
Coll�ege doctoral

THESE
pour obtenir le grade de

Docteur de l'Ecole des Mines de Paris
Sp�ecialit�e: Informatique Temps r�eel, Robotique et Automatique

pr�esent�ee et soutenue publiquement
par

Yuxin DENG

le 22 juillet 2005

Axiomatisations et types pour des processus

probabilistes et mobiles

Directeur de th�ese : Davide SANGIORGI

Jury

Mme. Delia KESNER Pr�esidente

M. Matthew HENNESSY Rapporteur

M. Roberto SEGALA Rapporteur

M. Roberto DI COSMO Examinateur

M. Davide SANGIORGI Examinateur

R�esum�e

Cette th�ese se concentre sur des bases th�eoriques utiles pour l'analyse d'algorithmes et de pro-

tocoles pour des syst�emes r�epartis modernes. Deux caract�eristiques importantes des mod�eles pour

ces syst�emes sont les probabilit�es et la mobilit�e typ�ee : des probabilit�es peuvent être utilis�ees pour

quanti�er des comportements incertains ou impr�evisibles, et des types peuvent être utilis�es pour

garantir des comportements sûrs dans des syst�emes mobiles. Dans cette th�ese nous d�eveloppons

des techniques alg�ebriques et des techniques bas�ees sur les types pour l'�etude comportementale des

processus probabilistes et mobiles.

Dans la premi�ere partie de la th�ese nous �etudions la th�eorie alg�ebrique d'un calcul de processus

qui combine les comportements non-d�eterministe et probabiliste dans le mod�ele des automates prob-

abilistes propos�es par Segala et Lynch. Nous consid�eronsdiverses �equivalences comportementales

fortes et faibles, et nous fournissons des axiomatisationscompl�etes pour des processus �a �etats �nis,

limit�ees �a la r�ecursion gard�ee dans le cas des �equivalences faibles.

Dans la deuxi�eme partie de la th�ese nous �etudions la th�eorie alg�ebrique du � -calcul en pr�esence

des types de capacit�es, qui sont tr�es utiles dans les calculs de processus mobiles. Les types de

capacit�es distinguent la capacit�e de lire sur un canal, la capacit�e d'�ecrire sur un canal, et la capacit�e

de lire et d'�ecrire �a la fois. Ils introduisent �egalement une relation de sous-typage naturelle et

puissante. Nous consid�erons deux variantes de la bisimilarit�e typ�ee, dans leurs versions retard�ees

et anticip�ees. Pour les deux variantes, nous donnons des axiomatisations compl�etes pour les termes

ferm�es. Pour une des deux variantes, nous fournissons une axiomatisation compl�ete pour tous les

termes �nis.

Dans la derni�ere partie de la th�ese nous d�eveloppons des techniques bas�ees sur les types pour

v�eri�er la propri�et�e de terminaison de certains process us mobiles. Nous fournissons quatre syst�emes

de types pour garantir cette propri�et�e. Les syst�emes de types sont obtenus par des am�eliorations

successives des types du� -calcul simplement typ�e. Les preuves de terminaison utilisent des tech-

niques employ�ees dans les syst�emes de r�e�ecriture. Ces syst�emes de types peuvent être utilis�es pour

raisonner sur le comportement de terminaison de quelques exemples non triviaux : les codages des

fonctions r�ecursives primitives, le protocole pour coder le choix s�epar�e en terme de composition

parall�ele, une table de symboles implement�ee comme une châ�ne dynamique de cellules.

Ces r�esultats �etablissent des bases pour une future �etude de mod�eles plus avanc�es qui peuvent

combiner des probabilit�es avec des types. Ils soulignent �egalement la robustesse des techniques

alg�ebriques et de celles bas�ees sur les types pour le raisonnement comportemental.

Abstract

The focus of this thesis are the theoretical foundations forreasoning about algorithms and pro-

tocols for modern distributed systems. Two important features of models for these systems are

probability and typed mobility: probabilities can be used t o quantify unreliable or unpredictable

behaviour and types can be used to guarantee secure behaviour in systems with a mobile struc-

ture. In this thesis we develop algebraic and type-based techniques for behavioural reasoning on

probabilistic and mobile processes.

In the �rst part of the thesis we study the algebraic theory of a process calculus which combines

both nondeterministic and probabilistic behaviour in the style of Segala and Lynch's probabilistic

automata. We consider various strong and weak behavioural equivalences, and we provide complete

axiomatisations for �nite-state processes, restricted to guarded recursion in the case of the weak

equivalences.

In the second part of the thesis we investigate the algebraictheory of the � -calculus under the

e�ect of capability types, which are one of the most useful forms of types in mobile process calculi.

Capability types allow one to distinguish between the capability to read from a channel, to write

to a channel, and to both read and write. They also give rise toa natural and powerful subtyping

relation. We consider two variants of typed bisimilarity, b oth in their late and in their early version.

For both of them, we give complete axiomatisations on the closed �nite terms. For one of the two

variants, we provide a complete axiomatisation for the open�nite terms.

In the last part of the thesis we develop a type-based technique for verifying the termination

property of some mobile processes. We provide four type systems to guarantee this property. The

type systems are obtained by successive re�nements of the types of the simply typed � -calculus.

The termination proofs take advantage of techniques from term rewriting systems. These type

systems can be used for reasoning about the terminating behaviour of some non-trivial examples:

the encodings of primitive recursive functions, the protocol for encoding separate choice in terms of

parallel composition, a symbol table implemented as a dynamic chain of cells.

These results lay out the foundations for further study of more advanced models which may

combine probabilities with types. They also highlight the robustness of the algebraic and type-

based techniques for behavioural reasoning.

i

To my parents

ii

Acknowledgements

I would like to express my gratitude to Davide Sangiorgi, my supervisor, for his inspiration,

guidance, and encouragement. He was always willing to discuss the problems that I encountered in

my research and my life. From him I have received invaluable help and advice.

I am very indebted to Catuscia Palamidessi. Her intelligence and enthusiasm had a substantial

in
uence on my research interests in the later period of my Ph.D. study. I have learned much from

her about the ways of doing research and the style of presenting it.

I owe a lot to Pierre-Louis Curien for having received me in his laboratory PPS and for having

made insightful comments on each piece of work that I have done. Without his generosity and

unconditional support, this thesis would not have been possible.

I am also very grateful to Yuxi Fu, my Master's thesis supervisor, for having introduced me to

the �eld of process algebra.

PPS has o�ered creative and pleasant working atmosphere. I would like to thank all the past

and current members for their friendship and interesting discussions. In particular, I thank Samuel

Hym, Vincent Balat, and Fabien Tarissan for their help of correcting the resume in French.

I have the pleasure of having stayed three months in the MIMOSA project of INRIA Sophia-

Antipolis. Many thanks must go to G�erard Boudol and Ilaria C astellani for having provided the

friendly environment.

I appreciate the stimulating discussions with the members of COMETE and PARSIFAL projects

of INRIA Futurs. I thank particularly my colleagues Jun Pang and Tom Chothia for the nice

collaboration that we had.

I would also like to thank all my friends. They have made my time in Paris both fruitful and

enjoyable.

My special gratitude goes to my family, for their unfailing support.

The EU project PROFUNDIS has funded this research. The Department of Computer Science

in University of Bologna has sponsored me for two productivetrips to Bologna.

iii

iv

Main Notations

Below are the important notations used in this thesis, with the section number of their �rst appear-

ance.

Metavariables

u; v; ::: names 2.1

` labels 2.1

�; � actions 2.2.2

X; Y; ::: process variables 2.1

E; F; ::: process expressions 2.1

P; Q; ::: � -calculus processes 2.2.2

� sorts 2.2.3

p; q; r probabilities 3.1

�; � discrete probability distributions 3.1

R; S relations 3.3

� ; � type environments 2.2.5

S; T types 2.2.5

Miscellaneous symbols

bool boolean type 2.2.5

Nat natural number type 2.2.5

]T channel type 2.2.5

]n T channel type with level 5.2

i T; oS; bhT; Si capability types 4.1.1

fpv(E) free process variables 2.1

f eF = eX g substitution of expressions 2.1

f ev=eug substitution of names 2.2.2

fn (�) free names of speci�ed entities 2.2.2

bn(�) bound names of speci�ed entities 2.2.2

subj(�) subject of action 2.2.2

obj (�) object of action 2.2.2

�]P con�guration 4.1.2

Process constructions

v

0 inaction 2.1

`:E pre�x 2.1

E + F nondeterministic choice 2.1

E j F parallel composition 2.1

�aE restriction 2.1

� X E recursion 2.1
P

i 2 1::m E i indexed nondeterministic choice 3.2
L

i 2 1::n pi ` i :E i probabilistic choice 3.2

u(x):P input pre�x 2.2.2

�uv:P output pre�x 2.2.2

!u(x):P replicated input 2.2.2

if w then P else Q if-then-else 5.3.1

'P Q condition 4.1.1

Transitions
`�! labelled transition 2.1

! strong probabilistic transition 3.2

! c strong combined transition 3.2

) weak probabilistic transition 3.2
�) c weak combined transition 3.2

) c normal weak combined transition 3.2

Equivalences

� R equivalences of distributions 3.3.1

� strong bisimilarity 3.3.2

� c strong probabilistic bisimilarity 3.3.2

� weak probabilistic bisimilarity 3.3.2

' observational equivalence 3.3.2

h divergency-sensitive equivalence 3.3.2

l typed bisimilarity 4.1.3

l e typed early bisimilarity 4.1.3

m a variant typed bisimilarity 4.4.1

vi

Contents

Abstract i

Acknowledgements iii

Main Notations v

R�esum�e en fran�cais 1

1 Introduction 15

1.1 Background . 15

1.2 Objectives . 17

1.3 Axiomatisations for Probabilistic Processes 19

1.4 Axiomatisations for Typed Mobile Processes 21

1.5 Termination of Mobile Processes by Typability . 24

1.6 Outline of the Thesis . 25

2 Preliminaries 27

2.1 A Calculus of Communicating Systems 27

2.2 The � -calculus . 28

2.2.1 From CCS to the � -calculus . 28

2.2.2 The Untyped � -calculus . 29

2.2.3 Sorts and Sorting . 31

2.2.4 A Simple Example . 32

2.2.5 The Simply Typed � -calculus . 32

2.2.6 Subtyping . 34

3 Axiomatisations for Probabilistic Processes 37

3.1 Probabilistic Distributions . 37

3.2 A Probabilistic Process Calculus . 38

3.3 Behavioural Equivalences 41

3.3.1 Equivalence of Distributions . 41

3.3.2 Behavioural Equivalences 42

3.3.3 Probabilistic \Bisimulation up to" Techniques 44

vii

3.3.4 Some Properties of Strong Bisimilarity . 46

3.3.5 Some Properties of Observational Equivalence 48

3.4 Axiomatisations for All Expressions . 49

3.4.1 Axiomatizing Strong Bisimilarity . 49

3.4.2 Axiomatizing Strong Probabilistic Bisimilarity 52

3.5 Axiomatisations for Guarded Expressions 53

3.5.1 Axiomatizing Divergency-Sensitive Equivalence 54

3.5.2 Axiomatizing Observational Equivalence . 56

3.6 Axiomatisations for Finite Expressions . 60

3.7 Summary . 62

4 Axiomatisations for Typed Mobile Processes 65

4.1 A Fragment of The Typed � -calculus . 65

4.1.1 Standard Operational Semantics 65

4.1.2 Typed Labelled Transition System . 68

4.1.3 Typed Bisimilarity . 70

4.2 Proof System for the Closed Terms 72

4.3 Axioms for Typed Bisimilarity . 74

4.3.1 The Axiom System . 75

4.3.2 Soundness and Completeness 77

4.4 Other Equivalences . 82

4.4.1 Hennessy and Rathke's Typed Bisimilarity 82

4.4.2 Early Bisimilarity . 88

4.5 Adding Parallelism . 88

4.6 Summary . 90

5 Termination of Mobile Processes by Typability 91

5.1 Preliminary Notations . 91

5.2 The Core System: the Simply Typed� -calculus with Levels 92

5.3 Allowing Limited Forms of Recursive Inputs . 95

5.3.1 The Type System . 95

5.3.2 Example: Primitive Recursive Functions . 97

5.4 Asynchronous Names 98

5.4.1 Proving Termination with Asynchronous Names 99

5.4.2 Example: the Protocol of Encoding Separate Choice 104

5.5 Partial Orders . 105

5.5.1 The Type System . 105

5.5.2 Example: Symbol Table . 110

5.6 Summary . 111

6 Conclusions and Future Work 113

viii

A Proofs from Chapter 3 117

A.1 Proof of Lemma 3.14 . 117

A.2 Proof of Proposition 3.34 . 119

A.3 Proof of Lemma 3.36 . 122

A.4 Proof of Lemma 3.45 . 124

B Proofs from Chapter 4 127

B.1 Some More Derived Rules 127

B.2 Proof of Theorem 4.36 . 128

C Proofs from Chapter 5 131

C.1 Proofs from Section 5.2 131

C.2 Proofs from Section 5.3 132

C.3 Extending T 0 with Polyadicity and Conditional . 1 34

C.4 Proofs from Section 5.4 135

C.5 Proofs from Section 5.5 139

C.6 Levels in the Join-calculus . 145

Bibliography 147

ix

x

R�esum�e en fran�cais

L'informatique vise �a expliquer d'une mani�ere rigoureuse comment les syst�emes informatiques se

comportent. Actuellement la notion de syst�eme informatique inclut non seulement dessyst�emes

s�equentiels, comme des programmes simples dans des ordinateurs isol�es, mais �egalement dessyst�emes

parall�eles, comme des r�eseaux informatiques, et même des prot�einesen biologie et des particules en

physique. Les mod�eles math�ematiques classiques (par exemple le � -calcul [Bar84]), malgr�e leur

succ�es pour d�ecrire des syst�emes s�equentiels, demeurent insu�sants pour raisonner sur des syst�emes

parall�eles.

Dans les ann�ees 80 lescalculs de processus(parfois appel�es alg�ebres de processus), notamment

CCS [Mil89a], CSP [Hoa85] et ACP [BK84, BW90], ont �et�e prop os�es pour d�ecrire et analyser des

syst�emes parall�eles. Tous ont �et�e con�cus autour de l'i d�ee centrale d'interaction ou de commu-

nication entre processus. Dans ces formalismes, un syst�eme complexe est construit �a partir de

ses sous-composants, par un petit ensemble d'op�erateurs primitifs comme le pr�e�xe , le choix non-

d�eterministe , la restriction , la composition parall�ele et la r�ecursion . La limitation de ces alg�ebres

traditionnelles est qu'elles ne peuvent pas être utilis�ees pour d�ecrire e�cacement des syst�emes mo-

biles, c'est-�a-dire des syst�emes dont la topologie des liaisons change dynamiquement. Sur la base

de CCS, Milner, Parrow et Walker ont invent�e le � -calcul [MPW92], qui r�ealise la mobilit�e par un

m�ecanisme o�u un nom re�cu sur un canal peut être lui-même utilis�e comme un nom de canal en

�emission ou en r�eception. Le � -calcul est un formalisme tr�es expressif. Il permet d'encoder des

structures de donn�ees [Mil91], le � -calcul [Mil92] et les communications d'ordre sup�erieur (lorsque

des processus sont transmis �a la place des noms) [San93]. Enoutre, il peut être utilis�e comme un

outil de raisonnement sur deslangages orient�es objet[Wal95].

Comme aucune th�eorie n'atteindra tous les objectifs, un grand nombre de variantes et d'extensions

des calculs de processus classiques sont parues dans la litt�erature. Grossi�erement ils peuvent être

regroup�es en trois cat�egories en fonction des intentionsdes concepteurs.

� Pour mieux capturer quelques caract�eristiques sp�eci�ques des syst�emes parall�eles comme les

communications asynchrones, les communications d'ordre sup�erieur, les localit�es et les migra-

tions. On peut faire une longue liste d'exemples de calculs faits dans ce but : le � -calcul

asynchrone [HT91, Bou92], le� I-calcul [San96a], le L� -calcul [Mer00], le calcul Fusion [PV98],

le � -calcul [Fu99], le calcul Join [Fou98], CHOCS [Tho95], HO� [San93], D� [HR02b], Klaim

[DFP98], le calcul des Ambients Mobiles [CG00] et ses variantes, pour en citer juste quelques

uns.

1

2

� Pour �equiper les processus mobiles de types, de sorte que les processus interagissent entre eux

d'une mani�ere plus sûre et plus e�cace. Par exemple, un certain nombre de syst�emes de types

ont �et�e con�cus pour le � -calcul ; ils sont utilis�es dans diverses applications comme la d�etection

statique des erreurs dans les programmes parall�eles [Mil91], les optimisations de compilateur

[KPT99], le contrôle d'acc�es de ressources [PS96, HR02b]. En plus, ils garantissent d'autres

propri�et�es de s�ecurit�e comme l'ex�ecution sans blocag e [Kob98], la non-intervention [HY05] et

la terminaison [YBH04, DS04a].

� Pour soutenir le raisonnement sur les comportements probabilistes qui existent, par exemple,

dans les syst�emes al�eatoires, r�epartis et r�esistants aux pannes. L'approche g�en�erale que l'on

adopte est d'�etendre avec des probabilit�es les mod�eles et les techniques existants qui ont d�ej�a

�et�e couronn�es de succ�es dans les cadres non-probabilistes. La caract�eristique commune des

calculs de processus probabilistes est l'existence de l'op�erateur de choix probabiliste; voir par

exemple des extensions probabilistes de CCS [GJS90, HJ90, Tof94, YL92], CSP probabiliste

[Low91], ACP probabiliste [And99] et le � -calcul asynchrone probabiliste [HP04].

Dans cette th�ese nous illustrerons les calculs de processus des deuxi�eme et troisi�eme cat�egories

en d�etail.

A�n d'�etudier un langage de programmation ou un calcul de pr ocessus, on doit fournir une

signi�cation coh�erente �a chaque programme ou processus de ce langage. Cette signi�cation est la

s�emantique du langage ou du calcul. La s�emantique est utile pour v�eri� er ou montrer que les pro-

grammes se comportent comme pr�evu. D'une mani�ere g�en�erale, il y a trois approches principales

pour donner des s�emantiques �a un langage de programmation. L'approche d�enotationnelle cherche

une fonction d'�evaluation qui associe �a un programme sa signi�cation math�ematique. Cette ap-

proche r�eussit �a mod�eliser beaucoup de langages s�equentiels ; un programme est interpr�et�e comme

une fonction du domaine des valeurs d'entr�ee vers le domaine des valeurs de sortie. Cependant,

jusqu'ici l'interpr�etation d�enotationnelle des progra mmes parall�eles n'est pas aussi satisfaisante que

le traitement d�enotationnel des programmes s�equentiels.

L'approche op�erationnelle s'av�ere tr�es utile pour donner des s�emantiques aux syst�emes parall�eles.

Le comportement d'un processus est indiqu�e par sas�emantique op�erationnelle structurelle [Plo81],

d�ecrite par un ensemble de r�egles de transitions �etiquet�ees inductivement d�e�nies sur la structure

des termes. De cette fa�con chaque processus correspond �a un graphe de transitions �etiquet�ees. La

limitation de la s�emantique op�erationnelle est qu'elle est trop concr�ete, car un graphe de transitions

peut contenir beaucoup d'�etats qui devraient intuitiveme nt être confondus. On a alors propos�e

beaucoup d'�equivalences pour comparer les di��erents graphes de transitions.

L'approche axiomatiquevise �a comprendre un langage par quelques axiomes et r�egles d'inf�erence.

Son importance est motiv�ee, entre autres, par les deux raisons suivantes.

� Les syst�emes corrects, même s'ils ne sont pas complets, peuvent être utiles pour la manipulation

des termes par un humain ou par des machines. En exploitant ces syst�emes, un certain nombre

de probl�emes pratiques de v�eri�cation peuvent être abord�es.

� Les syst�emes complets aident �a comprendre la nature des �equivalences. Par exemple, la

di��erence entre deux �equivalences peut être caract�eri s�ee par quelques axiomes, en partic-

3

ulier si en ajoutant ces axiomes �a un syst�eme complet pour une �equivalence on obtient un

syst�eme complet pour l'autre �equivalence. Une autre m�ethode de comparaison est de �xer

une �equivalence et de changer les expressions. Parfois on �etend le syst�eme complet d'un sous-

langage au langage entier, en ajoutant quelques axiomes suppl�ementaires. Comme nous le

verrons plus tard, les deux ph�enom�enes se produisent aux chapitres 3 et 4.

Dans les calculs de processus, un sujet important et toujours actif est d'explorer la connexion

entre les s�emantiques op�erationnelles et axiomatiques.Milner [Mil78] a �et�e le premier �a pr�econiser le

d�eveloppement d'une alg�ebre des comportements qui ob�eit �a un certain nombre d'axiomes exprim�es

par des �equations. Dans [Mil80] un lien direct est �etabli pour la premi�ere fois entre une th�eorie

alg�ebrique et une �equivalence comportementale bas�ee sur une s�emantique op�erationnelle. Depuis,

un grand nombre de travaux portent sur les th�eories alg�ebriques de processus, pour di��erentes

�equivalences comportementales et dans divers calculs de processus. Cependant, on ne voit pas

beaucoup d'attention prêt�ee aux calculs de processus probabilistes et typ�es, bien qu'ils s'av�erent

être tr�es utiles dans l'analyse des syst�emes r�epartis modernes.

Objectifs

Cette th�ese se concentre sur des bases th�eoriques utiles pour l'analyse d'algorithmes et de protocoles

pour des syst�emes r�epartis modernes. Nous pensons que ce genre de raisonnement est important

parce que si un syst�eme est �etabli sans analyse rigoureusede toutes les interactions possibles entre

ses composants, alors son comportement est souvent incorrect. En est t�emoin la d�ecouverte r�ecente

des d�efauts de s�ecurit�e dans les protocoles de transmission sans �l comme IEEE 802,11 et Bluetooth

[BGW01, LL03].

Dans les syst�emes r�epartis il est int�eressant de consid�erer des mod�eles qui incluent des proba-

bilit�es. Une raison est qu'on esp�ere que ces syst�emes fournissent des services �ables en d�epit de

l'occurrence de divers �echecs. Les processus probabilistes peuvent être utilis�es pour d�ecrire des

syst�emes r�esistants aux pannes. Par exemple, l'information probabiliste peut être utilis�ee pour indi-

quer le taux de perte des messages par les canaux de transmission d�efectueux. En plus, les mod�eles

probabilistes peuvent être utilis�es pour casser la sym�etrie dans des probl�emes de coordinations dis-

tribu�ees (par exemple, le probl�eme des philosophes, le probl�eme d'�election de chef, et le probl�eme

de consensus), pour pr�evoir le comportement de syst�emes bas�es sur le calcul des caract�eristiques

d'ex�ecution, et pour repr�esenter et mesurer d'autres formes d'incertitude.

Un mod�ele pour les syst�emes r�epartis devrait �egalement inclure la caract�eristique de mobilit�e.

Les syst�emes physiques tendent �a avoir une structure �xe. Mais la plupart des syst�emes dans le

monde de l'information ne sont pas physiques car leurs lienspeuvent être symboliques ou virtuels.

Par exemple, quand on clique sur un lien hypertexte dans une page web, un lien symbolique est cr�e�e

entre la machine et le serveur web �a distance. Un exemple de lien virtuel est une connexion radio,

comme les liens entre les t�el�ephones mobiles et un r�eseaude stations de base. Cette connexion radio,

avec des liens transitoires, a une structure mobile.

Avec la mobilit�e, les types s'av�erent être essentiels. Par exemple, la th�eorie du � -calcul non typ�e

est souvent insu�sante pour prouver des propri�et�es comportementales sur les processus. La raison

4

est que quand on utilise le� -calcul pour d�ecrire un syst�eme, on suit normalement une m�ethode qui

d�etermine comment utiliser des noms. Mais cette m�ethode n'est pas explicite dans les processus et

elle ne peut donc pas jouer un rôle dans les preuves. Des types peuvent être utilis�es pour rendre

une telle m�ethode explicite (cf. Partie IV de [SW01]). En outre, les types sont utiles pour exprimer

le contrôle de l'intervention, du droit d'acc�es, du d�ecl assement robuste, de la composition sûre des

composants, et de la limite des consommations de ressources(par exemple, des allocations de temps

ou de m�emoire).

Il y a une motivation pratique pour consid�erer les probabil it�es et la mobilit�e en même temps.

Comment un syst�eme de t�el�ephone mobile peut-il s'ex�ecuter de fa�con satisfaisante si le concepteur

ne consid�ere jamais le comportement probable des utilisateurs ? Un certain nombre de mod�eles

probabilistes ont �et�e pr�esent�es en tant que variantes d es châ�nes de Markov, mais pour la mobilit�e

ils sont peu d�evelopp�es.

Dans la litt�erature, les probabilit�es et la mobilit�e typ �ee sont souvent �etudi�ees s�epar�ement. Des

techniques op�erationnelles ont �et�e d�evelopp�ees, mai s tr�es peu d'e�orts ont �et�e faits sur des tech-

niques alg�ebriques. Cependant, elles sont tr�es utiles eninformatique. Par exemple, dans le mod�ele

relationnel pour les bases de donn�ees [Cod70], les lois alg�ebriques ont servi �a l'optimisation de de-

mande [RG02]. Dans les calculs de processus, des �equationsalg�ebriques peuvent être consid�er�ees en

tant que r�egles de r�e�ecriture pour la manipulation autom atis�ee de termes [vdP01].

Dans cette th�ese nous �etudions des techniques alg�ebriques en consid�erant l'impact de la mobilit�e,

des probabilit�es et des types sur les th�eories alg�ebriques des calculs de processus. Puisque chaque

caract�eristique pr�esente de nouveaux probl�emes non triviaux, il est di�cile de d�evelopper d'embl�ee

des techniques alg�ebriques pour des mod�eles bas�es sur lamobilit�e typ�ee et les probabilit�es. Par

cons�equent, il vaut mieux les �etudier d'abord s�epar�eme nt. Dans le chapitre 3 nous consid�erons donc

des axiomatisations pour un calcul probabiliste sans mobilit�e, et dans le chapitre 4 nous fournissons

des axiomatisations pour un calcul de processus mobile typ�e sans probabilit�es. Les types que nous

utilisons sont lestypes de capacit�e[PS96], qui distinguent la capacit�e de lire sur un canal, lacapacit�e

d'�ecrire sur un canal, et la capacit�e de lire et d'�ecrire �a la fois. Ce genre de types sont utiles et

fondamentaux pour les calculs de processus. Ils ont �et�e utilis�es pour garantir l'�echange de donn�ees

coh�erentes sur des canaux, et pour contrôler des droits d'acc�es aux canaux. Des variantes des types

de capacit�es sont maintenant pr�esentes dans presque tousles calculs de processus. Parfois, elles

deviennent une partie de la syntaxe, par exemple dans le L� -calcul et le calcul Join, seules les

capacit�es d'�ecrire peuvent être transmises.

Dans les calculs de processus mobiles, les types peuvent être utilis�es comme une technique de

v�eri�cation pour analyser diverses propri�et�es des prog rammes concurrents, comme l'ex�ecution sans

blocage [Kob98], l'ex�ecution sans attente active [Kob00], et le
ux d'information [HVY00, HR02a].

Dans le chapitre 5 nous d�eveloppons une telle technique pour le probl�eme de terminaison, qui est une

propri�et�e importante que beaucoup d'algorithmes et prot ocoles dans les syst�emes r�epartis doivent

garantir. Dans le cas des syst�emes r�epartis sym�etriques, les algorithmes probabilistes sont souvent

plus e�caces que les algorithmes d�eterministes, au prix que certaines propri�et�es se produiront avec la

probabilit�e 1 mais pas n�ecessairement avec certitude. Pour tous les buts pratiques, cependant, cette

di��erence est insigni�ante. Par cons�equent, il est int�e ressant de parler de la terminaison probabiliste

5

aussi. Cependant, puisque la terminaison est elle-même unprobl�eme non trivial, nous consid�erons

des types sans probabilit�e.

Pour r�ecapituler, dans cette th�ese nous d�eveloppons destechniques alg�ebriques et des techniques

bas�ees sur les types pour raisonner sur les processus avec probabilit�es et mobilit�e typ�ee. Nous

consid�erons ces deux caract�eristiques s�epar�ement, �a la fois dans le cas des axiomatisations et celui

de la terminaison, mais nous croyons que notre travail contribue �a �etablir des bases pour �etudier des

mod�eles plus avanc�es qui peuvent combiner les probabilit�es avec la mobilit�e typ�ee.

Avant de discuter dans les sections suivantes des motivations pour chaque sujet de la th�ese, nous

devons pr�esenter une certaine terminologie. Nous utilisons le concept g�en�eral axiomatisations pour

d�esigner �a la fois des syst�emes d'axiomes et des syst�emes de preuves. Pour une �equivalence sur

un ensemble de termes, unsyst�eme d'axiomesse compose de quelques axiomes �equationnels et des

r�egles du raisonnement �equationnel (c'est-�a-dire, les r�egles de r�e
�exivit�e, de sym�etrie, de transitivit�e,

et les r�egles de congruence qui permettent de remplacer n'importe quel sous-terme d'un processus

par un terme �equivalent). Un syst�eme de preuvesa, en plus des axiomes et de certaines r�egles

du raisonnement �equationnel, d'autres r�egles d'inf�erence. G�en�eralement un syst�eme d'axiomes est

pr�ef�erable �a un syst�eme de preuves, parce que, par exemple, les techniques g�en�erales de la r�e�ecriture

de termes peuvent alors être applicables. Cependant, quand le calcul de processus en question inclut

des caract�eristiques non triviales comme la r�ecursion oules types, parfois il est di�cile d'obtenir

un syst�eme d'axiomes qui est complet parce que nous devons utiliser d'autres r�egles d'inf�erence,

c'est-�a-dire, ce que nous obtenons est r�eellement un syst�eme de preuves. Dans ce cas nous appelons

aussi ce syst�eme une axiomatisation, comme on l'a fait dansla litt�erature [Mil89b, Par01]. Pour une

axiomatisation, la compl�etude signi�e que si deux processus montrent un comportement semblable,

c'est-�a-dire, leurs graphes de transition sont �equivalents, alors on peut prouver qu'ils sont �egaux

dans un syst�eme d'axiomes ou un syst�eme de preuves; lacorrection signi�e l'inverse.

Axiomatisations pour les processus probabilistes

La derni�ere d�ecennie a �et�e t�emoin de l'int�erêt crois sant dans le domaine des m�ethodes formelles pour

la sp�eci�cation et l'analyse des syst�emes probabilistes [Seg95, BH97, AB01, PLS00, Sto02, CS02].

Dans [vGSS95] van Glabbeeket al. ont classi��e les mod�eles probabilistes dans trois cat�egories :

les mod�elesr�eactifs , les mod�elesg�en�eratifs et les mod�elesstrati��es . Dans les mod�eles r�eactifs, une

probabilit�e est associ�ee �a chaque transition �etiquet� ee, et pour chaque �etat la somme des probabilit�es

de ses transitions avec la même �etiquette est 1. Les mod�eles g�en�eratifs di��erent des mod�eles r�eactifs

parce que pour chaque �etat la somme des probabilit�es de toutes les transitions sortantes est 1. Les

mod�eles strati��es ont plus de structure et pour chaque �et at soit il y a exactement une transition

�etiquet�ee sortante soit il y a seulement des transitions non �etiquet�ees et la somme de leurs probabilit�es

est 1.

Dans [Seg95] Segala a indiqu�e que ni les mod�eles r�eactifsni les mod�eles g�en�eratifs ni les mod�eles

strati��es ne capturent le vrai non-d�eterminisme, une not ion essentielle pour mod�eliser la libert�e

d'ordonnancement, la libert�e d'impl�ementation, l'envi ronnement externe et l'information incompl�ete.

