A = Ag,c1 : T, ...;c : T withn > d(P + Q)
and ¢; & fn(P,Q) for alli € 1.n. If P = Q then P =p o1 Q for a & fn(P,Q) U dom(A).

Proof: By induction on the depth of P+ Q. If d(P 4+ @) = 0 then it is obvious that P = 4.1
0 = 01 Q. Below we suppose d(P+Q) > 0. If A,a : TP -+ A’4P’ there must exist some A” s.t.
A’ = A" a : T because a does not affect the transition. In other words, we have AP = A”4P’.
Since P =a @, we have a matching transition AfQ 2, A"$Q’, where | a|=|3|. Tt follows that
Asa:THQ N A" a : THQ’. There are two cases:

1. « is not an input action. In this case A” = A" and P’ =a~ @’. By induction hypothesis we
have P’ Z=A" . a:T Q/.
2. « is an input action b(x : S). Then for each d with A+ d : A(b), it holds that P'{d/z} =a
Q{d/x}.
(a) If d € dom(Ag) with Ag = d : A(b)o, then n > d(P + Q) > d(P'{d/z} + Q'{d/z}) and
¢i & fn(P'{d/z},Q'{d/x}) for i € 1..n. By induction hypothesis we have P'{d/x} =a a:1
Q'{d/x}.
(b) ey : Tyooiyep, : T = d : A(b)o, then without loss of generality we may assume that
d = ¢;. It can be checked that n — 1 > d(P + Q) — 1 > d(P'{d/z} + Q'{d/x}) and
¢i & fn(P'{d/x},Q'{d/x}) for i € 2..n. We can now appeal to induction hypothesis and
get the result that P'{d/z} =a o1 Q'{d/x}.
(¢) fa:TkFa:A(),, then T < A(b), and thus A F ¢; : A(b),, which implies P'{ci/x} =a

Q'{c1/x}. As {a/c1} is an injective type-preserving substitution, we have

P'{er/aHa/cr} =atajey Q{er/zHa/er}
ie., P'{a/a} =agajey @{a/z}. Now observe that
in—1>dP+Q)—12>d(P{a/z}+Q'{a/z}),
i e & fu(P'{a/z},Q'{a/z}) for i € 2.n,
. o1 & fn(P'{a/z}, Q' {a/z}) U dom(A{ajer}).
By induction hypothesis we have P'{a/z} 2 (a/e,y.cr Q' {a/z}. Note that Afa/er}, 1 -
T=Aa:T.

In summary, for each d with A,a : T d : A(b),, it always holds that P'{a/x} =a o7 Q'{a/z},

which is the required result.

a

We know from Lemma 4.24 that = is weaker than <a. This gives rise to an interesting
question: whether there exists some A* such that under the extended environment A, A* we have

that P =a A~ Q iff P &=A Q. We shall give a positive answer to this question, though we did not
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succeed in obtaining the counterpart of Theorem 4.23 for <. The encountered problem is discussed
at the end of this subsection.
We define the depth, d(T), of a type T', indicating the maximum number of nesting of capabilities
in it.
d(unit) =0 d(iT) =d(oT) =1+ d(T)
d(o(T, SY) =1+ max{d(T),d(S)}

Let I' F P. Each name in P has a type, either recorded in the syntax of P or in I'. If T7,...,T),
are all such types, d(I', P) is maxz{d(T;) | 1 < i < n}. Now, if AfP; is a configuration, for
i = 1,2, then there are type environments I'; such that I'; << A and I'; + P;. In this case, we
set d(Py, P2,T'1,T2) as max{d(T'y, P1),d(T2, P2)}. There are only finitely many different types with
depth less than or equal to d(Py, Py,T'1,T2), say Si,...,Sm, and A, is defined on finitely many
variables, say x1,...,2;. We can pick up n fresh (hitherto unused) channels a;1, ..., a;, for each

S;, where n = maz{k,d(P; + P)}, and construct a type environment
Env(A, P, P5,T'1,T9) ={a;; : S;5 | 0<i<m,0<j<n}

We say that Py <a Py under 'y, T2 if T; < Aand T'; - P, (1 =1,2).

Lemma 4.31 If Py = P under I'1, Ty then P1 =A proa,py, Py Te) P2

Proof: By Lemma 4.26 we have Pi <A pno(a,p, P,y o) 2. Then the result follows from Lemma
4.24. O

In the above lemma, P, P> can be either closed or open. For the opposite direction, we consider

closed terms first.

Lemma 4.32 If A§P; respects I';, P; is closed, for i =1,2, and Pt = ppo(a,p,,p,, 1. Ts) 2, then
P1 A Pg.

Proof: By induction on the depth of P; + P5. In the case d(P1 + P») = 0, it is immediate that
P, A 0 =aA P. Below we suppose d(Py + P;) > 0. Let A* = Env(A, Py, P>, I'1,T9). Since
dom(A*) N fn(Py, P2) = 0, all actions of the configuration A, A*#P; can be performed by A#P,
and vice versa. Suppose that AfP, — A’#P]. Tt is easy to see that there is a matching transition
AtP, Lo AP,

1. If o is not an input action, then | o |=| f|, A’ = A” and P{ =a/ a~ Pj. Suppose that
A'$P! respects I}, for i = 1,2. Clearly d(P{, P5,T},T%) < d(P1,P,T'1,T'2) by Lemma 4.6.
From Lemma 4.30 we have P; =a, Pj where Ay = A’ A* Env(A’, P{, P;,T,T%). Now it
follows from Lemma 4.11 that P{ =as pno(ar,p; py.r;,ry) Ps- By induction hypothesis we get
Pll A/ P2/

2. If « is an input action a(z : T), then P{{b/x} =a s« Py{b/x} for all b with A;A* b :
A(a),. Note that AA* D A for some Ay = Env(A, Ala),, Py, Py) by the definition of
Env(A, T, Py, Py) given in the beginning of this subsection. So for all ¢ with Ay F ¢ : A(a),
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we have P{{c/x} =a - Py{c/x}. It can be checked that A18P/{c/x} is a configuration
respecting I def Ty, A* fori=1,2. As

d(Aq, P{{c/z}, Pi{c/x}, T, Ty) < d(A, P, P, T1,T9)
we have P{{c/x} =a, Py{c/x}, where
As = A A" Env(Aq, Pi{c/z}, Py{c/z}, T, T%)

by Lemma 4.30. It follows from Lemma 4.11 that Pj{c/x} =a, Pj{c/x} where Az = Ay,
Env(Aq, P{{c/x}, Ps{c/x}, T}, T%). By induction hypothesis we get Pi{c/z} <a, P3{c/x}.
By Lemma 4.29 it follows that P| <A z.a(a), P5, Which is the required result.

Lemma 4.33 If AfP; respects I';, fori=1,2, and P1 = gno(a,Py,po,01,Ts) 2 then Pr A Po.

Proof: Similar to the second case of the proof in Lemma 4.32. Let A = A, T : T and A* =
Env(A, Py, P,,T1,T2). Then for any legal substitution o on A, A* we have that Pio =a  a~ Pao.
We also have A., A* D A for some A1 = Env(Ac,Tv, P, Py). So for all p = {¢/z} with A; F¢: T
we have P1p =a A~ Pyp. One can prove that A1§P;p is a configuration respecting I' def Ty, A*.
Obviously d(A1, Pip, Pop, T, T) = d(A, Py, P>,T1,T3), so Pip =a, DPsp for some environment
Ay = Ac, A%, Env(Ay, Pip, Pap, I, T%). It follows that Pip =a, Bnu(ar,PipPap 7 ry)  P2p. By
Lemma 4.32 we have Pjp <A, Pop, which implies P, <A P> by Lemma 4.29. O
Combining Lemma 4.31 and 4.33 we have the result below.

Lemma 4.34 P1 A P2 under Fl,l—‘g Zﬁ P1 iA,Env(A,Pl,Pg,Fl,Fg) P2.

As a consequence of this lemma, we obtain the following theorem.
Theorem 4.35 P1 A P2 under Fl,FQ ZﬁA - P1 =A,Env(A,P1,Py,T',Ts) P2.

Directly axiomatizing < appears far from straightforward due to complications entailed by sub-

typing. We consider an example. Let T 4f ynit and

A Y o4 oboT',y : obT

R T.((ve : bT)ge.c + a(x : boT).[x = y|T)
R, 7.((ve : T)ge.0 + a(z : boT).[x = y|7)
Ry def 7.((ve : bT)ge.c 4+ a(x : boT).0).

It holds that
R+ Ry + Ry A R1 + Rs.

Here y can be instantiated by channels with subtypes of obT', which can be seen in Figure 1.2 (b).
When y is instantiated by a channel with type boT', we can simulate R with R,. For other subtypes
of obT', we can simulate R with Rs. That is, we have two equivalent processes, say P and @, with
a free variable y, and the actions from a summand of P have to be matched by different summands
of @), depending on the types of the channels used to instantiate y. It appears hard to capture this

relationship among terms using axioms involving only the standard operators of the m-calculus.
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4.4.2 Early Bisimilarity

All bisimilarities considered so far in this chapter are in the late style. As usual, the early versions
are obtained by commuting the quantifiers in the input clause of bisimilarity. For example, typed
early bisimulation is defined as in Definition 4.9 except for using the following input clause:

a(z:T

o if AP {=1) A’tP’, then for each b with A. F b : A(a), there exists some @’ such that

INTe a@)) A"$Q’ and P'{b/x} Ra Q'{b/z}.

As in the untyped case, the difference between late and early equivalences is captured by the axiom
SP [PS95):
SpP a(x: T1).P+a(x:T2).Q
=a a(z:T1).P+a(z:T2).Q+a(z:T3).([r = u|PQ)
All results in this chapter also hold for the early versions of the equivalences, when rule SP is added.
For example, by letting the early version of = be =°¢, A, be AU{SP} and P, be P U{SP}, we can
establish the counterparts of Theorem 4.15 and 4.23.

Theorem 4.36 1. P=X Q iff Pe = P =a Q, where P and QQ are closed;
2. P=4 Qiff Ac P =aQ.

Proof: See Appendix B.2. O

4.5 Adding Parallelism

So far the only 7-calculus operator that we have not considered is parallel composition. When it is
admitted, Table 4.1 should be extended with the following three transition rules (their symmetric

rules are omitted).

par P20 P bnla) (@) =0 om PP Q" g
PlQ-=P|Q P|Q— P'|Q'{b/x}

a(b:T) -, a(xz:S) -,

close P— P Q —Q

PlQ = (b:T)(P"| Q'{b/x})
In the typed setting, we incorporate the standard typing rule

I'-P THQ
THP|Q

into Table 4.2. The TLTS shown in Table 4.3 is now extended with one rule:

At P-A P bn(a)nf(Q) =0
AtP|Q-5AEP|Q

Par

After the above modifications, all definitions and results in Section 4.1 are still valid.
To lift the results in Section 4.2, 4.3 and 4.4 to the full m-calculus, it suffices to enrich Table 4.4
with the two rules in Table 4.6. As in untyped m-calculus, the expansion law E* is used to reduce

the parallel composition of two terms into the sum of parallel-free terms. In the typed setting we add
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Ipar* Assume AgfP respects I'1, Agf@ respects I's, and A = Ag, Env(Ag, P,Q,T1,T2).

IfP=nQand AFRthen P|R=AQ|R
E* Assume P = X,p;;.P; and Q = ¥;1;3;.Q; where no «; (resp. (3;) binds
a name free in @ (resp. P). Let AP | @ respect I'. Then infer:

PlQ=apici(Bi | Q)+ 2, ¢iB5- (P Q) + X, opp 5,05 ANj A (wi = v5)]7.Rij

where a; opp (j,u;,v; and R;; are defined as follows:

1. o; is @w, B is vj(z: T) and T'(w) < T then R;; is P; | Q{w/z};

2. a;isu(w: S), Biisvj(xr : T)and S < T'; then R;; is (vw : S)(F; | Qj{w/x});
3. the converse of (1) or (2).

Table 4.6: Two rules for parallel composition

conditions on types in order to check the typability of the resulting process R;;. Rule Ipar* says
that if A cannot distinguish P from @, then it cannot distinguish P | R from Q | R either, provided
that: (i) A contains enough fresh channels; (ii) R requires no capabilities beyond the knowledge of

A. Note that we cannot do without the first condition, i.e., the rule cannot be simplified as:
Forany A, if P=A Q and A+ R then P| R=A Q | R

which is unsound for = (though it is sound for <). The point is that when comparing P | R and
Q | R, the observer may first increase his knowledge by interacting with R, then distinguish P from

@ by the new knowledge. For example, let A def bT,e:bT,b: T and

P a(z :T).[x # b7 QY a(z:T).0 R e (ve:Tec.
It is easy to see that P =a Q and A+ R but P | R #a Q | R. After the interaction with R,
the environment evolves into A, c: T. Later the new channel ¢ may be used to instantiate x, thus
validating the condition x # b and liberating the prefix 7.
The soundness of E* is easy to show. To prove that Ipar* is sound, we define a family of

relations R = {Ra}a where

Ra = {((va: T)(P | B), (v : To)(Q | B)) | P =anar Q ANA'F R,
A= Ao,ETL’U(A(),P,Q,Fl,F2>, AO I Alﬁp respects Fl,E : Tl,
and Ag M A#Q respects I's, a : Ty, for some Ag, A, I, Ta}.

Then it can be proved that R is a typed bisimulation.
In general, if P = @ then the equality P =a @ can be inferred in two steps:

1. By E*, Ipar* and Twea* we infer P =p P’ and Q =a @', where both P’ and Q' are

parallel-free terms.

2. After the above preprocessing job, we infer P/ = Q' by the proof systems and axiomatisations

presented in previous sections.
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4.6 Summary

In this chapter we have constructed a proof system and an axiom system for typed bisimilarity (=).
For the variant bisimilarity proposed in [HR04], we have provided a proof system for closed terms,
and an indirect axiomatisation of all terms that depends on the system of =. Early versions of
the systems are obtained by adding one axiom SP. All the systems are proved to be sound and
complete.

As partial meet and join operators do not exist in the original capability types [PS96], we adopt
in this chapter one of their extensions, Hennessy and Rathke’s types [HR04]. An alternative path to
take is to go in the opposite direction and add some syntactic constraints to capability types, thus
only certain shapes of types are legal and partial meet and join operators exist upon the legal types.
For instance, in synchronous localised m-calculus there are two forms of legal types: oo---0B and
bo---0oB where B is a basic type. It is easy to see that the two operators exist because whenever
T <: S holds, then either T'= S or T = b1, S = oT” for some T”, which means:

1. f T < Ty, 15 and T3 % T5 then T1 NT5 = T;
2. if T, < T and T3 % T5 then T UT5 =1T.

Therefore axiomatisation in synchronous localised m-calculus is a special case of the problem ad-

dressed in this chapter.



Chapter 5

Termination of Mobile Processes

by Typability

Many modern programming languages are equipped with some notions of typing to statically detect
programming errors. In mobile process calculi types are shown to be useful for reasoning about the
behaviour of processes. In this chapter we use type-based method to reason about the terminating
behaviour of mobile processes.

We give four type systems that ensure termination of well-typed m-calculus processes. The
systems are obtained by successive refinements of the types of the simply typed m-calculus. For
all (but one of) the type systems we also present upper bounds to the number of steps well-typed
processes take to terminate. The termination proofs use techniques from term rewriting systems.

We show the usefulness of the type systems on some non-trivial examples: the encodings of prim-
itive recursive functions, the protocol for encoding separate choice in terms of parallel composition,

a symbol table implemented as a dynamic chain of cells.

5.1 Preliminary Notations

To begin with, we introduce some notations about vectors, partial orders and multisets. We write
0; as the abbreviation of a vector (ng,ng—1,---,n1) where k > 1, n;, = 1 and n; = 0 for all j # ¢
(1 <4,j <k),and 0 for a vector with all 0 components. The binary operator sum can be defined
between two vectors. Let 1 def Nk, N—1,y -+, 1), P2 def (my,my—1,-+-,mq) and k > [. First we
extend the length of w2 to k by inserting (k — I) zeros to the left of m; to get an equivalent vector
©h. Then we do pointwise addition over two vectors with equal length. We also define an order
between two vectors of equal length as follows: (ng,ng—1, - -,n1) < (Mg, mg—1,---,mq) iff I < k
with n; = m; for j > 4 and n; < m;.

Let U be a set and > a strict partial order on U. Following [Bez03], we write a multiset M over
U in the form M = [z1,...,z,], where z; € U for 1 < i <n (when n = 0 we get the empty multiset
[1); we use (M W M) for the union of M and M’, and write >,,,,; for the multiset ordering (on

multisets over U) induced by >. A multiset becomes smaller, in the sense of >,,.;, by replacing one

75
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. Fuf"V o2z V FP Fu:4"V Fw:V FP i
T-in T-out T-nil
Fu(x).P F aw.P
FPFQ FPFQ a:L FP
T-par ——— T-sum —— T-res ———
FP|Q FP+Q FvaP

Fu:"V 2:V FEP Yveos(P),lv(v)<n
Hu(z).P

T-rep

Table 5.1: The core type system

or more of its elements by any finite number (including zero) of smaller elements. It can indeed be
shown that if > is well-founded then so is >,,,; [Bez03].

In this chapter we make no syntactic difference between channels and variables, both of them are
names. We shall restrict our attention to the termination property of closed processes, i.e., processes

without free names of bool or Nat types.