Il a donc pr�esent�e une sorte de mod�eles, lesautomates probabilistes(PA), o�u les probabilit�es et le

6

a ba b

1/2 1/2 1/3 2/3

a
a

b b

1/2 1/8 1/81/4

1/2 1/2

2/31/3

a b

a

a
a a a b

b

1/2 1/2 1/3 2/3
1/21/2 1/2 1/2 1/3 2/3 1/2 1/2

a b
a c
b c

(1) reactive (2) generative (3) stratified

(4) SPA (5) PA

Figure 1: Mod�eles probabilistes

non-d�eterminisme sont tous deux pris en consid�eration. Le choix probabiliste est exprim�e par la

notion de transition , qui, dans les PA, m�ene �a une distribution probabiliste sur des paires (action,

�etat) et des impasses (c'est-�a-dire, des �etats qui n'ont pas de transitions sortantes). Le choix non-

d�eterministe, par contre, est exprim�e par la possibilit�e de choisir di��erentes transitions. Segala

a propos�e �egalement une version simpli��ee de PA appel�ee automates probabilistes simples(SPA),

qui sont comme les automates ordinaires mais sont tels qu'une transition �etiquet�ee m�ene �a une

distribution probabiliste sur un ensemble d'�etats au lieu d'un seul �etat.

La �gure 1 donne un exemple des mod�eles probabilistes discut�es ci-dessus. Dans les mod�eles

o�u les probabilit�es et le non-d�eterminisme sont pr�esen ts �a la fois, comme ceux des diagrammes (4)

et (5), une transition est repr�esent�ee comme un paquet de
�eches qui sont li�ees par un petit arc.

[SdV04] fournit une comparaison d�etaill�ee entre les di��erents mod�eles, et montre dans un certain

sens que les PA subsument tous les autres mod�eles ci-dessussauf les mod�eles strati��es.

Nous �etudierons au chapitre 3 les syst�emes d'axiomes pourun calcul de processus bas�e sur les PA,

dans le sens o�u la s�emantique op�erationnelle de chaque expression du langage est un automate1. Les

syst�emes d'axiomes sont tr�es importants car au niveau th�eorique, ils aident �a comprendre le calcul

et �a �etablir ses bases, et au niveau pratique, ils peuventêtre utilis�es comme un outil int�eressant de

sp�eci�cation et de v�eri�cation des syst�emes. Notre calc ul est essentiellement une version probabiliste

du calcul employ�e par Milner pour exprimer les comportements d'�etats �nis [Mil84, Mil89b].

Nous consid�ererons deux �equivalences fortes, une �equivalence faible qui est commune dans la

litt�erature, ainsi qu'une notion d'�equivalence faible a yant l'avantage d'être sensible �a la diver-

gence. Pour les expressions sans r�ecursion nous fournissons des axiomatisations compl�etes des quatre

�equivalences. Pour les �equivalences fortes nous donnons�egalement des axiomatisations compl�etes

pour toutes les expressions, alors que pour les �equivalences faibles nous obtenons ce r�esultat seule-

ment pour les expressions gard�ees.

La raison pour laquelle nous sommes int�eress�es par l'�etude d'un mod�ele qui exprime le com-

1sauf le cas du blocage qui est trait�e l�eg�erement di��erem ment : en suivant la tradition des calculs de processus,

dans notre cas le blocage est un �etat, mais dans les PA il est u n des composants possibles d'une transition.

7

portement non-d�eterministe et probabiliste, et d'une �eq uivalence sensible �a la divergence, est qu'un

des buts �a long terme de cette ligne de recherche est de d�evelopper une th�eorie qui nous permettra

de raisonner sur des algorithmes probabilistes utilis�es dans des syst�emes r�epartis. Dans ce domaine

il est important d'assurer qu'un algorithme fonctionne sous n'importe quel ordonnanceur, et sous

d'autres facteurs inconnus ou incontrôlables. Le composant non-d�eterministe de notre calcul nous

permet de traiter toutes ces conditions d'une mani�ere uniforme et �el�egante. En outre, dans beau-

coup d'applications des syst�emes r�epartis il est important d'assurer l'ex�ecution sans attente active,

et donc nous aurons besoin d'une s�emantique qui n'ignore pas la divergence.

Nous �nissons cette section par une discussion au sujet de certains travaux voisins dans cette

direction de recherche. Dans [Mil84] et [Mil89b] Milner a donn�e des axiomatisations compl�etes

pour la bisimilarit�e forte et l'�equivalence observation nelle, respectivement, dans le cadre d'un noyau

de CCS [Mil89a]. Ces deux articles nous servent de point de d�epart: dans plusieurs preuves de

compl�etude qui comportent la r�ecursion nous adoptons deux th�eor�emes de Milner : le th�eor�eme

de caract�erisation �equationnelle et le th�eor�eme de solution unique. Dans les section 3.4.1 et 3.5.2

nous �etendons [Mil84] et [Mil89b] (pour les expressions gard�ees) respectivement, dans le cadre de

l'alg�ebre de processus probabiliste.

Dans [SS00] Stark et Smolka ont donn�e une version probabiliste des r�esultats de [Mil84]. Nous

�etendons donc les r�esultats de [SS00] parce que nous consid�erons �egalement le non-d�eterminisme.

Quand le choix non-d�eterministe est ajout�e, la technique de Stark et Smolka pour prouver la cor-

rection des axiomes n'est plus utilisable (voir la discussion �a l'annexe A.2.) La même remarque

s'applique �egalement �a [A �EI02] qui suit l'approche de [SS00] mais utilise quelques axiomes d'alg�ebre

d'it�eration pour caract�eriser la r�ecursion. En revanch e, notre version probabiliste de la technique

\bisimulation up to" [Mil89a] marche bien avec la technique ordinaire de l'induction sur les transi-

tions.

Dans [BS01] Bandini et Segala ont donn�e les axiomatisations des �equivalences comportementales

fortes et faibles pour les calculs de processus correspondant aux SPA et �a une version de SPA pourvue

d'une s�emantique alternative. Puisque leur calcul de processus avec la s�emantique non-alternative

correspond aux SPA, nos r�esultats de la section 3.6 peuvent̂etre consid�er�es comme une extension

de leurs travaux aux PA.

Pour l'alg�ebre de processus probabiliste de style ACP, plusieurs syst�emes complets d'axiomes

sont apparus dans la litt�erature. Cependant, dans chacun de ces syst�emes soit la bisimilarit�e faible

n'est pas �etudi�ee [BBS95, And99], soit le choix non-d�eterministe est supprim�e [BBS95, AB01].

Axiomatisations pour les processus mobiles typ�es

La th�eorie du � -calcul a �et�e profond�ement �etudi�ee [Mil99, SW01], et d eux th�emes majeurs y sont

la th�eorie alg�ebrique et les syst�emes de types. La majeure partie de la th�eorie alg�ebrique a �et�e

d�evelopp�ee sur le calcul non typ�e ; les r�esultats incluent les axiomatisations qui sont corrects et

complets sur les processus �nis pour les �equivalences comportementales principales : les bisimilarit�es

retard�ees et anticip�ees, les congruences retard�ees et anticip�ees [PS95, Lin94, Lin03], la bisimilarit�e

ouverte [San96b], l'�equivalence de test [BD95]. Une grande partie de la recherche sur les types

8

s'est concentr�ee sur leurs e�ets comportementaux. Par exemple, on a propos�e des variantes des

�equivalences comportementales standards a�n de tenir compte des types [PS96, SW01].

Nous �etudierons au chapitre 4 l'impact des types sur la th�eorie alg�ebrique du � -calcul. Plus

pr�ecis�ement, nous �etudions des axiomatisations du � -calcul typ�e. Bien que quelques lois alg�ebriques

pour les calculs typ�es de processus mobiles aient �et�e consid�er�ees dans la litt�erature [SW01], nous

n'avons vu aucune axiomatisation.

Le syst�eme de types que nous consid�erons a des types de capacit�es (parfois appel�es les types

I/O) [PS96, HR02b]. Ces types nous permettent de distinguer, par exemple, la capacit�e d'utiliser

un canal pour lire des noms de la capacit�e d'utiliser le canal pour �ecrire des noms. Un type montre

la capacit�e d'un canal et, en plus, les capacit�es des canaux port�es par ce canal. Par exemple, le

type a : iob T (pour une expression appropri�ee de types) indique que le canal a peut être utilis�e

seulement pour lire des noms ; et n'importe quel canal lu sura peut être utilis�e seulement pour

�ecrire des canaux qui ont la capacit�e d'�ecrire et de lire des noms de typeT. Alors, le processus

a(x):�xb:b(y):�by est bien typ�e dans l'environnement de typagea : iob T; b : bT . Rappelons que �ab:P

d�esigne un processus qui veut �ecrire le nomb sur le canala, puis continuer son ex�ecution P ; a(x):P

d�esigne un processus qui veut lire un nom sur le canala, puis reprendre son ex�ecutionP, o�u les

occurrences libres dex ont �et�e remplac�ees par le nom que l'on a lu.

Dans les calculs pour la mobilit�e, les types de capacit�es sont devenus les types les plus utiles,

et dont les e�ets comportementaux sont les plus connus. Les capacit�es sont utiles pour prot�eger

des ressources ; par exemple, dans un mod�ele de client/serveur, elles peuvent être utilis�ees pour

empêcher un client de saisir le canal d'acc�es au serveur enlecture et de voler des messages au

serveur ; d'une fa�con similaire, elles peuvent être utilis�ees dans la programmation r�epartie pour

exprimer des contraintes de s�ecurit�e [HR02b]. Les capacit�es introduisent la relation de sous-typage:

les capacit�es d'�ecrire sont contravariantes, tandis que les capacit�es de lire sont covariantes. Par

exemple, nous montrons une relation de sous-typage �a la �gure 2, o�u une
�eche indique la relation

de sous-typage. Il y a trois formes de types pour les noms de canaux : i T , oS et bhT; Si , elles

donnent aux noms les capacit�es de lire des valeurs du typeT, d'�ecrire des valeurs du type S, ou

de faire les deux. Nous notonsbT comme l'abr�eviation de bhT; Ti . La profondeur de l'imbrication

des capacit�es est 1 pour tous les types dans le diagramme (a), et 2 pour tous les types dans le

diagramme (b) (les d�e�nitions formelles des types et de la relation de sous-typage seront donn�ees

�a la section 4.1.1). Le sous-typage est utile en particulier quand le � -calcul est exploit�e pour la

programmation orient�ee objet, ou pour donner une s�emantique aux langages orient�es objet.

Pour voir pourquoi l'addition des types de capacit�es a des cons�equences s�emantiques, consid�erons

P def= �c bc:a(y):(y j c) Q def= �c bc:a(y):(y:c + c:y):

Ces processus ne sont pas comportementalement �equivalents en � -calcul non typ�e. Par exemple,

si le canal lu sur a est c, alors P peut se terminer apr�es 2 interactions avec l'observateur externe.

En revanche, Q se termine toujours apr�es 4 interactions avec l'observateur. Cependant, si nous

imposons la condition que seulement la capacit�e de lire descanaux peut être transmise surb, alors

P et Q montrent le même comportement dans n'importe quel contexte bien typ�e. Par exemple,

puisque l'observateur re�coit seulement la capacit�e de lire des noms surc, il ne peut pas �ecrire c

9

ooTibT

bbT

(b)

 b<oT,bT>b<iT,bT>oiT

boT

 obT

biT

oTiT

bT

(a)

iiT ioT

Figure 2: Un exemple de la relation de sous-typage, o�uT = unit

sur a : les canaux �ecrits sur a exigent au moins la capacit�e d'�ecrire (cf. l'occurrence de y). Par

cons�equent, dans le cas typ�e, les processus sont compar�es par un observateur avec certaines capacit�es

(c'est-�a-dire, types sur des canaux). Si l'on d�enote ces capacit�es par �, alors la bisimilarit�e typ�ee

entre P et Q est �ecrite P l � Q.

En � -calcul non typ�e, les syst�emes de transitions �etiquet�e s (LTS pour labelled transition systems)

sont d�e�nis sur des processus ; la transition P ��! P0 signi�e que P peut accomplir l'action � et

puis devenirP0. En � -calcul typ�e, les informations sur les capacit�es de l'observateur sont pertinentes

parce que l'observateur ne peut interroger des processus que par des interactions pour lesquelles il

a toutes les capacit�es n�ecessaires. Par cons�equent les syst�emes de transitions �etiquet�es typ�es (TLTS

pour typed labelled transition systems) sont d�e�nis sur des con�gurations, et une con�guration �]P se

compose d'un processusP et des capacit�es � (parfois nous appelons l'observateur � l 'environnement

externe). Maintenant une transition �]P ��! � 0]P 0 signi�e que P devient P0 apr�es avoir accompli

une action � permise par l'environnement �, qui se transforme en � 0 par ailleurs.

Une version de types de capacit�es a �et�e pr�esent�ee dans [PS96]. Et depuis on a propos�e un certain

nombre de variantes et d'extensions. Nous suivons le syst�eme de Hennessy et Riely [HR02b], dans

lequel, au contraire du syst�eme dans [PS96] : (i) il existe deux op�erations partielles sur les types

(meetet join) ; (ii) la r�egle de typage pour la construction comparaison(la construction utilis�ee pour

tester l'�egalit�e entre deux noms) est tr�es lib�erale, pa rce qu'elle peut être appliqu�ee aux canaux de

n'importe quel type (dans [PS96] deux canaux peuvent être compar�es s'il poss�edent la capacit�e de

lire et la capacit�e d'�ecrire �a la fois). Tandis que (i) sim pli�e seulement certains d�etails techniques,

(ii) semble essentiel. En e�et, l'importance de la comparaison pour la th�eorie alg�ebrique du � -calcul

est bien connue (c'est la raison principale de l'existence de la comparaison dans le calcul non typ�e).

La bisimilarit�e typ�ee et l'utilisation des con�guration s pour d�e�nir la bisimilarit�e typ�ee ont �et�e

pr�esent�ees dans [BS98]. Nous suivons une de ses variantespropos�ee par Hennessy et Rathke [HR04],

parce qu'elle emploie le syst�eme de types de [HR02b] et inclut la construction de comparaison.

Deux r�esultats importants que nous avons obtenus sont un syst�eme de preuve et un syst�eme

d'axiomes pour la bisimilarit�e typ�ee (l). Le syst�eme de preuve a une preuve de correction simple

mais il marche seulement pour les termes ferm�es. Le syst�eme d'axiomes traite tous les termes �nis.

10

Notre bisimilarit�e l est une variante de celle de [HR04]. Pour la bisimilarit�e typ�ee de [HR04] nous

fournissons un syst�eme de preuve pour les termes ferm�es, et une axiomatisation indirecte pour tous

les termes parce qu'elle exploite le syst�eme del . Nous n'avons pas pu donner une axiomatisation

directe qui ne d�epend pas du syst�eme del : les di�cult�es principales sont discut�ees �a la section 4 .4.1.

Tous les r�esultats sont donn�es pour les versions retard�ees et anticip�ees des bisimilarit�es.

Les syst�emes d'axiomes et les syst�emes de preuves sont obtenus en modi�ant certaines r�egles des

syst�emes pour le� -calcul non typ�e, et en ajoutant quelques nouvelles lois. Les preuves de correction

et de compl�etude, bien que nous suivions le sch�ema g�en�eral des preuves du calcul non typ�e, di��erent

beaucoup dans les d�etails. Un exemple de ceci est le traitement des canaux frais dans les actions de

lecture et la fermeture par les substitutions injectives que nous commentons ci-dessous.

Dans le � -calcul non typ�e, l'assertion suivante est vraie :

Si P l Q et � est injective sur fn(P; Q), alors P � l Q� .

Par cons�equent, il est su�sant de consid�erer tous les canaux libres dans P; Q et un seul canal frais

en comparant les actions de lecture qu'accomplissentP et Q dans le jeu de bisimulation. Ce r�esultat

est crucial dans la th�eorie alg�ebrique du calcul non typ�e . Par exemple, dans le syst�eme de preuve

pour la bisimilarit�e (version retard�ee) la r�egle d'inf� erence pour le pr�e�xe de lecture est la suivante :

Si Pf b=xg = Qf b=xg pour tout b 2 fn(P; Q; c), o�u c est un canal frais,

alors a(x):P = a(x):Q.

Pour la bisimilarit�e typ�ee la situation est di��erente. P renons les processus

P def= a(x : obT):�xc:�c Q def= a(x : obT):�xc

et comparons-les contre un observateur �. Consid�erons ce qui se passe quand la variablex est

remplac�ee par un canal fraisb, dont le type dans � est S. Par la contrainte impos�ee par le typage,

S doit être un sous-type deobT (cf. Figure 2 (b)). Nous remarquons que les di��erents choix pour

S donnent des r�esultats di��erents. Par exemple, si S est obT lui-même, l'observateur n'a aucune

capacit�e de lire sur b, il ne peut donc pas communiquer avecP et Q sur b. C'est-�a-dire, du point de

vue de l'observateur le pr�e�xe �ecriture bcn'est pas observable et les deux processus sont consid�er�es

comme �equivalents. De même siS estboT alors le pr�e�xe �ecriture c n'est pas observable. Cependant,

si S est bbT alors �bc:�c n'est pas �equivalent �a �bc, puisque toutes les �ecritures deviennent observables.

Cet exemple illustre les di�cult�es essentielles pour la formulation des syst�emes de preuves pour les

bisimilarit�es typ�ees :

1. La pr�esence de sous-typage dans les substitutions change le type original d'une variable en un

de ses sous-types.

2. Le choix de ces sous-types joue sur l'�equivalence comportementale.

3. Les di��erents sous-types peuvent être incompatibles (ils n'ont aucun sous-type commun) entre

eux (par exemple,boT et bbT dans l'exemple ci-dessus ; ils sont tous les deux sous-typesde

obT).

11

Une cons�equence de (2) et de (3), par exemple, est qu'il n'y apas un \meilleur sous-type", qui est un

type unique avec la propri�et�e que l'�equivalence sous ce type implique l'�equivalence sous n'importe

quels autres types.

Un autre exemple des modi�cations apport�ees par des types dans la th�eorie alg�ebrique est la

r�egle de congruence pour les pr�e�xes : nous devons distinguer le cas dans lequel le sujet du pr�e�xe

est un canal, du cas dans lequel le sujet est une variable. C'est une di��erence plutôt subtile et

technique ; elle est discut�ee �a la Section 4.3.

Terminaison de processus mobiles par la typabilit�e

Un terme termine si toutes ses s�equences de r�eduction sontde longueur �nie. Dans les langages

de programmation, la terminaison signi�e que tous les calculs dans un programme �niront par

s'arrêter. En informatique la terminaison a �et�e intensi vement �etudi�ee dans les syst�emes de r�e�ecriture

[DM79, DH95] et le � -calcul [Gan80, Bou03] (o�u la normalisation forte est un synonyme souvent

utilis�e). La terminaison a �et�e �egalement discut�ee dan s les calculs de processus, notamment le� -

calcul.

En e�et, la terminaison est int�eressante dans la concurrence. Par exemple, si nous interrogeons

un processus, nous aimerions savoir qu'une r�eponse sera �nalement produite (la terminaison toute

seule ne garantit pas ceci, mais elle serait l'ingr�edient principal dans une preuve). D'une fa�con

similaire, quand nous chargeons une applet nous voudrions savoir que l'applet ne s'ex�ecutera pas

in�niment sur notre machine, qui plus est en absorbant toutes les ressources informatiques (une

attaque du type \refus de service"). En g�en�eral, si la vie d 'un processus est in�nie, nous voudrions

savoir que le processus ne demeure pas vivant simplement en raison de l'activit�e interne in�nie, et

que le processus acceptera �nalement des interactions avecl'environnement.

Deux langages de processus qui terminent ont �et�e propos�es dans [YBH04] et [San05]. Dans les

deux cas, les preuves de la terminaison se servent des relations logiques, une technique bien connue

pour les langages fonctionnels. Les langages de processus ainsi obtenus sont plutôt \fonctionnels",

parce que les structures permises sont semblables �a cellesd�eriv�ees en encodant des fonctions comme

processus. En particulier, les langages sont tr�es restrictifs sur les lectures imbriqu�ees (c'est-�a-dire, la

possibilit�e d'avoir des lectures sur des noms libres suivant d'autres lectures), et les lectures r�ecursives

(c'est-�a-dire, les r�eplications comme !a(x):P dans lequel le corpsP peut appeler r�ecursivement la

garde a de la r�eplication). On interdit enti�erement de tels motif s dans [YBH04] ; on permet des

lectures imbriqu�ees dans [San05] mais sous une forme tr�esrestreinte. Par exemple, le processus

a(x):!b:�x:0 j �ac:0 (1)

(parfois le 0 �a la �n est omis) n'est l�egal ni pour [YBH04] ni pour [San05] . Les restrictions dans

[YBH04, San05] �eliminent �egalement des processus fonctionnels qui sont utiles, par exemple

F def= ! a(n; b): if n = 1 then �bh1i else �c (�ahn � 1; ci j c(m):�bhm � ni) (2)

qui repr�esente la fonction factorielle.

12

Pour garantir la terminaison des processus mobiles nous proposons plusieurs syst�emes de types

pour le � -calcul. Nous commen�cons par un syst�eme simple de types, qui ajoute une information de

niveau aux types du � -calcul simplement typ�e. L'information de niveau nous aide �a construire une

mesure qui diminue le long de chaque chemin de r�eduction d'un processus bien typ�e. Par cons�equent

le fait que cette mesure soit bien fond�ee implique la terminaison des processus. Comme le syst�eme

de types n'est pas tr�es expressif, nous l'�etendons en relachant quelques contraintes sur les lectures

imbriqu�ees et les lectures r�ecursives, pour obtenir trois syst�emes �etendus de types. L'utilit�e de ces

syst�emes de types est montr�ee par trois exemples non triviaux : (1) il s'av�ere que toutes les fonctions

r�ecursives primitives peuvent être encod�ees comme des processus qui terminent ; (2) la m�ethode qui

consiste �a encoder les choix s�epar�e en termes de composition parall�ele, propos�ee dans [Nes00, SW01],

n'introduit pas de divergence ; (3) chaque demande �a la table de symboles (impl�ement�ee comme une

châ�ne dynamique de cellules), propos�ee dans [Jon93, San99], re�coit toujours une r�eponse en temps

�ni.

De fa�con g�en�erale, pour chaque syst�eme de types qui garantit la terminaison des processus

nous choisissons une mesure qui diminue apr�es certains pasde r�eduction. Pour comparer deux

mesures, nous exploitons des ordreslexicographiqueset des ordresmulti-ensemble, des techniques

bien connues dans les syst�emes de r�e�ecriture [DM79, DJ90]. Pour le syst�eme simple de types, la

mesure est seulement un vecteur qui compte, pour chaque niveau, le nombre d'�ecritures (qui ne

sont pas gard�ees par des lectures r�epliqu�ees) sur les canaux dont les types ont ce niveau. Pour les

syst�emes �etendus de types, les id�ees sont semblables, mais les mesures deviennent plus sophistiqu�ees

puisque nous leur permettons de diminuer apr�es un certain nombre (inconnu et variable mais �ni)

de r�eductions, avec quelques commutativit�es de r�eductions et des manipulations de processus.

Plan de la th�ese

Nous introduisons au chapitre 2 quelques notions de base surles calculs de processus comme CCS

et le � -calcul. Nous prêtons une large attention aux types des canaux ; nous rappelons les notions

de sortes, de types simples de canaux, et de sous-typage progressivement. Le mat�eriel pr�esent�e dans

ce chapitre sert �a pr�eparer le d�eveloppement technique des chapitres suivants.

Au chapitre 3 nous pr�esentons un calcul de processus probabiliste qui inclut les choix non-

d�eterministe et probabiliste, en plus de la r�ecursion. Nous donnons sa s�emantique par les automates

probabilistes propos�es par Segala et Lynch. Nous pr�esentons deux �equivalences fortes et deux

�equivalences faibles. Nous montrons quelques propri�et�es des �equivalences, en utilisant une version

probabiliste de la technique de preuve dite \bisimulation up to". Pour les �equivalences fortes nous

donnons des axiomatisations compl�etes pour toutes les expressions, mais pour les �equivalences faibles

nous r�ealisons ce r�esultat seulement pour des expressions gard�ees. Nous conjecturons que dans le

cas g�en�eral de la r�ecursion non-gard�ee les �equivalences faibles sont ind�ecidables. Dans les preuves

de compl�etude, nos sch�emas de preuve sont inspir�es par [Mil84, Mil89b, SS00], mais les d�etails sont

plus compliqu�es �a cause de la pr�esence des dimensions probabiliste et non-d�eterministe. En e�et,

il s'av�ere que, pour obtenir une axiomatisation compl�ete de l'�equivalence d'observation, l'�extension

probabiliste des trois lois concernant� de Milner [Mil89a] ne serait pas su�sante, et que nous

13

avons besoin d'une nouvelle r�egle. En�n, pour les expressions sans r�ecursion nous fournissons des

axiomatisations compl�etes des quatre �equivalences, avec des preuves de compl�etude bien simples.

Au chapitre 4 nous �etudions la th�eorie alg�ebrique d'un � -calcul de processus typ�es �nis. Le

syst�eme de types utilise des types de capacit�es. Premi�erement nous consid�erons un sous-langage

sans parall�elisme. Ce petit langage montre d�ej�a les obstacles principaux pour les axiomatisations.

En suivant [HR04] nous donnons la s�emantique op�erationnelle du langage par un syst�eme de transi-

tions �etiquet�ees typ�ees, sur lequel nous d�e�nissons la bisimulation typ�ee (retard�ee). Deuxi�emement

nous construisons un syst�eme complet de preuve pour les termes ferm�es. Ensuite nous pr�esentons

une axiomatisation compl�ete pour les termes ouverts. Le sch�ema de la preuve de compl�etude est

semblable �a celui du � -calcul non typ�e [PS95]. Les d�etails, cependant, sont tout �a fait di��erents, en

raison de la relation de sous-typage du syst�eme de types. Troisi�emement nous rappelons la bisimi-

larit�e typ�ee propos�ee dans [HR04], et fournissons un syst�eme de preuve pour les termes ferm�es, avec

une axiomatisation indirecte pour tous les termes. Quatri�emement nous prouvons que la di��erence

entre la bisimilarit�e retard�ee et la bisimilarit�e antic ip�ee peut être captur�ee par un axiome. Finale-

ment nous admettons la composition parall�ele. Son e�et sur les axiomatisations est d'ajouter une

loi d'expansion pour �eliminer toutes les occurrences de l'op�erateur.

Au chapitre 5 nous consid�erons plusieurs syst�emes de types tels que les processus bien typ�es

dans chaque syst�eme terminent. D'abord, nous pr�esentonsun syst�eme simple de types, qui ajoute de

l'information de niveau aux types du � -calcul simplement typ�e. Puis nous donnons trois am�eliorations

de ce syst�eme, en vue notamment de traiter les lectures imbriqu�ees et les lectures r�ecursives. Pour

tous les syst�emes de types (sauf le deuxi�eme, qui peut capturer toutes les fonctions r�ecursives

et primitives) nous pr�esentons �egalement des bornes sup�erieures du nombre de pas de normalisa-

tion. Ces bornes d�ependent des structures des processus etdes types des noms dans les processus.

Nous montrons l'utilit�e des syst�emes de types sur trois exemples non triviaux : les codages des

fonctions r�ecursives et primitives, la m�ethode pour coder le choix s�epar�e par la composition par-

all�ele [Nes00, SW01], une table de symboles impl�ement�eepar une châ�ne dynamique de cellules

[Jon93, San99].

Au chapitre 6 nous r�ecapitulons les r�esultats de cette th�ese et discutons quelques directions pour

les travaux futurs.

Provenance du mat�eriel

Cette th�ese est partiellement bas�ee sur des �ecrits publi�es. La pr�esentation d'un calcul de processus

probabiliste et les axiomatisations de plusieurs �equivalences comportementales probabilistes sont

d�ej�a parues dans [DP05] ; l'�etude du � -calcul typ�e et les axiomatisations des bisimilarit�es ty p�ees

ont �et�e rapport�ees dans [DS04b, DS05]; le d�eveloppement des syst�emes de types pour assurer la

propri�et�e de terminaison de � -processus a �et�e pr�esent�e dans [DS04a].

14

Chapter 1

Introduction

1.1 Background

Computer science aims to explain in a rigorous way how computational systems behave. Nowadays

the notion of computational systems includes not onlysequential systems, such as single programs in

free-standing computers, but alsoconcurrent systems, such as computer networks, and even proteins

in biology and particles in physics. Some classical mathematical models (e.g. the� -calculus [Bar84]),

in spite of their success for describing sequential systems, turn out to be insu�cient for reasoning

about concurrent systems.

In the 1980's process calculi (sometimes calledprocess algebras), notably CCS [Mil89a], CSP

[Hoa85] and ACP [BK84, BW90], were proposed for describing and analyzing concurrent systems.

All of them were designed around the central idea ofinteraction or communication between pro-

cesses. In these formalisms, complex systems are built fromsimple subcomponents structurally,

by a small set of primitive operators such aspre�x, nondeterministic choice, restriction, parallel

composition and recursion. The limitation of these traditional process algebras is that they are not

able to e�ectively specify mobile systems, i.e., systems with a dynamically changing communication

topology. On the basis of CCS, Milner, Parrow and Walker developed the � -calculus [MPW92],

which achieves mobility by a powerful name-passing mechanism. The � -calculus is a very expres-

sive formalism. It allows to encode data structures [Mil91], the � -calculus [Mil92] and higher-order

communications [San93]. Furthermore, it can be used for reasoning about object-oriented languages

[Wal95].

As no single theory will serve all purposes, a great many variants and extensions of the classical

process calculi have appeared in the literature. In the caseof process calculi for distributed systems,

there are three strands of work that have been developed and shown to be extremely important.

� The �rst strand is concerned with tuning the syntactic const ructions of terms in order to better

capture some speci�c features of concurrent systems such asasynchronous communications,

higher-order communications, localities and migrations. In this respect one can make a long

list: the asynchronous � -calculus [HT91, Bou92], the � I-calculus [San96a], the L� -calculus

[Mer00], the Fusion calculus [PV98], the� -calculus [Fu99], the Join calculus [Fou98], CHOCS

15

16 CHAPTER 1. INTRODUCTION

[Tho95], HO� [San93], D� [HR02b], Klaim [DFP98], the Ambient calculus [CG00] and its

variants, just to name a few.

� The second strand consists in equipping untyped process calculi with types so that processes

interact in a safer and more e�cient way. For example, a number of type systems are de-

signed for the � -calculus; they are used in various applications such as static detection of

errors in concurrent programs [Mil91], compiler optimizations [KPT99], resource access con-

trol [PS96, HR02b], guaranteeing other security properties such as deadlock-freedom [Kob98],

noninterference [HY05] and termination [YBH04, DS04a].

� The third strand deals with probabilistic process calculi that support reasoning about prob-

abilistic behaviour, as exhibited for instance in randomized, distributed and fault-tolerant

systems. The typical approach is based on extending with probabilities existing models and

techniques that have already proved successful in the nonprobabilistic settings. The usual

feature of probabilistic process calculi is the existence of a probabilistic choice operator, see

for example probabilistic extensions of CCS [GJS90, HJ90, Tof94, YL92], probabilistic CSP

[Low91], probabilistic ACP [And99] and probabilistic asynchronous� -calculus [HP04].

Brie
y speaking, this thesis includes our contributions in the second and third strands.

In order to study a programming language or a process calculus, one needs to assign a consistent

meaning to each program or process under consideration. This meaning is thesemantics of the

language or calculus. Semantics is useful to verify or provethat programs behave as intended. Gen-

erally speaking, there are three major approaches for giving semantics to a programming language.

The denotational approach seeks a valuation function which maps a program to its mathematical

meaning. This approach has been very successful in modelling many sequential languages; programs

are interpreted as functions from the domain of input valuesto the domain of output values. How-

ever, so far denotational interpretation of concurrent programs has not been as satisfactory as the

denotational treatment of sequential programs.

The operational approach is shown to be quite useful for giving semantics of concurrent systems.

The behaviour of a process is speci�ed by itsstructural operational semantics[Plo81], described via a

set of labelled transition rules inductively de�ned on the structure of a term. In this way each process

corresponds to a labelledtransition graph. The shortcoming of operational semantics is that it is

too concrete, as a transition graph may contain many states which should be intuitively identi�ed.

Thus a lot of equivalences have been proposed and di�erent transition graphs are compared modulo

some equivalence relations.

The axiomatic approach aims at understanding a language through a few axioms and inference

rules. Its importance is motivated by, among others, the following two reasons.

� Sound systems, even if they are not complete, may be useful for human or machine manipu-

lation of terms. By exploiting these systems, a number of practical veri�cation problems can

be addressed.