5.2 The Core System: the Simply Typed m-calculus with

Levels

Our first type system for termination is obtained by making mild modifications to the types and
typing rules of the simply typed m-calculus (cf. Section 2.2.5). We assign a level, which is a natural
number, to each channel name and incorporate it into the type of the name. Now the syntax of

channel type takes the new form:

L == §V channel types

n o= 1,2,--- levels

For convenience of presentation, in this chapter we only study type systems a la Church, and
each name is assigned a type a priori. Hence we do not annotate bound names with types. We write
x : T to mean that the name z has type T'. A judgment - P says that P is a well-typed process, and
F w : V says that w is a well-typed value of type V. Our core type system is displayed in Table 5.1.

The main difference from the simply typed m-calculus lies in the rule T-rep, in which os(P) is a
set collecting all names in P which appear as subjects of those outputs that are not underneath any

replicated input (we say this kind of outputs are active). Specifically, os(P) is defined inductively

as follows:
0s(0) EC) os(tuw.P) def {u} Uos(P)
os(lu(z).P) = 0 0s(P|Q) = os(P)Uos(Q)
os(u(z).P) déi 0s(P) 0s(P + Q) def 0s(P) U os(Q)
os(vaP) e 0s(P)
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The function lv(v) calculates the level of channel v from its type. If v : §*V then lv(v) = n.

The purpose of using levels is to rule out recursive inputs as, for instance, in the process
alla.b|b.a (5.1)

where the two replicated processes can call each other thus producing a divergence. Our type system
requires that in any replication la(z).P, the level of a is greater than the level of any name that
appears as subject of an active output of P. In other words, a process spawned by the resource
la(z).P can only access other resources with a lower level. Process (5.1) is therefore illegal because
la.b requires lv(a) > lv(b) while !b.a expects lv(b) > lv(a). For the same reason, for the process
pY a(z).)z.¢ |lc.b to be well typed it is necessary that names received along channel a have a
higher level than lv(c). Therefore P | ab is illegal, since, due to the right component of P, we have

lv(c) > lw(b). As a final example, consider the process
a |la.(¢ |'b.a). (5.2)

In this process, there is an output at @ underneath the replication at a. The output at a, however, is
not active in the body ¢ |!b.a of the replication because it is located underneath another replication.
Therefore this process is typable by our type system. We call 7 this type system and write 7 - P
to mean that P is a well-typed process under 7. The subject reduction theorem of the simply typed
m-calculus can be easily adapted to 7.

Before proceeding to prove the termination property of well-typed processes, we need some
preliminary notations. If name a appears as the subject of some active output in a subterm of P
and lv(a) = i, then we say a has at least one output (subject) occurrence at level i. It does not

matter whether a is free or bound in the whole process P. For example, let

Q€ (vd : t'Nat)(a(2).b(y).(Ty | od.cd.d3)).
It is easy to see that Q is a well-typed process if the types of a,b and c are $*f'Nat, #3Nat and
#241Nat, respectively. In this process x and d have one output occurrence at level 1 respectively,
¢ has two output occurrences at level 2, a and b have zero output occurrence at any level. Thus,
the identity of names that appear in output occurrences is not important: what we need is the
number of output occurrences of names belonging to the same level, and this for each level. For
every well-typed process P, we use n; to stand for the number of output occurrences at level ¢; hence
n; is simply calculated by scanning the process expression. Then the weight, wt(P), of a process
P is the vector (ng,ng_1,---,n1), with k representing the highest level on which the process has
non-zero output occurrence. As to the process @ defined above, it has the weight wt(Q) = (2, 2).
Formally we have the following definition of wt(P). It is related to the set os(P) since we only count

the levels of names appearing in os(P).

wt(0) X o wt(aw.P) = wt(P) + Opy(u
wt(lu(z).P) ¥ o wt(P| Q) ¥ wi(P)+ wt(Q)
wt(u(z).P) def wt(P) wt(P + Q) o maz{wt(P), wt(Q)}
wt(vaP) def wt(P)
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The next lemma says that weight is a good measure because it decreases at each reduction
step. This property leads naturally to the termination theorem of well-typed processes, by the

well-foundedness of weight.
Lemma 5.1 Suppose T = P,P = P’, then wt(P') < wt(P).

Proof: By induction on transitions. See Appendix C.1. a

Theorem 5.2 If 7 + P, then P terminates.

Proof: By induction on the weight of well typed processes.
e Base case: All processes with weight 0 are terminating because they have no active output.

e Inductive step: Suppose all processes with weights less than wt(P) are terminating. We show
that P is also terminating. Consider the set I = {i ‘ P 75 P;}. For each i € I we know that:
(i) 7 + P; by the subjection reduction property of 7, (ii) wt(FP;) < wt(P) by Lemma 5.1. So

each such P; is terminating by induction hypothesis, which ensures that P is terminating.
O

The type system 7 provides us with a concise way of handling nested inputs. For example, let
a: #'4Nat, b : #2Nat, ¢ : §!Nat, then process (1.1) is well-typed and therefore terminating. Similarly,
process (5.2) is well-typed if the types of a,b and c are #2Nat, #>Nat and #!Nat, respectively.

Lemma 5.1 implies that the weight of a process gives us a bound on the time that the process
takes to terminate. First we define the size of a process as the whole number of literals in the process

expression.

Proposition 5.3 Letn and k be the size and the highest level in a well-typed process P, respectively.

Then P terminates in polynomial time O(n*).

Proof: Let wt(P) be (ng,...,n1), thus Zle n; < n. The worst case is that when an active output
of level i is consumed, all (less than n) new active outputs appear at level i — 1. Hence one output

occurrence of level i gives rise to at most f(i) steps of reduction, where

L] ifi=1
f(l)_{l—i—n*f(i—l) ifi>1.

In other words,

n—1"

i—1 i_q
i)=Y n ==
j=0

Since the weight of P is (ng,...,n1), the length of any reduction sequence from P is bounded by
Zle n; * f(i). As

k

k k
Domix ) D miw f(k) = (i) = f(k) < nx (k) =

i=1

n(n* —1)

n—1

we know that P terminates in time O(nk). O
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As a consequence of Proposition 5.3 we are not able to encode the simply typed A-calculus into
the m-calculus with type system 7, according to the known result that computing the normal form
of a non-trivial A\-term cannot be finished in elementary time [Sta79, Loa98]. However, we shall
see in the next section an extension of 7 that makes it possible to encode all primitive recursive

functions (some of which are not representable in the simply typed A-calculus).

5.3 Allowing Limited Forms of Recursive Inputs

The previous type system allows nesting of inputs but forbids all forms of recursive inputs (i.e.
replications la(z).P with the body P having active outputs at channel a). In this and the following

sections we study how to relax this restriction.

5.3.1 The Type System

Let us consider a simple example. Process P below has a recursive input: underneath the replication

at a there are two outputs at a itself. However, the values emitted at a are “smaller” than the value

received. This, and the fact that the “smaller than” relation on natural numbers is well-founded,

ensures the termination of P. In other words, the termination of P is ensured by the relation among

the subjects and objects of the prefixes — rather the subjects alone as it was in the previous system.
P G(10) [la(n). if n > 0 then (a(n — 1) | aln — 1))

T

— a(9) | a(9) |la(n). if n > 0 then (a{n — 1) | a{n — 1))

For simplicity, the only well-founded values that we consider are naturals. But the arguments below
apply to any data type on whose values a well-founded relation can be defined.

We use function out(P) to extract all active outputs in P. The definition is similar to that
of 0s(P) in Section 5.2. The main difference is that each element of out(P) is a complete output
prefix, including both subject and object names. For example, we have out(la(x).P) = @ and
out(aw.P) = {aw} U out(P).

In the typing rule, in any replication la(z).P we compare the active outputs in P with the input
a(r) using the relation < below. We have that bw < a(x) holds in two cases: (1) b has a lower level
than a; (2) b and a have the same level, but the object w of b is provably smaller than the object x
of a. For this, we assume a mechanism for evaluating (possibly open) integer expressions that allows
us to derive assertions such as  —i < x if ¢ > 0. We adopt an eager reduction strategy, thereby the

expression in an output is evaluated before the output fires.

Definition 5.4 Let u : §"S and v : §7T. We write tw < u(zx) if one of the two cases holds: (i)
m<n; (ii) m=mn, S=T =Nat and w < x.

By substituting the following rule for T-rep in Table 5.1, we get the extended type system 7.
The second condition in the definition of < allows us to include some recursive inputs and gives us
the difference from 7.

Fu:"V z:V P Yow € out(P),vw<u(x)
Flu(z).P

T-rep
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The termination property of 7’ can also be proved with a schema similar to the proof in last
section. However, the details are more complex because we need to be clear about how the first-
order values in which we are interested evolve with the reduction steps. So we use a measure which
records, for each output prefix, the value of the object and the level information of the subject.
More precisely, the measure is a compound vector, which consists of two parts: the Nat-multiset and
the weight, corresponding to each aspect of information that we wish to record.

To a given process P and level i, with 0 < ¢ < k and k is the highest level in P, we assign a
unique Nat-multiset Mp; = [ng,---, 7], with n; € NU {oo} for all j <. (Here we consider oo as
the upper bound of the infinite set N.) Intuitively, this multiset is obtained as follows. For each
active output bw in P with [v(b) = i, there are three possibilities. If w is a constant value (w € N),
then w is recorded in Mp;. If w contains variables of type Nat, then a oo is recorded in Mp;.
Otherwise, w is not of type Nat and thus contributes nothing to the Nat-multiset. For instance,
suppose a : #3Nat, b : #2Nat,c : §'Nat and P % a(1) | a(1) | 5(2) la(n).b(n + 1) | b(n).é(n), then
7' = P and there are three Nat-multisets: Mp3 = [1,1], Mps = [2] and Mp; = [c0]. Formally,

we define M p; as follows:

Mo, o« [] Myap,i o Mp;
Muwrs < 1] Mpigi & Mpiw Mg,
M(z).pi o Mp; Mpiq.i & Mpi W Mg ;
Mp; W [w] if a : f'Nat and w € N
Maw.pyi f Mp; W [o0] if a : §'Nat and fon(w) # ()
Mp; otherwise

where fon(w) is the set of variables of type Nat. We define an operator \, to combine a set of
Nat-multisets {M¢g; | 0 < i < k} with the weight of ) (as defined in the previous section),
wt(Q) = (nk,---,n1), so as to get a compound vector tg = (Mqg.x;nk), -+, (Mg1;n1)). For the
above example wt(P) = (2,1,1), so tp = {Mp; | 0 <i <k} \, wt(P) = (([1,1];2), ([2]; 1), ([oc]; 1).

The order < and the operator + can be extended to compound vectors.

Definition 5.5 Suppose tp = ((sk), -, (s1)) and tq = ((s}), -+, (s1)), where s; = Mp;;n; and
si = Mgqi;n) for 0 <i <k.

1. 8; =8, if Mp; <mu MgV (Mp; = Mg An; <nl)
2. si=s; if Mp; = Mg, An;=n;

3. si+52:Mpﬁi&JM'Qyi;ni+ng

4. tp <tq if I < k,sj = s} for j>iands; < s
S.tp=tgifsi=¢s foralli <k

6. tp+tQ = ((sk+ %), -+, (s1+ 1))

Using compound vectors as the measure, we can build, with similar proof schemas, the counter-

parts of Lemma 5.1 and Theorem 5.2.
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Lemma 5.6 If 7'+ P and P — P’ then tp: < tp.

Proof: See Appendix C.2. O

Theorem 5.7 If 7'+ P then P terminates.

Proof: Followed from Lemma 5.6. O

Note that the measure used here is much more powerful than that in Section 5.2. With weights,
we can only prove the termination of processes which always terminate in polynomial time. By
using compound vectors, however, as we shall see in Section 5.3.2, we are able to capture the
termination property of some processes which terminate in time O(f(n)), where f(n) a is primitive
recursive function. For example, we can write a process to encode the repeated exponentiation, where
E(0) =1, E(n +1) = 25 Once received a number n, the process does internal computation in

time O(E(n)) before sending out its result.

5.3.2 Example: Primitive Recursive Functions

For simplicity of presentation, we have concentrated mainly on monadic communication. However,
it is easy to extend our calculus and type systems to allow polyadic communications and an if-then-
else construct ! (see Appendix C.3), which are needed in this example. The advantage of 7’ over

T lies in the fact that primitive recursive functions can now be captured.

Definition 5.8 (Primitive recursive functions)[Bec80] The class of primitive recursive functions
consists of those functions that can be obtained by repeated application of composition and primitive
recursion starting with (1) the successor function, f(x) = x+1, (2) the zero function, f(x) =0, (3)
the generalized identity functions fi(") (X1, ,xn) = x;, with the generating rules for composition

and primitive recursion being
1. Composition  f(x1, -, xn) = gler(@1, -, &n)y s em(T1, -+, Tn))
2. Primitive recursion

f(O,IL'Q,"',SCn) :6(5627"'7:67’1)
f(.’L'l—f—l,ZCQ,"',.Tn) :g(wlaf(-rla"'axn);:EQa"'axn)

Proposition 5.9 All primitive recursive functions can be represented as terminating processes in

the m-calculus.

Proof: A function f(Z) can be represented as a process F, which has replicated input like la(Z, y). R,
where name a is called port of F, with type Ty, ,, = m(l\ﬁ{:, f"Nat) where m > n. After receiving
via a some arguments Z and a return channel y, process R does some computation, and finally the

result is delivered at y. For the three basic functions, the results are returned immediately. This

1For convenience of presention, in the rest of the thesis we shall use an if-then-else construct in place of the

nondeterministic choice construct, instead of considering the two constructs simultaneously.
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style of encoding follows from Milner’s encoding of A-terms into m-processes [Mil92]. In the similar
way can the correctness of the following five encodings be verified.

The encoding of the three basic functions is straightforward.

(1) The zero function F, Ci:ef!a(x,y).gj(()).
(2) The successor function F, dﬁf!a(x, y).g{x + 1)
(3) The identity functions F™ €@, y).(:).

By assigning to a the type 151, the three processes defined above are typable in our core type

system 7, thus typable in 7.
(4) Composition

Suppose that Ej,, is defined for e; with the type of a; being T}, », for all 1 <¢ < m, and G, is
defined for g with the type of ¢ being T}, ns. By induction hypothesis, they are well typed in 7”.

Then we can define F, for f as:

def

F, = la(@,y).(vabe)(Erg, | a1(3,01) |- | Ema,, | @ (F, bm)
| b1(21)- -+ b (2m)-€(2, ) | Ge)
Let m” = maxz{m,---,my,m’'} +1 and give name a the type T~ . It can be easily checked that

process Fy is typable in 7.

(5) Primitive recursion

Suppose that F is defined for e with the type of b being T), and G, is defined for g with

1,11

the type of a’ being Ty, n,. By induction hypothesis they are well typed in 7’. We define F, as

follows.

F, = la(%,y). if 21 =0 then (vb)(Ey | b{za, -+, Tn,y))
else (wb')(a(x1 — 1,29, +,xn,b")

|V (2).(va)(Gor | /(21 =1, 2,22, 2, y)))

Let m = max{my,m2} + 1 and give type Ty, n, to a. It is easy to see that F, is well typed in 7.
O

For the process F' in (1.2), which represents the factorial function, it is typable if we give name
a the type #?(Nat,#!Nat). By contrast, the encoding of functions that are not primitive recursive

may not be typable. An example is Ackermann’s function.

5.4 Asynchronous Names

In this section we start a new direction for extending our core type system of Section 5.2: we prove
termination by exploiting the structure of processes instead of the well-foundedness of first-order
values. The goal of the new type systems (in this and in the next section) is to gain more flexibility
in handling nested inputs. In the previous type systems, we required that in a replicated process
la(x).P, the highest level should be given to a. This condition appears rigid when we meet a process
like la.b.a because we do not take advantage of the level of b. This is the motivation for relaxing

the requirement. The basic idea is to take into account the sum of the levels of two input subjects
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a,b, and compare it with the level of the output subject a. However, this incurs another problem.

Observe the following reduction:

PY &b |laba

~  b|ba|aba

- a|aba

The weight of P does not decrease after the first step of reduction (we consume a copy of @ but
liberate another one). Only after the second reduction does the weight decrease. Further, P might
run in parallel with another process, say @), that interferes with P and prevents the second reduction
from happening. This example illustrates two new problems that we have to consider: the weight
of a process may not decrease at every step; because of interferences and interleaving among the
activities of concurrent processes, consecutive reductions may not yield “atomic blocks” after which
the weight decreases.

In the new type system we allow the measure of a process to decrease after a finite number
of steps, rather than at every step, and up to some commutativities of reductions and process
manipulations. This difference has a strong consequence in the proofs. For technical reasons related

to the proofs, we require certain names to be asynchronous.

5.4.1 Proving Termination with Asynchronous Names

A name a is asynchronous if all outputs with subject a are followed by 0. That is, if av.P appears in
a process then P = 0. A convenient way of distinguishing between synchronous and asynchronous
names is using Milner’s sorts (cf. Section 2.2.3). Thus we assume two sorts of names, ¢, and ¢,
for asynchronous and synchronous names respectively, with the requirement that all names in ¢,
are syntactically used as asynchronous names. We assume that all processes are well-sorted in this
sense and will not include the requirements related to sorts in our type systems. (We stick to using
both asynchronous and synchronous names instead of working on asynchronous m-calculus, because
synchronous 7-calculus is sometimes useful — see for instance the example in Section 5.5.2 — and it is
more expressive [Pal03]. However, all the results in this paper are valid for asynchronous 7-calculus
as well.)