� Complete systems help gaining insight into the nature of theoperators and the equivalences

involved. For example, the di�erence between two equivalences can be characterised by a

1.2. OBJECTIVES 17

few axioms, particularly if adding these axioms to a complete system for one equivalence

gives a complete system for the other equivalence. Another way of comparison is to �x a

notion of equivalence and vary the expressions. Sometimes one lifts a complete system from a

sublanguage to the whole language, by adding some extra axioms. Comparisons of both kinds

are carried out in Chapter 3 and Chapter 4.

To explore the connection between operational and axiomatic semantics has always been an

important and active subject in process calculi. Milner [Mil78] was the �rst person to advocate

the development of an algebra of behaviours which are subject to a number of axioms expressed

as equations. In [Mil80] a direct link is made for the �rst tim e between an algebraic theory and

a behavioural equivalence based on an operational semantics. Since then there has been a large

amount of work on algebraic theories of processes, for various behavioural equivalences in a wide

range of process calculi. However, no much attention was paid to probabilistic and typed process

calculi, though they turn out to be very useful in the analysis of modern distributed systems.

1.2 Objectives

This thesis focuses on the theoretical foundations of reasoning about algorithms and protocols for

modern distributed systems. We believe that this kind of reasoning is important because, as happens

too often, if a system is built without rigorous analysis of all the possible interactions between its

components, then its behaviour is frequently incorrect. One witness is the recent discovery of security

aws in the IEEE 802.11 and the Bluetooth wireless communication protocols [BGW01, LL03].

For distributed systems it is interesting to consider models which encompass probabilities. One

reason is that these systems are expected to provide reliable services despite the occurrence of

various types of failure. Probabilistic processes can be used to describe fault-tolerant systems. For

example, probabilistic information can be used for specifying the rate at which faulty communication

channels drop messages and for verifying message-deliveryproperties of the corresponding system.

In addition, probabilistic modelling can be used to break symmetry in distributed coordination

problems (e.g. dining philosophers' problem, leader election problem, and consensus problem), to

predict system behaviour based on the calculation of performance characteristics, and to represent

and quantify other forms of uncertainty.

A model for distributed systems should also include the feature of mobility. Physical systems

tend to have a �xed structure. But most systems in the information world are not physical; their

links may be symbolic or virtual. For example, when one clicks on a hypertext in a web page, he

induces a symbolic link between his machine and the remote web server. These symbolic links can

be created or destroyed on the
y. An example of a virtual link is a radio connection, like the linkage

between mobile phones that are roaming around and a network of base stations. Systems like these,

with transient links, have a mobile structure.

With mobility, types turn out to be essential. For example, t he theory of the untyped � -calculus

is often insu�cient to prove \expected" behavioural proper ties of processes. The reason is that when

one uses the� -calculus to describe a system, one normally follows a discipline that controls how

names may be used; but this discipline is not explicit in� -terms, and therefore it cannot play a role

18 CHAPTER 1. INTRODUCTION

in proofs. Types can be used to make such discipline explicit(cf. Part IV of [SW01]). Furthermore,

types are useful for expressing control of interference, access rights, robust declassi�cation, secure

composition of components, as well as bounds on resource consumptions (e.g. time or memory

allocations).

In fact, there is a strong practical motivation for considering both probability and mobility.

How can a mobile phone system perform to satisfaction if the designer never considers the probable

behaviour of users? A number of probabilistic models have been introduced which are variants of

Markov chains, but for mobility they are at an early stage.

In the literature, probability and typed mobility are usual ly studied separately. Corresponding

operational techniques have been developed. But very little has been done on algebraic techniques.

However, algebraic techniques are very useful in computer science. For example, in the relational

model for database [Cod70], algebraic laws have served as a basis for query optimisation and queries

could be e�ciently implemented through indexing and join te chniques [RG02]. In process calculi,

algebraic equations may be considered as rewriting rules for automated term manipulation [vdP01].

In this thesis we investigate algebraic techniques by considering the impact of probability and

type mobility on the algebraic theories of process calculi.As each feature introduces new and non-

trivial problems, to develop algebraic techniques for models that have both probability and typed

mobility would be very complex. Therefore it is better to study them �rst in isolation. Due to this

reason, in Chapter 3 we consider axiomatisations for a probabilistic calculus without mobility, and

in Chapter 4 we provide axiomatisations for a typed mobile process calculus without probability.

The types that we shall use arecapability types[PS96], which distinguish between input capability,

output capability, both input and output capability. This k ind of types are one of the most useful and

basic form of types in process calculi. They have been used toensure type-consistent data exchange

on communication channels, and to control access rights to channels and locations. Variants of

capability types are now present in almost all experimentalprocess calculi such as Klaim [DFP98],

Spi [Aba99], and the Ambients Calculus [LS00]. Sometimes, they even become part of the syntax,

e.g. in the Join calculus and the L� -calculus only output capabilities can be transmitted.

In mobile process calculi, types themselves can be used as a veri�cation technique to analyse var-

ious properties of concurrent programs, such as deadlock [Kob98], livelock [Kob00], and information

ow [HVY00, HR02a]. In Chapter 5 we develop one such technique for the problem of termination,

which is an important property that many algorithms and prot ocols in distributed systems need to

guarantee. In the case of symmetric distributed systems, probabilistic algorithms are usually more

e�cient than their deterministic counterparts, at the (ins igni�cant) price that certain properties

will happen with probability one but not necessarily with certainty (e.g., when tossing a fair coin,

a \head" will eventually occur with probability one, but not with certainty). For all practical pur-

poses, however, this di�erence is meaningless. Therefore,it is interesting to talk about probabilistic

termination as well. However, since termination is itself anon-trivial problem, we consider types in

isolation, without probability.

To summarise, in this thesis we develop algebraic and type-based techniques for reasoning about

processes that feature probability and typed mobility. We consider the two features separately,

both in the case of axiomatisations and in the case of termination, but we believe that our work

1.3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES 19

contributes building the basis for studying more advanced models which may combine probability

with typed mobility.

Before proceeding to discuss in the following sections the motivations for each research topic

of the thesis, we need to introduce some terminology. We use the general conceptaxiomatisations

to mean both axiom systems and proof systems. For an equivalence on a set of terms, anaxiom

systemconsists of some equational axioms and the rules of equational reasoning (that is, rules on

re
exivity, symmetry, transitivity, and congruence rules that make it possible to replace any subterm

of a process by an equivalent term). Aproof systemhas, in addition to axioms and rules of equational

reasoning, other inference rules. Usually an axiom system is preferable to a proof system, because

for example general techniques from term rewriting may thenbe applicable. However, when the

process calculus in question includes non-trivial features such as recursion or types, sometimes it

is hard to get a complete axiom system because we have to use other inference rules, i.e., what we

obtain is actually a proof system. In that case we still call that system an axiomatisation, as in

literature [Mil89b, Par01]. For an axiomatisation, completenessmeans that if two processes exhibit

similar behaviour, i.e., their transition graphs are equivalent, then they are provably equal in the

axiom system or the proof system;soundnessmeans the converse.

1.3 Axiomatisations for Probabilistic Processes

The last decade has witnessed increasing interest in the area of formal methods for the speci�cation

and analysis of probabilistic systems [Seg95, BH97, AB01, PLS00, Sto02, CS02]. In [vGSS95] van

Glabbeek et al. classi�ed probabilistic models into reactive, generativeand strati�ed . In reactive

models, each labelled transition is associated with a probability, and for each state the sum of the

probabilities with the same label is 1. Generative models di�er from reactive ones in that for each

state the sum of the probabilities of all the outgoing transitions is 1. Strati�ed models have more

structure and for each state either there is exactly one outgoing labelled transition or there are only

unlabelled transitions and the sum of their probabilities is 1.

In [Seg95] Segala pointed out that neither reactive nor generative nor strati�ed models capture

real nondeterminism, an essential notion for modeling scheduling freedom, implementation freedom,

the external environment and incomplete information. He then introduced a model, theprobabilistic

automata (PA), where both probability and nondeterminism are taken into account. Probabilistic

choice is expressed by the notion oftransition , which, in PA, leads to a probabilistic distribution

over pairs (action, state) and deadlock. Nondeterministicchoice, on the other hand, is expressed

by the possibility of choosing di�erent transitions. Segala proposed also a simpli�ed version of PA

called simple probabilistic automata(SPA), which are like ordinary automata except that a labelled

transition leads to a probabilistic distribution over a set of states instead of a single state.

Figure 1.1 exempli�es the probabilistic models discussed above. In models where both probability

and nondeterminism are present, like those of diagrams (4) and (5), a transition is usually represented

as a bundle of arrows linked by a small arc. [SdV04] provides adetailed comparison between the

various models, and argues that PA subsume all other models above except for the strati�ed ones.

We shall investigate in Chapter 3 axiom systems for a processcalculus based on PA, in the sense

20 CHAPTER 1. INTRODUCTION

a ba b

1/2 1/2 1/3 2/3

a
a

b b

1/2 1/8 1/81/4

1/2 1/2

2/31/3

a b

a

a
a a a b

b

1/2 1/2 1/3 2/3
1/21/2 1/2 1/2 1/3 2/3 1/2 1/2

a b
a c
b c

(1) reactive (2) generative (3) stratified

(4) SPA (5) PA

Figure 1.1: Probabilistic models

that the operational semantics of each expression of the language is a probabilistic automaton1.

Axiom systems are important both at the theoretical level, as they help gaining insight into the

calculus and establishing its foundations, and at the practical level, as tools for systems speci�cation

and veri�cation. Our calculus is basically a probabilistic version of the calculus used by Milner to

express �nite-state behaviours [Mil84, Mil89b].

We shall consider two strong equivalences, one weak equivalence common in the literature, plus

one novel notion of weak equivalence having the advantage ofbeing sensitive to divergency. For

recursion-free expressions we provide complete axiomatisations of all the four equivalences. For the

strong equivalences we also give complete axiomatisationsfor all expressions, while for the weak

equivalences we achieve this result only for guarded expressions.

The reason why we are interested in studying a model which expresses both nondeterministic

and probabilistic behaviour, and an equivalence sensitiveto divergency, is that one of the long-term

goals of this line of research is to develop a theory which will allow us to reason about probabilis-

tic algorithms used in distributed computing. In that domai n it is important to ensure that an

algorithm will work under any scheduler, and under other unknown or uncontrollable factors. The

nondeterministic component of the calculus allows coping with these conditions in a uniform and

elegant way. Furthermore, in many distributed computing applications it is important to ensure

livelock-freedom (progress), and therefore we will need a semantics which does not simply ignore

divergencies.

We end this section with a discussion about some related workin this research direction. In

[Mil84] and [Mil89b] Milner gave complete axiomatisationsfor strong bisimulation and observational

equivalence, respectively, for a coreCCS [Mil89a]. These two papers serve as our starting point:

in several completeness proofs that involve recursion we adopt Milner's equational characterisation

theorem and unique solution theorem. In Section 3.4.1 and Section 3.5.2 we extend [Mil84] and

[Mil89b] (for guarded expressions) respectively, to the setting of probabilistic process algebra.

1Except for the case of deadlock, which is treated slightly di �erently: following the tradition of process calculi, in

our case deadlock is a state, while in PA it is one of the possib le components of a transition.

1.4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES 21

In [SS00] Stark and Smolka gave a probabilistic version of the results of [Mil84] by replacing

nondeterministic choice with probabilistic choice. So we extend the results of [SS00] in that we con-

sider also nondeterminism. Note that when nondeterministic choice is added, Stark and Smolka's

technique of proving soundness of axioms is no longer usable. (See the discussion at the beginning

of Appendix A.2.) The same remark applies also to [A�EI02] which follows the approach of [SS00]

but uses some axioms from iteration algebra to characteriserecursion. In contrast, our probabilis-

tic version of \bisimulation up to" techniques [Mil89a] wor k well when combined with the usual

transition induction.

In [BS01] Bandini and Segala axiomatized both strong and weak behavioural equivalences for

process calculi corresponding to SPA and to an alternated-model version of SPA. As their pro-

cess calculus with non-alternating semantics correspondsto SPA, our results in Section 3.6 can be

regarded as an extension of that work to PA.

For probabilistic process algebra of ACP-style, several complete axiom systems have appeared

in the literature. However, in each of the systems either weak bisimulation is not investigated

[BBS95, And99] or nondeterministic choice is prohibited [BBS95, AB01].

1.4 Axiomatisations for Typed Mobile Processes

The theory of the � -calculus has been studied in depth [Mil99, SW01]. Relevantparts of it are

the algebraic theory and the type systems. Most of the algebraic theory has been developed on

the untyped calculus; the results include axiomatisationsthat are sound and complete on �nite

processes for the main behavioural equivalences: late and early bisimilarity, late and early congruence

[PS95, Lin94, Lin03], open bisimilarity [San96b], testingequivalence [BD95]. But at the same time,

much of the research on types has focused on their behavioural e�ects. For instance, modi�cations

of the standard behavioural equivalences have been proposed so as to take types into account

[PS96, SW01].

We shall study in Chapter 4 the impact of types on the algebraic theory of the � -calculus.

Precisely, we study axiomatisations of the typed � -calculus. Although algebraic laws for typed

calculi of mobile processes have been considered in the literature [SW01], we are not aware of any

axiomatisation.

The type system that we consider hascapability types (sometimes called I/O types) [PS96,

HR02b]. These types allow us to distinguish, for instance, the capability of using a channel in input

from that of using the channel in output. A capability type sh ows the capability of a channel and,

recursively, of the channels carried by that channel. For instance, a typea : iob T (for an appropriate

type expressionT) says that channela can be used only in input; moreover, any channel received at

a may only be used in output | to send channels which can be used both in input and in output.

Thus, processa(x):�xb:b(y):�by:0 (sometimes the trailing 0 is omitted) is well-typed under the type

assignmenta : iob T; b: bT . We recall that �ab:P is the output at a of channelb with continuation P;

a(x):P is an input at a with x a placeholder for channels received in the input whose continuation

is P.

On calculi for mobility, capability types have emerged as one of the most useful forms of types,

22 CHAPTER 1. INTRODUCTION

ooTibT

bbT

(b)

 b<oT,bT>b<iT,bT>oiT

boT

 obT

biT

oTiT

bT

(a)

iiT ioT

Figure 1.2: An example of subtyping relation, with T = unit

and one whose behavioural e�ects are most prominent. Capabilities are useful for protecting re-

sources; for instance, in a client-server model, they can beused for preventing clients from using

the access channel to the server in input and stealing messages to the server; similarly they can be

used in distributed programming for expressing security constraints [HR02b]. Capabilities give rise

to subtyping: the output capability is contravariant, whereas the input capability is covariant. As

an example, we show a subtyping relation in Figure 1.2, wherean arrow from one type to another

means that the source of the arrow is a subtype of the target. There are three forms of types for

channel names:i T; oS and bhT; Si ; they correspond to the capability to receive values of typeT,

send values of typeS, or to do both. We usebT as an abbreviation ofbhT; Ti . The depth of nesting

of capabilities is 1 for all types in diagram (a), and 2 for all types in diagram (b). (The formal

de�nitions of types and subtyping relation will be given in Section 4.1.1.) Subtyping is useful when

the � -calculus is used for object-oriented programming, or for giving semantics to object-oriented

languages.

To see why the addition of capability types has semantic consequences, consider

P def= �c bc:a(y):(y j c) Q def= �c bc:a(y):(y:c + c:y):

These processes are not behaviourally equivalent in the untyped � -calculus. For instance, if the

channel received ata is c, then P can terminate after 2 interactions with the external observer. By

contrast, Q always terminates after 4 interactions with the observer. However, if we require that only

the input capability of channels may be communicated atb, then P and Q are indistinguishable in

any (well-typed) context. For instance, since the observeronly receives the input capability on c, it

cannot resendc along a: channels sent ata require at least the output capability (cf. the occurrence

of y). Therefore, in the typed setting, processes are compared w.r.t. an observer with certain

capabilities (i.e., types on channels). Denoting with � the se capabilities, then typed bisimilarity

betweenP and Q is written P l � Q.

In the untyped � -calculus, labelled transition systems (LTS) are de�ned onprocesses; the transi-

tion P ��! P0 means that P can perform action � and then becomeP0. In the typed � -calculus, the

information about the observer capabilities is relevant because the observer can only test processes

on interactions for which the observer has all needed capabilities. Hence typed labelled transition

1.4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES 23

systems (TLTS) are de�ned on con�gurations, and a con�gurat ion �]P is composed of a process

P and the observer capabilities � (we sometimes call � the exte rnal environment). A transition

�]P ��! � 0]P 0 now means that P can evolve into P0 after performing an action � allowed by the

environment �, which in turn evolves into � 0.

Capability types have been introduced in [PS96]. A number ofvariants and extensions have

then been proposed. We follow Hennessy and Riely's system [HR02b], in which, in contrast with

the system in [PS96]: (i) there are partial meet and join operations on types; (ii) the typing rule for

the matching construct (the construct used for testing equality betweenchannels) is very liberal, in

that it can be applied to channels of arbitrary types (in [PS96] only channels that possess both the

input and the output capability can be compared). While (i) o nly simpli�es certain technical details,

(ii) seems essential. Indeed, the importance of matching for the algebraic theory of the � -calculus

is well-known (it is the main reason for the existence of matching in the untyped calculus).

Typed bisimilarity and the use of con�gurations for de�ning typed bisimilarity have been intro-

duced in [BS98]. We follow a variant of them put forward by Hennessy and Rathke [HR04], because

it uses the type system of [HR02b] and includes the matching construct.

Two important results that we have obtained are a proof system and an axiom system for typed

bisimilarity (l). The proof system has a simple correctness proof but only works on the closed

terms. The axiom system is for all �nite processes. The bisimilarity l is a variant of the one in

[HR04]. For the typed bisimilarity in [HR04] we provide a proof system for the closed terms, and

an indirect axiomatisation of all terms that exploits the system of l . We have not been able to give

a direct axiomatisation: the main di�culties are discussed in Section 4.4.1. All results are given for

both the late and the early versions of the bisimilarities.

The axiomatisations are obtained by modifying some of the rules of the systems for the untyped

� -calculus, and by adding a few new laws. While the proofs of soundness and completeness follow

the general schema of the proofs of the untyped calculus, they have quite di�erent details. An

example of this is the treatment of fresh channels in input actions and the closure under injective

substitutions, that we comment on below.

In the untyped � -calculus, the following holds:

If P l Q and � is injective on fn(P; Q), then P � l Q� .

Hence it is su�cient to consider all free channels in P; Q and one fresh channel when comparing the

input actions of P and Q in the bisimulation game. This result is crucial in the algebraic theory of

untyped calculi. For instance, in the proof system for (late) bisimilarity the inference rule for input

is:

If P f b=xg = Qf b=xg for all b 2 fn (P; Q; c), where c is a fresh channel,

then a(x):P = a(x):Q.

For typed bisimilarity the situation is di�erent. Take the p rocesses

P def= a(x : obT):�xc:�c Q def= a(x : obT):�xc

and compare them w.r.t. an observer with capabilities �. Con sider what happens when the variable

x is replaced by a fresh channelb, whose type in � is S. By the constraint imposed by types, S

24 CHAPTER 1. INTRODUCTION

must be a subtype of the typeobT for x (see Figure 1.2 (b)). Now, di�erent choices forS will give

di�erent results. For instance, if S is obT itself, then the observer has no input capability onb, thus

cannot communicate with P and Q at b. That is, from the observer's point of view the output bc

is not observable and the two processes evolve to equivalentones. Similarly if S is boT then the

output c is not observable. However, ifS is bbT then �bc:�c is not equivalent to �bc, since all outputs

become observable. This example illustrates the essentialdi�culties in formulating proof systems

for typed bisimilarities:

1. Subtyping appears in substitutions and changes the original type of a variable into one of its

subtypes.

2. The choice of this subtype is relevant for behavioural equivalence.

3. Di�erent subtypes may be incompatible (have no common subtype) with one another (for

instance, boT and bbT in the example above; they are both subtypes ofobT).

A consequence of the last two clauses, for instance, is that there is not a \best subtype", that is a

single type with the property that equivalence under this type implies equivalence under any other

types.

Another example of the consequences brought by types in the algebraic theory is the congruence

rule for pre�xes: we have to distinguish the cases in which the subject of the pre�x is a channel

from the case in which the subject is a variable. This is a rather subtle and technical di�erence,

that is discussed in Section 4.3.

1.5 Termination of Mobile Processes by Typability

A term terminates if all its reduction sequences are of �nite length. As far as programming languages

are concerned, termination means that computation in programs will eventually stop. In computer

science termination has been extensively investigated in term rewriting systems [DM79, DH95]

and � -calculi [Gan80, Bou03] (where strong normalization is a synonym more commonly used).

Termination has also been discussed in process calculi, notably the � -calculus.

Indeed, termination is interesting in concurrency. For instance, if we interrogate a process, we

may want to know that an answer is eventually produced (termination alone does not guarantee

this, but termination would be the main ingredient in a proof). Similarly, when we load an applet

we would like to know that the applet will not run for ever on ou r machine, possibly absorbing all

the computing resources (a \denial of service" attack). In general, if the lifetime of a process can

be in�nite, we may want to know that the process does not remain alive simply because of non-

terminating internal activity, and that, therefore, the pr ocess will eventually accept interactions

with the environment.

Languages of terminating processes are proposed in [YBH04]and [San05]. In both cases, the

proofs of termination make use of logical relations, a well-known technique from functional languages.

The languages of terminating processes so obtained are however rather \functional", in that the

structures allowed are similar to those derived when encoding functions as processes. In particular,

1.6. OUTLINE OF THE THESIS 25

the languages are very restrictive on nested inputs (that is, the possibility of having free inputs

underneath other inputs), and recursive inputs (that is, replications !a(x):P in which the body P

can recursively call the guarda of the replication). Such patterns are entirely forbidden in [YBH04];

nested inputs are allowed in [San05] but in a very restrictedform. For example, the process

a(x):!b:�x:0 j �ac:0 (1.1)

is legal neither for [YBH04] nor for [San05]. The restrictions in [YBH04, San05] actually rule out

also useful functional processes, for instance

F def= ! a(n; b): if n = 1 then �bh1i else �c (�ahn � 1; ci j c(m):�bhm � ni) (1.2)

which represents the factorial function.

To guarantee the termination property of mobile processes we propose several type systems

(which are quite di�erent from the type systems discussed inSection 1.4) for the � -calculus. We

start from a core type system, which adds level information to the types of the simply typed � -

calculus. The level information helps us to construct a measure which decreases along with each

reduction path of a well-typed process. Therefore the well-foundedness of the measure implies the

desired termination property of processes. As the core typesystem is not very expressive, we extend

it by relaxing some constraints on nested inputs and recursive inputs, thus we obtain three extended

type systems. The usefulness of these type systems are shownby some non-trivial examples. For

instance, it turns out that all primitive recursive functio ns can be encoded as terminating processes;

the protocol of encoding separate choice in terms of parallel composition proposed in [Nes00, SW01]

does not introduce divergency; each request to the symbol table (implemented as a dynamic chain

of cells) given in [Jon93, San99] is always answered within �nite amount of time.

Roughly, for each type system to prove termination we choosea measure which decreases after

�nite steps of reduction. To compare two measures, we exploit lexicographicand multiset orderings,

well-known techniques in term rewriting systems [DM79, DJ90]. For the core type system, the

measure is just a vector recording, for each level, the number of outputs (unguarded by replicated

inputs) at channels with that level in the type. For the exten ded type systems, the ideas are

similar, but the measures become more sophisticated since we allow them to decrease after some

�nite (unknown and variable) number of reductions, up to some commutativities of reductions and

process manipulations.

1.6 Outline of the Thesis

The material presented in Chapter 2 is meant to prepare the technical development in the rest of the

thesis. We introduce some basic notions about process calculi, with CCS and the � -calculus as our

templates. We then focus on channel types; we review sorts, simple channel types and subtyping

progressively.

In Chapter 3 we introduce a probabilistic process calculus which includes both nondeterministic

and probabilistic choice, as well as recursion. We give its semantics in terms of Segala and Lynch's

probabilistic automata. We introduce two strong equivalences and two weak equivalences. We show

26 CHAPTER 1. INTRODUCTION

some properties of the equivalences, using a probabilisticversion of \bisimulation up to" proof tech-

niques. For the strong equivalences we give complete axiomatisations for all expressions, while for

the weak equivalences we achieve this result only for guarded expressions. We conjecture that in

the general case of unguarded recursion the \natural" weak equivalences are undecidable. In the

completeness proofs, our proof schemas are inspired by [Mil84, Mil89b, SS00], but the details are

more involved due to the presence of both probabilistic and nondeterministic dimensions. Indeed,

it turns out that, to give a complete axiomatisation of observational equivalence, the simple proba-

bilistic extension of Milner's three � -laws [Mil89a] would not be su�cient, thus we need a new rule.

At last, for recursion-free expressions we provide axiomatisations of all the four equivalences, whose

completeness proofs are very simple.

In Chapter 4 we study the algebraic theory of a �nite � -calculus with capability types. Firstly we

consider a sublanguage without parallelism. This small language already shows the major obstacles

for axiomatisations. Following [HR04] we give the operational semantics of the language in terms

of a typed labelled transition system, from which we de�ne typed (late) bisimulation. Secondly we

set up a complete proof system for closed terms. Then we present a complete axiom system for

open terms. The schema of the completeness proof is similar to that for the untyped � -calculus

[PS95]. The details, however, are quite di�erent, due to the rich subtyping relation of the type

system. Thirdly we recall the typed bisimilarity proposed in [HR04], and provide a proof system

for closed terms, together with an indirect axiomatisation for all terms. Fourthly we show that

the di�erence between late and early bisimilarity can be captured by one axiom. Lastly we admit

parallel composition. Its e�ect on the axiomatisations is to add an expansion law to eliminate all

occurrences of the operator.

In Chapter 5 we consider several type systems such that well-typed processes under each system

are ensured to terminate. First, we present a core type system, which adds level information to the

types of the simply typed � -calculus. Then we give three re�nements of the core system.Nested

inputs and recursive inputs are the main patterns we focus on. For all the type systems (except for

the second one, which can capture primitive recursive functions) we also present upper bounds to

the number of steps well-typed processes take to terminate.Such bounds depend on the structure

of the processes and on the types of the names in the processes. We show the usefulness of the type

systems on some non-trivial examples: the encodings of primitive recursive functions, the protocol

for encoding separate choice in terms of parallel composition from [Nes00, SW01], a symbol table

implemented as a dynamic chain of cells from [Jon93, San99].

In Chapter 6 we summarise the achievements of this thesis anddiscuss some directions for

potential future work.

Provenance of the material

This thesis is partially based on published material. The presentation of a probabilistic process cal-

culus and the axiomatisations of several probabilistic behavioural equivalences appeared in [DP05];

the study of the typed � -calculus and the axiomatisation of typed bisimilarity were presented in

[DS04b, DS05]; the type systems for ensuring the termination property of � -processes were proposed

in [DS04a].

Chapter 2

Preliminaries

This chapter introduces some basic notions about process calculi. They are going to be lifted to richer

settings in the following chapters by accommodating probabilities and more advanced types. The

presentation is based on CCS and the� -calculus, and partly guided by two textbooks [Mil99, SW01].

2.1 A Calculus of Communicating Systems

We presuppose an in�nite set of process variables, Var = f X; Y; :::g, and an in�nite set of names,

N = f u; v; :::g. We use the set ofconames, N = f �u j u 2 N g . Given a special name� , we let

` range over the set oflabels, L = N [N [f � g. A label represents an indivisible action that a

communicating system performs, such as reading a datum, or sending a datum. The class ofprocess

expressionsEccs is given by the following grammar:

E; F ::= 0 j `:E j E + F j E j F j �uE j X j � X E

The expression0 representsinaction. The pre�x `:E describes the behaviour of �rst performing

an action labelled` then behaving like E . The sum or nondeterministic choice E + F behaves either

like E or F nondeterministically. The parallel composition E j F allows each of its components to

behave independently, but also to synchronize with each other by a handshake on a complementary

name. The restriction �uE restricts the scope ofu to E . The recursion � X E provides in�nite

behaviour by unfolding itself to be Ef � X E=X g. Operator precedence is (1) pre�x, restriction,

recursion, (2) parallel composition, and (3) nondeterministic choice.

Note that in CCS [Mil89a] the operators di�er a little. The re striction �uE is written Enu.

There is also arenaming operator E [v1=u1; :::; vn =un], which is not present here; its job is largely

done by syntactic substitution of names. We shall writeE f ev=eug for syntactic substitution of names

ev for nameseu.

We use fpv(E) for the set of free process variables (i.e., not bound by any� X) in E . As

usual we identify expressions which di�er only by a change ofbound process variables. We shall

write E f F1; :::; Fn =X1; :::; X n g or E f eF= eX g for the result of simultaneously substituting Fi for each

occurrence ofX i in E (1 � i � n), renaming bound variables if necessary.

27

28 CHAPTER 2. PRELIMINARIES

act
`:E `�! E

sum1 E `�! E 0

E + F `�! E 0

par1 E `�! E 0

E j F `�! E 0 j F
com1 E u�! E 0 F �u�! F 0

E j F ��! E 0 j F 0

res E `�! E 0

�uE `�! �uE 0
for u 6= ` rec Ef � X E=X g `�! E 0

� X E `�! E 0

Table 2.1: The transition rules for Eccs

For operational semantics, we use a labelled transition system

(Eccs ; L ; f `�!� E ccs � E ccs j ` 2 Lg)

with Eccs as the set of states andL as transition labels. The transition relation is de�ned as the

smallest relation generated by the rules in Table 2.1. The symmetric rules of sum1, par1 and com1

are omitted. As can be seen from the rulecom1, for a communication between two processes to

take place, one of them must o�er an atomic actionu, the other its complementary action �u. The

communication results in a � -action, meaning that the communication serves as synchronisation and

the result is invisible. On the other hand, in some literature on the analysis of distributed systems,

parallel composition is de�ned as in CSP [Hoa85], where a communication between two processes

occurs if both of them o�er the same action u, and the result is still a u-action.

2.2 The � -calculus

We �rst give the motivation and introduce the untyped � -calculus. Then we focus on channel types;

we review sorts, simple channel types and subtyping progressively.

2.2.1 From CCS to the � -calculus

A signi�cant limitation of CCS, as argued in [Mil99], is that it is not able to naturally specify

communicating systems with dynamically changing connectivity. For example, let us consider the

system composed of three componentsP; Q and R as displayed in Figure 2.1(1). Initially P and R

are connected by the linka, while P and Q are connected byb. In the con�guration of Figure 2.1(2),

P and Q have evolved intoP0 and Q0 respectively and the link to R has moved fromP to Q. Since

CCS gives us no way of creating new links among existing components, we are not able to specify

the system in (1) as a CCS expression that can evolve into (2).However, this kind of evolution

occurs often in many real systems. For instance, we may imagine R as a critical section that are

accessed byP and Q successively. A natural way of dealing with link mobility li ke this is to give

actions more structures so that links can be passed around incommunicating systems. This is the

method adopted by the � -calculus.

2.2. THE � -CALCULUS 29

P Q

R

P'

R

a a

b b

(2)(1)

Q'

Figure 2.1: Link mobility

2.2.2 The Untyped � -calculus

Let the set N of names be de�ned as in Section 2.1. The setP� of processes is de�ned by the

following syntax:

P; Q ::= 0 j u(x):P j �uv:P j P j Q j P + Q j �uP j !u(x):P

The input pre�x u(x):P can receive any name viau and continue asP with the received name

substituted for x. The output pre�x �uv:P can sendv via u and continue as P. The replicated

input !u(x):P can be thought of as an in�nite composition u(x):P j u(x):P j � � � , and it can encode

recursive de�nitions [Mil91]. For example, take the simple CCS expressionE def= � X (u:(X j X)),

which has the in�nite behaviour:

E u�! E j E u�! E j E j E u�! :::

The same e�ect can be derived by using a replicated input:

�v (�v j!v:u:(�v j �v))
��! u�! �v (�v j �v j!v:u:(�v j �v))
��! u�! �v (�v j �v j �v j!v:u:(�v j �v))
�

�!
u

�! :::

All other operators (inaction, sum, restriction, and paral lel composition) keep their meaning as in

Section 2.1.