We make another syntactic modification to the calculus (with an if-then-else construct in place
of the nondeterministic choice in Table 2.4) by adding a construct to represent a sequence of inputs

underneath a replication:

ko= ug (). un(T) n>1and Vi <n,u; : g
P == ... |kP

This addition is not necessary — it only simplifies the presentation. It is partly justified by the
usefulness of input sequences in applications. (It also strongly reminds us of the input pattern
construct of the Join-calculus [Fou98]). We call « an input pattern. Note that all but the last input
subject in x are required to be asynchronous. As far as termination is concerned, we believe that
the constraint — and therefore the distinction between asynchronous and synchronous names — can

be lifted. However, we do not know how to prove Theorem 5.10 without it.
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The usual form of replication !u(x).P is now considered as a special case where the input pattern
has length 1, i.e., it is composed of just one input prefix. We extend the definition of weight to input
patterns by taking account of the levels of input subjects: wt(ui(21). - un(zn)) = 0k, + -+ + O,
where lv(u;) = k;. The typing rule T-rep in Table 5.1 is replaced by the following one.

F kP wt(k) > wt(P)
Ik.

T-rep

Intuitively, this rule means that we consume more than what we produce. That is, to produce
a new process P, we have to consume all the prefixes from uq(z1) to uy,(z,) on the left of P, which
leads to the consumption of corresponding outputs at uq,---,u,. Since the sum of weights of all
the outputs is larger than the weight of P, the whole process has a tendency to decrease its weight.
Although the idea behind this type system (7”) is simple, the proof of termination is non-trivial
because we need to find out whether and when a whole input pattern is consumed and thus the

measure decreases. The rest of the subsection is devoted to proving the following theorem.
Theorem 5.10 If 7" + P then P terminates.

Below we briefly explain the structure of the proof and proceed in four steps. Firstly, we decorate
processes and transition rules with tags, which indicate the origin of each reduction: whether it is
caused by calling a replicated input, a non-replicated input or it comes from an if-then-else structure.
This information helps us to locate some points, called landmarks, in a reduction path. If a process
performs a sequence of reductions that are locally ordered (that is, all and only the input prefixes
of a given input pattern are consumed), then the process goes from a landmark to the next one
and decreases its weight (Lemma 5.12). (This is not sufficient to guarantee termination, since
in general the reductions of several input patterns may interleave and some input patterns may
be consumed only partially.) Secondly, by taking advantage of the constraint about asynchronous
names, we show a limited form of commutativity of reductions (Lemma 5.13). Thirdly, by commuting
consecutive reductions, we adjust a reduction path and establish on it some locally ordered sequences
separated by landmarks. Moreover, when an input pattern is not completely consumed, we perform
some manipulations on the derivatives of processes and erase some inert subprocesses. Combining
all of these with the result of Step 1, we are able to prove the termination property of tagged
processes Lemma (5.14). Finally, the termination of untagged processes follows from the operational
correspondence between tagged and untagged processes (Lemma 5.11), which concludes our proof
of Theorem 5.10.

We begin with introducing the concepts of atomic tag, tag and tagged process. Atomic tags
are names from a separate infinite set A/, which is disjoint from the set A/ used for constructing
untagged processes. We use the function p : N/ — N to associate every atomic tag with a natural
number. Note that we require A/ to be an infinite set so that it can always supply fresh atomic tags
as we need. We let [,1’,11, - - - range over atomic tags and € stand for a special atomic tag by setting
p(e) = 0. A tag is a pair (I,n) where [ is an atomic tag and n is an integer with n < p(I). We let
t,t',- - range over tags and write € as the abbreviation of the special tag (¢,0). The only difference
between tagged processes and untagged ones is that the former gives tags for all non-replicated
inputs.

P = .. |ul(x).P
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if-t - if-f -
if true then P else Q — P if false then P else Q — Q
(l/a)ﬂw / utw ; o~ _
coml rp—7r Qt—)? Iaﬂf/n(Q) =0 in n
PlQ— (va)(P'| Q") u'(x).P Y5 P{w/x}

k=ui(x1). - un(x,) lfresh p(l)=mn
1)

k. P Sk P | () (22). - ™ (2,). P){w/ar }

rep

Table 5.2: Transition rules for tagged processes

Note that we do not give tags to input patterns. A tagged process P is regular if the only tag that
appears in P is the special tag e. On the contrary, if there is a tag ¢t with ¢ # € in P, then P is
irregular. We reserve the tag € for the transition rules if-t and if-f (see Table 5.2). Unlike €, € only
appears in transitions, not in tagged processes. We define the operator erase(-) to erase all tags in
a tagged process so as to get an untagged process. Let P be a tagged process. We define wt(P) as
wt(erase(P)), and we write 7" F P if 7" + erase(P). The transition rules for tagged processes are
the same as in Table 2.3 except for rules in, com1, rep, if-t and if-f, which are displayed in Table 5.2. In
the rule rep, a fresh atomic tag [ is introduced to witness the invocation of the replicated input !x.P.
The result of invoking !x.P is the generation of a new process (u(l"Q)(azg). - ugn)(acn)P){w/xl}
The condition p(l) = n relates [ to k by requiring the number of input prefixes in & to be p(l). So
if an input prefix has tag (I, p(1)) then it originates from the last input prefix in .

Note that substitutions of names do not affect tags. More precisely, we have that (a’(z).P)
{c/b} = (a{c/b})!(x).P{c/b}. From the transition rules it can be seen that tags are never used as
values to be transmitted between processes and that there is no substitution for tags.

Tags give us information about the transitions of tagged processes. For example, if P is regular

and P - P’ , then at least we know the following information:
e if £ = ¢ then an if-then-else structure in P disappears when P evolves into P’;

e if t = e then the reduction results from an internal communication between an active output

and a non-replicated input;

e if t = (I,1) then the reduction results from an internal communication between an active
output and a replicated input of the form luy (x1). - - - .u,) () )-Q; moreover, if p(l) > 1 then

P’ has a subprocess u"? (z2).- -+ .uil(’g(l))(zp(l)).Q.

We define the operator (-)°, which is complementary to erase(-), to translate untagged processes

into regular processes by giving all non-replicated inputs the special tag e.

0° =0 (u(z).P)° = uf(zx).P°
(dw.P)° ©f qw.pe (vaP)° et pape
P1Qr X poge (kPP X 1epe

(if w then P else @ )° 4" if w then P° else Q°
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Note that erase(P°) = P holds but (erase(P))° = P may not be valid. For example la.b.¢ | @ &
la.b.c | b42 & = P, and thus (erase(P'))° =la.b.¢ | b°.¢ # P’. However, there exists operational
correspondence between tagged and untagged processes since tags do not have semantic meaning
and the purpose of using tags is to identify every newly created process from some replicated process.

This is precisely what the next lemma shows.
Lemma 5.11 Let P be a tagged process and () an untagged one.
1. If P -5 P’ then erase(P) — erase(P').
2. If Q — Q' and erase(P) = Q, then P 5 P and erase(P’) = Q' for some t.

As expressed in Lemma 5.12 and 5.13, (well-typed) tagged processes have some interesting
properties such as decrement of weight after some specific steps of reduction and commutativity

of reductions.
Lemma 5.12 1. If P -5 P’ then wt(P) = wt(P").

2. If P P then wt(P) = wit(P')

3. If P ¢ P 2 < Ppq ) P and n = p(l) > 0 then wt(P) = wt(P’).

Proof: See Appendix C.4. O

Generally speaking, commutativity of reductions does not hold in the 7-calculus. For instance,
the process P = a.b | @ | b has reduction path P —%-"" but not ——%, where —> means that
an internal communication happens on channel c. As we shall see in the next two lemmas, this
property does hold in the presence of certain constraints. We write P :Z> Rfor Pt ..ty R,
where £ = t1- -ty

Lemma 5.13 1. If P is reqular and P == R &9 Ry -5 R, te{e €} andi < p(l), then there

exists R such that R — R} @) pr

2. If P is reqular and P == R ) R, &4 R, 1#U, j<p(l') andi < p(l), then there exists

some R} such that R SN R) W) pr

Proof: See Appendix C.4. O

In the following lemma, we make full use of commutativity and reorganize a reduction path in a
way easy of pinpointing landmarks, which witness the decrement of the measure that we choose for

the beginning process of the path.
Lemma 5.14 All the regular tagged processes terminate.

Proof: We sketch the idea of the proof; more details are given in Appendix C.4.
Let P be a regular tagged process. We show that P terminates by induction on its weight wt(P).
e Base case: All processes with weight 0 must be terminating because they have no active outputs.

e Inductive step: Suppose P is non-terminating and thus has an infinite reduction sequence

t t t; t;
PEP0—1>P1—2>---—1>P1-3>---
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Now the tag t; takes one of the three forms: €', € or (I,4). By doing case analysis we can prove that
in every case there always exists some @ such that: (i) @ is also non-terminating; (ii) @ is regular;
(iil) wt(P) » wt(Q). When Q is found, we get a contradiction since by induction hypothesis all
processes with weights less than wt(P) are terminating. So the supposition is false and P should
be terminating.

In seeking for this ), we carefully manipulate the reduction path of P by commuting reductions
(Lemmas 5.13) in order to put all tags belonging to the same input pattern in contiguous positions.
Then we can use Lemma 5.12 to prove (iii). If an input pattern cannot be completed, which means
that its continuation does not contribute to the subsequent reductions of P, we can substitute 0
for the continuation. For example, suppose P def vag(ay |laj.ae.Ry) | Ro and there is a reduction
sequence like:

t3

p@,pli,pQ*%..

with P, = vas (agm).Rl |'a1.a2.R1) | Ra. Since agl’Q).Rl is never consumed in the reduction sequence,
it contributes nothing to the subsequent reductions starting from P;. So we can safely take @) to be
vaz(0 |lar.a2.R1) | Re, and the same transition sequence can still be made, with 0 in place of the

ém)_ R; in all derivatives.

top level a

Consequently, for each new atomic tag [ with p(l) > 0 created by the derivatives of P, either we
have found the complete input pattern corresponding to [, or the input pattern cannot be completed
but no [ appears in the infinite reduction path starting from @. As a result, no new tag appears in

Q, i.e. (ii) is satisfied. O
Now we are ready to prove Theorem 5.10 by applying the last lemma.

Proof of Theorem 5.10:

By Lemma 5.11 it is easy to prove the following claim:

Let P be a untagged process and @ be a tagged process such that erase(Q) = P, then

P is non-terminating iff @) is non-terminating.

Since erase(P°) = P, it follows that P° is non-terminating iff P is non-terminating. By the

)

definition of the translation (-)° we know that P° is regular. Therefore Lemma 5.14 applies and P°

must be terminating, which in turn implies the termination of P. a

Proposition 5.15 For a process P well-typed under T", let n and k be its size and the highest

level, respectively. Then P terminates in polynomial time O(n*+1).

Proof: Let wt(P) be (ng,...,n1). From the proof Lemma 5.14 we know that: (i) commutation
of reductions does not change the length of a reduction sequence; (ii) the measure diminishes from
one landmark to the next one; (iii) the distance between two neighboring landmarks is less than n.

In addition, by similar arguments as in the proof of Proposition 5.3 it can be shown that in each
k

locally ordered reduction path there are at most % landmarks. Therefore the whole length of

n?(n*—-1) 0

n—1

each reduction path is bounded by
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(S aidiP) < vs ( 5(true)

| I ,ve a;{d;,s,e).e(x). if x then [P;] else 0)
[Bbi(2)-Qi) <
vt ( t{true)
| IZyvg (9
| 19.bi(2,s,€).t(x). if x then
( s(y). if y then
(t{false) | s(false) | e(true) | [Q:])

else

(Etrue) | 5(false) | &(false) | 7))

else
t(false) | bi(z,5,€)))
where ¢, s and e are fresh and II? ; P, means P; | --- | P,.

Table 5.3: The protocol of encoding separate choice

5.4.2 Example: the Protocol of Encoding Separate Choice

Consider the following protocol which is used for encoding separate choice (the summands of the
choice are either all inputs or all outputs) by parallel composition [Nes00], [SWO01, Section 5.5.4].
One of the main contributions in [Nes00] is the proof that the protocol does not introduce divergence.
Here we prove it using typability.

The protocol uses two locks s and t. When one input branch meets a matching output branch,
it receives a datum together with lock s and acknowledge channel e. Then the receiver tests ¢t and
s sequentially. If t signals failure, because another input branch has been chosen, the receiver is
obliged to resend the value just received. Otherwise, it continues to test s. When s also signals
success, the receiver enables the acknowledge channel and let the sender proceed. At the same time,
both t and s are set to false to prevent other branches from proceeding. If the test of s is negative,
because the current output branch has committed to another input branch, the receiver should
restart from the beginning and try to catch other send-requests. This backtracking is implemented
by recursively triggering a new copy of the input branch.

Usually when a protocol employs a mechanism of backtracking, it has a high probability to give
rise to divergence. The protocol in this example is an exception. However, to figure out this fact
is non-trivial, one needs to do careful reasoning so as to analyze the possible reduction paths in
all different cases. With the aid of type system 7", we reduce the task to a routine type-checking
problem. We show that the protocol does not add any infinite loop by proving that the typability of
[P;] and [@;] implies that of [¥;a;d;.P;] and [X;b;(2).Q;]. Then we conclude by Theorem 5.10. Here
we take the i-th branch of input guarded choice as an example and assume that b; does not appear
in ;. Suppose that [Q;] is typable by 7" and the highest level of names in Q; is n with n > 1. Let
us give type flbool to t, type " Nat to g and type #2(T%, #'bool, 1 bool) to b; where T, is the type
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of the datum z. Take g.b;(z, s, €) as the input pattern, noted as k, and abbreviate its continuation
as P. Then !k.P is well typed under 7" because wt(k) = (1,---,1,0) and wt(P) = (1,---,0,3) (the
dots stand for a 0-sequence of length (n — 2)), thus wt(x) > wt(P).

5.5 Partial Orders

The purpose of our final type system is to type processes even if they contain replications whose
input and output parts have the same weight. Of course not all such processes can be accepted.
For instance, !a.b.(a@ | b) should not be accepted, since it does not terminate when running together

with @ | b. However, we might want to accept

'g(a,b).a.(g{a,b) | b) (5.3)

where a and b have the same type. Processes like (5.3) are useful. For instance they often appear in
systems composed of several “similar” processes (an example is the chain of cells in Section 5.5.2).
In (5.3) the input pattern g(a,b).a and the continuation g(a,b) | b have the same weight, which
makes rule T-rep of 7" inapplicable. In the new system, termination is proved by incorporating
partial orders into certain channel types. For instance, (5.3) will be accepted if the partial order

extracted from the type of g shows that b is below a (both b and a being names that are received

along g).

5.5.1 The Type System

We present the new type system 7. The general structure of the associated termination proof
goes along the same line as the proof in Section 5.4.1. But now we need a measure which combines
lexicographic and multiset orderings.

To begin with, we introduce some preliminary notations. Let A be a set and R C A x A be
a partial order on elements of A. The set of names appearing in elements of R is n(R) = {a |
aRbV bRa for some b}. Let T be a tuple of names x1, - - -, z,, we write the length n of the tuple as
| Z |. In the following, we define some operators for partial orders. They will be used for simplifying

the presentation of our typing rules in Table 5.4.

Definition 5.16 Let R C N x N and S C Nat x Nat be two partial orders and X is a tuple of

names in N'. We define two operators / and x to transform one partial order into the other.

0 if n(R)N7 =0
1 R/FE S ((,5) | 2R} if n(R) C &
undefined otherwise

2. 87 Y {(x;,2;) | iS5} if max{n(S)} <| 7|

As shown by the following lemma, the two operators are complementary to each other to some

extent.

Lemma 5.17 1. (R/Z)«Z =R ifn(R)Cz
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2. (Sxx)/2 =8 if max{n(S)} <| 7|
Proof: By the definition of / and * directly. O

Remark: In this paper we use partial order in a very narrow sense. We require each partial
order on names to satisfy the following two conditions: (i) mathematically it is a strict partial order
(irreflexive, antisymmetric and transitive); (ii) all names in n(R) are of the same type (this type is
written T ).

Let R be a partial order. We extract the sub-partial order defined on n(R)\ Z by R{z= {(a,b) |
a,b € T and aRc1R -+ Repb for some ¢ C x and n > 0}. Given two partial orders Ry, Re with
Tr, =Tr,, we let R1 +Ra be R; URq if such a union is a partial order. Otherwise, it is undefined.

The operator os(-) of Section 5.2 is now refined to be mosg (+), which defines a multiset recording

all subject occurrences of names in active outputs and with type T’z.

mosg(0) <[]
mosw (Iu(@).P) % []
mosr (u(Z).P) def mosg (P)
mosg (vaP) def mosg (P)
def { [u] W mosg (P) ifu:Tr
mosg(uw.P) =
mosg (P) otherwise
mosr (P | Q) def mosg (P) W mosr(Q)
mosr( if b then P else Q) def mosw (P) W mosr(Q)

The operator mosg(-) can be extended to input patterns by defining: mosg (k) def mosg (11 |
s | UpZp) i K= ug(F). - un (Th).