The � -calculus has two name-binding operators. In the processesu(v):P and �vP the occurrences

of v in P are consideredbound with scope P. An occurrence of a name in a process isfree if it

is not bound. We write bn(P) (resp. fn (P)) for the set of names that have a bound (resp. free)

occurrence in P. Changing a bound name into a fresh name is calledalpha-conversion, and we

identify processes up to alpha-conversion.

A substitution f v=ug is a function on names that mapsu to v and acts as identity on other

names. Hence the post�x operatorPf v=ug is de�ned as the result of replacing all free occurrences

of u in P by v, possibly applying alpha-conversion to avoid name captureby introducing unintended

bound occurrences of names.

Convention: When considering a collection of processes and substitutions, we assume that each

bound name of the processes is chosen to be unique, i.e., di�erent from other names of the processes

and the substitutions.

30 CHAPTER 2. PRELIMINARIES

kind � subj(�) obj(�) fn(�) bn(�)

input uv u v f u; vg ;

free output �uv u v f u; vg ;

bound output �u(v) u v f ug f vg

internal action � - - ; ;

Table 2.2: Terminology and notation for actions

The early style [MPW92] of operational semantics for processes inP� is speci�ed via a labelled

transition system

(P� ; Act ; f ��!� P � � P � j � 2 Act g)

where Act stands for the set ofactions, of which there are four kinds.

1. The internal action � . As in CCS, P ��! Q means that P can evolve into Q without any

interaction with the environment. Internal actions arise f rom internal communication within

a process.

2. An input action uv. The transition P uv�! Q means that P can receivev along u before

evolving into Q. This departs from CCS because an input action contains the actual received

value. Input actions arise from input pre�xes.

3. A free output action �uv. The transition P �uv�! Q implies that P can emit the free namev

along nameu. Free output actions arise from output pre�xes.

4. A bound outputaction �u(v). Intuitively, P
�u (v)
�! Q means that P can emit the private name v

(i.e. v is bound in P) along u before evolving into Q. Bound output actions arise from free

output actions which carry names out of their scope, as in theprocess�v (�uv:Q) for example.

Table 2.2 displays each kind of action, itssubject, its object, its set of free names, and its set of

bound names. We let n(�) def= fn(�) [bn(�) denote the set of names occurring in� .

The transition relation ��! is de�ned by the rules in Table 2.3. The symmetric rules ofsum1,

par1, com1and close1are omitted. Some of the rules deserve to be explained. We seefrom the rule

in that u(x):P can receiveany name via u, and when a name is received it is substituted for the

placeholderx in P. The rule openexpresses extrusion of the scope of the namev, which can be seen

in the rule close1. A process capable of performing a bound output �u(v) can interact with a process

that can receivev via u and in which v is not free. The interaction is represented by a� -transition,

and in the derivative the two components are within the scopeof a restriction �v . We may say that

the scope ofv is opened viaopenwhile closed again viaclose1. The scope of the restricted name

is extended to include the process that receives it. The sidecondition in the rule par1 is necessary

because it prevents free names inQ from being incorrectly identi�ed as bound names in P0. The

rule rep captures the idea that !u(x):P can spawn in�nitely many copies of u(x):P and each copy

can perform an input action as in the rule in.

Sometimes we use the notation �=) which is an abbreviation for (��!)� ��! (��!)� , where (��!)�

is the re
exive and transitive closure of ��! .

2.2. THE � -CALCULUS 31

in
u(x):P uv�! P f v=xg

out
�uv:P �uv�! P

sum1 P ��! P0

P + Q ��! P0 par1 P ��! P0 bn(�) \ fn(Q) = ;
P j Q ��! P0 j Q

com1 P �uv�! P0 Q uv�! Q0

P j Q
�

�! P0 j Q0 close1P
�u (v)
�! P0 Q uv�! Q0 v 62fn (Q)

P j Q
�

�! �v (P0 j Q0)

res P ��! P0 u 62n(�)
�uP ��! �uP 0 open P �uv�! P0 v 6= u

�vP
�u (v)
�! P0

rep
!u(x):P uv�! !u(x):P j Pf v=xg

Table 2.3: The transition rules for P�

The capacity to change the connectivity of a network of processes is the crucial di�erence between

the � -calculus and CCS. Let us consider an example based on Figure2.1. Suppose two processes

P; Q need to use some resourceR in a critical section. Initially only process P has access to the

resource, represented by a communication linka. After an interaction with Q along other link b

this access is transferred toQ. This kind of behaviour can be described in the� -calculus as follows:

processP that sends a along b is �ba:P0 (supposea does not appear inP0); processQ that receives

some link alongb and then uses it to send datac is b(x):�xc:Q00. The interaction between P and Q

is formulated as:
�ba:P0 j b(x):�xc:Q00 �

�! P0 j �ac:Q00:

After the interaction, the connection between P and R disappears while a new connection between

Q0 and R is built, where Q0 is the process �ac:Q00.

The � -calculus presented above ismonadic in that a message consists of exactly one name.

Sometime we want to send messages consisting of more than onename. So it is useful to allow

polyadic inputs and outputs: u(x1; :::; xn):P and �uhv1; :::; vn i :Q. Accordingly we can extend the

transition rules in Table 2.3 to allow for polyadic communication:

u(ex):P j �uhevi :Q ��! P f ev=exg j Q

where ex and ev have the same length. After the extension we obtain the polyadic � -calculus [Mil91].

2.2.3 Sorts and Sorting

To regulate the use of names, Milner introduced the notionsorting [Mil91], which is essential to avoid

disagreement in the arities of tuples carried by a given namein the polyadic � -calculus. Assume a

basic collection � of sorts. To every nameu is assigned a sort� , and we write u : � . A sort list over

� is a �nite sequence e� = �1; :::; �n of sorts. � � is the set of all sort lists over �. We write eu : e� if

ui : � i for all i with 1 � i � n. A sorting over � is a partial function

f : � 7! � �

32 CHAPTER 2. PRELIMINARIES

P

(2)(1)

Q1 Q2

v1, v2

Q1 Q2

P

v1, v2

Figure 2.2: A printer example

and we say that a process respectsf if, for every subterm of the form u(ev):P or �uhevi :Q,

if u : � then ev : f (�).

For example, for the processF in (1.2), let us choose � = f Sa; Sbc ; Natg with

a : Sa ; b : Sbc ; c : Sbc ; m : Nat; n : Nat:

Then a sorting f respected byF is such that

f :

(
Sa 7! Nat; Sbc

Sbc 7! Nat:

2.2.4 A Simple Example

Before proceeding to the formal presentation of type systems for the � -calculus, we informally explain

the usefulness of types, capability types in particular, bya simple example from [PS96]. Imagine

the common situation in which two processes must cooperate in the use of a shared resource such

as a printer. The printer provides a request channelu on which the client processes send their data

for printing. If one client process has the form Q1
def= �uv1:�uv2:0, then we expect that executing

the program �u (P j Q1 j Q2) should result in the print jobs represented by v1 and v2 eventually

being received and processed, in that order, by the printer processP (see Figure 2.2(1), where an

arrow from one process to another means that some data are transmitted from the source of the

arrow to the target). However, this is not necessarily the case: a misbehaving implementation of

Q2 can disrupt the protocol expected by P and Q1 simply by reading print requests from u and

throwing them away: Q2
def= ! u(v):0 (see Figure 2.2(2)). We can prevent this kind of bad behaviour

by distinguishing three kinds of access to a channel { the capability to write values, the capability

to read values, and the capability to do both { and requiring each process to use its channels with

some prescribed capabilities. Here, for instance, the client processes should only be allowed to write

to u. The printer, on the other hand, should only read from u. When we impose this constraint,

processQ2 will be ruled out because it attempts to read from u.

2.2.5 The Simply Typed � -calculus

To begin with, we introduce some terminology and notation concerning types. An assignmentof a

type T to a name u is of the form u : T . A type environment is a �nite set of assignments of types

2.2. THE � -CALCULUS 33

T ::= V j L types

V ::= L j bool j Nat value types

L ::=]V channel types

� ::= ; j � ; x : T type environments

w ::= x j true; false j 0; 1; 2; � � � values

P; Q ::= 0 j u(x : V):P j �uw:P j P j Q j P + Q j (�a : L)P j !u(x : V):P processes

T-in
� ` u :]V � ; x : V ` P

� ` u(x : V):P
T-out

� ` u :]V � ` w : V � ` P

� ` �uw:P
T-nil

� ` 0

T-par
� ` P � ` Q

� ` P j Q
T-sum

� ` P � ` Q

� ` P + Q
T-res

� ; a : L ` P

� ` (�a : L)P

T-rep
� ` u(x : V):P

� ` !u(x : V):P

Table 2.4: Processes, types and typing rules of the simply typed � -calculus

to names, where the names in the assignments are all di�erent. We use � ; � to range over type

environments. Sometimes we regard a type environment � as a partial function from names to types.

Thus we write �(u) for the type assigned to u by �, and say that the names of the assignments in

� are the names on which � is de�ned. We write dom(�) for the set of names of the assignments in

�. When dom(�) \ dom(�) = ; , we write � ; � for the union of � and �.

A process type judgment � ` P asserts that processP is well typed under the type environment

�, and a value type judgment � ` w : V that value w has type V under the type assumptions in �.

We say P is well typed under � if the judgment � ` P can be derived by using the typing rules of

a given type system.

A channel is a name that may be used to engage in communications. Thevaluesare the objects

that can be exchanged along channels. Thechannel typesare the types that can be ascribed to

channels. Thevalue typesare the types that can be ascribed to values. In the� -calculus, channel

types can be used as value types. In other words, we allow channels to be transmitted as values,

and hence allow mobility.

Since our purpose in this section is to introduce the type system of the simply typed � -calculus

rather than to propose a pragmatic notation for programming, we adopt an explicitly typed presen-

tation in which every bound name is annotated with a type. The syntax of types and processes as

well as the typing rules are shown in Table 2.4. The syntacticdistinction between value types and

channel types is made by the use ofV to range over value types andL over channel types (the letter

C is reserved for other use later). However, in typing and operational rules, unless important for

the sense we will use only the lettersS; T, which stand for arbitrary types. We observe that in the

simply typed � -calculus there is only one channel type constructor]V . A type assignment u :]V

means that u can be used as a channel to carry values of typeV . Value types include channel types

34 CHAPTER 2. PRELIMINARIES

and basic types, thus both channels and basic values are allowed to be communicated. In the above

table, we only display the typing rules for processes. The typing rules for values are the usual ones.

For example, we may have the following rules:

� ; x : T ` x : T � ` true : bool � ` 0 : Nat
...

For simplicity we only consider two basic types: bool , for boolean values, andNat, for natural

numbers. Values of basic types are said to be of �rst-order because, unlike channels, they cannot

carry other values. We also assume some basic operations on �rst-order values. For example, we

may use addition (n + m), subtraction (n � m), multiplication (n � m) for Nat expressions. To avoid

being too speci�c, we do not give a rigid syntax and typing rules for �rst-order expressions. We just

assume a separate mechanism for evaluating expressions of type Nat.

The inert process0 is well typed under any type environment. The parallel composition and the

sum of two processes are well typed if each is well typed in isolation. A process (�a : L)P is well

typed if P observes the constraints imposed both by the type environment and by the declared type

L of the new namea. Note that here L is a channel type. In an input u(x : V):P the subject u

should have a channel type, which is compatible with the typeof x, moreover, the body P is well

typed under the extension of � with the type of x. The case for !u(x : V):P is similar. An output

�uw:P is well typed if u has a channel type compatible with that of w, and P itself is well typed.

The transition rules for typed processes are similar to those of the untyped processes (Table 2.3).

We just need to annotate bound names with their types. For example, the rule open would take

this form:

P
(� ev: eV)�uw

�! P0 a 2 fn(w) n f ev; ug

(�a : L)P
(� ev : eV ;a :L)�uw

�! P0

Given the operational semantics for typed processes, we canprove the subject reductionproperty,

which represents the fact that type judgments are invariant under computation. In particular, if

� ` P and P ��! P0 then it holds that � ` P0.

2.2.6 Subtyping

Subtyping is a preorder on types. If S is a subtype of T then all operations available on values of

type T are also available on values of typeS; therefore an expression of typeS can always replace

an expression of typeT. The possibility of having operations that work on all subtypes of a given

type is a major advantage of subtyping in a programming language.

We shall write subtype judgmentsin the form S <: T , which asserts that S is a subtype of T

(equally T is a supertype ofS). A type construct is covariant in its i -th argument if the construct

preserves the direction of subtyping in that argument. Dually, a type construct is contravariant

in its i -th argument if the construct inverts the direction of subty ping in that argument. A type

construct is invariant in its i -th argument if it is both covariant and contravariant in tha t argument.

We now re�ne channel types by distinguishing between the capabilities of using a channel in

input or in outputs. For this we introduce the types i V and oV, with the intended meanings: i V

2.2. THE � -CALCULUS 35

S-ref
T <: T

S-tra
T <: T 0 T 0 <: T 00

T <: T 00
S-bi

]T <: i T

S-bo
]T <: oT

S-ii
T <: T 0

i T <: i T 0
S-oo

T <: T 0

oT 0 <: oT

S-bb
T <: T 0 T 0 <: T

]T <:]T 0

T-ins
� ` u : i V � ; x : V ` P

� ` u(x : V):P
T-outs

� ` u : oV � ` w : V � ` P

� ` �uw:P

subsum
� ` u : T T <: T 0

� ` u : T 0

(rules T-ins and T-outs replaceT-in and T-out respectively)

Table 2.5: Additional rules on subtyping

is the type of a channel that can be used only in input and that carries values of typeV ; similar

for oV w.r.t. output. By extending the simply typed � -calculus with the two capability types, we

obtain the simply typed � -calculus with subtyping. For this, we rede�ne channel types as

L ::=]V j i V j oV channel types

and use the additional rules reported in Table 2.5.

We brie
y comment on the subtyping rules. The rules S-refand S-tra show that <: is a preorder.

The axioms S-bi and S-boshow that a name of all capabilities can be used in places where only the

input or only the output capability is required. Rule S-ii says that i is a covariant construct, while

S-oosays that o is a contravariant construct. Finally S-bbshows that] is invariant.

The typing rules T-ins and T-outs are similar to the rules T-in and T-out, except that now the

subject of a pre�x is checked to have the appropriate input or output capability. The old rules are

derivable from the new ones.

36 CHAPTER 2. PRELIMINARIES

Chapter 3

Axiomatisations for Probabilistic

Processes

In this chapter we study a process calculus which combines both nondeterministic and probabilistic

behaviour in the style of Segala and Lynch's probabilistic automata. We consider various strong and

weak behavioural equivalences, and we provide complete axiomatisations for �nite-state processes,

restricted to guarded recursion in the case of the weak equivalences. We conjecture that in the

general case of unguarded recursion the \natural" weak equivalences are undecidable.

The contents of this chapter are organized as follows. Firstwe brie
y recall some basic concepts

and de�nitions about probabilistic distributions. In Sect ion 3.2 we introduce a probabilistic process

calculus, with its syntax and operational semantics. In Section 3.3 we de�ne the four behavioural

equivalences we are interested in, and we extend the \bisimulation up to" techniques of [Mil89a] to

the probabilistic setting. These techniques are extensively used for the proofs of soundness of some

axioms, especially in the case of the weak equivalences. In Sections 3.4 and 3.5 we give complete

axiomatisations for the strong equivalences and for the weak equivalences respectively, restricted

to guarded expressions in the second case. Section 3.6 givescomplete axiomatisations for the four

equivalences in the case of the �nite fragment of the language. The interest of this section is that we

use di�erent and much simpler proof techniques. At last we conclude with some discussions about

the conjecture mentioned above.

3.1 Probabilistic Distributions

Let M be a set. A function � : M 7! [0; 1] is called adiscrete probability distribution, or distribution

for short, on M if the support of � , de�ned as spt(�) = f x 2 M j � (x) > 0g, is �nite or countably

in�nite and
P

x 2 M � (x) = 1. If � is a distribution with �nite support and N � spt(�) we use the set

f (si : � (si))gsi 2 N to enumerate the probability associated with each element of N . To manipulate

37

38 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

the set we introduce the operator] de�ned as follows.

f (si : pi)gi 2 I] f (s : p)g def=(
f (si : pi)gi 2 I nj [f sj : (pj + p)g if s = sj for somej 2 I

f (si : pi)gi 2 I [f (s : p)g otherwise.

f (si : pi)gi 2 I] f (t j : pj)gj 2 1::n
def=

(f (si : pi)gi 2 I] f (t1 : p1)g)] f (t j : pj)gj 2 2::n

Given some distributions � 1; :::; � n on S and some real numbersr1; :::; rn 2 [0; 1] with
P

i 2 1::n r i = 1,

we de�ne the convex combinationr1� 1 + ::: + rn � n of � 1; :::; � n to be the distribution � such that

� (s) =
P

i 2 1::n r i � i (s), for each s 2 S.

Lemma 3.1 If � is a convex combination of� 1; :::; � n and each� i (i � n) is a convex combination

of some distributions � 1; :::; � m on S, then � is also a convex combination of� 1; :::; � m .

Proof: Suppose that � = r1� 1 + ::: + rn � n with
P

i 2 1::n r i = 1, and that � i = pi 1� 1 + ::: + pim � m

with
P

j 2 1::m pij = 1, for all i � n. For each s 2 S, we have that

� (s) =
X

i 2 1::n

r i � i (s) =
X

i 2 1::n

r i

X

j 2 1::m

pij � j (s) =
X

j 2 1::m

X

i 2 1::n

r i pij � j (s):

So � is the convex combination (
P

i 2 1::n r i pi 1)� 1 + ::: + (
P

i 2 1::n r i pim)� m . Indeed it can be checked

that
P

j 2 1::m

P
i 2 1::n r i pij = 1. ut

3.2 A Probabilistic Process Calculus

The set Var of process variables and the setL of labels are de�ned as in Section 2.1. We let� range

over the set Var [L . The class of expressionsE is de�ned by the following syntax:

E; F ::=
M

i 2 1::n

pi ` i :E i j
X

i 2 1::m

E i j X j � X E

Here
L

i 2 1::n pi ` i :E i stands for a probabilistic choice operator, where thepi 's represent positive

probabilities, i.e., they satisfy pi 2 (0; 1] and
P

i 2 1::n pi = 1. When n = 0 we abbreviate the

probabilistic choice as 0; when n = 1 we abbreviate it as `1:E1. Sometimes we are interested in

certain branches of the probabilistic choice; in this case we write
L

i 2 1::n pi ` i :E i as p1`1:E1 � � � � �

pn `n :En or (
L

i 2 1:: (n � 1) pi ` i :E i) � pn `n :En where
L

i 2 1:: (n � 1) pi ` i :E i abbreviates (with a slight abuse

of notation) p1`1:E1 � � � � � pn � 1`n � 1:En � 1. The second construction
P

i 2 1::m E i stands for indexed

nondeterministic choice, and occasionally we may write it asE1 + ::: + Em .

De�nition 3.2 The variable X is weakly guarded (resp. guarded) in E if every free occurrence

of X in E occurs within some subexpressioǹ:F (resp. `:F but ` 6= �), otherwise X is weakly

unguarded (resp. unguarded) in E.

The operational semantics of an expressionE is de�ned as a probabilistic automaton whose

states are the expressions reachable fromE and the transition relation is de�ned by the axioms and

3.2. A PROBABILISTIC PROCESS CALCULUS 39

var X ! #(X) psum
L

i 2 1::n pi ` i :E i !
U

i 2 1::n f (` i ; E i : pi)g

rec
Ef � X E=X g ! �

� X E ! �
nsum

E j ! �

� i 2 1::m E i ! �
for somej 2 1::m

Table 3.1: Strong transitions

inference rules in Table 3.1, whereE ! � describes a transition that leaves fromE and leads to a

distribution � over (Var [L) � E . We shall use#(X) for the special distribution f (X; 0 : 1)g. It is

evident that E ! #(X) i� X is weakly unguarded inE .

The behaviour of each expression can be visualized by a transition graph. For instance, the

expression (12 a � 1
2 b) + (1

3 a � 2
3 c) + (1

2 b � 1
2 c) exhibits the behaviour drawn in diagram (5) of

Figure 1.1.

As in [BS01], we de�ne the notion of combined transition as follows: E ! c � if there exists a

collection f � i ; r i gi 2 1::n of distributions and probabilities such that
P

i 2 1::n r i = 1, � = r1� 1+ :::+ rn � n

and E ! � i , for each i 2 1::n.

Lemma 3.3 If � = r1� 1 + ::: + rn � n and E ! c � i for each i � n, then E ! c � .

Proof: Suppose that for eachi � n, � i is a convex combination of� i 1; :::; � im i , with E ! � ij for

j � mi . Let
[

i 2 1::n

f � i 1; :::; � im i g = f � 1; :::; � m g

Clearly each � i (i � n) is also a convex combination of� 1; :::; � m . It follows from Lemma 3.1 that

� is a convex combination of� 1; :::; � m . Note that E ! � j for each j � m. Therefore we have the

result that E ! c � . ut

We now introduce the notion of weak transitions, which generalizes the notion of �nitary weak

transitions in SPA [Sto02] to the setting of PA. First we discuss the intuition behind it. Given an

expressionE, if we unfold its transition graph, we get a �nitely branchin g tree. By cutting away

all but one alternative in case of several nondeterministiccandidates, we are left with a subtree

with only probabilistic branches. A weak transition of E is a �nite subtree of this kind, called weak

transition tree , such that in any path from the root to a leaf there is at most one visible action. For

example, letE be the expression� X (1
2 a� 1

2 �:X). It is represented by the transition graph displayed

in Diagram (1) of Figure 3.1. After one unfolding, we get Diagram (2) which represents the weak

transition E) � , where � = f (a; 0 : 3
4); (�; E : 1

4)g.

Formally, weak transitions are de�ned by the rules in Table 3.2. Rule wea1says that a weak

transition tree starts from a bundle of labelled arrows derived from a strong transition. The meaning

of Rule wea2is as follows. Given two expressionsE; F and their weak transition trees tr (E); tr (F),

if F is a leaf oftr (E) and there is no visible action in tr (F), then we can extendtr (E) with tr (F) at

nodeF . If Fj is a leaf oftr (F) then the probability of reaching Fj from E is pqj , wherep and qj are

the probabilities of reaching F from E, and Fj from F , respectively. Rule wea3is similar to Rule

40 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

E

E

E

a t

1/2 1/2

a t

1/2 1/2

E

1/2 1/2

ta

0

0

(2)(1)

0

Figure 3.1: A weak transition

wea1
E ! �

E) �

wea2
E) f (` i ; E i : pi)gi] f (`; F : p)g F) f (�; F j : qj)gj

E) f (` i ; E i : pi)gi] f (`; F j : pqj)gj

wea3
E) f (` i ; E i : pi)gi] f (�; F : p)g F) f (hj ; Fj : qj)gj

E) f (` i ; E i : pi)gi] f (hj ; Fj : pqj)gj

wea4
E) f (�; E i : pi)gi 8i; E i) #(X)

E) #(X)

Table 3.2: Weak transitions

wea2, with the di�erence that we can have visible actions in tr (F), but not in the path from E to

F . Rule wea4allows to construct weak transitions to unguarded variables. Note that if E) #(X)

then X is unguarded in E .

For any expressionE, we use� (E) for the unique distribution f (�; E : 1)g, called the virtual

distribution of E . We de�ne a weak combined transition: E �) c � if there exists a collection

f � i ; r i gi 2 1::n of distributions and probabilities such that
P

i 2 1::n r i = 1, � = r1� 1 + ::: + rn � n and

for each i 2 1::n, either E) � i or � i is � (E). We write E) c � if every component of � is derived

from a weak transition, namely, E) � i for all i � n. Note in particular that for any expression E

we can derive a virtual distribution by E �) c � (E), but E 6) c � (E).

Lemma 3.4 1. If E �) c � then �:E) c � ;

2. If E �) c #(X) then E) #(X).

Proof: The �rst clause is easy to show. Let us consider the second one. If #(X) is a convex

combination of � 1; ::; � n and E) � i for all i 2 1::n, then each� i must assign probability 1 to (X; 0),

thus � i = #(X). ut

Lemma 3.5 1. If � = r1� 1 + ::: + rn � n and E �) c � i for each i � n, then E �) c � .

3.3. BEHAVIOURAL EQUIVALENCES 41

2. If � = r1� 1 + ::: + rn � n and E) c � i for each i � n, then E) c � .

Proof: Similar to the proof of Lemma 3.3. ut

3.3 Behavioural Equivalences

In this section we de�ne four behavioural equivalences, namely, strong bisimulation, strong proba-

bilistic bisimulation, divergency-sensitive equivalence and observational equivalence. We also intro-

duce a probabilistic version of \bisimulation up to" techni ques to show some interesting properties

of the behavioural equivalences.

To de�ne behavioural equivalences in probabilistic process calculi, it is customary to consider

equivalence of distributions with respect to equivalence relations on processes.

3.3.1 Equivalence of Distributions

If � is a distribution on M 1 � M 2, s 2 M 1 and N � M 2, we write � (s; N) for
P

t 2 N � (s; t). We lift

an equivalence relation onE to a relation between distributions over (Var [L) � E in the following

way.

De�nition 3.6 Given two distributions � 1 and � 2 over (Var [L) �E , we say that they are equivalent

w.r.t. an equivalence relation R on E, written � 1 � R � 2, if

8N 2 E=R; 8� 2 Var [L ; � 1(�; N) = � 2(�; N):

Lemma 3.7 Given three distributions � 1; � 2; � 3 and an equivalence relationR, if � 1 � R � 2 and

� 2 � R � 3 then � 1 � R � 3.

Proof: Straightforward by de�nition. ut

The above lemma says that� R is transitive. It follows immediately that � R is an equivalence rela-

tion. Next we report two fundamental lemmas that underpin many other results in the subsequent

sections.

Lemma 3.8 If � 1 � R 1 � 2 and R 1 � R 2 then � 1 � R 2 � 2.

Proof: Let N 2 E=R 2. Since R 1 is contained in R 2, we know that N is the disjoint union of a

family of sets f N i gi 2 I such that N i 2 E=R 1 for each i 2 I . It follows from � 1 � R 1 � 2 that

8i � n; 8� 2 Var [L ; � 1(�; N i) = � 2(�; N i):

Therefore we have

� 1(�; N) =
P

i 2 I � 1(�; N i) =
P

i 2 I � 2(�; N i) = � 2(�; N):

ut

Lemma 3.9 Let � = r1� 1 + ::: + rn � n and � 0 = r1� 0
1 + ::: + rn � 0

n with
P

i 2 1::n r i = 1 . If � i � R � 0
i

for each i � n, then � � R � 0.

42 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

Proof: For any N 2 E=R and � 2 Var [L , we have

� (�; N) =
X

i 2 1::n

r i � i (�; N) =
X

i 2 1::n

r i � 0
i (�; N) = � 0(�; N):

Therefore � � R � 0 by de�nition. ut

3.3.2 Behavioural Equivalences

Strong bisimulation is de�ned by requiring equivalence of distributions at every step. Because of the

way equivalence of distributions is de�ned, we need to restrict to bisimulations which are equivalence

relations.

De�nition 3.10 An equivalence relationR � E � E is a strong bisimulation if E R F implies:

� wheneverE ! � 1, there exists � 2 such that F ! � 2 and � 1 � R � 2:

Two expressionsE; F are strong bisimilar, written E � F , if there exists a strong bisimulation R

s.t. E R F .

If we allow a strong transition to be matched by a strong combined transition, then we get a

relation slightly coarser than strong bisimulation.

De�nition 3.11 An equivalence relationR � E �E is a strong probabilistic bisimulation if E R F

implies:

� wheneverE ! � 1, there exists � 2 such that F ! c � 2 and � 1 � R � 2:

We write E � c F , if there exists a strong probabilistic bisimulationR s.t. E R F .

To show that � c is an equivalence relation, we need the following lemma, which can be used to

prove the transitivity of � c.

Lemma 3.12 If E � c F then wheneverE ! c � , there exists � 0 such that F ! c � 0 and � � � c � 0:

Proof: Suppose that � = r1� 1 + ::: + rn � n and E ! � i for i � n. Since E � c F , there exists � 0
i

for each i � n such that F ! c � 0
i and � i � � c � 0

i . Now let � 0 = r1� 0
1 + ::: + rn � 0

n . By Lemma 3.3 we

know that F ! c � 0. By Lemma 3.9 it holds that � � � c � 0. ut

We now consider the case of the weak bisimulation. The de�nition of weak bisimulation for PA

is not at all straightforward. In fact, the \natural" weak ve rsion of De�nition 3.10 would be the

following one.

De�nition (Tentative). An equivalence relation R � E � E is a weak bisimulation if E R F

implies:

� wheneverE ! � 1, then either � 1 � R � (F) or there exists some� 2 such that F) � 2 and

� 1 � R � 2:

E and F are weak bisimilar, written E � F , whenever there exists a weak bisimulationR s.t.

E R F .

3.3. BEHAVIOURAL EQUIVALENCES 43

E G

a

t

1/2 1/2 1/2
1/2

tt

a a a

0 0

0

t t

1/2 1/2

0 0 0

a a

F

0

a

t

Figure 3.2: Transition graphs of E; F and G

Unfortunately the above de�nition is incorrect because it de�nes a relation which is not transitive.

That is, there exist E , F and G with E � F and F � G but E 6� G. For example, consider the

following expressions (their transition graphs are displayed in Figure 3.2) and relations:

E def= (1
2 �:a � 1

2 �:a) + (1
2 �:a � 1

2 a)

F def= 1
2 �:a � 1

2 �:a

G def= �:a

R 1
def= f (E; F); (F; E); (E; E); (F; F); (a; a); (0; 0)g

R 2
def= f (F; G); (G; F); (F; F); (G; G); (a; a); (0; 0)g

It can be checked that R 1 and R 2 are weak bisimulations according to the tentative de�nitio n.

However we haveE 6� G. To see this, consider the transitionE ! � , where� = f (�; a : 1
2); (a; 0 : 1

2)g.

From G there are only two possible weak transitionsG) � 1 and G) � 2 with � 1 = f (�; a : 1)g

and � 2 = f (a; 0 : 1)g. Now, among the three distributions � (G), � 1 and � 2, none is equivalent to � .

Therefore, E and G are not bisimilar. Nevertheless, if we consider the weak combined transition:

G) c � 0 where � 0 = 1
2 � 1 + 1

2 � 2, we observe that� � � 0.

The above example suggests that for a \good" de�nition of weak bisimulation it is necessary

to use combined transitions. So we cannot give a weak variantof De�nition 3.10, but only of

De�nition 3.11, called weak probabilistic bisimulation.

De�nition 3.13 An equivalence relationR � E � E is a weak probabilistic bisimulation if E R F

implies:

� wheneverE ! � 1, there exists � 2 such that F �) c � 2 and � 1 � R � 2:

We write E � F whenever there exists a weak probabilistic bisimulationR s.t. E R F .

The following lemma is indispensable to show the transitivity of � .

Lemma 3.14 Let R be a weak probabilistic bisimulation. IfE R F then wheneverE �) c � , there

exists � 0 such that F �) c � 0 and � � R � 0.

Proof: See Appendix A.1. ut

44 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

Lemma 3.15 Let R =
S

i fR i j R i is a weak probabilistic bisimulationg. Then the equivalence

closure of R, written R � , is a probabilistic weak bisimulation.

Proof: If E R � F then there exist some weak probabilistic bisimulations� 1; :::; � n and some

expressionsE0; ::; En such that E � E0; En � F , and for all i with 0 � i < n , we haveE i R i E i +1 .

If E ! � 0 then there exists � 1 such that E1
�) c � 1 and � 0 � R 0 � 1. For all i with 1 � i < n , by

Lemma 3.14 there exists� i +1 such that E i +1
�) c � i +1 and � i � R i � i +1 . By Lemma 3.8 and the

transitivity of � R � it holds that � 0 � R � � n . ut

Because of the above lemma we can equivalently express� as R � , which is the biggest weak

probabilistic bisimulation.

As usual, observational equivalence is de�ned in terms of weak probabilistic bisimulation.

De�nition 3.16 Two expressionsE; F are observationally equivalent, written E ' F , if

1. wheneverE ! � 1, there exists � 2 such that F) c � 2 and � 1 � � � 2;

2. wheneverF ! � 2, there exists � 1 such that E) c � 1 and � 1 � � � 2.