Let R be a partial order and R, be the induced multiset ordering on multisets over n(R).
The binary relation defined below will act as the second component of our measure, which is a

lexicographic ordering with weight of processes as its first component.

Definition 5.18 Let R be a partial order on names, Q be a process, P be either an input pattern or
a process. It holds that P R Q if the following three conditions are satisfied, for some multisets on
names M1, My and M: (i) mosg(P) = MW My; (i) mosg(Q) = MW May; (iii) My Ry Ma.

Essentially the relation R is an extension of the multiset ordering R,,q;. One can easily prove that
R is also well-founded: if R is finite, then there exists no infinite sequence like Py R Py R Py R--
Now we are well-prepared to present our types and type system. Here we consider polyadic

m-calculus and redefine channel type as follows.
L= ﬂg? where Vi,jen(S), Vi=V;

where S C Nat x Nat is a partial order on the indexes of V (that is, if | V |= m then S is a partial
order on the set {1,...,m}). The condition in the definition says that if ¢ and j are two indexes
related by S, then the i-th and j-th components of V have the same type.

If vaP is a subprocess of (), we say that the restriction va is unguarded if vaP is not underneath

any input or output prefix. More precisely, we define a set ur(P) to collect all unguarded restrictions
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in P.
ur(0) g ur(u(x).P) L
ur(lu(z).P) df g ur(aw.P) S
ur(vaP) def {a} Uur(P) ur(P | Q) def ur(P) U ur(Q)

ur( if b then P else (Q) &f ur(P) U ur(Q)

If we pull all unguarded restrictions of () to the outmost positions, the resulting process va@)’
has the same behavior as (). In literature this property is often characterized by a sequence of
structural rules describing scope extension, see for example [Par01]. Since we assume that bound
names are different from free names, the side conditions of those rules are met automatically. We
use this property implicitly and often write ) as va@Q’ without unguarded restrictions in @’.

Besides the two sorts ¢, and ¢ introduced in the beginning of Section 5.4.1, now we need another

sort . It requires that
if . P is a process with subj(a) : ¢, then ur(P) = 0.

In other words, if a name of sort ¢, appears in the subject position of a prefix (either input or output),
then the continuation process has no unguarded restrictions. This technical condition facilitates the
presentation of Definition 5.19.

Suppose k = a1(Z1). -+ .an(Ty) and each a; has type ﬂg“f/ We extract a partial order from &
by defining R, = Sy xZ1 U---US, * Tp,. It is well defined because all the bound names are assumed
to be different from each other. For example, if kK = a1 (211, 212, 213).a2(T21, T22, T23), S1 = {(1,2)}
and Sz = {(2,1)}, then we have R,, = {(x11,%12), (x22,T21)}-

Definition 5.19 Let k = ui(Z1). - - .un(Zn). The relation k = P holds if one of the following two
cases holds: (i) wt(k) »= wt(P); (i) wt(k) = wt(P), k Ry P and uy : tr.

The second condition indicates the improvement of 7" over 7”. We allow the input pattern to
have the same weight as that of the continuation, as long as there is some partial order to reflect a
tendency of decrement.

The typing rules of 7" are presented in Table 5.4. Now the judgment R - P means that P is
a well-typed process and the free names in P respect the (possibly empty) partial order R. In the
premise of rule T-in, if there exists some non-empty partial order relation on Z, then it is exactly
captured by R, the partial order built upon free names of P. In rule T-out for R + S * v to be well
defined, the partial order on v should not conflict with the partial order exhibited by P. Similarly
in rules T-par and T-if the partial orders contributed by P and @ should be compatible and thus
can be combined together. As we only consider the partial order on free names of vaP, in rule T-res
all pairs concerning a are deleted from R while the relative partial order relation on other names
are kept intact. In rule T-rep the appearance of the replication operator does not affect the existing
partial order, but it requires the validity of the condition x = P, which plays an important role in
Lemma 5.21 and gives us the possibility of doing termination proof.

In Definition 5.19 the constraint imposed on u,, is used to prohibit potential extension of partial
orders caused by the restriction operator. Let us consider two examples, concerning two different

occurrences of restricted names.
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uﬂgf/ i:V RFP S=R/%

T-in — T-nil
Rz u(@).P pro0
42V @:V REP RiFP Ryt
T-out uils w~ — T-pa ! )
R Ri+RaFP|Q
, b:bool Ri1FP RakFQ a:L REP
T-if T-res
Ri1i+ Ro - if b then P else () Rt vaP
REEKP Kk =P
T-rep
R Hk.P
Table 5.4: Typing rules of 7"
(i) Underneath an input pattern
def _ T _ _ =
P = lg(a,b).a.vc(gb,c) | b) | g a | g{a,b)
— lg(a,b).a.ve(g(b,c) | b) | a.ve(glb,c) | b) | a| gla,b)
— lg(a,b).a.ve(gib,c) [ b) | v c) | b) | g(a,b)
= wvd(lg(a,b).a.ve(g(d,c) | b) | g(b,d) | b] ga,b))
def

I
<

u
g

Q.
-

Q = lg(a,b).a.(3(a,
5 lg(a,b).a.(g
- lg(a,b).a.({a,
= ! ).a.
def vdQ'

Let the type of name g be £}, 5, (4V.#;V). Assume R = {(a,b)} and R' = {(a,b), (b,d)}. If

b) | a.vcg(b, c)

92

the condition a,, : ¢, in Definition 5.19 was lifted, then both P and @ would be well typed: in the
first example, it could be derived that R = P and R’ F P’; in the second example, R + @ and
R’ F Q. In both cases the new name d extends the partial order R to be R'.

However, the process P does not terminate because it can make cyclic reduction and the two steps

from P to vP’ form a cycle. Therefore the structure in (i) is dangerous and should be disallowed.

The process @ always terminates in at most 6 steps, but ruling out the structure in (ii) simplifies

our proof of Lemma 5.22.

For this type system, we have the following subject reduction property.

Theorem 5.20 (Subject reduction) Suppose R - P and P -+ P'.

1. If a« = 7 due to a communication then R+ P’.

2. If o = 7 due to a conditional then R' = P' with R =R’ +R" for some R’ and R".
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3. If o« = aw then there exists n,S and V such that
(a) a:ﬂgf/ and @ : V
(b) if S *w is a partial order then R+ S+ wk P'.
4. If a = (zfl;)aﬁ then there exists n,S, R’ and V such that
(a) a:ﬂgf/ and @ : V
(b) R'+ P
(c) R=(R +Sx*w)l;

Proof: See Appendix C.5. Most efforts are made to check the consistency of partial orders in the

type environments. m]

The following lemma is the counterpart of Lemma 5.12.

Lemma 5.21 Suppose that ur(P) =0, R+ P, P &y P &2 < Ppy ) prand n = p(l) > 0.

Then one of the following two cases holds.
1. wt(P) = wt(P');
2. PR P and ur(P') = 0.
Proof: See Appendix C.5. O

With the last lemma we are able to prove Lemma 5.22, whose role in 7" is the same as that of
Lemma 5.14 in 7.

Lemma 5.22 All the regular tagged processes (well-typed under T ) terminate.

Proof: Compared with the proof of Lemma 5.14, the main difference is that when we have

completed some input patterns and get a reduction sequence like
t € ta ¢ ti
Ph=P —P=.---—PFP 1=DPF- -

it may be possible that Vj < i, wt(P;) = wt(Pj4+1). Let R F Py, we can show by contradiction
that the sequence of processes of equal weight is finite, by the well-foundedness of R,.;. See

Appendix C.5 for more details. O

Finally we have the following termination theorem for 7", due to the operational correspondence

between tagged and untagged process and Lemma 5.22.

Theorem 5.23 If R+ P then P terminates. Moreover, let n and k be its size and the highest level,
then P terminates in time O(nk+3).

Proof: The proof of termination is straightforward. Let us look at the time complexity. Clearly the
sizes of the two sets n(R) and mosg (P) are less than n. If there is a sequence Py R Py R -+ R P,

then it can be shown that m < n?. By similar arguments as in the proof of Proposition 5.15 it can

n(n”

be shown that in each locally ordered reduction path there are at most 7;1) landmarks and the

distance between two neighbouring landmarks is less than n3. Therefore the whole length of each

4 k
reduction path is bounded by % 0
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(French, f)
(Italian, i)

\ a ) b [ e nil
1, Chinese)—————— 2,English )| ——— -~~~ -~

Figure 5.1: An example of symbol table

def lg(a,b,n,s).a(t,x).

if { = s then
Z(n).g{a,b,n, s)
else if b= nil then
Z{n + 1).ve(g{e,nil,n+ 1,t) | gla,c,n,s))
else b(t,x).gla,b,n,s)
ST, vg(G | gla,nil, 1, sq))
ST, = STol|alty,z1) ]| altm,Tm)

Table 5.5: The implementation of a symbol table

5.5.2 Example: Symbol Table

This example comes from [Jon93, San99]. It is about the implementation of a symbol table as a
chain of cells. In Table 5.5 G is a generator for cells; S7Tj is the initial state of the symbol table
with only one cell; ST, is the system in which the symbol table has m pending requests.

Every cell of the chain stores a pair (n,s), where s is a string and n is a key identifying the
position of the cell in the chain. A cell is equipped with two channels so as to be connected to
its left and right neighbours. The first cell has a public left channel a to communicate with the
environment and the last cell has a right channel nil to mark the end of the chain. Once received a
query for string ¢, the table lets the request ripple down the chain until either ¢ is found in a cell, or
the end of the chain is reached, which means that ¢ is a new string and thus a new cell is created to
store ¢t. In both cases, the key associated to t is returned as a result. See Figure 5.1 for a concrete
example, where three cells and two requests are shown; the first cell stores the string “Chinese” and
its key “1”, while the first request queries the string “French” and an answer will be delivered at
channel f. There is parallelism in the system: many requests can be rippling down the chain at the
same time.

As to termination, the example is interesting for at least two reasons. (1) The chain exhibits a
syntactically challenging form. The replicated process G has a sophisticated structure of recursive
inputs: the input pattern has inputs at g and a, while the continuation has a few outputs at g and
one output at b, which has the same type as a. (2) Semantically, the chain is a dynamic structure,

which can grow to finite but unbounded length, depending on the number of requests it serves.
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Moreover, the chain has a high parallelism involving independent threads of activities. The number
of steps that the symbol table takes to serve a request depends on the length of the chain, on the
number of internal threads in the chain, and on the value of the request.

Suppose T %' 13 (String, 'Nat), S ef {(1,2)} and let the type of g be £5 (T, T, Nat, String), where
String is the type for strings. We consider nil as a constant name of the language studied in this
section and take it for the bottom element of any partial order R C N x N with Tz = T. For any

m € N, process ST}, is well typed under 7" and thus terminating.

5.6 Summary

In this chapter we have proposed a core type system and three extensions of it to ensure termina-
tion of processes in the m-calculus. Based on the type systems we are able to prove the termination
property of some challenging applications: the encodings of primitive recursive functions, the pro-
tocol for encoding separate choice in terms of parallel composition, a symbol table implemented as
a dynamic chain of cells. For all (but one of) the type systems we also present upper bounds to the
number of steps well-typed processes take to terminate.

We believe that the idea of using levels can be applied to other name-passing calculi. For
instance, in Appendix C.6, we have checked that in the Join-calculus [Fou98] the type system
presented in Section 5.4 can be simplified. Intuitively, this is because the Join-calculus can be
encoded into a sublanguage of the asynchronous w-calculus with each input channel being unique,
thus our assumption about asynchronous names in Section 5.4 is automatically met and recursive
inputs are easier to be handled.

In Section 1.5 we have already discussed related work on termination, notably [San05] and
[YBHO4]. Our systems are incomparable with those in [San05] and [YBHO04]. Roughly, in [San05]
and [YBHO4] processes are mainly “functional” and indeed include the standard encodings of the
A-calculus into the m-calculus. These processes are not typable in our type systems. In this chapter
the processes are mainly “imperative”. For instance, the examples in sections 5.4.2 and 5.5.2 are not
typable in [San05] and [YBHO04]. One way of interpreting the results of this chapter is to consider
combinatory approach (on which our termination proofs are based) as a complementary technique
to logical relations (on which [San05] and [YBHO04] are based) for showing termination of processes.

It would be interesting to see whether the two approaches can be successfully combined.



Chapter 6

Conclusions and Future Work

In this thesis we have investigated various issues on probabilistic processes and typed mobile pro-

cesses. The major contributions are, briefly, the following;:

1. A complete axiomatisation of a calculus which contains both nondeterministic and probabilistic
choice, and recursion. We have axiomatized both strong and weak behavioural equivalences.
It is the first time, as far as we know, that a complete axiomatisation of weak behavioural

equivalences is presented for a language of this kind.

2. A complete axiomatisation of typed bisimilarity in the m-calculus with capability types. An
indirect axiomatisation of a variant typed bisimilarity given in [HR04]. To our knowledge, this

is the first attempt towards an algebraic theory of typed mobile processes.

3. A core type system and three refinements of it for guaranteeing termination property of well-
typed processes in the w-calculus. In the termination proofs we have exploited two term
rewriting techniques: lexicographic and multiset orderings. In contrast, the conventional
proof techniques for concurrency, such as coinduction and structural induction, do not play

an important role here.

In summary, we have developed algebraic techniques for reasoning about the behaviour of prob-
abilistic processes and typed mobile processes. We have also studied a type-based technique for
verifying the termination property of mobile processes. These results lay out the foundations for
further study of more advanced models which may combine probability with typed mobility. They
also highlight the robustness of the algebraic and typed-based techniques for behavioural reasoning.

In the rest of this chapter we discuss possible future work, including several problems that have

been left open.

Generalisation of the results

Due to the difficulty discussed at the end of Section 4.4.1 we are only able to give an indirect
axiomatisation of the bisimilarity proposed by Hennessy and Rathke [HR04]. We are not clear

whether it is possible to directly axiomatize the equivalence in the language considered in Chapter 4.

96
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We do not know at present how to adapt our results to the language in [BS98] either. We recall
that the main differences are: (i) no distinction between channels and variables, (ii) no matching
construct, (iii) the use of Pierce and Sangiorgi’s types. Because of (i), some care is needed in a
proof system, for instance in defining the appropriate rules for manipulating names that will later
be bound in an input. Because of (ii), the expansion law cannot be used without appropriate
modification. Another issue is axiomatisations of typed weak bisimilarities. In this case, however,
types may not be so central, and the addition of the usual tau laws [Mil89a] might be sufficient.

For Hennessy and Rathke’s bisimilarity, as well as the typed bisimilarity defined in [SWO01], there
are results that relate them to contextual equivalences such as barbed equivalence. It would be
interesting to see what kind of contextual equivalence (if any) corresponds to our typed bisimilarity
(Definition 4.9).

Our type system in Chapter 4 allows matching names to have arbitrary types. It is not clear
how to restrict our use of matching. Limiting matching to names of compatible types might pose a
problem for subject reduction. On the other hand, allowing matching only on names with types of the
form bT', as in [PS96], would seem difficult, for matching plays an important role in axiomatisations.
For example, one would not be able to rewrite x | § as .§+7.z+ [z = y]7 under the type environment
A =x:1iT,y: oT. In [HRO4], a particular typing rule for matching is presented, which allows meet
of types on successful matches. It might be interesting to know whether the presence of this typing

rule would affect the validity of our proof systems.

Type inference

In Chapter 5 for the sake of simplicity we have given our type systems in the Church version. It
is not difficult to transform them into the Curry version. For the Curry version of 7 and 77, it is
possible to check automatically whether a program is well-typed by using type inference, following
for instance Vasconcelos and Honda’s type inference algorithm for polyadic w-calculus [VH93]. Here
one needs an extra constraint, which is a partial order between levels of names. By inspecting the
structure of a process, this task can be done in linear time w.r.t. the size of the process. For 7"
and 7", however, type inference is not straightforward. In the future we would like to investigate

efficient type inference algorithms for them.

Parallel composition

Parallel composition plays an important role for modelling distributed concurrent systems, as it
allows to specify the structural properties of systems composed of several interacting parts. However,
having both recursion and parallel composition in a process calculus complicates the matters to
establish a complete axiomatisation, mostly because this can give rise to infinite-state systems even
with the guardedness condition. For example, let E be the expression px(a.(X | b)), then we can
easily see that there is an infinite transition graph starting from F, though it is guarded in the sense
of Definition 3.2. Milner points out in [Mil89b] that in order to have a complete axiomatisation
for CCS with both recursion and parallel composition, a sufficient condition is that the parallel

composition does not occur in the body of any recursive expression.
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In [DPPO05] we relax this restriction by requiring, instead, that free variables do not appear in
the scope of parallel composition'. In addition, due to the difficulty of defining parallel composition
on probabilistic automata as discussed in [Seg95], we have refined the probabilistic process calculus
given in Chapter 3. We restrict ourselves to simple probabilistic automata in [DPP05], and we have
given complete axiomatisations for strong bisimilarity and observational equivalence. To obtain the
completeness of the axiomatisations, we have developed a probabilistic version of the expansion law
to eliminate all occurrences of parallel composition. In order to do that, we heavily rely on the
condition that only closed terms are put in parallel. We are now considering how to adapt these

results to axiomatize probabilistic branching bisimilarity.

Metric semantics of probabilistic processes

Usually probabilistic bisimulation is adapted from the classical notion of bisimulation by treating
probabilities as labels (see for example [LS91, Seg95, PLS00, DP05]), but this does not provide a
robust relation, since quantities are matched only when they are identical. Processes that differ for
a very small probability, for instance, would be considered just as different as processes that perform
completely different actions. This is particularly relevant to security systems where specifications
can be given as perfect, but impractical processes and other, practical processes are considered safe
if they only differ from the specification with a negligible probability.

To find a more flexible way to differentiate processes, researchers in this area have borrowed
from pure mathematics the notion of metric [DJGP02, DJGP04, vBW04, vBWO01]. A metric is
defined as a function that associates a distance with a pair of processes. In [DCPP05] we have
defined a notion of metric called state-metric. It turns out that in a probabilistic transition system
each state-metric corresponds to a probabilistic bisimulation and that the greatest state-metric
corresponds to probabilistic bisimilarity. Furthermore, the greatest state-metric can be characterised
as the greatest fixed point of a monotonous function on state-metrics, which is closely analogous
to Milner’s characterisation of bisimilarity as the greatest fixed point of a monotonous function on
bisimulations [Mil89a]. We would like to investigate whether it is possible to apply state-metrics to

some fully-fledged probabilistic process calculus.

Implementation of the w-calculus

We consider it an interesting problem to develop a fully distributed implementation of the (syn-
chronous) m-calculus (7) [Mil99] using a probabilistic asynchronous m-calculus (mp,) [HP04] as an
intermediate language. The reason of requiring a probabilistic calculus is that it has been shown
impossible to implement certain mechanisms of the m-calculus without using randomization [Pal03].
Some results in this research direction are obtained in [PHO04], but the part on implementation is
very preliminary. A more realistic and efficient implementation remains to be worked out.

We believe it important that an implementation does not introduce livelocks (or other kinds of

unintended outcomes), hence the translation from 7 to mp, should preserve livelock-freedom, and

LA similar restriction is adopted, independently, in [BBO05] for axiomatizing observational equivalence in a generic

nonprobabilistic process algebra.
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the semantics should be sensitive to divergency. For this reason, a probabilistic testing semantics is
introduced in [PHO4]. However, it turns out that probabilistic testing semantics is rather difficult
to use. The correctness proofs are ad-hoc, by hand, and rather complicated. For the realistic (and
necessarily more sophisticated) implementation, we need feasible and (at least in part) automatic
proof methods. So it is appealing to investigate a divergency-sensitive bisimulation-like semantics.
In the future, we plan to extend our results on divergency-sensitive equivalence obtained in Chapter 3

to the probabilistic asynchronous w-calculus.

Specification and verification of modern distributed systems

Unlike other probabilistic process algebras, m,, has the advantage of being able to describe mobile
systems. To equip m,, with capability types might make it a good candidate language for specifying
randomized, distributed, and mobile computational systems. Thus, as a natural development of our
work, it is interesting to build an algebraic theory for this language by combining our results on
probabilistic and mobile processes. A possible way to proceed is to first extend the results on finite
processes in Chapter 3 to the setting of m,,, then take type information into account as we have
done in Chapter 4. As far as finite processes are concerned, this does not seem to be a difficult
task. By contrast, we do not know how to extend our results in Chapter 5 so that probabilistic
termination can be ensured by typability. We are not aware of any work on this problem.

Once an algebraic theory for typed mp, is built, one might be able to exploit it to develop
some automated verification tools, which would pave the way for verifying some useful randomized
distributed algorithms and protocols. Therefore, another possible research direction is to develop
automated tools that can check probabilistic and/or typed bisimulations, for which the results on

axiomatisations in this thesis would be useful.



Appendix A

Proofs from Chapter 3

A.1 Proof of Lemma 3.14

We begin with several derived rules.

Lemma A.1 The following rules are derivable:
ES {(liBi:p)iW{(L.F:p)} F={(nF:q)}
E = {(li, B pi) i w {(4 Fj < pgj)};
ES (i Bi:p) W (. Fip)} FSc{(hy, Fya)}y
E = {(ti, Ei - pi) Y W {(hy, Fj : pgj)}
FE éc {(7‘, Ei :pi)}i V’i,Ei :E>c 19(X)
E =S 9(X)

wea2'

wea3’

wea4’

Proof: By induction on inference. We also need to prove some other derived rules at first. For

example, Before inferring wea2’ we need to show its simpler version:

E={(ly, B :p)}i 0{((,F:p)}y F=.{(1,F:q)},
E = {(ti, B :p) }i WAL, F) : pgj)}s

The whole proof is tedious and non-instructive so it is omitted here. a

wea2”

Lemma A.2 Let R be a weak probabilistic bisimulation. If E R F then whenever E = n, there
exists ' such that F =.n' and n =g 7'

Proof: By transition induction, on the depth of the inference by which the transition £ = 7 is

inferred. We argue by cases on the last rule used.

e weal: This is the induction basis. The result follows from the definition of weak probabilistic

bisimulation.

o wea2: Let n = {(£i, Ei : pi)tier W{(L, Ej : pgj)tjes, m = {(6i, By ¢ pi)bier W{((, E' 2 p)},
n2 = {(7, E; : ¢j)}jes, E = m and E' = n9. By induction hypothesis, there exists 1} such

100
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that ' =, 0} and n, =g n}. Let m(¢,[E']r) = r for the equivalence class [E'|gx € £/R
with E’ as its representative. It is clear that r > p. Since 1 =g 71}, we have 1] in the form
{(f, F;: qi)}iejl H {(hi,Fi : qi)}ielz such that

1. 11 n 12 = @;

2. forallie I, F; R E;

3. for all i € I, either h; # £ or (F;, E') € R;

4o D ier, @i =T
From condition 2 and induction hypothesis, we know that for each i € I; there exists 79; s.t.

F; = n2i, 12 =R 12; and 72; in the form {(7, Fij : ¢ij)}jes,- By repeated use of rule wea2' we

can infer F' = n} where
ny = {0, Fyj : ¢:qi5) Yier, jes, W {(hi, Fy : @) Yiel, -

Now let ' = =20 + £Zn5. By Lemma 3.5 we know that F' =. 1. We can verify that n =¢ 7/
as follows. For any N € £/R and h € L, there are three possibilities:

1. h # ¢: Then n(h, N) = n1(h, N) =n;(h,N) =n4(h, N). Hence

r—p

.
1/ (0, N) = =i (b, N) + By (0, N) = =Ly, N) + B, N) = (R, V).

2. h=/{and E' ¢ N: Then we have

n(h,N) = ZEni(h,N) + 2ny(h, N)
= Pk, N) + E(X e, @inei(m, N) +ni(h, N))
= E0i(hN) + B(3 e, @im2 (7 N) + i (h, N))
= ZEni(h,N) + E(rna(1, N) +n1(h, N))
= nll(haN)+pn2(TaN)
= 771(th)+17772(7,]\7)
= n(h,N)

3. h=/{and N = [E']g: Then we have

n' (h,N)

=En1 (b, N) + S (h, N)
= Pp(h, N)+ 203 cr, ¢imei(T, N))
= ZEr+ B ien @mz(m, N))
r—p)+ L (rna(r, N))

(
= (r—p)+pne(r,N)
(m(h, N) —p) + pn2(7, N)
= U(h7N>

e wea3: Similar to the last case.
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o wead: Then n = 9(X). Let 1 = {(7,E; : pi)}i, Ei = 9(X) for each ¢ and E = n;. By
induction hypothesis there exists 1] such that F S 7y and n; =g 7. It is clear that ] must
be in the form {(7, F} : ¢;)}; and by induction hypothesis F; =, 9(X) for each j. Therefore
by rule wead' we infer F' =, 9(X). By taking 1’ as 9(X), the desired result follows.

Now Lemma 3.14 follows immediately from Lemma A.2, 3.5 and 3.9.

A.2 Proof of Proposition 3.34

In [SS00] Stark and Smolka used a special function f that associates a probability to a nonprob-
abilistic transition so as to form a probabilistic transition. For example, let £ = %a &) %b, then
f(E-20) = % and f(E LN 0) = % The function f can be characterised as f = sup,> f; for some
functions fy, f1, ... that take nonprobabilistic transitions to probabilities and respect some ordering.
Therefore in the soundness proofs of some axioms, to show that f(E —% E') = f(F % F'),
it suffices to prove by induction on i that: (1) f;(E —% E') < f(F % F’) for all i > 0; (2)
fi(F % F') < f(E % E’) for all i > 0. In the presence of nondeterministic choice, however,
this technique becomes unusable because now the probability with which an expression performs
an action and evolves into another expression is not deterministic any more. For example, let

ol (3a ® 2b) + (3a @ 3c), then what is the value of f(E —— 0)? Should it be %, 3, or some

value between them? Now the meaning of the function f is unclear because it depends on how
the nondeterminism is resolved. Nevertheless our “bisimulation up to” techniques work well with

Milner’s transition induction technique, as can be seen in the proof of Proposition 3.34.
Lemma A.3 1. If E — {(¢;,E; : pi)}i then E{G/X} — {(t;, E{G/X} : pi)}s;

2. If E = {(ti, E; : pi) }i then E{G/X} = {((;, E{G/X} : pi)}i;

3. If E = {(li, Ei : pi) }i then E{G/X} = {(li, E{G/X} < pi) }i;

4o Af B = {0, Ei = pi)}i then BE{G/X} ¢ {(t;, EAG/X} : pi)}i.
Proof: Straightforward by induction on inference. O
Lemma A.4 . If E— %(X) and G — n then E{G/X} — 1.

2. If E= 9%(X) and G — n then E{G/X} = n.
Proof: Straightforward by examining the structure of F. O
Lemma A.5 If E{G/X} — n then one of the following two cases holds.

1. E—9(X) and G — n;
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Proof: By induction on the depth of the inference of E{G/X} — 7. O

Proposition A.6 If E ~ F then E{G/X} ~ F{G/X} for any G € £.

Proof: Consider the relation R = {(E{G/X}, F{G/X}) | E,F € £ and E = F}. Since = is
an equivalence relation, it follows that R is also an equivalence relation. So if we can show the
assertion:

“If E{G/X} — m1 then there exists 7 s.t. F{G/X} =, n2 and 71 =g 17"
then it follows from Definition 3.13 that R is a weak probabilistic bisimulation.

We now prove the above assertion. From Lemma A.5 we know that there are two possibilities:

1. E—9(X) and G — n;. Thus F =, 9(X) because E ~ F. From Lemma 3.51 we know that
F = ¢¥(X). By Lemma A.4 it follows that F{G/X} = n;. We can simply take 1, as 72 and

finish this case.

2.m ={{;, BE{G/X} : pi)} and E — 01 = {({;, E; : p;)}i. Since E =~ F there exists 0, =
{(hj, Fj : qj)}; st. F =0y and 0; =« 02. By Lemma A.3 we can derive F{G/X} =, 12 =
{(hj, F;{G/X?} : qj)};. Observe that for any E', F’ € {E;}; U{F};}, it holds that E' ~ F” iff
E'{G/X} R F'{G/X}. Hence it follows from 6; = 62 that n; =x 72 and we complete the

proof of this case.

Proposition A.7 If E ~ F then E{G/X} ~ F{G/X} for any G € £.

Proof: Due to symmetry, it suffices to verify that if E{G/X} — n then there exists 1 s.t.
F{G/X} =¢ n2 and 11 =~ 12. From Lemma A.5 we know that there are two possibilities:

1. E—9(X) and G — m. Thus F =, 9(X) because F ~ F. From Lemma 3.51 we know that
F = 9(X). By Lemma A.4 it follows that F{G/X} = 1. We we can simply take n; as 1,

and finish this case.

2.m ={\, B{G/X} : pi)} and E — 01 = {(¢;, E; : p;)};. Since E ~ F there exists 0
{(hj, Fj : qj)}; st. F =02 and 6 =~ 3. By Lemma A.3 we can derive F{G/X} = n2
{(h;, F;{G/X} : ¢;)};. By Proposition A.6 it holds that for any E',F' € {E;}; U {F;}; if
E' ~ F' then F'{G/X} ~ F'{G/X}. Hence it follows from 0; =~ 60, that n; =~ 12 and we

complete the proof of this case.

—

Lemma A.8 1. The following rules are derivable:
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E; = E E/X} =
D1 i =0 for some j € 1.n D2 {nxB/X} =
Yierv.nli = pxE =n
E; =, E E/X} =,
D3 J il for some j € 1.n D4 {ix B/ X} il
Eiel..nEi =c n MXE =c n
o5 _Z = {l Bi:pi)}i O{(GF:p)y F = (1.5 4)}
E=c{(ti,Ei :pi)} W{((, F : pgj)};
o E e Al B p) b A F i)} F = (s, F )by
E=c{(ti, E; :pi)}i W{(hy, Fj : pg;)};
2. If 3 ic1..n Ei = n then E; = 0 for some j € 1..n, with a shorter inference.
3. If uxE = n then E{uxE/X} = n, with a shorter inference.
Proof: Straightforward by induction on inference. O

Proof of Proposition 3.34 Let p = {uxE/X} and 0 = {ux F/X}. We show that the relation

R ={(Gp,Go) | E,F,G€ & and F ~ F}

is an observational equivalence up to ~. Because of symmetry we only need to show that if Gp = n

there exists ' s.t. Go =.n' and n =g 1’. The proof is carried out by induction on the depth of

the inference of Gp = 1. There are several cases depending on the structure of G.

e G=X: Then Gp = ux E = n. By Lemma A.8 we have a shorter inference with the conclusion
Ep = n. By induction hypothesis there exists 6 s.t. Eoc =, 6 and n =g 0. Since F ~ F we
have Eo ~ Fo by Proposition A.7. By Lemma 3.17 there exists 7’ s.t. Fo =.n' and 0 =4 7.
By rule D4 it holds that uxF =, n'. At last it follows from Lemma 3.8 and the transitivity
of =g that n =x_ 7.

G =3 ic1.,Gio If Gp = 7 then by Lemma A.8, Gjp = 7 for some j € 1..n with a shorter
inference. By induction hypothesis there exists ' s.t. Gjo =. 1’ and n =g_ 7’. By rule D3
it holds that Go =. 7.

G = puyG': If Gp = n then by Lemma A.8 there is a shorter inference with conclusion
G'p{Gp/Y} = G’'{G/Y }p = n. By induction hypothesis there exists ' s.t. G'{G/Y}o =,/
and n =g 1. By rule D4 it can be derived that Go =, 1/'.

G = @, pili-Gi: Inthis case Gp — 0 = {(¢;, Gip : pi) bier. When n = 9(Y') for some variable
Y the argument is simple. So we suppose that 7 is a distribution on £ x £. By induction on

inference it can be proved that n is an extension of 0, i.e., there is a partition of I into three
disjoint set 11, Is and I3 such that

1. Vi€ I, U I3, G;p = 0; with a shorter inference than that of Gp = n;
2. V’L c 12,91' = {(7’, Eij :pij)}j;
3. Vi e I3, Ei =71 and (91' = {(fij,Eij :pij)}j;
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4. n={(li,Gip:pi)tier, Wi, {6, Eij : pipij) }i W Wi, A (lijs Eij = pipij) }5-

For each ¢ € I U I3, by induction hypothesis there exists 0, such that G0 = 0., 0, =r. 0,

and

1. Vi€ I, 0, = {(7, Fik : qi) }is
2. Vi€ I3, 0, = {(hix, Fir. : qix) }-

Let m,n be the sizes of I and I3 respectively. Using rule D5 for m times and rule D6 for n

times, we can derive Go =, 1/, where
/
n ={(l;,Gio : pi) bier, © L‘ﬂ {6, Fik = pigir) b & L‘ﬂ {(hik, Fir © pigir) bi-

S i€l3

It remains to show that n =x_ 7.

Let p = > icr, i 0 = {(ti;Gip : pi/p) }ier, and 0" = {(¢;,Gio : pi/p)}icr,- It is immediate
that ¢’ =R 0". For all i € I, we let n; = {(fi,Eij : pij)}j and 77; = {(&;F‘zk : Qik)}k- It

follows from 0; =g 0} that n; =r. 1. Obviously we can rewrite n and n’ as:

n= pol + ZiEIQ pini + Zie[s Dib;
0 =p0" + 3 p, Dl + D, Pib;

By Lemma 3.9 we have the desired result that n =r_ 7'

A.3 Proof of Lemma 3.36

Lemma A.9 Let dx(G) =n >0 and n = {(¢;, G; : pi) }ier. Suppose G{E/X} — n. For alli € I,
it holds that G; = GI{E/X} and

1.

2.

If 6; = 7 then dx(G}) > n;

If ; # 7 then dx(G}) > n — 1.

Proof: By induction on the depth of the inference of G{E/X} — 5. Let us examine the structure

of G.

G = X or Y: Impossible because dx (E) = 0.
G = @, pil;i.G;: Straightforward by definition.

G =) c1.nGi: Then G{E/X} — 1 must be derived from a shorter inference with conclusion
G;{E/X} — n for some j € 1..n. Thus the result follows from induction hypothesis, noting
that dx(G]) Z dx(G)

G = uyG’: Then G{E/X} — n is derived from the shorter inference of
G{E/XHG{E/X}/Y} = G{G/YHE/X} —n.