The following lemma plays the same role as Lemma 3.14, and theproof of the former is similar

to that of the latter. Then it is evident that ' is an equivalence relation.

Lemma 3.17 SupposeE ' F . If E) c � then there exists� 0 s.t. F) c � 0 and � � � � 0.

Often observational equivalence is criticised for being insensitive to divergency. We therefore

introduce a variant which does not have this shortcoming.

De�nition 3.18 An equivalence relationR � E � E is a divergency-sensitive equivalenceif E R F

implies:

� wheneverE ! � 1, there exists � 2 such that F) c � 2 and � 1 � R � 2:

We write E h F whenever there exists a divergency-sensitive equivalenceR s.t. E R F .

Here the di�erence from De�nition 3.13 is that we use the transition F) c � 2 in place ofF �) c � 2

to match a strong transition. In other words, F cannot stay idle; it must make some real move.

It is easy to see that h lies between� c and ' . For example, we have that � X (�:X + a) and

�:a are related by ' but not by h (this shows also that h is sensitive to divergency), while �:a

and �:a + a are related by h but not by � c. Further, �:a and a are not related by h because the

transition �:a ! f �; a : 1g cannot be matched up bya) c f a; 0 : 1g. So h does not simply detect

divergency, it counts internal moves in a certain sense.

One can check that all the relations de�ned above (except for�) are indeed equivalence relations

and we have the inclusion ordering:� (� c (h (' (� .

3.3.3 Probabilistic \Bisimulation up to" Techniques

In the classical process algebra, the conventional approach to show E � F , for some expressions

E; F , is to construct a binary relation R which includes the pair (E; F), and then to check that R

3.3. BEHAVIOURAL EQUIVALENCES 45

is a bisimulation. This approach can still be used in probabilistic process algebra, but things are

more complicated because of the extra requirement thatR must be an equivalence relation. For

example we cannot use some standard set-theoretic operators to construct R, because, even ifR 1

and R 2 are equivalences,R 1R 2 and R 1 [R 2 may not be equivalences.

To avoid the restrictive condition and at the same time to reduce the size of the relationR,

we introduce the probabilistic version of \bisimulation up to" techniques, whose usefulness will be

exhibited in the next section.

In the following de�nitions, for a binary relation R we denote the relation (R [�)� by R � .

Similar for other notations such asR � and R ' .

De�nition 3.19 A binary relation R is a strong bisimulation up to � if E R F implies:

1. wheneverE ! � 1, there exists � 2 such that F ! � 2 and � 1 � R � � 2;

2. wheneverF ! � 2, there exists � 1 such that E ! � 1 and � 1 � R � � 2.

A strong bisimulation up to � is not necessarily an equivalence relation. It is just an ordinary

binary relation included in � , as shown by the next proposition.

Proposition 3.20 If R is a strong bisimulation up to � , then R � is a strong bisimulation and

R �� .

Proof: If E R � F then there exist some expressionsE0; :::; En such that E � E0; En � F , and

for all i with 1 � i < n we have either E i � E i +1 or E i R E i +1 . Suppose that E i ! � i . If

E i R E i +1 then there exists � i +1 such that E i +1 ! � i +1 and � i � R � � i +1 . If E i � E i +1 then

there exists � i +1 such that E i +1 ! � i +1 and � i � � � i +1 . Since �� R � , we know from Lemma 3.8

that � i � R � � i +1 . So in both cases we have matching transitions and� i � R � � i +1 , which implies

� 0 � R � � n by Lemma 3.7. ThereforeR � is a strong bisimulation, i.e., R � �� . SinceR � R � , it

follows that R �� . ut

One can also de�ne a strong probabilistic bisimulation up to � c relation and show that it is

included in � c.

Lemma 3.21 Let R be a strong probabilistic bisimulation up� c. If E R F then wheneverE ! c � ,

there exists� 0 such that F ! c � 0 and � � R � c
� 0:

Proof: Similar to the proof of Lemma 3.12. ut

Proposition 3.22 If R is a strong probabilistic bisimulation up to � c, then R �� c.

Proof: Similar to the proof of Proposition 3.20. The only di�erence is that when matching

transitions, we use Lemma 3.21 instead of directly applyingthe de�nitions. ut

For weak probabilistic bisimulation, the \up to" relations can be de�ned as well, but we need to

be careful.

De�nition 3.23 A binary relation R is a weak probabilistic bisimulation up to � if E R F implies:

46 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

1. wheneverE) � 1, there exists � 2 such that F �) c � 2 and � 1 � R � � 2;

2. wheneverF) � 2, there exists � 1 such that E �) c � 1 and � 1 � R � � 2.

In the above de�nition, we are not able to replace the �rst double arrow in each clause by a simple

arrow. Otherwise, the resulting relation is not included in � . A counterexample isR = f (�:a: 0; 0)g,

as in the nonprobabilistic setting [SM92].

Proposition 3.24 If R is a weak probabilistic bisimulation up to� , then R �� .

Proof: Similar to the proof of Proposition 3.22. ut

De�nition 3.25 A binary relation R is an observational equivalence up to' if E R F implies:

1. wheneverE) � 1, there exists � 2 such that F) c � 2 and � 1 � R � � 2;

2. wheneverF) � 2, there exists � 1 such that E) c � 1 and � 1 � R � � 2.

As expected, observational equivalence up to' is useful because of the following property.

Proposition 3.26 If R is an observational equivalence up to' , then R �' .

Proof: Note that if R is an observational equivalence up to' , then it is also a weak probabilistic

bisimulation up to � . So R � �� and it becomes evident that R �' by the de�nition of observa-

tional equivalence. ut

3.3.4 Some Properties of Strong Bisimilarity

In this section we show some properties of strong bisimilarity, by exploiting the probabilistic \bisim-

ulation up to" techniques introduced in Section 3.3.3 and Milner's transition induction technique

[Mil89a].

Proposition 3.27 � and � c are congruence relations.

Proof: This is a special version of the proof of Proposition 3.35, towhich we shall give detailed

arguments. ut

Proposition 3.28 � X E � E f � X E=X g.

Proof: Observe that � X E ! � i� E f � X E=X g ! � . ut

Lemma 3.29 If fpv (E) � f eX; Z g and Z 62fpv(eF) then

Ef E 0=Zgf eF= eX g � E f eF= eX gf E 0f eF= eX g=Zg:

Proof: By induction on the structure of E . ut

We now extend two results seen in nonprobabilistic process algebra [Mil84]. It should be em-

phasized that the \strong bisimulation up to" technique pla ys an important role in the subsequent

proofs, because in these two cases it is di�cult to directly construct an equivalence relation and

prove that it is a strong bisimulation.

3.3. BEHAVIOURAL EQUIVALENCES 47

Proposition 3.30 � X (E + X) � � X E.

Proof: We show that the relation

R = f (F f � X (E + X)=X g; F f � X E=X g j F 2 E and fpv(F) � f X gg

is a strong bisimulation up to � . Below we prove the following two assertions:

1. If F f � X (E + X)=X g ! � 1 then there exists � 2 s.t. F f � X E=X g ! � 2 and � 1 � R � � 2;

2. If F f � X E=X g ! � 2 then there exists � 1 s.t. F f � X (E + X)=X g ! � 1 and � 1 � R � � 2.

We consider (1) by induction on the depth of the inferenceF f � X (E + X)=X g ! � 1. Let us examine

two typical cases, among others.

� F � X : Then (E + X)f � X (E + X)=X g ! � 1 by a shorter inference. Hence, by induction

hypothesis, (E + X)f � X E=X g ! � 2 with � 1 � R � � 2. Then we have either � X E ! � 2 or

E f � X E=X g ! � 2. From the latter case we can also derive that� X E ! � 2.

� F � � Z F 0: Then F 0f � X (E + X)=X gf F f � X (E + X)=X g=Zg ! � 1 by a shorter inference.

By Lemma 3.29 we haveF 0f F=Zgf � X (E + X)=X g ! � 1. By induction hypothesis, we have

F 0f F=Zgf � X E=X g ! � 2 s.t. � 1 � R � � 2. Inversely it is easy to derive that F f � X E=X g ! � 2.

Similarly (2) can be shown by induction on the depth of the inferenceF f � X E=X g ! � 2. For

example, if F � X , then Ef � X E=X g ! � 2 by a shorter inference. By induction hypothesis, there

exists � 1 s.t. E f � X (E + X)=X g ! � 1 and � 1 � R � � 2. By rule nsum we have (E + X)f � X (E +

X)=X g � E f � X (E + X)=X g+ X f � X (E + X)=X g ! � 1. At last by rule rec we infer that � X (E +

X) ! � 1. ut

The lemma below states that if X is weakly guarded inE , then di�erent substitutions for X do

not a�ect the �rst transition of E .

Lemma 3.31 Suppose fpv(E) � f X g and all free occurrences ofX in E are weakly guarded. If

E f F=X g ! � 1 with � 1 � f (` i ; E i : pi)gi then E i takes the form E 0
i f F=X g; Moreover, for any G,

E f G=X g ! � 2 with � 2 � f (` i ; E 0
i f G=X g : pi)gi and � 1 � R � � 2 where

R = f (E f F=X g; E f G=X g) j E 2 E and fpv(E) � f X gg.

Proof: By transition induction. ut

Proposition 3.32 If E � F f E=X g and X weakly guarded inF , then E � � X F .

Proof: Similar to the proof of Proposition 3.30. Now we takeR as:

R = f (Gf E=X g; Gf � X F=X g j G 2 E and fpv(G) � f X gg

Let us consider the case thatG � X . SupposeE ! � 1. SinceE � F f E=X g, there exists � 0
1 s.t.

F f E=X g ! � 0
1 and � 1 � � � 0

1. By Lemma 3.31 there exists� 2 s.t. F f � X F=X g ! � 2 and � 0
1 � R � � 2.

By rule rec we have� X F ! � 2. By Lemma 3.8 and the transitivity of � R � , we have� 1 � R � � 2.

With similar reasoning, one can show that if � X F ! � 2 there exists � 1 s.t. E ! � 1 and � 1 � R � � 2.

ut

48 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

3.3.5 Some Properties of Observational Equivalence

In this section we report some properties ofh and ' , especially those concerning recursions. As in

last section, we heavily rely on the \bisimulation up to" tec hniques and transition induction.

Proposition 3.33 1. E � F i� �:E ' �:F ;

2. If �:E ' �:E + F and �:F ' �:F + E then �:E ' �:F .

Proof: The �rst clause is straightforward. For the second one, it su�ces to prove that E � F .

Consider the relation

R = f (E; F) j E; F 2 E; �:E ' �:E + F and �:F ' �:F + Eg:

We show that R is a weak probabilistic bisimulation up to � . Suppose thatE) � . By the condition

E + �:F ' �:F and Lemma 3.17, there exists� 0 s.t. �:F) c � 0 and � � � � 0. Since �:F � F , by

Lemma 3.14 there exists� 00 s.t. F
�

) c � 00 and � 0 � � � 00. Then it is easy to see that � � R � � 00.

Similar result holds when E and F exchange their roles. ut

Proposition 3.34 If E ' F then � X E ' � X F .

Proof: We show that the relation

R = f (Gf � X E=X g; Gf � X F=X g) j E; F; G 2 E and E ' F g

is an observational equivalence up to' . To achieve this goal, we need to prove the important

property that ' is closed under all substitutions. See Appendix A.2 for moredetails. ut

Proposition 3.35 ' is a congruence relation.

Proof: Given eE ' eF , we need to show the following three clauses:

1.
L

i pi ` i :E i '
L

i pi ` i :Fi

2.
P

i 2 1::n E i '
P

i 2 1::n Fi

3. � X E1 ' � X F1.

Among them, the �rst two clauses are easy to prove; the third one is shown in Proposition 3.34.

ut

We use a measuredX (E) to count the depth of guardedness of the free variableX in expression

E.
dX (X)

def
= 0

dX (Y) def= 0

dX (a:E) def= dX (E) + 1

dX (�:E) def= dX (E)

dX (
L

i pi ` i :E i)
def= min f dX (` i :E i)gi

dX (
P

i E i)
def= min f dX (E i)gi

dX (� Y E) def= dX (E)

3.4. AXIOMATISATIONS FOR ALL EXPRESSIONS 49

If dX (E) > 0 then X is guarded in E .

The following Lemma is a counterpart of Lemma 3.31.

Lemma 3.36 Let dX (G) > 1. If Gf E=X g) c � then Gf F=X g) c � 0 such that � � R � � 0 where

R = f (Gf E=X g; Gf F=X g) j for any G 2 Eg.

Proof: See Appendix A.3. ut

Proposition 3.37 If E ' F f E=X g and X is guarded in F then E ' � X F .

Proof: We show that the relation R = f (Gf E=X g; Gf � X F=X g) j for any G 2 Eg is an observa-

tional equivalence up to ' . That is, we need to show the following assertions:

1. if Gf E=X g) � then there exists � 0 s.t. Gf � X F=X g) c � 0 and � � R � � 0;

2. if Gf � X F=X g) � 0 then there exists � s.t. Gf E=X g) c � and � � R � � 0.

We concentrate on the �rst clause since the second one is similar. The proof follows closely the

arguments in proving Proposition 3.34, thus we only consider the case that G � X .

We write G(E) for Gf E=X g and G2(E) for G(G(E)). Since E ' F (E), we have E ' F 2(E)

since ' is an congruence relation by Proposition 3.35. IfE) � then by Lemma 3.17 there exists

� 1 s.t. F 2(E)) c � 1 and � � � � 1. Since X is guarded in F , i.e., dX (F) > 0, then it follows

that dX (F 2(X)) > 1. By Lemma 3.36, there exists� 2 s.t. F 2(� X F)) c � 2 and � 1 � R � � 2. From

Proposition 3.28 we have� X F � F 2(� X F), thus � X F ' F 2(� X F). By Lemma 3.17 there exists

� 0 s.t. � X F) c � 0 and � 2 � � � 0. From Lemma 3.8 and the transitivity of � R � it follows that

� � R � � 0. ut

It is not di�cult to see that all the propositions proved in th is section for ' , except for Propo-

sition 3.33, are also valid forh . In other words, h is a substitutive congruence relation.

3.4 Axiomatisations for All Expressions

In this section we provide sound and complete axiomatisations for two strong behavioural equiva-

lences: � and � c. The class of expressions to be considered isE.

3.4.1 Axiomatizing Strong Bisimilarity

First we present the axiom systemA r , which includes all axioms and rules displayed in Table 3.3.

We assume the usual rules for equality (re
exivity, symmetry, transitivity and substitutivity), and

the alpha-conversion of bound variables.

The notation A r ` E = F (and A r ` eE = eF for a �nite sequence of equations) means that the

equation E = F is derivable by applying the axioms and rules fromA r . The following theorem

shows that A r is sound with respect to � .

Theorem 3.38 (Soundness of A r) If A r ` E = E 0 then E � E 0.

50 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

S1 E + 0 = E

S2 E + E = E

S3
P

i 2 I E i =
P

i 2 I E � (i) � is any permutation on I

S4
L

i 2 I pi ` i :E i =
L

i 2 I p� (i) ` � (i) :E � (i) � is any permutation on I

S5 (
L

i pi ` i :E i) � p`:E � q`:E = (
L

i pi ` i :E i) � (p + q)`:E

R1 � X E = Ef � X E=X g

R2 If E = F f E=X g, X weakly guarded in F, then E = � X F

R3 � X (E + X) = � X E

Table 3.3: The axiom systemA r

Proof: The soundness of the recursion axiomsR1-3 is shown in Section 3.3.4; the soundness of

S1-4 is obvious, andS5 is a consequence of De�nition 3.6. ut

For the completeness proof, the basic points are: (1) if two expressions are bisimilar then we

can construct an equation set in a certain format (standard format) that they both satisfy; (2)

if two expressions satisfy the same standard equation set, then they can be proved equal byA r .

This schema is inspired by [Mil84, SS00], but in our case the de�nition of standard format and the

proof itself are more complicated due to the presence of bothprobabilistic and nondeterministic

dimensions.

De�nition 3.39 Let eX = f X 1; :::; X m g and fW = f W1; W2; :::g be disjoint sets of variables. Let
eH = f H1; :::; Hm g be expressions with free variables ineX [fW . In the equation set � : eX = eH ,

we call eX formal variables and fW free variables. We say � is standard if each H i takes the form
P

j E f (i;j) +
P

l Wh(i;l) where E f (i;j) =
L

k pf (i;j;k) ` f (i;j;k) :X g(i;j;k) . We call � weakly guarded if

there is no H i s.t. H i ! #(X i). We say that E provably satis�es � if there are expressions
eE = f E1; :::; Em g, with E1 � E and fpv(eE) � fW , such that A r ` eE = eH f eE= eX g.

We �rst recall the theorem of unique solution of equations originally appeared in [Mil84]. Adding

probabilistic choice does not a�ect the validity of this the orem.

Theorem 3.40 (Unique solution of equations I) If � is a weakly guarded equation set with free

variables in fW , then there is an expressionE which provably satis�es � . Moreover, if F provably

satis�es � and has free variables infW , then A r ` E = F .

Proof: Exactly as in [Mil84]. ut

Below we give an extension of Milner's equational characterisation theorem by accommodating

probabilistic choice.

Theorem 3.41 (Equational characterisation I) For any expression E, with free variables in
fW , there exist some expressionseE = f E1; :::; Em g, with E1 � E and fpv(eE) � fW , satisfying m

3.4. AXIOMATISATIONS FOR ALL EXPRESSIONS 51

equations

A r ` E i =
X

j 2 1::n (i)

E f (i;j) +
X

j 2 1::l (i)

Wh(i;j) (i � m)

where E f (i;j) �
L

k2 1::o (i;j) pf (i;j;k) ` f (i;j;k) :Eg(i;j;k) .

Proof: By induction on the structure of E , similar to the proof in [Mil84]. ut

The following completeness proof is closely analogous to that of [SS00]. It is complicated some-

what by the presence of nondeterministic choice. For example, to construct the formal equations, we

need to consider a more re�ned relationL iji 0j 0 underneath the relation K ii 0 while in [Mil84, SS00]

it is su�cient to just use K ii 0.

Theorem 3.42 (Completeness of A r) If E � E 0 then A r ` E = E 0.

Proof: Let E and E 0 have free variables infW . By Theorem 3.41 there are provable equations

such that E � E1, E 0 � E 0
1 and

A r ` E i =
X

j 2 1::n (i)

E f (i;j) +
X

j 2 1::l (i)

Wh(i;j) (i � m)

A r ` E 0
i 0 =

X

j 02 1::n 0(i 0)

E 0
f 0(i 0;j 0) +

X

j 02 1::l 0(i 0)

Wh0(i 0;j 0) (i 0 � m0)

with

E f (i;j) �
M

k2 1::o (i;j)

pf (i;j;k) ` f (i;j;k) :Eg(i;j;k)

E 0
f 0(i 0;j 0) �

M

k 02 1::o 0(i 0;j 0)

p0
f 0(i 0;j 0;k 0) `

0
f 0(i 0;j 0;k 0) :E

0
g0(i 0;j 0;k 0) :

Let I = fhi; i 0i j E i � E 0
i 0g. By hypothesis we haveE1 � E 0

1, so h1; 1i 2 I . Moreover, for each

hi; i 0i 2 I , the following holds, by the de�nition of strong bisimilari ty:

1. There exists a total surjective relation K ii 0 betweenf 1; :::; n(i)g and f 1; :::; n0(i 0)g, given by

K ii 0 = fhj; j 0i j hf (i; j); f 0(i 0; j 0)i 2 I g:

Furthermore, for each hj; j 0i 2 K ii 0 there exists a total surjective relation L iji 0j 0 between

f 1; :::; o(i; j)g and f 1; :::; o0(i 0; j 0)g, given by

L iji 0j 0 = fhk; k0i j ` f (i;j;k) = `0
f 0(i 0;j 0;k 0) and hg(i; j; k); g0(i 0; j 0; k0)i 2 I g:

2. A r `
P

j 2 1::l (i) Wh(i;j) =
P

j 02 1::l 0(i 0) Wh0(i 0;j 0) .

Now, let L iji 0j 0(k) denote the image ofk 2 f 1; :::; o(i; j)g under L iji 0j 0 and L � 1
iji 0j 0(k0) the preimage

of k0 2 f 1; :::; o0(i 0; j 0)g under L iji 0j 0. We write [k]iji 0j 0 for the set L � 1
iji 0j 0(L iji 0j 0(k)) and [k0]iji 0j 0 for

L iji 0j 0(L � 1
iji 0j 0(k0)). It follows from the de�nitions that

1. If hi; i 0
1i 2 I , hi; i 0

2i 2 I , hj; j 0
1 i 2 K ii 0

1
and hj; j 0

2 i 2 K ii 0
2
, then [k]iji 0

1 j 0
1

= [k]iji 0
2 j 0

2
.

2. If q1 2 [k]iji 0j 0 and q2 2 [k]iji 0j 0, then ` f (i;j;q 1) = ` f (i;j;q 2) and Eg(i;j;q 1) � Eg(i;j;q 2) .

52 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

De�ne � ijk =
P

q2 [k] iji 0j 0
pf (i;j;q) for any i 0; j 0 such that hi; i 0i 2 I and hj; j 0i 2 K ii 0; de�ne

� 0
i 0j 0k 0 =

P
q02 [k 0] iji 0j 0

p0
f 0(i 0;j 0;q0) for any i; j such that hi; i 0i 2 I and hj; j 0i 2 K ii 0. It is easy to see

that whenever hi; i 0i 2 I , hj; j 0i 2 K ii 0 and hk; k0i 2 L iji 0j 0 then � ijk = � 0
i 0j 0k 0.

We now consider the formal equations, one for eachhi; i 0i 2 I :

X i;i 0 =
X

hj;j 0i2 K ii 0

H f (i;j) ;f 0(i 0;j 0) +
X

j 2 1::l (i)

Wh(i;j)

where

H f (i;j) ;f 0(i 0;j 0) �
M

hk;k 0i2 L iji 0j 0

(
pf (i;j;k) p0

f 0(i 0;j 0;k 0)

� ijk
)` f (i;j;k) :X g(i;j;k) ;g0(i 0;j 0;k 0) :

These equations are provably satis�ed when eachX i;i 0 is instantiated to E i , since K ii 0 and L iji 0j 0

are total and the right-hand side di�ers at most by repeated summands from that of the already

proved equation for E i . Note that each probabilistic branch pf (i;j;k) ` f (i;j;k) :Eg(i;j;k) in E i becomes

the probabilistic summation of several branches like

M

q02 [k 0] iji 0j 0

(
pf (i;j;k) p0

f 0(i 0;j 0;q0)

� ijk
)` f (i;j;k) :Eg(i;j;k)

in H f (i;j) ;f 0(i 0;j 0) f E i =X i;i 0gi , where hi; i 0i 2 I , hj; j 0i 2 K ii 0 and hk; k0i 2 L iji 0j 0. But they are

provably equal because

P
q02 [k 0] iji 0j 0

(
pf (i;j;k) p0

f 0(i 0;j 0;q 0)

� ijk
) = pf (i;j;k)

� ijk
�
P

q02 [k 0] iji 0j 0
p0

f 0(i 0;j 0;q0)

= pf (i;j;k)

� ijk
� � 0

i 0j 0k 0 = pf (i;j;k)

and then the axiom S5 can be used. Symmetrically, the equations are provably satis�ed when each

X i;i 0 is instantiated to E 0
i 0; this depends on the surjectivity of K ii 0 and J iji 0j 0.

Finally, we note that each X i;i 0 is weakly guarded in the right-hand sides of the formal equations.

It follows from Theorem 3.40 that ` E i = E 0
i 0 for eachhi; i 0i 2 I , and hence` E = E 0. ut

3.4.2 Axiomatizing Strong Probabilistic Bisimilarity

The di�erence between � and � c is characterised by the following axiom:

C
X

i 2 1::n

M

j

pij ` ij :E ij =
X

i 2 1::n

M

j

pij ` ij :E ij +
M

i 2 1::n

M

j

r i pij ` ij :E ij

where
P

i 2 1::n r i = 1. It is easy to show that the expressions on the left and right sides are strong

probabilistic bisimilar. We denote A r [f Cg by A rc .

Theorem 3.43 (Soundness and completeness of A rc) E � c E 0 i� A rc ` E = E 0.

Proof: The soundness part follows immediately by the de�nition of ! c. Below we focus on the

completeness part.

Let E and E 0 have free variables infW . By Theorem 3.41 there are provable equations such that

E � E1, E 0 � E 0
1 and

A rc ` E i = A i (i � m)

3.5. AXIOMATISATIONS FOR GUARDED EXPRESSIONS 53

A rc ` E 0
i 0 = A0

i 0 (i 0 � m0)

where A i �
P

j 2 1::n (i) E f (i;j) +
P

j 2 1::l (i) Wh(i;j) and

E f (i;j) �
M

k2 1::o (i;j)

pf (i;j;k) ` f (i;j;k) :Eg(i;j;k)

Similar for the form of A0
i 0.

Next we shall use axiomC to saturate the right hand side of each equation with some summands

so as to transform eachA i (resp. A0
i 0) into a provably equal expressionB i (resp. B 0

i 0) which satis�es

the following property:

(*) For any C1; C2 2 eB [fB 0 with C1 � c C2, if C1 ! � 1 then there exists some� 2 s.t.

C2 ! � 2 and � 1 � � c � 2.

Initially we set eB = eA and fB 0 = fA0. Let V = f (C1; C2) j C1 � c C2 and C1; C2 2 eA [fA0g.

Clearly the set V is �nite because there are �nitely many expressions in eA [fA0. Without loss of

generality, we take a pair (C1; C2) from V such that C1 � A0
i 0 2 fA0 and C2 � A i 2 eA (we do

similar manipulations for other three cases, namely (i)C1; C2 2 eA; (ii) C1; C2 2 fA0; (iii) C1 2 eA

and C2 2 fA0). If A0
i 0 ! � 0 then for some� we haveA i ! c � and � � � c � 0, by the de�nition of � c.

If A i ! � (obviously we are in this case if� = #(X)) we do nothing but go on to pick another pair

from V to do the analysis. Otherwise� is a convex combination� = r1� 1 + ::: + rn � n and A i ! � j

for each j � n. Hence each� j must be in the form f (` f (i;j;k) ; Eg(i;j;k) : pf (i;j;k))gk and E f (i;j) is a

summand ofA i (so it is also a summand ofB i). By axiom C we have

A rc ` B i = B i +
M

j 2 1::n

M

k

r j pf (i;j;k) ` f (i;j;k) :Eg(i;j;k) :

Now we updateB i to be to the expression on the right hand side of last equation. To this point we

have �nished the analysis to the pair (C1; C2). We need to pick a di�erent pair from V to iterate

the above procedure. When all the pairs inV are exhausted, we end up with eB and fB 0 which are

easy to be veri�ed to satisfy property (*). Observe that only axiom C is involved when updating

B i , so we have the following results:

A rc ` E i = B i (i � m)

A rc ` E 0
i 0 = B 0

i 0 (i 0 � m0)

From now on, by using the above equations as our starting point, the subsequent arguments are like

those for Theorem 3.42, so we omit them. ut

3.5 Axiomatisations for Guarded Expressions

Now we proceed with the axiomatisations of the two weak behavioural equivalences:h and ' . We

are not able to give a complete axiomatisation for the whole set of expressions (and we conjecture

that it is not possible, see Section 3.7), so we restrict to the subset ofE consisting of guarded

expressionsonly. An expression is guarded if for each of its subexpression of the form � X F , the

variable X is guarded in F (cf. De�nition 3.2).

54 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

R2 0 If E = F f E=X g, X guarded in F, then E = � X F

T1
L

i pi �: (E i + X) = X +
L

i pi �: (E i + X)

T2 (
L

i pi ` i :E i) � p�: (F +
L

j qj hj :Fj) + (
L

i pi ` i :E i) � (
L

j pqj hj :Fj)

= (
L

i pi ` i :E i) � p�: (F +
L

j qj hj :Fj)

T3 (
L

i pi ` i :E i) � p`:(F +
L

j qj �:F j) + (
L

i pi ` i :E i) � (
L

j pqj `:F j)

= (
L

i pi ` i :E i) � p`:(F +
L

j qj �:F j)

Table 3.4: Some laws for the axiom systemA gd

3.5.1 Axiomatizing Divergency-Sensitive Equivalence

We �rst study the axiom system for h . As a starting point, let us consider the systemA rc . Clearly,

S1-5 are still valid for h , as well asR1 . R3 turns out to be not needed in the restricted language

we are considering. As forR2 , we replace it with its (strongly) guarded version, which we shall

denote asR2 0 (see Table 3.4). As in the standard process algebra, we need some � -laws to abstract

from invisible steps. For h we use the probabilistic � -laws T1-3 shown in Table 3.4. Note that T3

is the probabilistic extension of Milner's third � -law ([Mil89b] page 231), andT1 and T2 together

are equivalent, in the nonprobabilistic case, to Milner's second� -law. However, Milner's �rst � -law

cannot be derived fromT1-3 , and it is actually unsound for h . Below we let A gd = f R2 0, T1-3 g

[A rc nf R2-3 g.

Theorem 3.44 (Soundness of A gd) If A gd ` E = E 0 then E h E 0.

Proof: The rule R2 0 can be shown to be sound as Proposition 3.37. The soundness ofT1-3 , and

therefore of A gd , is evident. ut

For the completeness proof, it is convenient to use the following saturation property, which relates

operational semantics to term transformation, and which can be shown by using the probabilistic

� -laws and the axiomC.

Lemma 3.45 (Saturation) 1. If E) � with � = f (` i ; E i : pi)gi , then A gd ` E = E +
L

i pi ` i :E i ;

2. If E) c � with � = f (` i ; E i : pi)gi , then A gd ` E = E +
L

i pi ` i :E i ;

3. If E) #(X) then A gd ` E = E + X .

Proof: The �rst and third clauses are proved by transition inductio n on the inference ofE) � ;

the second clause can be considered as a corollary of the �rstone. See Appendix A.4 for more

details. ut

To show the completeness ofA gd , we need some notations. Given a standard equation set

� : eX = eH , which has free variablesfW , we de�ne the relations ! � � eX � P ((Var [L) � eX) (the

notation P(V) represents all distributions on V) as X i ! � � i� H i ! � . From ! � we can de�ne

3.5. AXIOMATISATIONS FOR GUARDED EXPRESSIONS 55

the weak transition) � in the same way as in Section 3.2. We writeX i � X k i� X i) � � , with

� = f (` j ; X j : pj)gj 2 J , k 2 J and `k = � . We shall call � guardedif there is no X i s.t. X i � X i .

We call � saturated if for all X 2 eX , X) � � implies X ! � � . The variable W is guardedin � if it

is not the case that X 1 ! � #(W) or X 1 � ! � #(W).

For guarded expressions, the equational characterisationtheorem and the unique solution theo-

rem given in last section can now be re�ned, as done in [Mil89b].

Theorem 3.46 (Equational characterisation II) Every guarded expressionE with free vari-

ables fW provably satis�es a standard guarded equation set� with free variables in fW . Moreover, if

W is guarded in E then W is guarded in � .

Proof: By induction on the structure of E . Consider the case that E �
L

i 2 I pi ` i :E i . For

each i 2 I , let X i be the distinguished variable of the equation set� i for E i . We can de�ne � as

f X =
L

i 2 I pi ` i :X i g [
S

i 2 I � i , with the new variable X distinguished. All other cases are the same

as in [Mil89b]. ut

Lemma 3.47 Let E provably satis�es the standard guarded equation set� . Then there is a satu-

rated, standard, and guarded equation set� 0 provably satis�ed by E.

Proof: Let � be the equation set eX = eH and A gd ` eE = eH f eE= eX g. By using Lemma 3.45,

we show that if X i) � then A gd ` E i = E i +
L

j pj ` j :E j when � � f (` j ; X j : pj)gj , and

A gd ` E i = E i + X when � � #(X). Repeat this procedure for all weak transitions ofE i , at last

we get A gd ` E i = H 0
i f eE= eX g. Hence we can take� 0 to be the equation set eX = fH 0. ut

Theorem 3.48 (Unique solution of equations II) If � is a guarded equation set with free vari-

ables in fW , then there is an expressionE which provably satis�es� . Moreover, if F provably satis�es

� and has free variables infW , then A gd ` E = F .