So the result follows from induction hypothesis, by noting that dx (G'{G/Y}) = dx(G).
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O

Lemma A.10 Let dx(G) =n and n = {(¢;, G, : pi) Yier. Suppose G{E/X} =mn. For alli € I, it
holds that

1. If n>0 and {; = 7 then G; = Gi{E/X} and dx(G}) > n;
2. Ifn>1and {; # 7 then G, = Gi{E/X} and dx(G}) > n — 1.

Proof: By induction on the depth of the inference of G{E/X} = 7. There are three cases,

depending on the last rule used in the inference.
e weal: In this case G{E/X} — n and the result follows from Lemma A.9.

o wea2: Then n = {(4;, Gi : pi) bier W{ (%o, Hj : poq;)}jcs and G{E/X} = n is derived from the
shorter inferences G{E/X} = {(4;, G; : pi) }ier W {(€0, Go : po)} and Go = {(7, Hj : ¢;)}jes-
By induction hypothesis, for each i € I U {0}, it holds that

1. If n > 0 and ¢; = 7 then G; = G{{E/X} and dx(G}) > n;

2. If n>1and ¢; # 7 then G; = Gi{E/X} and dx (G}) > n — 1.

Particularly for Gy there are two cases:

1. if ¢y = 7 then Gy = Gy{E/X} and dx(G}) > n > 0. By induction hypothesis on the
transition of Go{E/X}, we have H; = H{{F/X} and dx(H}) > dx(Gj) > n for each
Jed;

2. if 4y # 7 then Gy = G{{E/X} and dx(Gf) > n —1 > 0. By induction hypothesis on
the transition of G{E/X}, we have H; = H{{FE/X} and dx(H}) > dx(Gy) > n — 1 for
each j € J.

e wea3: Then n = {(4;,Gi : i) tier W{(h;, Hj : ¢;)}jes and G{E/X} = n is derived from the
shorter inferences of G{E/X} = {(¢;, G; : pi) }icrW{(7, Go : po)} and Go = {(h;, Hj : ¢;)}jes-
By induction hypothesis, for each i € I U {0}, it holds that

1. If n > 0 and ¢; = 7 then G; = G{{E/X} and dx(G}) > n;

2. If n>1and ¢; # 7 then G; = Gi{E/X} and dx (G}) > n — 1.
Particularly for Gy we have Gy = G{{E/X} and dx(G{) > n > 0. By induction hypothesis
on the transition of G{{E/X}, it follows that for each j € J

1. if hy = 7 then H; = H{E/X} and dx(H}) > dx(Gj) > n for each j € J;

2. n>1and h; # 7 then H; = H{E/X} and dx(H}) > dx(Gy) —1>n— 1.

O
Lemma A.11 Suppose dx(G) > 1, n={(l;,G; : pi) }icr and G{E/X} = n. Then G; = G}{E/X}

for each i € I. Moreover, G{F/X} = n and n =r~ ', where n/ = {({;, GI{F/X} : pi)}icr and
R ={(G{E/X},G{F/X})| for any G € £}.
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Proof: A direct consequence of Lemma A.10. O

Proof of Lemma 3.36 Let n = i1 +...+ 7,0, and G{E/X} = n; for each i < n. By Lemma A.11,
for each i < n, there exists n} s.t. G{F/X} = n, and 0, =g~ n,. Now let ' = rin] + ... + o7,
thus G{F/X} =.n'. By lemma 3.9 it follows that n =g~ 7. O

A.4 Proof of Lemma 3.45

Proof:

1. We proceed by transition induction on the inference of £ = 7. There are three cases, con-

cerning the last rules used.

e weal: Then F — 7 and there are several subcases.

(a) psum: Then E = @, p;i¢;.E; and the result is obvious by axiom S2.

(b) nsum: Then E = 3.,
By induction hypothesis we infer Ayq = F; = Fj + @, pili.Es, from which we have
A b E=Y 0 Fi=Y 0, Fi + @, pili. i = E + @, pili.Ei.

(c) rec: Then F = puxE’ and E'{FE/X} — n for some E’, with a shorter inference. By
induction hypothesis Ayq - E'{E/X} = E'{E/X}+ @, pil;.E;. By axiom R1 we
have Agq - E = E'{E/X} =FE{E/X}+ @, pili-Ei = E+ @, pili.E;.

F; and F; — n for some j € I, with a shorter inference.

e wea2: Then E = {(¢;,E; : pi)}i W{((,F : p)}, F = {(1,F; : q;)}; and n = {(;, E; :
pi) i W{(l, F; : pgj)},. So we can infer as follows.

At E Y2 E+@®, pitiEoplF

T3
= E+@,pili- B ®pl(F+D,;q.F;) + D, pili-L; © D, pg;l.F;

o weal3: Then E = {(¢;,E; : pi) i W{(1,F : p)}, F = {(h;, F; : ¢;)}; and n = {(¢;, E; :
pi) i W{(h;, Fj : pg;)};. So we can infer as follows.

Aga-E = E+,pili.E; ® pr.F

= E+@;pili-Ei @pr.(F +D; ¢5hi-F5)

E+ @, pili-E; @ pr.(F + @, ¢;h; - Fj) + @, pili-E: & D, pa;h; . F;
= E+ 691 pili . E; @ ®j quhj-Fj

2. Let n=rim + ... + 0, i = {(4i5, Eij : pij)}; and E = n;, for each ¢ < n. We can do the

following inference.

—~
=
—

Aga b E E+3 1., D, pijliy-Eij
E+3 i1, ®;pijlij-Eij + @, @, ripijli;-Eij

E+ @, ®, rivijli;-Eij

na I
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3. By induction on the inference E = ¢(X). There are two cases, depending on the last rules

used.

e weal: This case includes several subcases.

— var: Then F = X and the result is obvious by axiom S2.

— nsum: Then £ =3, ; E; and E; = 9J(X) for some j € I. By induction hypothesis
we infer Ayq - E; = Ej 4+ X, from which we have Agg - E=3, ., Ei =), Ei +
X=FE+X.

— rec: Then F = puy E' and E'{E/Y} — 9(X) for some E’ and Y # X. By induction
hypothesis Agq F E'{E/Y} = E'{E/Y} + X. By axiom R1 we have Agq - E =
E{E/Y}=FE{E/Y}+X =E+X.

o wead: Then E = {(7, E; : p;)}; and for each 7 it holds that E; = ¥(X). By the result
of Clause 1 just proved above, we know that Agq - E = E + @, p;7.E;. By induction
hypothesis on each E; we infer Ayq - E = E+ @, pi7.(E; + X). At last it follows from
T1 that Ay F E=E+@,pit.(E;i+ X))+ X =FE+ X.

O



Appendix B

Proofs from Chapter 4

B.1 Some More Derived Rules

Cvn [z=alP=az=dallx#a1] - [x #ap,]P fag{a;|1<i<n}
Tv2 P=palz=a]P+[x=a]P+ -+ [z =a,]P
if {b € dom(Ac) | A(b) < A(z)} ={a1, -+, an}
Tv3 If P=pg7Q then P=x,5Q for S <T
Ivl  If P =A y:a@), @ then 2(y : T1).P =a 2(y : 12).Q

Iv2  If P =pAnu:A(@), @ then Zv.P =A 7v.Q)
Proof: Among all the rules, the proof of Iv2 is the hardest, so we report it below in details and

omit the others.

Let {b € dom(A.) | A(b) < A(x)} = {a1,---,a,}. When n = 0, the result is immediate by
using Tv1. Suppose n > 0. For each i < n, A(a;) < A(x), there are two possibilities: (i) if A(a;)};
then a@;b.P =a 0 =a @;b.Q by Tout™®; (ii) if A(a;)];, then we have A(z), < A(ai)o < A(a;); by

Proposition 4.2. There are two cases, depending on name v.

e v is a channel, say b. It follows from P =Arp.A(x), @ that P =anpa(a,), @ by Twea*. Using

Iout*, we have

@bP =a @b.Q (B.1)
Finally,
Zb.P =A [x=a1]Zb.P+ - -+ [z = a,|Tb.P by Tv2
=A [x=a1]a1b.P+ -+ [z = ap]a,b.P by Tpre*
=A [r=a1]aib.Q + -+ [z = an)anb.Q by (B.1)
=A Tb.Q by Tpre*, Tv2

e v is a variable, say y. By hypothesis, AfZy.P and AfTy.Q) are configurations, then it holds
that A(y) < A(x),. By Proposition 4.1, it is easy to see that AMy : A(z), = A. Let the set
{b € dom(A:) | Ab) < A(y)} = {b1,---,bm}. We consider the non-trivial case that m > 0.

For each i < n,j < m, by Proposition 4.2 we have

Aby) < Ay) < Az)o < Alas)o < Ala;);.

109
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So AMb; : A(ai); = A = ANy : A(x),. Therefore we can rewrite the hypothesis P =any:a(a),
Q as P =anp,;:A(a;); @ Using Iout™, we get the result

(_Iibj.P =A aibj.Q (B2)
At last we can do the inference.
zy.P
=a [z =a1]Zy.P+ -+ [z = an]Ty.P by Tv2

=a [z =al]ly =b]zy.P + - + [z = a1][y = bm]2y. P+
otz =anlly =bi)zy. P+ + [z = anlly = bm]Ty. P by Tv2
=a [z = a]ly = b1]a1bi.P+ -+ [ = a1]ly = bm]a1bm . P+
<ot [ = an]ly = bilanb1. P + - - + [ = an][y = bm]anbm.P by Tpre*
=a [z=aily =0]abr.Q + - + [z = a1]ly = bm]a1bm.Q+
4 [z =an]ly = b1]anb1.Q + - + [z = an][y = bm]anbn.Q by (B.2)
=a Ty.Q by Tpre*, Tv2

B.2 Proof of Theorem 4.36

Proof: We sketch the completeness proof of clause (ii), which is carried out by induction on the
depth of P+ @; clause (i) can be shown in a similar way. Assume that P, Q are in hnf w.r.t. A and
A=A,T: T. Let AfQ be a configuration respecting I'. For some complete condition ¢ which are
satisfiable by some legal substitution on A, let P, , be the sum of all active summands ¢;c;.P; of
P such that {C1, Tprex} b p;a;.P; =a pa(x : T;).P;. We write

Pyo= nga(z :T;).P; and Que = Z@a(x 1 57).Q;
i=1

j=1

The key of the proof is to find, for each 1 <17 < n, a term R; satisfying the following two properties.

Ac b va(z : T;).P; =a pa(x : T'(a);).R; (B.3)
Ac b Qua =A Qp,a + wa(z : T'(a);).R; (B.4)
Let 0 = {b/Z} be a substitution which satisfies ¢ and A¢ b : T. From Po =%, Qo we derive that

Pya0 25 Qpa0. Given AP, 40 ““5) AP0, for each b € {b € dom(Ac) | Ac(b) <t Acla)e} =

Sy
{c1,- -, cx} we have a matching transition AcfQy o0 a(z—‘](ﬁb)) A"Q 5(ipyo such that

Pio{b/x} =X Qunoi{b/x}

for some function J from [1,n] and {¢; | 1 < i < k} to [1,m]. By the definition of hnf, P; and
Qi) are of the form P and @Q&(iyb) respectively. Here ¢ is complete on dom(A), but not on
dom(A) U {x}. We can complete it by adding conditions on the top which respects {b/x}. Let
@b = [1 =] A Nycdomans[@ # ul. It is easy to see that

(o A IP)a{b/z} =4 ([op A @lQ) iy {b/x}
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By Lemma 4.20 we have [y A @] P/ =X A ), [op A @]Qf](iﬁb). By induction hypothesis

Ae B oo Pi = 2:A(a), PR 1(ib)- (B.5)
Now define S;; for [ < k by
Si1 = Qe
Si,l = [SC = Cl] QJ(i,cl) Siylfl forl<Ii<k

Let R; be defined as S; ;. Using C9 and Cvn, we decompose binary conditions in R; into unary

conditions.
Ae b Ri =A 2:A(a), PerQuitier) T PerrQuiserr) T + Per Quiser)

On the other hand by Tv2 and Cvn we have
Ac = F; =A,z:Aa), (Pcsz + 4+ 9001Pi-

By using (B.5) we have A. = P; =A 5:A(a), Ri, from which we infer that Ac & a(z : T3).P; =a a(x :
I'(a);).R; and A, F pa(z : T;).P; =a wa(z : T'(a);).R; by Iin* and Icon. So we get the property in
(B.3).

Finally with axiom SP we can show by induction on 0 < [ < k that

Ae F Qtp,a —A Qgp,a + Sﬁa(z : F(a)i)-si,l- (BG)

Therefore (B.4) follows because it is the special case of (B.6) when | = k. O



Appendix C

Proofs from Chapter 5

C.1 Proofs from Section 5.2

Lemma C.1 For two well-typed processes P and P, if w : x (i.e., w and x have the same type)
and P' = P{w/x}, then wt(P) = wt(P’).

Proof: Trivial. O
Below we use | wt(P) | to stand for the length of the vector wt(P).

Lemma C.2 Suppose T = P and P - P', then | wt(P') | < | wt(P) |.

Proof: Straightforward by induction on the structure of P. O

Since the length of a vector can be extended by inserting zeros to the left end, we often assume
implicitly, for simplicity of presentation, that several vectors have already been extended so as to

be of equal length when discussing their relationship.

Lemma C.3 Suppose T - P,P 2% P’ lv(a) = i, wt(P) = {(ng,ng_1,---,n1) and wt(P') =
(Mg, Mi—1,---,m1). Then m; <n; for all j satisfying i < j < k.

Proof: By induction on the transition of P 2% P’.
1. P=a(z).Pr 2% P{w/z} = P’, in this case, wt(P) = wt(P;) = wt(P') by lemma C.1.
2. P=P | PP X P/ and P' = P] | Py, then we have

wi(P) = wi(R)+wi(Py) = (nfnk .o .nd) + (nd.nd .o nd)
wi(P) = wi(P)+wt(Py) = (mimb_y-mi)+ (nd.nd .o nd)

By induction hypothesis, Vj,7 < j <k, m; < n;, it follows that m; = m} +n? < nj1 —l—n? =n;.

3. P = vbP, P, X% P/,P' = vbP| and b # a, then wt(P)) = wt(P) = (ng,ng_1,---,n1),
wt(P]) = wt(P') = {(mg, mk_1,---,m1). By induction hypothesis, we know that Vj,i < j <

k,mj S n;.

112



APPENDIX C. PROOFS FROM CHAPTER 5 113

4. P=P + P,, P, *% P/ and P’ = P, then

2

w(P) = maz{wt(Py), wt(Ps)} = maz{(nkink_,,-- 0l (nd,nd_, - n2)}

wt(P')

wt(Pll) = <m]1w mllc—l’ ) mb
By induction hypothesis, Vj,7 < j < k,m]l < n]l, SO m} < njl < n;.

5. P =la(z).P, 2% P | P{w/z} = P'. According to T-rep, any name which appears as subject of

active output in P; has a level lower than that of a. Suppose wt(Py) = (nj,n;_,,---,n}), then
I <lv(a) = i. Hence wt(P') = wt(P) + wt(Pi{w/x}) = wt(P) + wt(P1) = (ng, -, nyy1,n +
ny,ni—1 +n;_q,---,n1 +ni). Therefore m; = n; for all j satisfying [ < ¢ < j < k.
O
Lemma C.4 Suppose T + P, P ()30 P’ lv(a) = i, wt(P) = (ng,ng—1,---,n1) and wi(P') =
(Mg, mi—1,---,ma). Then m; < n; and m; <n; for all j satisfying i < j < k.

Proof: Similar to the proof of Lemma C.3. As an example, let us consider one case. Suppose
P =awpP 2% P = P. After the transition, process P lost one output occurrence at level ¢
previously contributed by name a. Other output occurrences remain unchanged. So it holds that

m; =n; — 1 and m; =n; for all j # 4. O

Proof of Lemma 5.1

By induction on the transition system. We consider a typical case. Suppose P = P; | Ps,

(VE)&w .

P, %% Pl P, == Pyand P' = (vb)(P] | P). Let lv(a) = i and

wt(P) = wt(P) +wt(P) = <n,1€,n,1€_1,~~~,n}>+(n%,n%_1,~~~,n%>
WHP') = wh(P)+wHPY) = (mbaml_y,mb)+ (mdamd e m?)

It follows from Lemma C.3 that V4,7 < j < k,m; < nj1 From Lemma C.4 we infer that m? < n?
and Vj,i < j < k,m5 < n7. Combining the two results, we can draw the conclusion that m; < n;

and Vj,1 < j < k,m; < n;, in other words, wt(P’) < wt(P). O

C.2 Proofs from Section 5.3

When P is known or unimportant, we simply write M; for Mp;. There are two additional special

vectors widely used in this section.
105 = (Mpg;ng), - -+, (Mayna)) where (1) Vj <k, M; =[]; (2) (n,---,n1) = 0;.

2. 0f; = (Mg;ng), - -+, (Ma;ng)) where (1) M; = [j] and M; = [] for all [ such that | # i; (2)

<7'Lk,"',n1> :Oz

The proofs of the following lemmas are carried out by induction on the transition P -~ P’.

Here we write a : *—Nat to mean that a : 7 and T # Nat for some 7.
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Lemma C.5 Suppose 7'+ P and P 2% P'.
1) If a : f'~Nat, then tpr < tp + 0]
2) If a : §'Nat, then tpr < tp + 07,.