Proof: Nearly the same as the proof of Theorem 3.40, just replacing the recursion ruleR2 with

R2 0. ut

The completeness result can be proved in a similar way as Theorem 3.42. The main di�erence

is that here the key role is played by equation sets which are not only in standard format, but also

saturated. The transformation of a standard equation set into a saturated one is obtained by using

Lemma 3.45.

Theorem 3.49 (Completeness of A gd) If E and E 0 are guarded expressions andE h E 0 then

A gd ` E = E 0.

Proof: By Theorem 3.46 there are provable equations such thatE � E1, E 0 � E 0
1 and

A rc ` E i = A i (i � m)

A rc ` E 0
i 0 = A0

i 0 (i 0 � m0)

For any C 2 eA [fA0, we assume by Lemma 3.47 thatC is saturated. Therefore it is easy to show

that C) c � implies C ! c � . Let C0 2 eA [fA0. We note the interesting property that if C h C0

56 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

T4 `:�:E = `:E

T5 If �:E = �:E + F and �:F = �:F + E then �:E = �:F .

Table 3.5: Two � -laws for the axiom systemA go

and C ! � then there exists � 0 s.t. C0 ! c � 0 and � � h � 0. Thanks to this property the remaining

arguments are quite similar to that in Theorem 3.43, thus areomitted. ut

3.5.2 Axiomatizing Observational Equivalence

In this section we focus on the axiomatisation of ' . In order to obtain completeness, we can

follow the same schema as for Theorem 3.42, with the additional machinery required for dealing

with observational equivalence, like in [Mil89b]. The crucial point of the proof is to show that,

if E ' F , then we can construct an equation set in standard format which is satis�ed by E and

F . The construction of the equation is more complicated than in [Mil89b] because of the subtlety

introduced by the probabilistic dimension (cf. Theorem 3.53). Indeed, it turns out that the simple

probabilistic extension of Milner's three � -laws would not be su�cient, and we need an additional

rule for the completeness proof to go through. We shall further comment on this rule at the end of

Section 3.6.

The probabilistic extension of Milner's � -laws are axiomsT1-4 , whereT1-3 are those introduced

in previous section, andT4 , de�ned in Table 3.5, takes the same form as Milner's �rst � -law [Mil89b].

In the same tableT5 is the additional rule mentioned above. We letA go = A gd [f T4-5 g.

Theorem 3.50 (Soundness of A go) If A go ` E = F then E ' F .

Proof: Rule T5 is proved to be sound in Proposition 3.33. The soundness ofT4 , and therefore of

A go , is straightforward. ut

The rest of the section is devoted to the completeness proof of A go . First we need two basic

properties of weak combined transitions.

Lemma 3.51 1. If E �) c � then �:E) c � ;

2. If E �) c #(X) then E) #(X).

Proof: The �rst clause is easy to show. Let us consider the second one. If #(X) is a convex

combination of � 1; ::; � n and E) � i for all i 2 1::n, then each� i must assign probability 1 to (X; 0),

thus � i = #(X). ut

Lemma 3.52 If E �) c � with � = f (` i ; E i : pi)gi then A gd ` �:E = �:E +
L

i pi ` i :E i .

Proof: It follows from Lemma 3.51 and Lemma 3.45. ut

The following theorem plays a crucial role in proving the completeness ofA go .

3.5. AXIOMATISATIONS FOR GUARDED EXPRESSIONS 57

Theorem 3.53 Let E provably satisfy� and F provably satisfy� 0, where both� and � 0 are standard,

guarded equation sets, and letE ' F . Then there is a standard, guarded equation set� 00 satis�ed

by bothE and F .

Proof: Suppose that eX = f X 1; :::; X m g, eY = f Y1; :::; Yn g and fW = f W1; W2; :::g are disjoint sets

of variables. Let

� : eX = eH

� 0 : eY = eJ

with fpv(eH) � eX [fW, fpv(eJ) � eY [fW , and that there are expressionseE = f E1; :::; Em g and
eF = f F1; :::; Fn g with E1 � E , F1 � F , and fpv(eE) [fpv(eF) � fW , so that

A go ` eE = eH f eE= eX g

A go ` eF = eJ f eF=eYg:

Consider the least equivalence relationR � (eX [eY) � (eX [eY) such that

1. whenever (Z; Z 0) 2 R and Z ! � , then there exists � 0 s.t. Z 0 �) c � 0 and � � R � 0;

2. (X 1; Y1) 2 R and if X 1 ! � then there exists � 0 s.t. Y1) c � 0 and � � R � 0.

Clearly R is a weak probabilistic bisimulation on the transition system over eX [eY , determined by

! def= ! � [! � 0. Now for two given distributions � = f (` i ; X i : pi)gi 2 I , � 0 = f (hj ; Yj : qj)gj 2 J , with

� � R � 0, we introduce the following notations:

K �;� 0 = f (i; j) j i 2 I; j 2 J; ` i = hj and (X i ; Yj) 2 Rg

� i =
P

f pi 0 j i 0 2 I; u i 0 = ` i ; and (X i ; X i 0) 2 Rg for i 2 I

� j =
P

f pj 0 j j 0 2 J; vj 0 = hj ; and (Yj ; Yj 0) 2 Rg for j 2 J

Since� � R � 0 it follows by de�nition that if (i; j) 2 K �;� 0, for some�; � 0, then � i = � j . Thus we can

de�ne the expression

G�;� 0
def=

M

(i;j)2 K �;� 0

pi qj

� i
` i :Z ij

which will play the same role as the expressionH f (i;j) ;f 0(i 0;j 0) in the proof of Theorem 3.42. On the

other hand, if � = � 0 = #(X) we simply de�ne the expressionG�;� 0
def= X .

Based on the aboveR we choose a new set of variableseZ such that

eZ = f Z ij j X i 2 eX; Y j 2 eY and (X i ; Yj) 2 Rg :

Furthermore, for each Z ij 2 eZ we construct three auxiliary �nite sets of expressions, denoted by

A ij , B ij and Cij , by the following procedure.

1. Initially the three sets are empty.

2. For each � with X i ! � , arbitrarily choose one (and only one | the same principle ap plies

in other cases too)� 0 (if it exists) satisfying � � R � 0 and Yj) c � 0, construct the expression

G�;� 0 and update A ij to be A ij [f G�;� 0g; Similarly for each � 0 with Yj ! � 0, arbitrarily choose

one � (if it exists) satisfying � � R � 0 and X i) c � , construct G�;� 0 and update A ij to be

A ij [f G�;� 0g.

58 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

3. For each � with X i ! � , arbitrarily choose one � 0 (if it exists) satisfying � � R � 0, Yj
�) c � 0

but not Yj) c � 0, construct the expressionG�;� 0 and update B ij to be B ij [f G�;� 0g.

4. For each � 0 with Yj ! � 0, arbitrarily choose one � (if it exists) satisfying � � R � 0, X i
�) c �

but not X i) c � , construct G�;� 0 and update Cij to be Cij [f G�;� 0g.

Clearly the three sets constructed in this way are �nite. Now we build a new equation set

� 00: eZ = eL

where � 00
11 is the distinguished variable and

L ij =

(P
G2 A ij

G if B ij [Cij = ;

�: (
P

G2 A ij [B ij [C ij
G) otherwise.

We assert that E provably satis�es the equation set � 00. To see this, we choose expressions

Gij =

(
E i if B ij [Cij = ;

�:E i otherwise

and verify that A go ` Gij = L ij f eG=eZg.

In the case that B ij [Cij = ; , all those summands ofL ij f eG=eZg which are not variables are of

the forms:
M

(i;j)2 K �;� 0

pi qj

� i
` i :E i or

M

(i;j)2 K �;� 0

pi qj

� i
` i :�:E i :

By T4 we can transform the second form into the �rst one. Then by some arguments similar to

those in Theorem 3.42, together with Lemma 3.45, we can show that

A go ` L ij f eG=eZg = H i f eE= eX g = E i :

On the other hand, if B ij [Cij 6= ; , we let Cij = f D1; :::; Dog (Cij = ; is a special case of the

following argument) and D =
P

l 2 1::o D l f eG=eZg. As in last case we can show that

A go ` L ij f eG=eZg = �: (H i f eE= eX g + D):

For any l with 1 � l � o, let D l f eG=eZg =
L

k pk uk :Ek . It is easy to see that E i
�) c � with

� = f (uk ; Ek : pk)gk . So by Lemma 3.52 it holds that

A go ` �:E i = �:E i + D l f eG=eZg:

As a result we can infer

A go ` �:E i = �:E i + D = �:E i + (E i + D):

by Lemma 3.45. Similarly,

A go ` �: (E i + D) = �: (E i + D) + E i :

Consequently it follows from T5 that

A go ` �:E i = �: (E i + D) = �: (H i f eE= eX g + D) = L ij f eG=eZg:

3.5. AXIOMATISATIONS FOR GUARDED EXPRESSIONS 59

X1

X1

a

a

a
t

1/2

1/2

Y1

Y2

a a

1/2 1/2

Y3
a

t

a

Z

a

(1) (2) (3)

Figure 3.3: Observationally equivalent statesX 1; Y1 and Z

(i; j) A ij B ij Cij

(1; 1) f 1
2 a:Z22 � 1

2 a:Z23g ; ;

(1; 2) f a:Z23g ; f �:Z 13g

(1; 3) f a:Z22g ; ;

(2; 1) f 1
2 a:Z22 � 1

2 a:Z23g f 1
4 a:Z22 � 1

4 a:Z23 � 1
2 �:Z 11g ;

(2; 2) f a:Z23; 1
2 a:Z23 � 1

2 �:Z 13g ; f �:Z 23g

(2; 3) f a:Z22g f 1
2 a:Z22 � 1

2 �:Z 13g ;

Table 3.6: The construction of setsA ij ; B ij ; Cij

In the same way we can show thatF provably satis�es � 00. At last � 00 is guarded because� and � 0

are guarded. ut

To help understanding the proof of the above theorem, we illustrate the construction of the

equation set � 00by a simple example. Consider the equation sets� and � 0 as follows.

� : X 1 = a:X 2 � 0 : Y1 = 1
2 a:Y2 � 1

2 a:Y3

X 2 = a:X 2 + 1
2 a:X 2 � 1

2 �:X 1 Y2 = a:Y3 + �:Y3

Y3 = a:Y2

The two equation sets describes the transition graphs in Figure 3.3 (1) and (2) respectively. Note

that if E1; E2 provably satisfy � , and F1; F2; F3 provably satisfy � 0, then E1 ' F1 ' � Z (a:Z) (cf.

Figure 3.3 (3)).

Let R be the equivalence relation that has a unique equivalence classf X 1; X 2; X 3; Y1; Y2g. It is

easy to check thatR is a weak bisimulation on the transition system over eX [eY . Now we take new

variables f Z ij j 1 � i � 2; 1 � j � 3g and form the setsA ij ; B ij and Cij for each variable Z ij , as

displayed in Table 3.6, by using the procedure presented in the above proof.

60 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

We construct the equation set � 00, based on all expressions shown in Table 3.6.

� 00: Z11 = 1
2 a:Z22 � 1

2 a:Z23

Z12 = �: (a:Z23 + �:Z 13)

Z13 = a:Z22

Z21 = �: (1
2 a:Z22 � 1

2 a:Z23 + 1
4 a:Z22 � 1

4 a:Z23 � 1
2 �:Z 11)

Z22 = �: (a:Z23 + 1
2 a:Z23 � 1

2 �:Z 13 + �:Z 23)

Z23 = �: (a:Z22 + 1
2 a:Z22 � 1

2 �:Z 13)

We can see that E1 provably satis�es � 00 by substituting E1, �:E 1, E1, �:E 2, �:E 2, �:E 2 for

Z11; Z12; Z13; Z21; Z22; Z23, respectively; similarly F1 provably satis�es � 00by substituting F1, �:F 2,

F3, �:F 1, �:F 2, �:F 3 for these variables.

Theorem 3.54 (Completeness of A go) If E and F are guarded expressions andE ' F , then

A go ` E = F .

Proof: A direct consequence by combining Theorem 3.46, 3.53 and 3.48. ut

3.6 Axiomatisations for Finite Expressions

In this section we consider the recursion-free fragment ofE, that is the class Ef of all expressions

which do not contain constructs of the form � X F . In other words all expressions inEf have the

form:
P

i

L
j pij uij :E ij +

P
k X k .

We de�ne four axiom systems for the four behavioural equivalences studied in this paper. Basi-

cally A s ; A sc ; A fd ; A fo are obtained from A r , A rc , A gd , A go respectively, by cutting away all those

axioms and rules that involve recursions.

A s
def= f S1-5g Asc

def= A s [f Cg

A fd
def= A sc [f T1-3 g A fo

def= A fd [f T4-5 g

Theorem 3.55 (Soundness and completeness) For any E; F 2 Ef ,

1. E � F i� A s ` E = F ;

2. E � c F i� A sc ` E = F ;

3. E h F i� A fd ` E = F ;

4. E ' F i� A fo ` E = F .

The soundness part is obvious. The completeness can be shownby following the lines of previous

sections. However, since there is no recursion here, we havea much simpler proof which does not

use the equational characterisation theorem and the uniquesolution theorem. Roughly speaking,

3.6. AXIOMATISATIONS FOR FINITE EXPRESSIONS 61

all the clauses are proved by induction on the depth of the expressions. We de�ne the depth of a

process,d(E), as follows.

d(0) = 0

d(X) = 1

d(
L

i pi ` i :E i) = 1 + maxf E i gi

d(
P

i E i) = maxf d(E i)gi

The completeness proof ofA fo is a bit tricky. In the classical process algebra the proof can

be carried out directly by using Hennessy Lemma [Mil89a], which says that if E � F then either

�:E ' F or E ' F or E ' �:F . In the probabilistic case, however, Hennessy Lemma does not hold.

For example, let

E def= a and F def= a + (
1
2

�:a �
1
2

a):

We can check that: (1) �:E 6' F , (2) E 6' F , (3) E 6' �:F . In (1) the distribution f (�; E : 1)g cannot

be simulated by any distribution from F . In (2) the distribution f (�; a : 1
2); (a; 0 : 1

2)g cannot be

simulated by any distribution from E. In (3) the distribution f (�; F : 1)g cannot be simulated by

any distribution from E.

Fortunately, to prove the completeness ofA fo , it is su�cient to use the following weaker property.

Lemma 3.56 (Promotion) For any E; F 2 Ef , if E � F then A fo ` �:E = �:F .

Proof: By induction on d = d(E) + d(F). We consider the nontrivial case that d > 0.

If X is a nondeterministic summand ofE , then E ! #(X). Since E � F it holds that F �) c

#(X). By Lemma 3.51 we have�:F) #(X). It follows from (the recursion-free version of)

Lemma 3.45 that A fd ` �:F = �:F + X .

Let
L

i 2 I pi ` i :E i be any summand ofE . Then we have E ! � , with � = f (` i ; E i : pi)gi 2 I .

Since E � F , there exists � 0, with � 0 = f (hj ; Fj : qj)gj 2 J s.t. F �) c � 0 and � � � � 0. For any

k; l 2 I with `k = ` l and Ek � E l , it follows from T4 and induction hypothesis that A fo ` `k :Ek =

`k :�:E k = ` l :�:E l = ` l :E l . By S5 we can derive that A fo `
L

i 2 I pi ` i :E i =
L

i 02 I 0 p0
i 0`0

i 0:E 0
i 0, where

the process on the right hand side is \compact", i.e., for anyk0; l0 2 I 0, if `0
k 0 = `0

l 0 and E 0
k 0 = E 0

l 0

then k0 = l0. Similarly we can derive A fo `
L

j 2 J qj hj :Fj =
L

j 02 J 0 q0
j 0h0

j 0:F 0
j 0 with the process on

the right hand side \compact". From � � � � 0 and the soundness ofA fd , it is easy to prove that

A fo `
L

i 02 I 0 p0
i 0`0

i 0:E 0
i 0 =

L
j 02 J 0 q0

j 0h0
j 0:F 0

j 0 since each probabilistic branch of one process is provably

equal to a unique branch of the other process. It follows thatA fo `
L

i 2 I pi ` i :E i =
L

j 2 J qj hj :Fj .

By (a recursion-free version of) Lemma 3.52 we inferA fo ` �:F = �:F +
L

j 2 J qj hj :Fj = �:F +
L

i 2 I pi ` i :E i .

In summary A fo ` �:F = �:F + E. Symmetrically A fo ` �:E = �:E + F . ThereforeA fo ` �:E =

�:F by T5 . ut

The promotion lemma is inspired by [FY03], where a similar result is proved for a language of

mobile processes.

At last, the completeness part of Theorem 3.55 (4) can be proved as Lemma 3.56. Note that

for any k; l 2 I with uk = ul and Ek � E l , we derive A fo ` uk :Ek = ul :E l by using T4 and the

promotion lemma instead of using induction hypothesis.

62 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

S1 E + 0 = E

S2 E + E = E

S3
P

i 2 I E i =
P

i 2 I E � (i) � is any permutation on I

S4
L

i 2 I pi ` i :E i =
L

i 2 I p� (i) ` � (i) :E � (i) � is any permutation on I

S5 (
L

i pi ` i :E i) � p`:E � q`:E = (
L

i pi ` i :E i) � (p + q)`:E

C
P

i 2 1::n

L
j pij ` ij :E ij =

P
i 2 1::n

L
j pij ` ij :E ij +

L
i 2 1::n

L
j r i pij ` ij :E ij

T1
L

i pi �: (E i + X) = X +
L

i pi �: (E i + X)

T2 (
L

i pi ` i :E i) � p�: (F +
L

j qj hj :Fj) + (
L

i pi ` i :E i) � (
L

j pqj hj :Fj)

= (
L

i pi ` i :E i) � p�: (F +
L

j qj hj :Fj)

T3 (
L

i pi ` i :E i) � p`:(F +
L

j qj �:F j) + (
L

i pi ` i :E i) � (
L

j pqj `:F j)

= (
L

i pi ` i :E i) � p`:(F +
L

j qj �:F j)

T4 `:�:E = `:E

T5 If �:E = �:E + F and �:F = �:F + E then �:E = �:F .

R1 � X E = Ef � X E=X g

R2 If E = F f E=X g, X weakly guarded in F, then E = � X F

R2 0 If E = F f E=X g, X guarded in F, then E = � X F

R3 � X (E + X) = � X E

In C, there is a side condition
P

i 2 1::n r i = 1.

Table 3.7: All the axioms and rules

It is worth noticing that rule T5 is necessary to prove Lemma 3.56. Consider the following two

expressions:�:a and �: (a + (1
2 �:a � 1

2 a)). It is easy to see that they are observational equivalent.

However, we cannot prove their equality if ruleT5 is excluded from the systemA fo . In fact, by using

only the other rules and axioms it is impossible to transform�: (a + (1
2 �:a � 1

2 a)) into an expression

without a probabilistic branch p�:a occurring in any subexpression, for somep with 0 < p < 1. So

it is not provably equal to �:a , which has no probabilistic choice.

3.7 Summary

In this chapter we have proposed a probabilistic process calculus which corresponds to Segala and

Lynch's probabilistic automata. We have presented strong bisimilarity, strong probabilistic bisimi-

larity, divergency-sensitive equivalence and observational equivalence. Sound and complete inference

systems for the four behavioural equivalences are summarized in Table 3.8.

Note that we have axiomatized divergency-sensitive equivalence and observational equivalence

only for guarded expressions. For unguarded expressions whose transition graphs include� -loops,

we conjecture that the two behavioural equivalences are undecidable and therefore not �nitely

axiomatizable. The reason is the following: in order to decide whether two expressionsE and F are

3.7. SUMMARY 63

strong equivalences �nite expressions all expressions

� A s : S1-5 A r : S1-5,R1-3

� c A sc : S1-5,C A rc : S1-5,R1-3,C

weak equivalences �nite expressions guarded expressions

h A fd : S1-5,C,T1-3 A gd : S1-5,C,T1-3,R1,R2 0

' A fo : S1-5,C,T1-5 A go: S1-5,C,T1-5,R1,R2 0

Table 3.8: All the inference systems

observationally equivalent, one can compute the two sets

SE = f � j E) � g and SF = f � j F) � g

and then compare them to see whether each element ofSE is related to some element ofSF and vice

versa. For guarded expressionsE and F , the sets SE and SF are always �nite and thus they can

be compared in �nite time. For unguarded expressions, thesesets may be in�nite, and so the above

method does not apply. Furthermore, these sets can be in�nite even when we factorize them with

respect to an equivalence relation as required in the de�nition of weak probabilistic bisimulation.

For example, consider the expressionE = � X (1
2 a � 1

2 �:X). It can be proved that SE is an in�nite

set f � i j i � 1g, where

� i = f (a; 0 : (1 �
1
2i)) ; (�; E :

1
2i)g:

Furthermore, for each i; j � 1 with i 6= j we have � i 6�R � j for any equivalence relationR which

distinguishesE from 0. Hence the setSE modulo R is in�nite.

It should be remarked that the presence of� -loops in itself does not necessarily cause non-

decidability. For instance, the notion of weak probabilistic bisimulation de�ned in [Seg95, CS02]

is decidable for �nite-state PA. The reason is that in those works weak transitions are de�ned in

terms of schedulers, and one may get some weak transitions that are not derivable by the (�nitary)

inference rules used in this paper. For instance, consider the transition graph of the above example.

The de�nition of [Seg95, CS02] allows the underlying probabilistic execution to be in�nite as long

as that case occurs with probability 0. Hence with that de�ni tion one has a weak transition that

leads to the distribution � = f (a; 0 : 1)g. Thus each� i becomes a convex combination of� and � (E),

i.e. these two distributions are enough to characterise allpossible weak transitions. By exploiting

this property, Cattani and Segala gave a decision algorithmfor weak probabilistic bisimulation in

[CS02].

In this chapter we have chosen, instead, to generate weak transitions via (�nitary) inference rules,

which means that only �nite executions can be derived. This approach, which is also known in the

literature ([SL94]), has the advantage of being more formal, and in the case of guarded recursion

it is equivalent to the one of [Seg95, CS02]. In the case of unguarded recursion, however, we feel

that it would be more natural to consider also the \limit" wea k transitions of [Seg95, CS02]. The

axiomatisation of the corresponding notion of observational equivalence is an open problem.

64 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

Chapter 4

Axiomatisations for Typed Mobile

Processes

In this chapter we study the impact of types on the algebraic theory of the � -calculus. The type

system has capability types, which give rise to a natural andpowerful subtyping relation { the main

source of challenges and interests of this chapter. We consider two variants of typed bisimilarity,

both in their late and in their early version. For both of them , we give complete axiomatisations

for the closed �nite terms. For one of the two variants, we provide a complete axiomatisation for

the open �nite terms.

The contents of this chapter are presented in the following order. In Section 4.1 we introduce

the syntax, semantics and typed bisimilarity for a version of the � -calculus without parallelism.

This small language already shows the major obstacles for axiomatisations and hence makes the

presentation of our ideas neater. In Section 4.2 we set up a complete axiomatisation for closed terms.

In Section 4.3 we axiomatize the typed bisimilarity for all � nite terms. In Section 4.4 we examine

other equivalences and relate their axiomatisations to theresults obtained in the previous sections.

In Section 4.5 we show how the operator of parallel composition is admitted in the language. The

e�ect on the axiomatisations is to add an expansion law to eliminate all occurrences of the operator.

Finally we end this chapter with some concluding remarks.

4.1 A Fragment of The Typed � -calculus

In this section we review the� -calculus (without parallelism), capability types, the usual operational

semantics, typed labelled transition system as well as typed bisimilarity.

4.1.1 Standard Operational Semantics

We assume an in�nite set of channels, ranged over bya; b; : : :, and an in�nite set of variables, ranged

over by x; y; : : :. We write � for the unit value (we shall useunit as the only base type). Channels,

variables and � are the names, ranged over byu; v; : : :. Below is the syntax of �nite processes (also

65

66 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

called terms).

P; Q ::= 0 j �:P j u(x : T):P j �uv:P j P + Q j (�a : T)P j 'P Q

' ::= [u = v] j : ' j ' ^

It has the usual constructors of �nite monadic � -calculus: inaction, pre�x, sum and restriction.

The match constructor is replaced by a more generalcondition, ranged by '; etc, and produced

by match, negation and conjunction. Mismatching like [u 6= v] abbreviates : [u = v]. We also use

_, which can be derived from^ as usual. Here'P Q is an if-then-else construct on the boolean

condition ' . We omit the else branchQ when it is 0. We have not included an operator of recursion

because our main results in this chapter are about axiomatisations for �nite terms. However, all

results and de�nitions in Section 4.1 remain valid when recursion is added.

There is a channel-binding and a variable-binding operator. In (�a : S)P the displayed occur-

rence of channela is binding with scopeP. In u(x : T):P the occurrence of variablex is binding

with scope P. An occurrence of a channel (resp. variable) in a process isbound if it lies within

the scope of a binding occurrence of the channel (resp. variable). An occurrence of a channel or a

variable in a process isfree if it is not bound. We write fn(P) and fv(P) for the set of free names

and the set of free variables, respectively, inP. We usen(') for all names appearing in' . When '

has no variables, [[']] denotes the boolean value of' .

When fv(P) 6= ; , P is an open term. We can make open terms closed by the use ofclosing

substitutions, ranged over by �; � 0; � i ; � � � , which are substitutions mapping variables to channels

and acting as identity on channels (thus similar to the concept of ground substitution used in term

rewriting systems [Zan03]). In the calculus, the distinction between channels and variables simpli�es

certain technical details; see for instance the discussionon the rules for substitutivity of pre�xes

in Section 4.3: the rules are di�erent depending on whether the pre�xes use channels or variables.

(This is not the case in the untyped case: for instance, [PS95] does not distinguish between variables

and channels, but it is quite straightforward to adapt the work to the case where there is such a

distinction.)

The standard operational semantics is presented in the latestyle in Table 4.1. The symmetric

rule of sum is omitted. In a transition P ��! P0, the closed term P may become open inP0 after

performing the action � . As usual there are four forms of actions:� (interaction), a(x : T) (input),

�ab (free output), �a(b : T) (bound output). We also use � to range over the set of extended pre�xes,

which contains the tau, the input pre�xes, the output pre�xe s and the bound output pre�xes. The

bound output �u(a : T):P is an abbreviation of (�a : T)�ua:P. As in Section 2.2.2 we usesubj(�),

bn(�) and n(�) to stand for the subject, bound name and names of� . As usual we identify terms

up to alpha-conversion.

We recall the capability types, as from [HR04, HR02b]. The subtyping relation <: and the typing

rules for processes are displayed in Table 4.2. We writeT :: TYPEto mean that T is a well-de�ned

type. There are three forms of types for channel names:i T; oS and bhT; Si , they correspond to

the ability to receive values of type T, send values of typeS, or to do both. For simplicity we often

abbreviate bhT; Ti to bT (which is actually the simple channel type]T given in Section 2.2.5). As

shown in [HR02b], this extension to the original I/O types (cf. Section 2.2.6) makes it possible to

de�ne two partial operators meet (u) and join (t). But the de�nitions of the two operators are

4.1. A FRAGMENT OF THE TYPED � -CALCULUS 67

in
a(x : T):P

a(x :T)
�! P

out
�ab:P �ab�! P

tau
�:P ��! P

sum P ��! P0

P + Q ��! P0

true [[']] = True P ��! P0

' P Q ��! P0 false [[']] = False Q ��! Q0

' P Q ��! Q0

open P �ab�! P0 a 6= b

(�b : T)P
�a(b:T)
�! P0

res P ��! P0 b 62n(�)
(�b : T)P ��! (�b : T)P0

Table 4.1: Transition rules

rather long, so we do not repeat them and recommend the readerto consult Section 6 of [HR02b].1

Intuitively, the meet (resp. join) of T and S is the union (resp. intersection) of their capabilities.

Proposition 4.1 Given typesT1; T2 and S with T1 <: T2.

1. If Ti u S are de�ned, for i = 1 ; 2, then T1 u S <: T2 u S;

2. If Ti t S are de�ned, for i = 1 ; 2, then T1 t S <: T2 t S;

3. T1 u T2 = T1;

4. T1 t T2 = T2.

Proof: Following the de�nitions of meet and join, the result is stra ightforward by structural

induction on types. ut

A type environment � is a partial function from channels and v ariables to types; we write � c

and � v for the channel and variable parts of �, respectively. A type environment is unde�ned on

in�nitely many channels and variables (to make sure it can always be extended). We will often

view, and talk about, � c as a set of assignments of the forma : T , describing the value of � c on all

the channels on which � c is de�ned. Similarly for � v . If �(u) is de�ned and takes the form i T or

bhT; Si , then the predicate �(u)#i holds and we write �(u) i for T , otherwise the predicate �(u)6#i
holds, indicating that � has no input capability on u. Similarly for �(u)o and �(u)#o (output

capability). Notice that �(u)#i is covariant and �(u)#o is contravariant.

Proposition 4.2 Suppose thatu; v 2 dom(�) and �(u) <: �(v).

1. If �(v)#i then �(u) i <: �(v) i ;

2. If �(v)#o then �(v)o <: �(u)o.

1The only modi�cation we have made is as follows. If two channe l types T and S have no common capability,

then in our setting T t S is unde�ned, while in [HR02b] T t S is de�ned to be a maximal type, which is a supertype

of every channel type.

68 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

Types:

unit :: TYPE

T :: TYPE

i T; oT :: TYPE

T; S :: TYPE S <: T

bhT; Si :: TYPE

Subtyping:

T <: T

T <: T 0 T 0 <: T 00

T <: T 00

T <: T 0

i T <: i T 0

T <: T 0

oT 0 <: oT

T <: T 0

bhT; Si <: i T 0

T <: T 0

bhS; T0i <: oT

T <: T 0 S <: S0

bhT; S0i <: bhT 0; Si

Typing rules:

�(u) <: T

� ` u : T

� ` P � ` Q

� ` P + Q

� ; x : T ` P � ` u : i T

� ` u(x : T):P

� ` 0

� ; a : T ` P

� ` (�a : T)P

� ` u : oT � ` v : T � ` P

� ` �uv:P

� ` P

� ` �:P

� ` P � ` Q n(') � dom(�)

� ` ' P Q

Table 4.2: Types and typing rules

The typing rules for processes are standard except for conditions. We impose no constraint for

the types of names appearing in conditions. The reason is discussed in Section 1.4. This mild

modi�cation does not a�ect the proofs of the following two re sults [PS96, HR02b, HR04].

Lemma 4.3 (Substitution) If � ` a : T and � ; x : T ` P, then � ` Pf a=xg.

Theorem 4.4 (LTS subject reduction) Suppose� ` P and P ��! P0.

1. if � = � then � ` P0.

2. if � = a(x : T) then �(a) #i and � ; x : T ` P0.

3. if � = �ab then �(a) #o, � ` b : �(a)o and � ` P0.

4. if � = �a(b : T) then �(a) #o, � ; b : T ` b : �(a)o and � ; b : T ` P0.

4.1.2 Typed Labelled Transition System

Two known TLTSs were presented in [BS98, HR04], both of them were given in early style. We

prefer to write a TLTS in late style, so as to de�ne the late version of bisimilarity in a concise way.

4.1. A FRAGMENT OF THE TYPED � -CALCULUS 69

Red P ��! P0

�] P ��! �] P 0 Out �(a) #i

�] �ab:P �ab�! � u b : �(a) i] P

In �(a) #o

�] a(x : T):P
a(x :T)
�! � ; x : T] P

Open �] P �ab�! � 0] P 0 a 6= b

�] (�b : T)P
�a(b:T)
�! � 0] P 0

Res �] P ��! � 0] P 0 a 62n(�)
�] (�a : T)P ��! � 0] (�a : T)P0 Sum �] P

�
�! � 0] P 0

�] P + Q ��! � 0] P 0

True [[']] = True �] P ��! � 0] P 0

�] 'P Q
�

�! � 0] P 0 False [[']] = False �] Q ��! � 0] Q 0

�] 'P Q
�

�! � 0] Q 0

Table 4.3: Typed LTS

First we extend the subtyping relation to type environments, but only considering the types

of channels. So � <: � means that � v = � v, dom(� c) � dom(� c) and � c(a) <: � c(a) for all

a 2 dom(� c).

De�nition 4.5 A con�guration is a pair �]P which respects some type environment� , i.e., � <: �

and � ` P.