Proof: Let tp = (Mg;nk), -+, (Mi;n1)) and tpr = (M);n),-- -, (Mi;nh)). We consider two

typical cases.
1. P=a(z).P, * P{w/z} =P

(a) If a : f=Nat, then all Nat values and output occurrences in P remain intact after the

transition. So tpr =tp <tp + 0;.
(b) If a : #'Nat, there are two subcases.

i. If Ybu € out(Py),x ¢ fon(u) then no new Nat value is created in P;. So we have
tpr =tp < tp+0[,.

ii. For each active output bu with fon(u) = {z}, new constant values are generated. Let
u{w/z} = m € N. Since u is consider as co in My, ) and it becomes m in M;U(b),
we infer that M;v(b) < My by the fact that m < oo. As wt(P) does not change,
hence tpr < tp < tp + 0},.

2. P=la(x).P, %% P | P{w/z} = P'.

(a) If a : §*—Nat, in this case only the first condition in Definition 5.4 is applicable, which
ensures that all active outputs in P; have levels lower than i. So wt(P’) < wt(P) + 0;
and M; = ./\/l; for all j > i. Therefore it holds that tp: < tp + 0.

(b) If a : §iNat, there are also two subcases.

i. If Vb € os(Py),lv(b) < i, then we are in the same situation as that of case 2.(a). So
tpr <tp +O; <tp—+ Oglw

ii. If there are outputs at level i in P, say bu, then rule T-rep requires that u < z, i.e.,
uf{w/z} < w. It is easy to see that Mp, 1y/z},i < [w]. It follows that M; < M; W [w].
Although it may occur that n} > n;, the relation tpr < tp + 07, still holds because
the compound vector is constructed in such a way that Nat-multisets are compared

in a higher priority than output occurrences.

3. The other three cases can be analyzed by using induction hypothesis.

Lemma C.6 Suppose 7'+ P and P D pr.
1) If a: §'=Nat, then tpr < tp — 0.
2) If a : §'Nat, then tpr <tp — 0 .

Proof: By induction on transitions. Consider the base case. Suppose that P = aw.P; v, P =P.
If a : f*—Nat, P lost one output occurrence after the transition. There is no change for Nat values
in P;. So wt(P') = wt(P) — 0; and Mpr; = Mp; for all j <| wt(P) |. In other words, we have
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tpr = tp — 0, If a : §'Nat, P lost one output occurrence and a constant w at channel a. So
Mp:; = Mp; —[w], wt(P') = wt(P) — 0; and Vj # i, M p: ; = Mp ;, which means tp =tp — 0.
For other cases, induction hypothesis is applied. a

Proof of Lemma 5.6
Similar to the proof of Lemma 5.1. We consider the base case, the other cases follow from
induction hypothesis. Let P = Py | Py, P, 2% Pl P, "% P} and P’ = (vb)(P] | PY).
1. If a : #'—Nat, then we have that tp; < tp + 0} from Lemma C.5 and tp; X tp, — 0} from
Lemma C.6. So it can be derived that tp = tp; +tp; < tp, + 0, +tp, — 0, =tp, +tp, =tp.

2. If a : §'Nat, then from Lemma C.5 we have the result that tp; < tp, 4+ 0, and from Lemma
C.6 we have tp; < tp, — 0/,. Hence it holds that tp = tpr +tp <tp + 0/ +tp, — 0, =

w

tp +tp, =1tp. O

C.3 Extending 7’ with Polyadicity and Conditional

To allow for polyadic communication and if-then-else constructor, the extension of typing rules is

straightforward.

Fu:"V Z:V FP Yo(@) € out(P), o(w) <au(Z)
Flu(z).P
T_iwa:bool FP FQ
F if w then P else ()

T-rep

The definition of < should be changed accordingly.

Definition C.7 Suppose u : §*(T1,---,Tx) and v : £ (S1,---,51). We write 5(w) <u(Z) if one of

the two cases holds:
1. m<n
2. both of the following two conditions are met:

(a) m=n and k=1

(b) there exists some i < k such that T; = Nat, w; < z; and w; < x; for all j # i with
Tj = Nat.

In clause 2 we require that at least one argument of first-order should decrease its value, while
in monadic case the unique first-order argument decreases.

In an input u(Z) or an output o(w), the order of arguments in the tuples = and w is not important.
Without loss of generality, we assume that arguments of type Nat are always in the left end. In
other words, we may consider that a tuple 7 is composed of two parts: = x71;x3, and x; is of type

Nat only if it is an element of 7. That is, all elements of x5 are of channel type or bool type.
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Let o(wp, - -+, w1;wy,, - -,w]) be an active output appearing in process P. Define w; below for
every w;, where i € {1,---,n}.
w; if w; is a constant, i.e., fon(w;) =0
w; =
— 00 otherwise.

The definition of Nat-multiset, for the case of output, needs to be modified.

Mvwm:{ Mpi®lwy, - w]  if v (Nag; T)

Mp; otherwise
where w = (wp, -+, wi;w),, -, w)). The intuition is that during a communication we consume
an output tw and probably get some new outputs at level 4, of the form o{w, — my,, -, w1 —
my;wy,, -, wh). As w; —m; < w; for some i and w; —m; < wj for all other j with i,j < n, we

immediately infer that Mp: ; <m;uw Mp;. The definition of compound vector remains unchanged.
For conditionals, we can extend the definition of weight in this way: wt( if b then P else Q) =
maz{wt(P),wt(Q)}. According to the new definition of Nat-multiset, properties similar to Lemma

C.5 and C.6 are easy to prove. Lemma 5.6 and Theorem 5.7 still hold.

C.4 Proofs from Section 5.4

Proof of Lemma 5.12

1. There is a communication performed between a non-replicated input and an output mes-
sage. That is, P = (Vg)(af(x).Pl | aw.Q1 | Q2) for some a, P1,Q1,Q2,w and g, and
P’ = (vb)(P{w/z} | Q1 | Q2). Therefore we have that

wt(P) = wit(P)+ wt(aw) + wt(Q1) + wt(Q2)
WPy + wh(Qu) + wh(Qa) = wh(P)

2. To derive this kind of transition, either if-t or if-f is used. If if-t is used then we have that
P = (vb)(( if true then P; else Q1) | Q2) and P’ = (vb)(Py | Q2) for some b, Py, @, and
Q2. Depending on the relation between wt(P;) and wt(Q1) we have wt(P) = wt(P’) if
wt(Py) < wt(Q1) and wi(P) = wt(P’) if wt(P1) = wt(Q1). The symmetric case for if-f is

similar.

3. By the transition rule rep, each time a replicated process is invoked a fresh tag is produced. So

there is no replicated process invoked in P; for 1 < ¢ < n— 1. Then there are two possibilities:

(a) No replicated process invoked in P either. Therefore all communications take place

between non-replicated inputs and outputs. Reasoning as in clause 1, one can derive that

wt(P) = wt(Py) = -+ = wt(P’)

(b) A replicated process !k.Q, with k = a1(x1). - - - .an(xy), is invoked in P and a new process
(agm) (xg).- - alt™) (xn).Q)o, for some o, is spawned. The subsequent reductions con-

sume the input prefixes from a(l’2)a(ac2) to ag’n)a(xn) and their corresponding outputs.
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Thus we have the relation
wt(P') + wt(k) = wt(P) + wt(Qo’).

Substitution of names does not affect the weight of a process, so wt(Qo’) = wt(Q). The
side condition of rule rep requires that wt(x) > wt(Q). Hence we have the conclusion
that wt(P) > wt(P’).

Proof of Lemma 5.13
Let n = p(1).

1. Since P is regular, the transition with tag (I,7) must originate from a communication between

an active output and a replicated input. So R must be of the form:

{ (VE)(!al(acl).---.an(xn).P|a’1w'| Q) ifi=1 )
W) (‘ay (z1). - an(2n).P | (@7 (2). - all™ (2,).P)o | dw | Q) if1<i<n

with a;o = a}. To have a subsequent transition with tag ¢, @ must be of the form: ¢*(z).Q1 |
cw.Q2 | Qs for some ¢, w,Q1,Q2 and Q3. It is evident that R also have the reduction path
.
R R, 9 RI. The case for ¢ = ¢ is also straightforward.
2. Let m = p(I’). As in the proof of clause 1 we know that the transitions with non-special
tags come from replicated inputs. Depending on whether [ and !’ come from the same input

pattern or not, we have the following two cases:

(a) They are generated by two different input patterns, that is, there exist at least two
replicated inputs in P, say laj(z1). - .an(zy,).P1 and b1 (21). - - - by (24 ). P respectively.
There are four possibilities. Let us consider the typical case that j # 1 and i # 1. Then
R should be of the form

R = wo)(or(yr). - bnlyn)-Po lar(x1). -+ an(xn). Py
O (). b3 ) Po)or | (@) (@)™ (). Pr) o
| biw' | Q)

with bjop = b’;. Since j < p(I) the consumption of b;o1(y;) does not liberate any output,
and an output on a;02 should be directly available in ) so as to make the subsequent

communication on a;o9 possible, which means that

Qi @§w|Q2 ifi<n
| dwQ|Qr ifi=n

Li
with a;o02 = a}. Obviously in both cases R can take another reduction path: R &)

R} 9 B! for some Rj.
(b) I and !’ originate from the same input pattern !aj(x1).- - .an(x,).P1, which has been

invoked two times. The arguments are similar to Case (a).
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Proof of Lemma 5.14

We consider the inductive step. Suppose P has an infinite reduction sequence P = Py A,
Py I N p; Y41 ... We shall do case analysis to find some process ) satisfying the three
conditions: (i) @ is also non-terminating; (i) @ is regular; (iii) wt(P) > wt(Q).

At first it is clear that if ¢; = (1,4) and ¢ < p(l), then the atomic tag [ is generated by invoking

an input pattern, since in P there are only special tags.

Case 1: If t; = €, by Lemma 5.12 there are two possibilities. If wt(P) > wt(Py) we can set
Q = P;. If wt(P) = wt(P1), we need to start the search from ¢5. Note that any reduction sequence
by consecutively using rules if-t or if-f is finite since the size of the starting process decreases step
by step. So we will find either a tag € that decreases weight or a tag of the form e or (I,4), which

directs the analysis to Case 2 or Case 3 accordingly.

Case 2: If t; = ¢, then by Lemma 5.12 we know that wt(P) > wt(Py). P; is just the process @ we

are finding.

Case 3: If t; = (1,4) and p(I) > 0, then ¢ = 1 since P is regular. Let n = p(I).
—If n =1, then by Lemma 5.12 it holds that wt(P) = wt(P1). So we can set Q) = P;.
— If n > 1 and hence a new process R def (agl’Q)(xg). - .ag’n)(m’n).Ro)o appears in P;.

1. If R does not participate in any communication among the infinite sequence Py BN N
P; by -+, then replacing R with 0 does not affect the sequence. More precisely, let P, =
(ve)(lar(x1). -+ .an(xn).Ro | R | R1), for some Ry, and Q = (v¢)(lay(z1). - .an(z,).Ro | 0]
R1). @ can produce the same infinite reduction sequence as that of P; with 0 in place of R at
the top level, but with wt(Q) < wt(P) because P consumes an output during the transition

& p

2. If R participates in a communication among the sequence, then there exists ¢ such that t; =
(1,2). We need to classify all the reductions between P; and P;. There are two subcases to

consider.

(a) If all ¢; for 1 < j < ¢ are of the forms € or €, then we use Lemma 5.13 for (i — 2) times
and push (I, 1) forward until to the proper left of (I,2). The resulting sequence is of the

form:

Vi pr U002

3 3

to

t-
P—= 3

Py
By Lemma 5.12, we have the relations
WH(P) = wi(P}) = - = wt(PL_,)

(b) If there is a partition of the set {j | 1 < j < i} by I and Iy such that allt; € Cy ={t; | i €
It} ={t11,---,t1x} are of the forms e or ¢’ and all t; € Co = {t; | i € Io} = {to1, -, tow }

are of the form (I;,n;) with p(l;) > 0.
i. It Vj € In,n; < p(l;), i.e., no input pattern is complete (since for each j not all tags

from (1;,1) to (I;, p(l;)) are in the set C3), then by using Lemma 5.13 for finite many
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ii.

times we can push all tags in C; to the left of (I,1) and preserve their order. The

sequence changes into this form:

t t t 1,1) ¢ tor (1,2
phy p, te e p o Bt T (02)

Similarly, by using Lemma 5.13, we can push all tags in Cs to the right of (I, 2).

t t t 1,1)(1,2 t t
plopy te e p GO prta e

By Lemma 5.12 it follows that

If there is a set I C I such that Vj € I, t; = (l;, p(l;)), i.e., all tags in I are

the tags of ending inputs in some input patterns. These patterns can be completed

by tags between (1,1) and (I,2). We shall use Lemma 5.13 to sort out all complete

patterns and push them to the left of (I, 1).

A. Starting from (,1) we scan the sequence forward to find the first tag (11, p(l1))
for some atomic tag l; because we want to make all tags with atomic tag [; be
in consecutive positions by “sequeezing out” other tags to the left of (I1,1) or to
the right of (I3, p(l1)). All tags between (I3,1) and (I1, p(l1)) are of one of the
three forms: €, € or (I;,n;) with n; < p({;). As we did in Case i, it is feasible to
push all € and € backward and all (I;,n;) forward so that only tags with atomic
tag l; are left between (I1,1) and (I1, p(l1)) (these tags are already in ascending
order since they come from the same input pattern, say ai(z1). - --.a,0,)(%p0,)),
and the consumption of these input prefixes goes from left to right). After the

operations, we get a reduction sequence like

1) e ¢ (1) (E52)  Uop(l))  (GGong) (1,2)

7l
B. Find the next tag (I2, p(l2)) for some atomic tag lo and make all tags with atomic
tag Iy in consecutive positions. Now we can treat tags in group 7' as a whole
and push them backward just as what we do for tag e. We repeat this operation
for other group 7% as long as (I, p(l;)) lies between (,1) and (/,2). At the end

of this stage, we have a sequence as follows.

1,1 l l Lj 1,2
G v QU - AU G

L . . . .
where == stands for U052 (lji(lf)).

C. For other tags t; with j & I and j € I, which do not belong to a complete
group, we push them forward to the right of (I,2), keeping their order. At this

moment, there are still tags like € and € between (I,1) and (I, 2).

1,1 1 Lj 1,2
R S A i UL SN AU (L) S

where t € {¢,€'}.
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D. Push (I,1) forward until to the proper left of (I,2) so as to yield this sequence:

t t (1,1)(1,2) p

Ay O I LN LN
where ¢ € {¢,€¢'}. By Lemma 5.12 it follows that
wt(P) = wt(Pyy) = -+ = wt(Pjyy, )

lin; ; .
In the above four steps, when we commute reductions like (ﬂ)t—», the condition

n; < p(l;) is always satisfied. This ensures the correct use of Lemma 5.13.

If n = 2, by Lemma 5.12 and the transitivity of >, we have that wt(P) > wt(P/) and so @ can
be set as P/. If n > 2 we repeat the operations done for (I,1) on (I,4) with 1 < i < p(I). There are
two possibilities for the ultimate result:

1) either (1,7 + 1) does not appear in the subsequent reductions, then we replace the process R et

(agii1+1)($i+1). albm) ().Rp)o with 0 and get a non-terminating process @ such that wt(P) >
wt(Q);
2) or we complete the input pattern with atomic tag | and have a sequence like

In this case we also have wt(P) > wt(Q) according to previous operations and Lemma 5.12.

Note that there are possibly three kinds of tags lying in the ultimate sequence between P and

Q

1)-
2)

3) tags not belonging to complete input patterns, but the continuations of these incomplete input

/.
tags e or €;

tags belonging to complete input patterns;

patterns are discarded in ) since we have substituted 0 for them.
Therefore each new atomic tag [ with p(I) > 0 created by the derivatives of P is usded up when
reaching (). As P is regular, @) must be regular as well. Hence the induction hypothesis applies and

it maintains that @ is terminating. At this point contradiction arises. a

C.5 Proofs from Section 5.5
Lemma C.8 Ifn(R)NZ =0 then (R+ R )Jz=R+ R {z.

Proof: Let R" =R+ TR’
(R+R){z
= {(a,b)|a,b ¢z and aR"c1R" ---R" ¢, R"b for some ¢ C T and n > 0}
= {(a,b)|a,b ¢ and aRb}
U{(a,b) | a,b € T and aR'c1 R’ -+ - R'¢, R'b for some ¢ C Z and n > 0}
— RUR|s
= R+R Iz
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Let R be a partial order and o be a substitution of names. We say Ro is well defined if
Ro = {(zo,yo) | (z,y) € R} is a partial order. For the multiset M = [x1, -, 2,] we write

Mo = [x10,- -+, x,0].

Lemma C.9 If My R Mo then
(1) My R, Mo withR' =R +S.

(2) (M1 U M) Rypur (Mo W M) for any multiset M over n(R).
(3) Mo Romur Moo when Ro is well defined.

Proof: We only need the definition of multiset ordering. (1) Since R’ is a superset of R, it
holds that Ry implies R’y. (2) Trivial. (3) Since Ro is well defined, it follows that 2Ry implies
ro Ro yo. a

Given a multiset M and a partial order R on names, we extract from M a sub-multiset in the
following way:
M(x zen(R
Mp(z) () (R)
0 x Z€n(R)
Note that here we consider a multiset M with elements from set V as a function M : V — N (cf.
[Bez03]). Clearly all elements in Mz belong to n(R).
The following lemma provides an alternative characterisation of the relation R. It shows that

names not in n(R) are invariant with respect to the multiset ordering.
Lemma C.10 Suppose P R Q, M!' =mosg(P) and M? = mosg(Q). Then My Ry M%.