The above de�nition implies the condition fv(P) � dom(� v), because we havefv(P) � dom(� v)

by � ` P and dom(� v) = dom(� v) by � <: �. Since alpha-conversion is implicitly used throughout

this thesis, we may assumebn(P) \ dom(�) = ; . Here there exists a mild di�erence from the

de�nitions of con�guration given in [BS98, HR04]. We do not r equire the environment to have

knowledge of all the free channels used byP. The less knowledge it grasps, the weaker testing

power it owns when observing the behaviour ofP. In Table 4.3, we present a transition system built

on this de�nition. In the premise of rule Red, P ��! P0 stands for the standard reduction relation

of the typed � -calculus, as given in Table 4.1.

Using the partial meet operation, we can extend a type environment � to � u u : T , which is

just � ; u : T if u 62dom(�), otherwise it di�ers from � at name u because the capability of this

name is extended to be �(u) u T (if �(u) u T is unde�ned, then so is � u u : T). In this way we can

de�ne � 1 u � 2 as the meet of two environments � 1 and � 2. In rule Out, the process sends channel

b to the environment, so the latter should be dynamically extended with the capability on b thus

received. For this, we use the meet operator, and exploit thefollowing property on types:

R <: T and R <: S imply T u S de�ned and R <: T u S

for any type T; S and R. (This property does not hold for the capability types as in Section 2.2.6.)

The next three fundamental lemmas describe various properties of the TLTS. They underpin

many later results. The well-de�nedness of our TLTS is basedon Lemma 4.6. The close relationship

between processes and con�gurations is re
ected by their corresponding transitions, as can be seen

in Lemma 4.7. Finally Lemma 4.8 says that the more capabilities an environment owns, the more

behaviours it can observe on a process.

70 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

Lemma 4.6 (TLTS subjection reduction) If �]P is a con�guration which respects� and �]P ��!

� 0]P 0, then � 0]P 0 is also a con�guration, respecting � 0, where

1. if � = � then � 0 = � and � 0 = � .

2. if � = a(x : T) then � 0 = � ; x : T and � 0 = � ; x : T .

3. if � = �ab then � 0 = � u b : �(a) i and � 0 = � .

4. if � = �a(b : T) then � 0 = � ; b : �(a) i and � 0 = � ; b : T .

Proof: By induction on depth of inference. LTS subject reduction theorem is needed. ut

Lemma 4.7 Suppose that�]P is a con�guration.

1. �]P ��! �]P 0 i� P ��! P0.

2. �]P
a(x :T)
�! � ; x : T]P 0 i� �(a) #o and P

a(x :T)
�! P0.

3. �]P �ab�! � u b : �(a) i]P 0 i� �(a) #i and P �ab�! P0.

4. �]P
�a(b:T)
�! � ; b : �(a) i]P 0 i� �(a) #i and P

�a(b:T)
�! P0.

Proof: By induction on depth of inference. ut

Lemma 4.8 Suppose that�]P ��! � 0]P 0, � <: � and �]P is a con�guration. Then �]P ��! � 0]P 0

and � 0 <: � 0.

Proof: Straightforward by using the preceding lemma. ut

4.1.3 Typed Bisimilarity

When comparing two typed actions, to require them to be syntactically the same is too restrictive.

For example one would not be able to say (�a : T1)�ua is bisimilar to (�a : T2)�ua under the environ-

ment � = u : bobT, whereT1 = boT; T2 = bbT. Therefore we do not check types in the bisimulation

game. We shall write j � j for the action � where its type annotations have been stripped o�.

P l � Q reads \P and Q are bisimilar under type environment �". The type environme nt � is

used as follows: � c shows the channels that are known to the external observer testing the processes

in the bisimulation game, and the types with which the observer is allowed to use such channels. By

contrast, � v shows the set of variables that may appear free in the processes and the types for these

variables show how the observer can instantiate such variables (in closing substitutions). Therefore:

the channels of � c are to be used by the observer, with the types indicated in � c; the variables

in � v are to be used by the processes, but the observer can instantiate them following the types

indicated in � v.

A process isclosed if it does not have free variables; similarly a type environment is closed if it

is only de�ned on channels. Otherwise, processes and type environments are open. We �rst de�ne

l � on the closed terms, then on the open terms. Bisimilarity is given in the late style; we consider

the early style in Section 4.4.2.

4.1. A FRAGMENT OF THE TYPED � -CALCULUS 71

De�nition 4.9 A family of symmetric binary relations over closed terms, indexed by type envi-

ronments, and written fR � g� , is a typed bisimulation wheneverP R � Q implies that, for two

con�gurations �]P and �]Q ,

1. if �]P ��! � 0]P 0 and � is not an input action, then for some Q0, �]Q
�

�! � 0]Q 0; j � j= j � j

and P0 R � 0 Q0.

2. if �]P
a(x :T)
�! � 0]P 0, then for some Q0, �]Q

a(x :S)
�! � 00]Q 0 and for all b with � c ` b : �(a)o it

holds that P0f b=xg R � Q0f b=xg.

Two processesP and Q are typed � -bisimilar, written P l � Q, if there exists a typed bisimulation

fR � g� such that P R � Q.

The di�erence w.r.t. typed bisimilarity as in [BS98, HR04] i s that, in the input clause, the

type environment � is not extended. In other words, the knowl edge of the external observer does

not change through interactions with the process in which the value transmitted is supplied by the

observer itself (by contrast, the knowledge does change when the value is supplied by the process;

cf. rule Out in Table 4.3). Therefore l � is optimised for reasoning on �nite systems. To deal with

in�nite systems, it is more suitable to use the alternative equivalence where the environment can be

extended. We shall turn to this topic in Section 4.4.1.

De�nition 4.10 Two processesP and Q are bisimilar under the environment � = � c ; ex : eT,

written P l � Q, if �]P , �]Q are con�gurations and, for all eb with � c ` eb : eT, it holds that

Pf eb=exg l � c Qf eb=exg.

The intuition behind the above de�nition is that channels ar e capabilities while variables are

obligations of the environment. The environment is obligedto �ll in the variables at the speci�ed

types. Once the obligations are determined, they cannot be strengthened or weakened. That's why

variables are invariant in the subtyping relation on type environments given before.

Below we report three basic properties of typed bisimilarity.

Lemma 4.11 If P l � Q and � <: � 0, then P l � 0 Q.

Proof: By Lemma 4.7, 4.8 and the de�nition of typed bisimilarity. ut

The intuition behind this lemma is quite clear. When two processes exhibit similar behaviours

under an environment with stronger discriminating power, they are also indistinguishable by a

weaker environment. In the presence of distinction betweenchannels and variables, we have the

following interesting property for typed bisimilarity.

Lemma 4.12 If P l � ;x :T Q and S <: T then P l � ;x :S Q.

Proof: It follows easily from the de�nition of typed bisimilarity o n open terms. ut

As we said before in Section 1.4, generally speaking, typed behavioural equivalences are not closed

under injective substitutions. Nevertheless, if a substitution only maps channels and variables to

other channels and variables of the same types respectively(called type-preserving substitution), we

do have the property seen in untyped� -calculus, as expressed by the lemma below. (With a slight

abuse of notation, here we use� to stand for type-preserving substitutions.)

72 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

Lemma 4.13 If P l � Q then P � l � � Q� for � injective on fn(P; Q) [dom(�) and � � is the

type environment which maps� (u) to �(u) for all u 2 dom(�) .

Proof: Similar to the proof in untyped setting. It follows from the f act that �]P ��! � 0]P 0

implies � �]P � ���! � 0�]P 0� , for injective type-preserving substitution � . ut

Since all processes are �nite, and we do not use recursive types, in P l � Q, the environment

� can always be taken to be �nite (i.e., de�ned only on a �nite number of channels and variables):

it is su�cient that � has enough names fresh w.r.t. P and Q, for all relevant types. This can be

proved with a construction similar to that in Lemma 4.34. In t he remainder of the chapter all type

environments are assumed to be �nite. (If � is in�nite, our pr oof systems in Section 4.2 and 4.4.1

remain sound and complete; the axiom system in Section 4.3 isstill sound, but its completeness proof

relies on the �niteness of �.) We should stress, however, that all results and de�nitions presented

up to this section are also valid for non-�nite processes (i.e., processes extended with recursion) and

for in�nite type environment.

4.2 Proof System for the Closed Terms

In this section we present a proof system for the closed terms.

The proof system P for typed bisimilarity is composed of all inference rules and axioms in

Table 4.4. Whenever we writeP = � Q it is intended that both �]P and �]Q are con�gurations

(see De�nition 4.5 and the explanations immediately follow the de�nition), and in this section P; Q

are deemed to be closed terms. The rules are divided into six groups, namely those for: substitutivity,

sums, looking up the type environment, conditions, restrictions and alpha-conversion. The rules that

are new or di�erent w.r.t. those of the untyped � -calculus are marked with an asterisk.

Tin* shows that an input pre�x is not observable if the observer has no output capability on

the subject of the input. This comes as no surprise because the only means that the observer uses

for testing a process is to communicate with it. When no communication happens, he/she simply

regards the process being tested as0. Tout* is the symmetric rule, for output. Twea* gives

us weakening for type environments, corresponding to Lemma4.11. In Ires* , the side condition

a 62dom(�) is added for the sake of clarity, but formally it is not nee ded because of the de�nition

of con�gurations and our convention on bound names. Note that di�erent types T1; T2 are used for

the processes in the conclusion. We cannot replaceIres* with two simpler rules such as

� If P = � Q then (�a : T)P = � (�a : T)Q

� (�a : T1)P = � (�a : T2)P,

for equalities like (�b : bi T)�ab:b(x : i T):0 = a:iob T (�b : boT)�ab:b(x : oT):0 could not be derived (due

to the constraints given by the well-typedness of processes). Similarly for rule Iinc* .

Iinc* and Iout* are the rules for substitutivity for input and output pre�xe s. In Iinc* , the

well-de�nedness of the two con�gurations �]a(x : T1):P and �]a(x : T2):Q implies the condition:

�(a)o <: Ti for i = 1 ; 2. In Iout* , the observer knowledge of the type ofb may increase when the

4.2. PROOF SYSTEM FOR THE CLOSED TERMS 73

Iinc* If P f b=xg = � Qf b=xg for all b with � c ` b : �(a)o then

a(x : T1):P = � a(x : T2):Q.

Iout* If P = � u b:�(a) i Q then �ab:P = � �ab:Q

Itau If P = � Q then �:P = � �:Q

Isum If P = � Q then P + R = � Q + R

Ires* If P = � Q then (�a : T1)P = � (�a : T2)Q a 62dom(�)

S1 P + 0 = � P

S2 P + P = � P

S3 P + Q = � Q + P

S4 P + (Q + R) = � (P + Q) + R

Tin* If �(a)6#o then a(x : T):P = � 0

Tout* If �(a)6#i then �au:P = � 0

Twea* If P = � Q and � <: � 0 then P = � 0 Q

Ca ' P Q = � P if [[']] = True

Cb ' P Q = � Q if [[']] = False

R1 (�a : T)0 = � 0

R2 (�a : T)�:P = � 0 if subj (�) = a

R3 (�a : T)(�b : S)P = � (�b : S)(�a : T)P

R4 (�a : T)(P + Q) = � (�a : T)P + (�a : T)Q

R5 (�a : T)�:P = � �: (�a : T)P if a 62n(�)

A P = � Q if P alpha-equivalent to Q

Table 4.4: The proof systemP for the closed terms

74 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

processes emitb themselves (for the type under whichb is emitted is composed with the possible

type of b in �).

Compared with the proof system for untyped � -calculus [PS95],Tin* and Tout* are the main

di�erences.

Theorem 4.14 (Soundness of P) If P ` P = � Q then P l � Q.

Proof: By constructing appropriate bisimulations. ut

The completeness proof uses a standard strategy. By using the axiomsS1-4, R1-5 and Ca-b ,

we can transform each closed term into a canonical form
P

i � i :Pi . If P and Q are bisimilar, their

canonical formsP0 and Q0 are provably equal by induction on the depth of P0+ Q0.

Theorem 4.15 (Completeness of P) If P l � Q then P ` P = � Q, where P and Q are closed

terms.

Proof: This proof di�ers from the completeness proof of untyped� -calculus [MPW92] in one place:

instead of showing that each summand ofP is provably equivalent to a summand in Q, we only

require that each active summandof P is matched by an active summand ofQ, and vice versa.

By active summand, we mean that the pre�x can perform actions allowed by the environment �.

More precisely, if ai (x i : Ti):Pi is a summand ofP and �(ai)#o then this is an active input pre�x.

Similarly for output pre�xes. Inactive summand is provably equivalent to 0 by Tin* and Tout* ,

thus can be consumed byS1. After �nite steps of transformation, we have P ` P = �
P n

i =1 � i :Pi

and P ` Q = �
P m

j =1 � j :Qj , where all summands inP and Q are active.

Suppose that� i = �a(b : T1). Then �]P
�a(b:T1)
�! � ; b : �(a) i]P i . Hence there is some� j = �a(b : T2)

such that Pi l � ;b:�(a) i Qj . Since the depth ofPi + Qj is less than the depth ofP + Q, we can

use induction hypothesis to deriveP ` Pi = � ;b:�(a) i Qj . By A we assume that the bound name

b 62dom(�), so � ; b : �(a) i = � u b : �(a) i . Therefore we haveP ` �ab:Pi = � �ab:Qj by Iout* , and

furthermore P ` �a(b : T1):Pi = � �a(b : T2):Qj by Ires* .

Suppose that � i = a(x : T1). Then �]P
a(x :T1)
�! � 0]P i . There must exist a � j = a(x : T2)

such that Pi f b=xg l � Qj f b=xg, for all b s.t. � c ` b : �(a)o. Now observe that the depth of

Pi f b=xg + Qj f b=xg is less than the depth ofP + Q, thus it follows from induction hypothesis that

P ` Pi f b=xg = � Qj f b=xg. Using Iinc* we infer that P ` a(x : T1):Pi = � a(x : T2):Qj .

Other cases can be analyzed similarly. As a result, each active summand ofP is provably equal

to some active summand ofQ. Symmetric arguments also hold. ut

4.3 Axioms for Typed Bisimilarity

In this section we give an axiom system for typed bisimilarity and prove its soundness and com-

pleteness. This axiomatisation is for all �nite terms of the language given in Section 4.1, including

both open and closed terms.

4.3. AXIOMS FOR TYPED BISIMILARITY 75

4.3.1 The Axiom System

The axiom systemA for typed bisimilarity is presented in Table 4.5. Roughly speaking, it is obtained

from P by adding some axioms for dealing with conditions. In open terms usually the conditions

cannot be simply eliminated by Ca-b , so we need the axiomsC1-7 and R6-7 to manipulate them.

We use the notation ') to mean that ' logically implies ; in C1 the condition ' ()

means that ' and are logically equivalent. In view of C3 and R6 , axiom R1 is redundant. The

rule Iinc* of P now becomes the concise axiomIin* in A . Tvar* shows that a variable can only

be instantiated with channels that in the type environment have types compatible with that of

the variable. Tpre* is used to replace names underneath a match. It implies, in the presence of

other axioms of A , a more powerful axiom: [x = a]P = � [x = a]Pf a=xg if �(a) <: �(x), which

substitutes through P. In the untyped setting, Tpre* has no side condition. Here we need one to

ensure well-typedness of the process resulting from the substitution, since the names in the match

can have arbitrary | and possibly unrelated | types.

The following axioms and rules are derivable fromf S1-S4, C1-C6, Tvar* g. More derived

rules are given in Appendix B.1.

C8 P = � 'P + : 'P C9 'P Q = � 'P + : 'Q

C10 [' _]P = � 'P + P C11 ' (P + Q) = � 'P + 'Q

Cnn1 [a = b]P = � 0 if a 6= b Tvn1 [x = a]P = � 0 if a 62dom(�)

Cnn2 [a 6= b]P = � P if a 6= b Tvn2 [x 6= a]P = � P if a 62dom(�)

Tv1 P = � ;x :T 0 if there exists no a 2 dom(�) s.t. �(a) <: T

Note that in Iin* and Iout* , the free names of the input and output pre�xes are channels rather

than variables. Below we discuss:

1. the unsoundness of the rules in which (some or all) the channels are replaced by variables;

2. other rules, that are valid for variables;

3. why these other rules are not needed in the axiom system.

Intuitively the reason for (1) is the di�erent usage of channels and variables that appear in a type

environment: the information on channels tells us how thesechannels are to be used by theexternal

environment, while the information on variables tells us how these variables are to be instantiated

inside the tested processes.

To see that Iin* is unsound when the subject of the pre�x is a variable, take � c
def= a : boT; b : oT

and � def= � c; x : bhoT; bT i . Then we have

[y = b]� l � ;y :�(x)o 0

because �(x)o = bT and no c in � satis�es the condition � c ` c : bT and can therefore instantiate

y. However,

x(y : oT):[y = b]� 6l � x(y : oT):0:

To see this, let us look at the possible closing substitutions. In dom(� c), a is the only channel

satisfying � c ` a : �(x), and so the only substitution we need to consider isf a=xg. After applying

76 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

Iin* If P = � ;x :�(a)o Q then a(x : T1):P = � a(x : T2):Q

Icon If P = � Q then 'P = � 'Q

Tvar* [x 6= a1] � � � [x 6= am]P = � 0 if f b 2 dom(� c) j �(b) <: �(x)g � f a1; � � � ; am g

Tpre* [x = a]�:P = � [x = a](� f a=xg):P if �(a) <: �(x)

C1 ' P = � P if ' ()

C2 [a = b]P = � [a = b]Q if a 6= b

C3 ' P P = � P

C4 ' P Q = � : ' Q P

C5 ' (P) = � [' ^]P

C6 ' (P1 + P2) (Q1 + Q2) = � ' P 1 Q1 + ' P 2 Q2

C7 ' (�:P) = � ' (�:'P) if bn(�) \ n(') = ;

R6 (�a : T)[a = u]P = � 0 if a 6= u

R7 (�a : T)[u = v]P = � [u = v](�a : T)P if a 6= u; v

Pnf Iinc*, Ca-b, R1 g

Table 4.5: The axiom systemA

this substitution, the resulting closed terms are not bisimilar:

a(y : oT):[y = b]� 6l � a(y : oT):0

This holds because the observer can sendb along a and, after the communication, y is instantiated

to be b, thus validating the condition y = b and liberating the pre�x � . When the subject of the

pre�x is a variable, the following rule is needed in place ofIin* :

Iv1 If P = � ;y :�(x) i Q then x(y : T1):P = � x(y : T2):Q

In rule Iout* , both the subject and object of the output pre�x are channels. The rule is also

valid when the object is a variable. However, it is not valid if the subject is a variable. As a

counterexample, let � c
def= a : i T ,b : bbT and � def= � c; x : bhi T; bT i . Then we havea l � u a:i T 0

but �xa:a 6l � �xa:0 because, under the substitutionf b=xg, it holds that �ba:a 6l �
�ba:0: When the

subject of the pre�x is a variable, we need the following rule:

Iv2 If P = � u v:�(x)o Q then �xv:P = � �xv:Q

We show, by means of an example, why rulesIin* and Iout* are su�cient in the axiom system

(rules Iv1 and Iv2 are derivable, see Appendix B.1). Consider the equality

x(y : ii T):y l � x(y : io T):0

where � def= a : bib T ; b : ib T ; x : bib T. First, we infer

y = � 0 0 for � 0 = � ; y : ib T (1)

proceeding as follows:

4.3. AXIOMS FOR TYPED BISIMILARITY 77

y = � 0 [y = b]y + [y 6= b]y by C8

= � 0 [y = b]y by Tvar*

= � 0 [y = b]b by Tpre*

= � 0 [y = b]0 by Tin*

= � 0 0 by C3

Then we derivex(y : ii T):y = � x(y : io T):0 in a similar way:

x(y : ii T):y

= � [x = a]x(y : ii T):y + [x 6= a]x(y : ii T):y by C8

= � [x = a]x(y : ii T):y by Tvar*

= � [x = a]a(y : ii T):y by Tpre*

= � [x = a]a(y : io T):0 by (1), Iin*, Icon

= � x(y : io T):0 by Tpre*, Tvar*, C8

4.3.2 Soundness and Completeness

The soundness of the axioms displayed in Table 4.5, and therefore of A , is easy to be veri�ed.

Theorem 4.16 (Soundness of A) If A ` P = � Q then P l � Q.

The remainder of the section is devoted to proving the completeness ofA . The schema of the

proof is similar to that for the untyped � -calculus [PS95]. The details, however, are quite di�erent.

An example of this is the manipulation of terms underneath input and output pre�xes mentioned

above. We discuss below another example, related to the issue of invariance of bisimilarity under

injective substitutions. In the untyped case, the processx j a (the operational semantics of parallel

composition is standard and will be given in Section 4.5) is equal to x:a+ a:x+ � whenx is instantiated

to a, to x:a+ a:x otherwise. This can be expressed by expanding the process bymeans of conditions:

that is, using conditions to make a case analysis on the possible values that the variable may take.

Thus, x j a is expanded to [x = a](x j a)+[x 6= a](x j a). Now, underneath [x = a] we know that x will

be a, and thereforex j a can be rewritten asx:a+ a:x+ � , whereas underneath [x 6= a] we know that x

will not be a and thereforex j a can be rewritten asx:a+ a:x. In general, the expansion of a process

with a free variable x produces a summand [x 6= a1] � � � [x 6= an]P where a1; � � � ; an are all channels

(di�erent from x) that appear free in P. The mismatch [x 6= a1] � � � [x 6= an] tells us that x in P will

be instantiated to a fresh channel, which is su�cient for all manipulations of P involving x, since

bisimulation is invariant under injective substitutions. In the typed calculus, by contrast, knowing

that x is fresh may not be su�cient: we may also need the information on the type with which x

will be instantiated. This type may be di�erent from the type T of x in the type environment: x

could be instantiated to a fresh channel whose type is asubtypeof T (the behavioural consequences

of this type information can be seen in the example at the end of Section 4.4.1). We have therefore

adopted a strategy di�erent from that in the proof for untype d calculi: rather than manipulating

processes that begin with \complete" sequences of mismatches | as in the untyped case | we try

to cancel them, using ruleTvar* ; further, the conditional expansion of a process takes intoaccount

also the names that appear in the type environment.

78 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

De�nition 4.17 A condition ' is satis�able if [['�]] = True for some closing substitution� . Given

a set of namesV , a condition ' is complete onV if for some equivalence relationR on V , called

the equivalence relation corresponding to' , it holds that ') [u = v] i� uRv and ') [u 6= v] i�

: (uRv), for any u; v 2 V .

In the untyped setting which does not distinguish channels from variables, like in [PS95], every

complete condition is satis�able, and two substitutions satisfying the same complete condition relate

to each other by some injective substitution. In this chapter, however, due to the distinction

between variables and channels and the concept of closing substitution, there exist some conditions

which are complete but not satis�able. For instance, ' = [x = a] ^ [a = b] ^ [b 6= c] is complete

on V = f x; a; b; cg, with the equivalence classesff x; a; bg; f cgg. This condition is not satis�able

because closing substitutions do not map channels to other channels, then � (a) = a 6= b = � (b) for

any closing substitution � , i.e., [['�]] = False. In a typed setting, there are even fewer conditions

which are satis�able. For a given type environment � = � c; ex : eT we are only interested in closing

substitutions of the form (called legal substitution on �): � = f eb=exg where � c ` eb : eT. As to the

simple condition [x i = a], with x i ; a 2 dom(�), if �(a) 6<: Ti , the substitution f a=xi g is illegal and

not considered. So no legal substitution can satisfy [x i = a], i.e., the condition is not satis�able.

Lemma 4.18 If ' is complete on dom(�) and ; � dom(� v) � dom(�) , there is at most one legal

substitution which satis�es ' .

Proof: Since' is complete, there is a corresponding equivalence relationR. For ' to be satis�able

by a closing substitution � on dom(�), each equivalence class of R, say f u1; � � � ; un g, must meet

the following two conditions.

� Not all ui are variables. Otherwise, for any a 2 dom(� c); ') [ui 6= a]. Then '�)

[� (ui) 6= a] for all a 2 dom(� c), contradicting the de�nition of closing substitution, wh ich

maps variables to channels, i.e.,� (ui) 2 dom(� c).

� There is no more than one channel in any equivalence class. Otherwise, leta; bbe two channels

and ') [a = b], then '�) [a = b], i.e., [['�]] = False.

As a result, in each equivalence class there is one and only one channel, possibly with some variables.

So the class looks likef a; x1; � � � ; xn � 1g where n � 1. The substitution which satis�es ' must map

all the variables in the equivalence class into its unique channel. Moreover, to ensure that ' is

satis�ed by a legal substitution, there is a third constrain t imposed on the equivalence class:

� �(a) <: �(x i) for all i � n � 1.

All these conditions determine the uniqueness of the legal substitution, if it exists. ut

Lemma 4.19 If ' and are complete conditions on dom(�) and are satis�ed by the same legal

substitution on � , then ' () .

Proof: ' ^ is also satis�able by the same legal substitution. Then' () ' ^ () because

' and are complete conditions. ut

4.3. AXIOMS FOR TYPED BISIMILARITY 79

The following lemma shows that in the presence of complete conditions, it is su�cient to test

one substitution for typed bisimilarity of open terms.

Lemma 4.20 Let P � 'P 0 and Q � 'Q 0, with ' complete on dom(�) . If � is a legal substitution

on � , � satis�es ' and P � l � c Q� , then P l � Q.

Proof: By Lemma 4.18, besides� there is no other substitution � = f ec=exg with � c ` ec : eT which

can satisfy ' . In other words, ('P 0)� l � c 0 l � c ('Q 0)� . Therefore we haveP l � Q by the

de�nitions of typed bisimilarity. ut

As in [PS95], the de�nition of head normal form exploits complete conditions. Here the di�erence

is that we only consider those conditions which can be satis�ed by some legal substitutions, while

in [PS95] all complete conditions are involved because all of them are satis�able.

De�nition 4.21 (head normal form) We say that P is in head normal form w.r.t. � if P is of

the form
X

i

' i � i :' 0
i Pi

where for all i ,

1. bn(� i) 62dom(�) ;

2. ' i is complete on dom(�) and satis�able by some legal substitution on� ;

3. ' 0
i = ' i if � i is an input or free action;

4. ' 0
i = ' i ^ (

V
v2 dom (�) [a 6= v]) if � i = �u(a : T).

The proof of completeness is established by induction on thedepth, d(P), of a head norm form

(hnf) P. Its depth is de�ned as:

d(0) def= 0

d(
P n

i =1 ' i � i :' 0
i Pi)

def= 1 + maxf d(Pi) j 1 � i � ng

Lemma 4.22 For each processP and environment � , with fv (P) � dom(� v), there is someH of

no greater depth thanP and in hnf w.r.t. � , such that A ` P = � H .

Proof: By structural induction on processes. LetV = dom(�). We consider two interesting cases.

The �rst is when P � �:P 0. Let x be any variable in V . If for each channela 2 V , �(a) 6<: �(x),

then we use Tv1 to derive that A ` P = � 0. Otherwise, supposeVx = f a1; � � � ; an g collects

all channels in V such that �(ai) <: �(x). As in the untyped setting [PS95] we can infer that

A ` P = �
P m

i =1 i �: i P0, where each i is complete onV , but not necessarily satis�able by some

legal substitution on �. There are two occasions where i is not satis�able.

1. If i) [a = b] for a; b2 dom(� c) and a 6= b, we useCnn1 to get A ` i �: i P0 = � 0:

2. If i) [x 6= a1] � � � [x 6= an] we can useTvar* to derive that A ` i �: i P0 = � 0:

80 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

So we can remove the summand i �: i P0 if i is not satis�able. All other summands are satis�able

by some legal substitutions because i) [x = ai] for one ai 2 Vx and i) [x 6= b] for any other

b 2 dom(� c).

The second case is whenP � Q R . By induction hypothesis Q and R can be transformed

into hnf w.r.t. �: A ` Q = �
P n

i =1 i � i : 0
i Qi and A ` R = �

P m
j =1 j � j : 0

j Rj : Let us examine the

general case thatn; m > 0. By C9 and C11 , it is easy to see that

A ` P = �

nX

i =1

[^ i]� i : 0
i Qi +

mX

j =1

[: ^ j]� j : 0
j Rj :

Clearly can be reduced to a disjunctive normal form
Ws

k=1

V t
l =1 ' kl where s; t � 1 and ' kl is

a match [ukl = vkl] or mismatch [ukl 6= vkl]. Let Q0
i = � i : 0

i Qi . We transform each summand

[^ i]Q0
i as follows.

A ` [^ i]Q0
i = � [(

Ws
k=1

V t
l =1 ' kl) ^ i]Q0

i by C1

= � [
Ws

k=1 (i ^
V t

l =1 ' kl)]Q0
i by C1

= �
P s

k=1 [i ^
V t

l =1 ' kl]Q0
i by C10

Now we assert that each summand [i ^
V t

l =1 ' kl]Q0
i is provably equal to 0 or i Q0

i .

Let � k =
V t

l =2 ' kl if t > 1, and � k = True if t = 1. So by C1 we haveA ` [i ^
V t

l =1 ' kl]Q0
i = �

[' k1 ^ � k ^ i]Q0
i . Here ' k1 may be a match or mismatch. We look at match �rst. Let ' k1 = [uk1 =

vk1] for someuk1 ; vk1 s.t. uk1 6= vk1 .

1. If uk1 ; vk1 2 V , then [' k1 ^ � k ^ i] is semantically equivalent either to False or to [� k ^ i]

because i is complete on V . That is, we can infer A ` [' k1 ^ � k ^ i]Q0
i = � 0 or A `

[' k1 ^ � k ^ i]Q0
i = � [� k ^ i]Q0

i .

2. If uk1 ; vk1 62V , then uk1 ; vk1 are channels becausefv(P) � V . By Cnn1 we get A `

[' k1 ^ � k ^ i]Q0
i = � 0.

3. If uk1 2 V and vk1 62V , then vk1 is a channel but uk1 can be either a channel or a variable.

(a) uk1 is also a channel. We inferA ` [' k1 ^ � k ^ i]Q0
i = � 0 by Cnn1 .

(b) uk1 is a variable, i.e., uk1 2 ex. We infer A ` [' k1 ^ � k ^ i]Q0
i = � 0 by Tvn1 .

When ' k1 is a mismatch [uk1 6= vk1] we apply similar arguments. In Case 1 the result is the same.

In the last two cases, usingCnn2 or Tvn2 we infer that A ` [' k1 ^ � k ^ i]Q0
i = � [� k ^ i]Q0

i .

Since there are onlyt components in
V t

l =1 ' kl , we can repeat this inference for at mostt times and

eventually get either A ` [i ^
V t

l =1 ' kl]Q0
i = � 0 or A ` [i ^

V t
l =1 ' kl]Q0

i = � i Q0
i .

Similar result can be got for [: ^ j]� j : 0
j Rj as well.

In summary we have shown that each summand ofP can either be removed or put into the form

of the summands of a hnf. ut

Theorem 4.23 (Completeness of A) If P l � Q then A ` P = � Q.

4.3. AXIOMS FOR TYPED BISIMILARITY 81

Proof: Let � = � c ; ex : eT. If there is no legal substitution on �, i.e., no ea with � c ` ea : eT, then

by Tv1 we have that A ` P = � 0 = � Q.

Below we suppose that there exist legal substitutions on �. By Lemma 4.22 we assume thatP

and Q are in hnf w.r.t. �. Let

A ` P = �

X

i

' i � i :Pi and A ` Q = �

X

j

 j � j :Qj :

For any summand ' i � i :Pi of P, let � i be a legal substitution on � which satis�es ' i (actually

� i is the only legal substitution satisfying ' i , according to Lemma 4.18). So if' i) [x = a]

then �(a) <: �(x) and x� i = a. By using Tpre* we can transform the action � i into � i � i

which contains no free variable. For example, if � i = �xy and ' i) [x = a] ^ [y = b], then

' i �xy:Pi = � ' i x� i y� i :Pi � ' ab:Pi . Furthermore, if the action � i � i is disallowed by the environment

(e.g., � i � i = �ab and �(a)6#i , similar for input actions), then by Tin* and Tout* the summand

' i � i :Pi is provably equal to 0 and thus can be consumed byS1. After �nite steps of transformation,

all remaining summands are active, i.e., can perform some actions allowed by �. We do similar

transformation for Q.