Proof: From P R Q we know that: (i) M! = My My; (i) M2 = M & My; (iii) My Ry Ma.
Since all elements in M; and Maz belong to n(R), it is easy to see that M%z = Mg & M; and
M% = Mgz ¥ Ms. From Lemma C.9(2), it follows that M R M%. O

Lemma C.11 If the partial order R is finite, then there exists no infinite sequence like
PBRPRPR--

Proof: Since R is finite, it is well-founded, so is the induced multiset ordering R,,,;. Suppose
there exists such an infinite sequence. Let M*® = mosg (P;). By Lemma C.10, we would have the
sequence

M Rt Mg Rt M7z Rt -+ -

which contradicts the well-foundedness of R .. O

Lemma C.12 If P R Q then

(1) PR QuithR' =R+ S

(2) PIRRQ|R

(3) Po Ro Qo when Ro is well defined.

(4) P' R Q" with mosg(P) = mosgr(P") and mosg(Q) = mosg (Q').
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Proof: Straightforward. The first and third clause of Lemma C.9 are used to prove (1) and (3)

respectively. a

The next two lemmas illustrate the basic properties of the type system 7.
Lemma C.13 If R+ P then n(R) C fn(P).

Proof: By trivial induction on the structure of P. a

Lemma C.14 If R+ P, T:w, o ={w/Z} and Ro is well defined, then Ro + Po.

Proof: The derivation of R - P forms a tree tr with the conclusion as root. If we replace all
occurrences of z; with w; we get another tree ¢7’. By induction on the depth of ¢’ it can be shown

that ¢’ is a valid derivation tree with root Reo - Po. O

Proof of Theorem 5.20
By induction on the depth of the derivation P - P’. Let us consider the last rule used in the

derivation.

1. Rule in In this case P = a(Z).P; and P’ = Pyjo, where ¢ = {w/z}. From R F P we infer
that a : #2V, 7: V, R'+ P, S = R//7 and R = R’ |z.

a) If S =0 then n(R’) Nz = 0. Obviously R'c is well defined since R'c = R/. By Lemma
(a) y y
C.14 we have R'o F Pyo. Observe that Sxw = () and R/ ||z= R/, i.e., Ro =R =R |z
+0 =R + S *w. Therefore it holds that R + Sxw - P.

(b) If § # 0, then n(R') C T by definition and § * 7 = R’ by Lemma 5.17. By hypothesis
S« w is a partial order, so R'c is well defined since R'oc = (S *T)o = S * w. By
Lemma C.14 we have R'c  Pio. The conclusion is straightforward by noting that
R+S*w=R |z +Ro=0+Ro="Ro.

(vb)aw

2. Rule coml We have P = Py | Py, P, 22" P/, P, “% Pl b fn(Py) = 0 and P’ = (vb) (P} |
Pj}). From R + P we derive that Ry - P, Ro F P, and R = Ry + Ry. By induction
hypothesis on the transition of P; we have the following results: (1) a : ﬂgf/ and @ : V; (2)
RiE Pf; (3) R1 = (R} + S *w) ;. By inductive assumption on the transition of P we infer
that Re + S« w F Pj. Using T-par it follows that Re + R} + S+ w + P | P;. Using T-res
we have that (Ro + R} + S x w) I3 (vb)(P] | P}). By the condition b N fn(P) = 0 and
Lemma C.13, bNn(Ry) = 0 holds. By using Lemma C.8 we have that (Ry + R} + S * @) b=
R + (R + S+ w) 3= Ra2 + R1 = R. Therefore R - P’ is valid.

3. Rule rep Suppose P =!k.P; with k = a(Z).x’. Let ¢ = {w/T}. After the transition P
changes into P’ = P | (k'.P1)o. From R Hlk.P; we have R F k.P; according to the typing
rule T-rep. Applying the arguments in Case 1 to k.P; we have the results: (1) a : ﬂg\N/ and
w:V; (2) if S xw is a partial order then R + S *w + (k'.P;)o. Using T-par we can infer that
R+S+*w+REP ie, R+S*xwk P.
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4. Rule open Let P = vcP;. The transition P (Vﬂﬁ) P’ comes from P; (Ubj? P’ with ¢ €
fn(w) — {g, a}. From R F P we have that R’ + P; and R = R’ |l.. By induction hypothesis
on the transition of P; we have the following results: (1) a : ﬁgf/ and @ : V; (2) R + P’ (3)
R’ = (R" + 8« w)l. Therefore R = R'|= ((R" + S xw) ) )= (R" + S xw) g - Now

all conditions required for P are satisfied and thus we complete this case.

5. Rule if-t Let P = if true then P; else P and P/ = P;. From R + P we have that
Ri bt P, Re b P, and R = Ry + Ra. By setting R' = Ry and R” = R, the conclusion is

obvious. The symmetric rule if-f is similar.

6. Rule parl and res Followed from induction hypothesis. O

Let R F P. If P appears underneath an input prefix as in a(Z).P, then either all names in n(R)
are shielded by the prefix or none of them is bound. In other words, Z cannot include only a portion
of names in n(R). This observation is made explicit by the following lemma, where we write Jli...
to mean that there exists a unique i satisfying the succeeding condition. Usually if name a is given

type ﬂg\N/ we say that the partial order of a is S, written as po(a) = S.

Lemma C.15 Suppose Ro + P and R b k.P with k = a1(Z1). - - .an(Ty) and n > 1. Then one of

the following two cases holds.
1. R =10
2. i <n,R, = po(a;) * T;

Proof: We prove a stronger proposition: when the conditions in the above hypothesis are met,

then one of the following two cases holds:

1. Vi <n,po(a;) =0 An(Re) NZT; =DAR =Ryp.

2. 3li <n,po(a;) =8 # 0An(Ro) C T;ARo = Sxx; \(Vj # i, po(a;) = DAn(Ro)NZ; = O)AR = 0.

By induction on the length of k. Since k.P is well-typed, the sub-process a,(Z,).P must be
well-typed as well. Let Ry F a,,(Z,).P. Then Ry = Rolz,, an : ﬂgL\N/, Tp:Vand S = Ro/Tn. Let
K =ai(x1). an-1(Tn-1)-

1. If Ry = 0 then S = 0, i.e., po(a,) = 0. We also have Ry = Ro = . Now take a(Z,).P as

P and k' as k, we can do similar reasoning to show that po(a,_1) = 0 and Ry = Ry = 0

if Ro b an—1(Zp-1).an(ZT,).P. Repeat the game until a1, it can be shown at last that Vi <
n,po(a;) =0 AR =Ry.

2. If Ro # 0 there are two possibilities.

(a) n(Rp) C Tp. In this case we have S # 0 but Ry Jz,= 0 and Rg = S * T,. So it
holds that po(a,) # 0 and Ry = (). By the arguments of Case 1, it is easy to see that
Vj <n—1,po(a;) =0 AR; = Rq1 = 0. Since we assume that bound names are different
from each other, n(Ro) NZ; = () holds.
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(b) n(Ro) N Z,, = 0. In this case S = ) and Ry = Ry. By induction hypothesis on R +
K'.an(Zy).P, we have the following results: (1) either Vi < n—1,po(a;) = OAn(Ro)NZ; =
DAR =R (2) or i <n—1,po(a;) =8 #DAn(Ro) CTi ARy =S8 *3; A (V] #
i,po(a;) =0 An(Ro)NZj =0 AR =0). The conclusion follows immediately.

Proof of Lemma 5.21
By the transition rule rep, each time a replicated process is invoked a fresh tag is produced. So

there is no replicated process invoked in P; for 1 < i < n — 1. Then there are two possibilities:

1. No replicated process is invoked in P either. Therefore all communications on a;, with 1 <
i < n, take place between non-replicated inputs and outputs. By similar analysis in Lemma
5.12, one can derive that

wt(P) = wt(Py) = -+ = wt(P")

2. A replicated process k.QQ, with k = a1(Z1). - -.a,(Z,), is invoked in P and a new process

(ag’2)(52). ealtm™ (T,,).Q)o is spawned. The subsequent reductions consume the input pre-

(1,2) (I,n)

fixes from as "' 0(Z2) to ay”" 0 (Z, ) and their corresponding outputs. Then we have the relation

wt(P') + wt(k) = wt(P) + wt(Qo’)

Note that substitution of names does not affect the weight of a process, so wt(Qo’) = wt(Q).

According to the side condition of rule T-rep there are two cases:

(a) wt(k) = wt(Q). It follows that wt(P) = wt(P’).

(b) wt(k) = wt(Q), & Rk Q and ay, : t. First, observe that P must be of the following form

in order to have the reduction sequence.
P :!al(fl). e an(fn)Q | Bl’lﬂl | | Bn@an | R2

with a; = by and by 41 = a;4101 -+ - 0; for i > 1 by letting 0; = {w;/Z;}. Let 0 =01+ opy.
According to our bound name convention that bound names are different from each other,
z;Nz; =0if i # j. If follows that b; = a;o for all ¢ > 1. Hence we have the result that

mosg (ko) = mosg (bywy | - - - | byiy,). We also have P’ in the form:
P =lay(71). a0 (Tp).Q | Qo | Ry | Ry

Let P1 :!al(fl). R an(fn)Q, P2 = 61’@1 | e | b;l@an and PQI = QO’ | Rl. From
R F P we have the results that Ry - P;, Ro - P, and Rg F R with R = R1 + R2 + Rs.
Let Ro1 = X 1po(b;) * w; and Rag - Ry. Then Ro = Ra1 + Raz. Note that Ry F £.Q is
valid and by Lemma C.15 there are two possibilities:

i Re=10

ii. 3 <n, R, =po(a;) *T;
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From the condition « 7/2; Q we know that R, # 0, so the second possibility is true. It
follows that Ra1 = po(b;) *w; = Rxo; = R0 by bound name convention. Hence we have

the following inference sequence

Kk Re Q

= ko Reo Qo by Lemma C.12(3)
= ko Ra1 Qo Rro = Ro1

= (byy | -+ | bpiin) Ra1 Qo by Lemma C.12(4)
= (bywy |- | bp@n) | Ri Ra1 Qo | Ry by Lemma C.12(2)
= P, Ra Py by Lemma C.12(4)
= P |Py|Ry Ry Pi|P,|Ry byLemma C.12(2)
= P R P by Lemma C.12(1)

Since a, : ¢, we have that ur(Q) = (), thus ur(Qo) = 0 and no unguarded restriction is liberated
by the reduction sequence. Note that b,, and a,, are of the same type, hence of the same sort, which

means that ur(R;) = (). Theorefore P’ has no unguarded restrictions either. O

Proof of Lemma 5.22

Suppose that there exists an infinite reduction sequence like

PIsp Pt P P (C.1)
then there must be infinitely many transitions T:lj> because the transition <, decreases the size of
processes. Let Py = vaQg, without unguarded restrictions in Qq, i.e., ur(Qo) = 0. Suppose R Py,
then Qo is also well-typed, say Rg F Qo for some Ry. There is a corresponding reduction sequence
starting from Qo: . 5/ o , .

Qo=0Q1 — Q= —Qi-1= Qi
By Lemma 5.21 and transition rules if-t and if-f we know that no unguarded restriction is created
in the sequence, thus Vj < i, P; = vaQ; and wt(P;) = wt(Q;). From Lemma 5.21 and Subject
Reduction Theorem we have that all ); are well-typed, noted as R; - @Q);, and

o if Q; 25 Qi1 then Ry = Ry and Q; Ry Qjar

o if Q; <, Qj+1 then Rj = R;41 + R, for some R ;.
If follows that Vj < i,R = R; + R/ for some R} and by Lemma C.12(1) if Q; 7/2; Qj+1 then
Q; R Qj+1. Let MJ =mosg(Q;). It can be derived that

o if Q; 25 Q1 then My Ry M by Lemma C.10,

o if Qj = Q1 then M R, ML by rules if-t and if-f

mul

where the notation M R> , M’ means M R0 M’ or M = M/’. Since there are infinitely many

mul

L
transitions = in (C.1), there are infinitely many R,,.; in the sequence
M% Rmul M%z 'r:nul M?z Rl -+

which contradicts the well-foundedness of R ..
Consequently, by means of commuting reductions used in Lemma 5.14, we can always find a @
with wt(Py) > wt(Q) in finite number of steps. O
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P == 0 ‘ x(y) | def D in P | PP processes
D u= T|JoP|DAD definitions
J a= x(y) ‘ J|J join-patterns
FP1|P2 - FPl,PQ Str—join
FO = F Str-null
D1 A D2 = - Dl, D2 = Str-and
T = F Str-nodef
Fdef DinP = Dot Po Str-def
J>PkFJo — JpPF Po Red

Table C.1: Syntax and semantics of the Join-calculus

C.6 Levels in the Join-calculus

The idea of introducing level information into type system so as to enforce termination is also
applicable in other process calculi. In this section, we investigate termination of processes in the
Join-calculus [Fou98] by taking advantage of levels as we did in Section 5.2. We recall the syntax
and semantics of the Join-calculus in Table C.1. Detailed description about the calculus can be
found in [Fou98].

For ease of understanding, we consider the monadic Join-calculus. The extension to allow
polyadic communication is straightforward. We preserve all notations of [Fou98| for the syntax

and semantics, but add two multisets mdv[J] and mdv[P] which are defined below.

mdvfe(y)] = [a]
mdo[J | J] Y mdo[J] wmdolJ]
mdv[def D in P] def mdv|[P]
mdv[P | Q] ¥ mdv[P] ¥ mdv[Q]
mdv[o] =[]

The reason of using multisets instead of the set dv[.J] given in [Fou98] comes from the mechanism
of inter-process synchronisation of the Join-calculus: pattern-matching. Consider the following two

processes:

Q Y def x> () in z()

Q X gef z() |2()>x() in z()
Obviously Q' is terminating while @ is not. Without multiset, we would not be able to distinguish
Q' from @ and wrongly take both of them as illegal processes. For the type system, we assume
that the only primitive type is unit and we do not consider polymorphism. Hence the concepts of
type scheme and simple type environment in [Fou98] coincide with type and typing environment

respectively. Due to these simplification our type system becomes less complicated than the original
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: F'ta: "V TThy:V 3 'P THQ

T-message TF 2{y) T-par TFP[Q
Fl,Fgl_DZZFQ Fl,rgl_P

T-def T Fdef Din P T-null 7

0y:VE ] #ws) T5:VEP @) >mu o(mdo[P))

T-rule iel.n
I J] ziw) o PuT s
1€l..n
~ I"I—Dl::l"l F"DQZZFQ _
T-and A, =T 0 1 T-nodef =
YvPeP,I'FP VDeDIFD .THD: T
T-soup TFDFEP T-multi TED

Figure C.1: Typing rules for the join calculus

one presented in [Fou98]. The syntax of types is the same as that of w-calculus studied in Section
5.2. Given a set of names N, the restriction of type environment I' on N, written I' |y, is a
new type environment which only binds names belonging to N. Let N = {x1,---,x,}, we define
Ww(N)={l(z1), -, w(x,)} as the multiset of levels for names in N. The typing rules are reported
in Figure C.1, where []

multiset ordering between two multisets of natural numbers.

se1..n i represents the parallel composition Py | --- | P, and >, is the

The rule T-rule requires the condition lw(mdv[J]) >mu w(mdv[P]) in order to make J > P
typable. It means that some output channels in J are replaced by finite number of lower level
channels in P. According to the semantics of the join calculus, the only effective reduction relation
is

J>PkF Jo— J> Po.

Since the substitution ¢ does not affect level information, as a whole the chemical soup will loose
some level information after the reduction step. This phenomenon is reflected in the decrement of

our measure, weight, which is now defined on both processes and soups.

wt(0) = 0 wt(z(y)) = 0; if lv(x) =1
wt(P | Q) = wt(P)+wt(Q)  wt(def D in P) = wt(P)
wt(J | J') = wt(J)+wt(J)
wt(DFP) = Yo wt(P) if P={P|1<i<n}

As usual, the proofs of weakening and substitution lemmas are quite easy. The proof of subject
reduction theorem is simpler than that in [Fou98] because no type variable is involved. Details are

omitted.
Lemma C.16 IfT'F J> P then wt(J) > wt(P).
Proof: By definitions it holds that lv(mdv[J]) >mwu w(mdo[P]) iff wt(J) = wt(P). O

Theorem C.17 If D = P is a well-typed chemical soup, there is no infinite reduction sequence

starting from the soup.
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Proof: We need to prove three claims.

1. Claim 1: If D1 + Py = Dok Py then wt(Dy b Py) = wt(Da b Py). Tt is trivial by examining

all structural rules.

2. Claim 2: If Dy = Py — Do F Py then wt(Dy F Py) = wt(D2 = P2). The only reduction rule
is JoPF Jo — J> PF Po. Following from Lemma C.16, it holds that wt(Jo) = wt(J) >
wt(P) = wt(Po), thus wi(Dy F Py) > wt(D2 F Ps).

3. Claim 3: If D - Py =*—=* Dy b Py then wt(D;1 + P1) = wt(Dy - Py). This is easy by

using the first two claims.

The required result follows from Claim 3. a
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