Now we prove by induction on the depth of P + Q that each active summand ofP is provably

equal to some active summand ofQ. An active summand ' i � i :Pi of P gives rise to a transition

� c]P � i
� i � i�! � 0

c]P i � i . Since P l � Q, we have P � i l � c Q� i . So there is a matching transition

� c]Q� i
� j � i
�! � 00

c]Q j � i contributed by some active summand j � j :Qj of Q, with j satis�ed by � i .

By Lemma 4.19 we know that ' i () j . From the de�nition of l � c we have:

1. if � i � i = � j � i = � then Pi � i l � c Qj � i ;

2. if � i � i = � j � i = �ab, for some channelsa; b, then Pi � i l � cu b:�(a) i Qj � i ;

3. if � i � i = �a(b : T1) and � j � i = �a(b : T2) for some channelsa; b then Pi � i l � c;b:�(a) i Qj � i ;

4. if � i � i = a(x : T1) and � j � i = a(x : T2), for some a and x, then for all c with � c ` c : �(a)o

it holds that Pi � i f c=xg l � c Qj � i f c=xg.

Let us analyze the last two cases in details. In Case 3,� i is also a legal substitution on

� ; b : �(a) i . By Lemma 4.20 one can infer that Pi l � ;b:�(a) i Qj . By induction hypothesis

A ` Pi = � ;b:�(a) i Qj . By Iout*, Ires*, Icon and C1 it can be inferred that A ` ' i �a(b :

T1):Pi = � j �a(b : T2)Qj . The required result is got by usingTpre* .

In Case 4, we have thatPi � i f c=xg l � c Qj � i f c=xg for all c satisfying the condition � c ` c :

�(a)o. Note that Pi = ' i P0
i and Qj = j Q0

j . By Lemma 4.18, any substitution � = f ec=ex; d=xg,

with � c ` ec : eT ; d : �(a)o, which can satisfy ' i and j , must coincide with � on variables ex. That

is, � = � f d=xg. ThereforePi � l � c Qj � . For any other substitution, say � 0, [[' i � 0]] = [[j � 0]] = False,

and so Pi � 0 l � c 0 l � c Qj � 0. Consequently for all � we havePi � l � c Qj � , i.e., Pi l � ;x :�(a)o Qj .

Now applying induction hypothesis, A ` Pi = � ;x :�(a)o Qj . It follows that A ` a(x : T1):Pi = � a(x :

T2):Qj by Iin* . Then we can inferA ` ' i � i :Pi = � j � j :Qj by using Icon, C1 and Tpre* , in the

listed order. ut

82 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

4.4 Other Equivalences

In this section we study a variant bisimilarity proposed in [HR04], which allows extension of en-

vironments and enjoys a nice contextual property. Proof systems for closed terms are given. An

indirect axiomatisation is got by resorting to the system A of Section 4.3. We also show that the

di�erence between late and early style of typed bisimilarity is characterised by one axiom.

4.4.1 Hennessy and Rathke's Typed Bisimilarity

Proof System for Closed Terms

In the input clause of l (De�nition 4.9), the type environment � is not extended. By c ontrast,

extensions are allowed in the bisimilarity used in [HR04]. We denote with m� the variant of l �

which allows extension; its de�nition is obtained from that of l � by using the following input clause:

� if �]P
a(x :T)
�! � 0]P 0, then for some Q0, �]Q

a(x :S)
�! � 00]Q 0 and � ; � 000` b : �(a)o implies

P0f b=xg R � ;� 000 Q0f b=xg, for any channelb and closed type environment � 000with dom(� 000) \

(fn(P; Q) [dom(�)) = ; .

Similarly, � can be extended in the de�nition on open terms.

Lemma 4.24 If P m� Q then P l � Q.

In m� , the environment collects the knowledge of the observerrelative to the tested processes,

in the sense that the environment only tells us what the observer knows of the free channels of

the processes. In contrast, inl � , the environment collects theabsoluteknowledge of the observer,

including information on channels that at present do not appear in the tested processes, but that

might appear later | if the observer decides to send them to th e processes. The main advantage

of m� is that the environment is allowed to invent an unbounded number of distinct names, so

it is more suitable for in�nite systems. On the other hand, l � allows us to express more re�ned

interrogations on the equivalence of processes, for it gives us more
exibility in setting the observer

knowledge. Indeed, whilem-equivalences can be expressed usingl (Lemma 4.24), the converse is

false. For instance, the processes

P def= a(x : boT):[x = y]� Q def= a(x : boT):0

are in the relation l � , for � def= a : oboT; b : bbT ; y : obT. However, they are not in a relation m� ,

for any �: the observer can always create a new channel of typeboT, and use it to instantiate both

x and y, thus validating the condition [x = y].

In the following lemma we give two properties ofm� . They are analogous to Lemma 4.11 and

4.13 respectively, and can be proved as their counterparts.

Lemma 4.25 1. If P m� Q and � <: � 0, then P m� 0 Q.

2. If P m� Q then P � m� � Q� for � injective on fn(P; Q) [dom(�) and � � is the type

environment which maps� (u) to �(u) for all u 2 dom(�) .

4.4. OTHER EQUIVALENCES 83

An important property which is enjoyed by m� but not by l � is as follows.

Lemma 4.26 If P m� Q and a 62fn (P; Q) [dom(�) , then P m� ;a :T Q.

This lemma says that increasing capabilities on irrelevantchannels does not raise an observer's

discriminating power. The reason is that the observer already has the ability to create new channels,

since in the de�nitions of bisimulations we test all channels with appropriate types for the case of

input.

Lemma 4.27 It holds that a(x : T1):P m� a(x : T2):Q, if the following two conditions are satis�ed.

(i) P f b=xg m� Qf b=xg for all b with � c ` b : �(a)o;

(ii) given c 62fn (P; Q) [dom(�) , P f c=xg m� ;c:T Qf c=xg for all T <: �(a)o.

Proof: The action of the con�guration �]a(x : T1):P can be matched by that of �]a(x : T2):Q.

So we only show that Pf b=xg m� ;� 0 Qf b=xg for any b and � 0 with dom(� 0) \ fn (P; Q) = ; and

� ; � 0 ` b : �(a)o. There are two possibilities:

1. b 2 dom(�). When � 0 = ; , the result follows from the hypothesis (i). For other � 0, we get

the result indirectly by using Lemma 4.26.

2. b 62dom(�). We consider the case that � 0 = b : T with T <: �(a)o. Base on this case,

the result for other � 0 with � 0 = b : T; � 00 can be inferred from Lemma 4.26. From (ii)

we know that Pf c=xg m� ;c:T Qf c=xg: Since bisimulation is insensitive to injective type-

preserving substitutions by Lemma 4.25 (2), we havePf c=xgf b=cg m� ;b:T Qf c=xgf b=cg. That

is, Pf b=xg m� ;� 0 Qf b=xg, which is the required result.

ut

We can derive a proof system form with a simple modi�cation of that for l in Section 4.2. Let

P0 be the system obtained fromP by replacing rule Iinc* with Iinc 0:
Iinc 0 If � P f b=xg = � Qf b=xg for all b with � c ` b : �(a)o, and

� given c 62fn (P; Q) [dom(�),

P f c=xg = � ;c:T Qf c=xg for all T <: �(a)o,

then a(x : T1):P = � a(x : T2):Q.
The quanti�cation on T in the premises is �nite: any type has only �nitely many subty pes.

Theorem 4.28 P0 ` P = � Q i� P m� Q, where P and Q are closed.

Proof: According to Lemma 4.27, rule Iinc 0 is sound. The soundness of other rules is easy to

show. The completeness proof is similar to that ofP (Theorem 4.15). ut

Indirect Axiomatisation

The previous de�nition of m involves in�nitely many substitutions. Nevertheless we show in the

following lemma that there exists an e�cient characterisat ion of the equivalence which employs

only �nitely many substitutions. This characterisation re sult relies on the assumption that the set

84 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

of subtypes of any type is �nite and the environment contains �nitely many variables (the terms

could even be extended with non-�nite operators such as recursion, as long as they contain �nitely

many free variables). First, we introduce a notation. Let eT = T1; � � � ; Tn . There are only �nitely

many di�erent types, say S1; : : : ; Sm , each of which is a subtype of someTi for i � n. Then we pick

n fresh names (which do not appear in � ; P and Q) ai 1; � � � ; ain for each type Si and extend � in

the following way.

Env (� ; eT ; P; Q) def= � [f aik : Si j 0 < i � m; 0 < k � n; aik 62fn (� ; P; Q)g

Lemma 4.29 Suppose� def= � c; ex : eT. If for each legal substitution � on Env (� ; eT ; P; Q) it holds

that P � mEnv (� c ; eT ;P;Q) Q� , then P m� Q.

Proof: Let � 1 = Env (� c ; eT ; P; Q), and the length of the tuple eT be n with n > 0. We prove

a stronger result P m� 1 ;ex : eT Q and then conclude by Lemma 4.25 (1). We shall show that

Pf eb=exg m� 1 ;� 0 Qf eb=exg for any eb and closed environment � 0 s.t. dom(� 0) \ fn (P; Q) = ; and

� 1; � 0 ` eb : eT. We proceed by induction on the number of names appearing inebbut not in dom(� 1),

which is de�ned as follows.

num(;) def= 0

num(eb) def=

(
num(b1 � � � bn � 1) + 1 if bn 62dom(� 1)

num(b1 � � � bn � 1) otherwise

� Base step. Supposenum(eb) = 0. When � 0 = ; , the result follows from the hypothesis. For other

� 0, the result is got indirectly by using Lemma 4.26.

� Inductive step. Suppose that the result holds for allebwhich satisfy the conditions in the hypothesis

and num(eb) � k. Given another eb with num(eb) = k + 1. Without loss of generality we assume that

there exists ac 62dom(� 1) and l � n such that b1 = b2 = � � � = bl = c and bi 6= c for all i > l . Then

� 1; � 0 can be rewritten as � 2; c : Si for some � 2 and Si s.t. Si � Tj for all j � l . Choose one

name from f ai 1; � � � ; ain g, say aij , which is di�erent from any names in bl +1 ; � � � ; bn , and construct

a substitution

� = f aij =x1; � � � ; aij =xl ; bl +1 =xl +1 ; � � � ; bn =xn g

Obviously � 2 ` aij : T1; � � � ; aij : Tl ; bl +1 : Tl +1 ; � � � ; bn : Tn and num(aij ; � � � , aij ; bl +1 ; � � � ; bn) � k.

By induction hypothesis P � m� 2 Q� . From Lemma 4.25 (2) we have

P � f c=aij g m� 2 f c=a ij g Q� f c=aij g

i.e., P f eb=exg m� 2 f c=a ij g Qf eb=exg. As aij 62dom(� 2f c=aij g), by Lemma 4.26 we getPf eb=exg m� 3

Qf eb=exg for � 3 = � 2f c=aij g; aij : Si = � 1; � 0, which is just the required result. ut

Below we establish a property of l � , corresponding to Lemma 4.26 form� . It allows the

extension of � in a limited way. The proof employs the concept of depth of a processP, written

d(P), which we de�ne as follows.

d(0) def= 0 d(P + Q) def= maxf d(P); d(Q)g

d(�:P) def= 1 + d(P) d('P Q) def= maxf d(P); d(Q)g

d((�a : S)P) def= d(P) d(P j Q) def= d(P) + d(Q)

4.4. OTHER EQUIVALENCES 85

One can verify that if �]P ��! � 0]P 0 then d(P) > d (P0) and fn (P0) � fn (P) [bn(�).

Lemma 4.30 Given two closed termsP and Q, let � = � 0; c1 : T; :::; cn : T with n � d(P + Q)

and ci 62fn (P; Q) for all i 2 1::n. If P l � Q then P l � ;a :T Q for a 62fn (P; Q) [dom(�) .

Proof: By induction on the depth of P + Q. If d(P + Q) = 0 then it is obvious that P l � ;a :T

0 l � ;a :T Q. Below we supposed(P + Q) > 0. If � ; a : T]P ��! � 0]P 0 there must exist some � 00s.t.

� 0 = � 00; a : T becausea does not a�ect the transition. In other words, we have �]P ��! � 00]P 0.

Since P l � Q, we have a matching transition �]Q
�

�! � 000]Q 0, where j � j= j � j. It follows that

� ; a : T]Q
�

�! � 000; a : T]Q0. There are two cases:

1. � is not an input action. In this case � 00= � 000and P0 l � 00 Q0. By induction hypothesis we

have P0 l � 00;a :T Q0.

2. � is an input action b(x : S). Then for each d with � ` d : �(b)o it holds that P0f d=xg l �

Q0f d=xg.

(a) If d 2 dom(� 0) with � 0 ` d : �(b)o, then n � d(P + Q) > d (P0f d=xg + Q0f d=xg) and

ci 62fn (P0f d=xg; Q0f d=xg) for i 2 1::n. By induction hypothesis we haveP0f d=xg l � ;a :T

Q0f d=xg.

(b) If c1 : T; :::; cn : T ` d : �(b)o, then without loss of generality we may assume that

d = c1. It can be checked that n � 1 � d(P + Q) � 1 � d(P0f d=xg + Q0f d=xg) and

ci 62fn(P0f d=xg; Q0f d=xg) for i 2 2::n. We can now appeal to induction hypothesis and

get the result that P0f d=xg l � ;a :T Q0f d=xg.

(c) If a : T ` a : �(b)o, then T <: �(b)o and thus � ` c1 : �(b)o, which implies P0f c1=xg l �

Q0f c1=xg. As f a=c1g is an injective type-preserving substitution, we have

P0f c1=xgf a=c1g l � f a=c1 g Q0f c1=xgf a=c1g

i.e., P0f a=xg l � f a=c1 g Q0f a=xg. Now observe that

i. n � 1 � d(P + Q) � 1 � d(P0f a=xg + Q0f a=xg),

ii. ci 62fn(P0f a=xg; Q0f a=xg) for i 2 2::n,

iii. c1 62fn (P0f a=xg; Q0f a=xg) [dom(� f a=c1g).

By induction hypothesis we haveP0f a=xg l � f a=c1 g;c1 :T Q0f a=xg. Note that � f a=c1g; c1 :

T = � ; a : T .

In summary, for eachd with � ; a : T ` d : �(b)o, it always holds that P0f a=xg l � ;a :T Q0f a=xg,

which is the required result.

ut

We know from Lemma 4.24 that l � is weaker than m� . This gives rise to an interesting

question: whether there exists some �� such that under the extended environment � ; � � we have

that P l � ;� � Q i� P m� Q. We shall give a positive answer to this question, though we did not

86 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

succeed in obtaining the counterpart of Theorem 4.23 form. The encountered problem is discussed

at the end of this subsection.

We de�ne the depth, d(T), of a type T, indicating the maximum number of nesting of capabilities

in it.

d(unit) = 0 d(i T) = d(oT) = 1 + d(T)

d(bhT; Si) = 1 + maxf d(T); d(S)g

Let � ` P. Each name inP has a type, either recorded in the syntax ofP or in �. If T1; : : : ; Tn

are all such types, d(� ; P) is maxf d(Ti) j 1 � i � ng. Now, if �]P i is a con�guration, for

i = 1 ; 2, then there are type environments � i such that � i <: � and � i ` Pi . In this case, we

set d(P1; P2; � 1; � 2) as maxf d(� 1; P1); d(� 2; P2)g. There are only �nitely many di�erent types with

depth less than or equal tod(P1; P2; � 1; � 2), say S1; : : : ; Sm , and � v is de�ned on �nitely many

variables, sayx1; : : : ; xk . We can pick up n fresh (hitherto unused) channelsai 1; : : : ; ain for each

Si , where n = maxf k; d(P1 + P2)g, and construct a type environment

Env (� ; P1; P2; � 1; � 2) = f aij : Sij j 0 < i � m; 0 < j � ng:

We say that P1 m� P2 under � 1; � 2 if � i <: � and � i ` Pi (i = 1 ; 2).

Lemma 4.31 If P1 m� P2 under � 1; � 2 then P1 l � ;Env (� ;P1 ;P2 ;� 1 ;� 2) P2.

Proof: By Lemma 4.26 we haveP1 m� ;Env (� ;P1 ;P2 ;� 1 ;� 2) P2. Then the result follows from Lemma

4.24. ut

In the above lemma,P1; P2 can be either closed or open. For the opposite direction, we consider

closed terms �rst.

Lemma 4.32 If �]P i respects� i , Pi is closed, for i = 1 ; 2, and P1 l � ;Env (� ;P1 ;P2 ;� 1 ;� 2) P2, then

P1 m� P2.

Proof: By induction on the depth of P1 + P2. In the cased(P1 + P2) = 0, it is immediate that

P1 m� 0 m� P2. Below we supposed(P1 + P2) > 0. Let � � = Env (� ; P1; P2; � 1; � 2). Since

dom(� �) \ fn(P1; P2) = ; , all actions of the con�guration � ; � �]P1 can be performed by �]P1,

and vice versa. Suppose that �]P1
��! � 0]P 0

1. It is easy to see that there is a matching transition

�]P2
�

�! � 00]P 0
2.

1. If � is not an input action, then j � j= j � j, � 0 = � 00 and P0
1 l � 0;� � P0

2. Suppose that

� 0]P 0
i respects �0i for i = 1 ; 2. Clearly d(P0

1; P0
2; � 0

1; � 0
2) � d(P1; P2; � 1; � 2) by Lemma 4.6.

From Lemma 4.30 we haveP0
1 l � 1 P0

2 where � 1 = � 0; � � ; Env (� 0; P0
1; P0

2; � 0
1; � 0

2). Now it

follows from Lemma 4.11 that P0
1 l � 0;Env (� 0;P 0

1 ;P 0
2 ;� 0

1 ;� 0
2) P0

2: By induction hypothesis we get

P0
1 m� 0 P0

2.

2. If � is an input action a(x : T), then P0
1f b=xg l � ;� � P0

2f b=xg for all b with � ; � � ` b :

�(a)o. Note that � ; � � � � 1 for some � 1 = Env (� ; �(a)o; P0
1; P0

2) by the de�nition of

Env (� ; eT ; P1; P2) given in the beginning of this subsection. So for allc with � 1 ` c : �(a)o

4.4. OTHER EQUIVALENCES 87

we have P0
1f c=xg l � ;� � P0

2f c=xg: It can be checked that � 1]P 0
i f c=xg is a con�guration

respecting � 0
i

def= � i ; � � for i = 1 ; 2. As

d(� 1; P0
1f c=xg; P0

2f c=xg; � 0
1; � 0

2) � d(� ; P1; P2; � 1; � 2)

we haveP0
1f c=xg l � 2 P0

2f c=xg, where

� 2 = � ; � � ; Env (� 1; P0
1f c=xg; P0

2f c=xg; � 0
1; � 0

2)

by Lemma 4.30. It follows from Lemma 4.11 that P0
1f c=xg l � 3 P0

2f c=xg where � 3 = � 1,

Env (� 1; P0
1f c=xg; P0

2f c=xg; � 0
1; � 0

2). By induction hypothesis we get P0
1f c=xg m� 1 P0

2f c=xg:

By Lemma 4.29 it follows that P0
1 m� ;x :�(a)o P0

2, which is the required result.

ut

Lemma 4.33 If �]P i respects� i , for i = 1 ; 2, and P1 l � ;Env (� ;P1 ;P2 ;� 1 ;� 2) P2 then P1 m� P2.

Proof: Similar to the second case of the proof in Lemma 4.32. Let � = � c; ex : eT and � � =

Env (� ; P1; P2; � 1; � 2). Then for any legal substitution � on � ; � � we have that P1� l � c;� � P2�:

We also have � c; � � � � 1 for some � 1 = Env (� c ; eT ; P1; P2). So for all � = f ec=exg with � 1 ` ec : eT

we haveP1� l � c;� � P2� . One can prove that � 1]P i � is a con�guration respecting � 0
i

def= � i ; � � .

Obviously d(� 1; P1�; P 2�; � 0
1; � 0

2) = d(� ; P1; P2; � 1; � 2), so P1� l � 2 P2� for some environment

� 2 = � c; � � , Env (� 1; P1�; P 2�; � 0
1; � 0

2). It follows that P1� l � 1 ;Env (� 1 ;P1 �;P 2 �; � 0
1 ;� 0

2) P2�: By

Lemma 4.32 we haveP1� m� 1 P2� , which implies P1 m� P2 by Lemma 4.29. ut

Combining Lemma 4.31 and 4.33 we have the result below.

Lemma 4.34 P1 m� P2 under � 1; � 2 i� P1 l � ;Env (� ;P1 ;P2 ;� 1 ;� 2) P2.

As a consequence of this lemma, we obtain the following theorem.

Theorem 4.35 P1 m� P2 under � 1; � 2 i� A ` P1 = � ;Env (� ;P1 ;P2 ;� 1 ;� 2) P2.

Directly axiomatizing m appears far from straightforward due to complications entailed by sub-

typing. We consider an example. LetT def= unit and

� def= a : oboT; y : obT

R def= �: ((�c : bT)�yc:�c + a(x : boT):[x = y]�)

R1
def= �: ((�c : bT)�yc:0 + a(x : boT):[x = y]�)

R2
def= �: ((�c : bT)�yc:�c + a(x : boT):0):

It holds that

R + R1 + R2 m� R1 + R2:

Here y can be instantiated by channels with subtypes ofobT, which can be seen in Figure 1.2 (b).

When y is instantiated by a channel with type boT, we can simulateR with R1. For other subtypes

of obT, we can simulateR with R2. That is, we have two equivalent processes, sayP and Q, with

a free variabley, and the actions from a summand ofP have to be matched by di�erent summands

of Q, depending on the types of the channels used to instantiatey. It appears hard to capture this

relationship among terms using axioms involving only the standard operators of the� -calculus.

88 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

4.4.2 Early Bisimilarity

All bisimilarities considered so far in this chapter are in the late style. As usual, the early versions

are obtained by commuting the quanti�ers in the input clause of bisimilarity. For example, typed

early bisimulation is de�ned as in De�nition 4.9 except for u sing the following input clause:

� if �]P
a(x :T)
�! � 0]P 0, then for each b with � c ` b : �(a)o there exists someQ0 such that

�]Q
a(x :S)
�! � 00]Q 0 and P0f b=xg R � Q0f b=xg.

As in the untyped case, the di�erence between late and early equivalences is captured by the axiom

SP [PS95]:

SP a(x : T1):P + a(x : T2):Q

= � a(x : T1):P + a(x : T2):Q + a(x : T3):([x = u]P Q)

All results in this chapter also hold for the early versions of the equivalences, when ruleSP is added.

For example, by letting the early version of l be l e, A e be A [f SPg and Pe be P [f SPg, we can

establish the counterparts of Theorem 4.15 and 4.23.

Theorem 4.36 1. P l e
� Q i� Pe ` P = � Q, where P and Q are closed;

2. P l e
� Q i� A e ` P = � Q.

Proof: See Appendix B.2. ut

4.5 Adding Parallelism

So far the only � -calculus operator that we have not considered is parallel composition. When it is

admitted, Table 4.1 should be extended with the following three transition rules (their symmetric

rules are omitted).

par P ��! P0 bn(�) \ fn(Q) = ;
P j Q ��! P0 j Q

com P �ab�! P0 Q
a(x :S)
�! Q0

P j Q ��! P0 j Q0f b=xg

close P
�a(b:T)
�! P0 Q

a(x :S)
�! Q0

P j Q ��! (�b : T)(P0 j Q0f b=xg)

In the typed setting, we incorporate the standard typing rul e

� ` P � ` Q

� ` P j Q

into Table 4.2. The TLTS shown in Table 4.3 is now extended with one rule:

Par �] P ��! � 0] P 0 bn(�) \ fn (Q) = ;
�] P j Q ��! � 0] P 0 j Q

After the above modi�cations, all de�nitions and results in Section 4.1 are still valid.

To lift the results in Section 4.2, 4.3 and 4.4 to the full � -calculus, it su�ces to enrich Table 4.4

with the two rules in Table 4.6. As in untyped � -calculus, the expansion lawE* is used to reduce

the parallel composition of two terms into the sum of parallel-free terms. In the typed setting we add

4.5. ADDING PARALLELISM 89

Ipar* Assume � 0]P respects �1, � 0]Q respects �2, and � = � 0; Env (� 0; P; Q; � 1; � 2).

If P = � Q and � ` R then P j R = � Q j R
E* AssumeP � � i ' i � i :Pi and Q � � j j � j :Qj where no � i (resp. � j) binds

a name free inQ (resp. P). Let �]P j Q respect �. Then infer:

P j Q = �
P

i ' i � i :(Pi j Q) +
P

j j � j :(P j Qj) +
P

� i opp � j
[' i ^ j ^ (ui = vj)]�:R ij

where � i opp � j ; ui ; vj and Rij are de�ned as follows:

1. � i is �ui w, � j is vj (x : T) and �(w) <: T ; then Rij is Pi j Qj f w=xg;

2. � i is �ui (w : S), � j is vj (x : T) and S <: T ; then Rij is (�w : S)(Pi j Qj f w=xg);

3. the converse of (1) or (2).

Table 4.6: Two rules for parallel composition

conditions on types in order to check the typability of the resulting processRij . Rule Ipar* says

that if � cannot distinguish P from Q, then it cannot distinguish P j R from Q j R either, provided

that: (i) � contains enough fresh channels; (ii) R requires no capabilities beyond the knowledge of

�. Note that we cannot do without the �rst condition, i.e., th e rule cannot be simpli�ed as:

For any � , if P = � Q and � ` R then P j R = � Q j R

which is unsound for l (though it is sound for m). The point is that when comparing P j R and

Q j R, the observer may �rst increase his knowledge by interacting with R, then distinguish P from

Q by the new knowledge. For example, let � def= a : bT; e : bT; b: T and

P
def
= a(x : T):[x 6= b]� Q

def
= a(x : T):0 R

def
= (�c : T)�ec:

It is easy to see that P l � Q and � ` R but P j R 6l � Q j R. After the interaction with R,

the environment evolves into � ; c : T . Later the new channel c may be used to instantiate x, thus

validating the condition x 6= b and liberating the pre�x � .

The soundness ofE* is easy to show. To prove that Ipar* is sound, we de�ne a family of

relations R = fR � g� where

R � = f ((� ea : eT1)(P j R); (� ea : eT2)(Q j R)) j P l � u � 0 Q; � u � 0 ` R;

� = � 0; Env (� 0; P; Q; � 1; � 2); � 0 u � 0]P respects �1; ea : eT1;

and � 0 u � 0]Q respects �2; ea : eT2; for some � 0; � 0, � 1; � 2g:

Then it can be proved that R is a typed bisimulation.

In general, if P l � Q then the equality P = � Q can be inferred in two steps:

1. By E* , Ipar* and Twea* we infer P = � P0 and Q = � Q0, where both P0 and Q0 are

parallel-free terms.

2. After the above preprocessing job, we inferP0 = � Q0 by the proof systems and axiomatisations

presented in previous sections.

90 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

4.6 Summary

In this chapter we have constructed a proof system and an axiom system for typed bisimilarity (l).

For the variant bisimilarity proposed in [HR04], we have provided a proof system for closed terms,

and an indirect axiomatisation of all terms that depends on the system of l . Early versions of

the systems are obtained by adding one axiomSP. All the systems are proved to be sound and

complete.

As partial meet and join operators do not exist in the original capability types [PS96], we adopt

in this chapter one of their extensions, Hennessy and Rathke's types [HR04]. An alternative path to

take is to go in the opposite direction and add some syntacticconstraints to capability types, thus

only certain shapes of types are legal and partial meet and join operators exist upon the legal types.

For instance, in synchronous localised� -calculus there are two forms of legal types:oo� � � oB and

bo� � � oB where B is a basic type. It is easy to see that the two operators exist because whenever

T <: S holds, then either T � S or T � bT 0; S � oT 0 for someT 0, which means:

1. if T <: T1; T2 and T1 6� T2 then T1 u T2 = T;

2. if T1; T2 <: T and T1 6� T2 then T1 t T2 = T.

Therefore axiomatisation in synchronous localised� -calculus is a special case of the problem ad-

dressed in this chapter.

Chapter 5

Termination of Mobile Processes

by Typability

Many modern programming languages are equipped with some notions of typing to statically detect

programming errors. In mobile process calculi types are shown to be useful for reasoning about the

behaviour of processes. In this chapter we use type-based method to reason about the terminating

behaviour of mobile processes.

We give four type systems that ensure termination of well-typed � -calculus processes. The

systems are obtained by successive re�nements of the types of the simply typed � -calculus. For

all (but one of) the type systems we also present upper boundsto the number of steps well-typed

processes take to terminate. The termination proofs use techniques from term rewriting systems.

We show the usefulness of the type systems on some non-trivial examples: the encodings of prim-

itive recursive functions, the protocol for encoding separate choice in terms of parallel composition,

a symbol table implemented as a dynamic chain of cells.

5.1 Preliminary Notations

To begin with, we introduce some notations about vectors, partial orders and multisets. We write

0i as the abbreviation of a vectorhnk ; nk � 1; � � � ; n1i where k � 1, ni = 1 and nj = 0 for all j 6= i

(1 � i; j � k), and 0 for a vector with all 0 components. The binary operator sum can be de�ned

between two vectors. Let ' 1
def= hnk ; nk � 1; � � � ; n1i , ' 2

def= hml ; ml � 1; � � � ; m1i and k � l . First we

extend the length of ' 2 to k by inserting (k � l) zeros to the left of ml to get an equivalent vector

' 0
2. Then we do pointwise addition over two vectors with equal length. We also de�ne an order

between two vectors of equal length as follows:hnk ; nk � 1; � � � ; n1i � h mk ; mk � 1; � � � ; m1i i� 9i � k

with nj = mj for j > i and ni < m i .

Let U be a set and> a strict partial order on U. Following [Bez03], we write a multiset M over

U in the form M = [x1; : : : ; xn], wherex i 2 U for 1 � i � n (when n = 0 we get the empty multiset

[]); we use (M] M 0) for the union of M and M 0, and write > mul for the multiset ordering (on

multisets over U) induced by > . A multiset becomes smaller, in the sense of> mul , by replacing one

91

92 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

T-in
` u :]n V x : V ` P

` u(x):P
T-out

` u :]n V ` w : V ` P

` �uw:P
T-nil

` 0

T-par
` P ` Q

` P j Q
T-sum

` P ` Q

` P + Q
T-res

a : L ` P

` �aP

T-rep
` u :]n V x : V ` P 8v 2 os(P); lv (v) < n

` !u(x):P

Table 5.1: The core type system

or more of its elements by any �nite number (including zero) of smaller elements. It can indeed be

shown that if > is well-founded then so is> mul [Bez03].

In this chapter we make no syntactic di�erence between channels and variables, both of them are

names. We shall restrict our attention to the termination pr operty of closed processes, i.e., processes

without free names ofbool or Nat types.

5.2 The Core System: the Simply Typed � -calculus with

Levels

Our �rst type system for termination is obtained by making mi ld modi�cations to the types and

typing rules of the simply typed � -calculus (cf. Section 2.2.5). We assign a level, which is a natural

number, to each channel name and incorporate it into the typeof the name. Now the syntax of

channel type takes the new form:

L ::=]n V channel types

n ::= 1 ; 2; � � � levels

For convenience of presentation, in this chapter we only study type systems �a la Church , and

each name is assigned a type a priori. Hence we do not annotatebound names with types. We write

x : T to mean that the name x has type T. A judgment ` P says that P is a well-typed process, and

` w : V says that w is a well-typed value of type V . Our core type system is displayed in Table 5.1.

The main di�erence from the simply typed � -calculus lies in the ruleT-rep, in which os(P) is a

set collecting all names inP which appear as subjects of those outputs that are not underneath any

replicated input (we say this kind of outputs are active). Speci�cally, os(P) is de�ned inductively

as follows:

os(0) def= ; os(�uw:P) def= f ug [os(P)

os(!u(x):P) def= ; os(P j Q) def= os(P) [os(Q)

os(u(x):P) def= os(P) os(P + Q) def= os(P) [os(Q)

os(�aP) def= os(P)

5.2. THE CORE SYSTEM: THE SIMPLY TYPED � -CALCULUS WITH LEVELS 93

The function lv(v) calculates the level of channelv from its type. If v :]n V then lv(v) = n.

The purpose of using levels is to rule out recursive inputs as, for instance, in the process

�a j!a:�b j!b:�a (5.1)

where the two replicated processes can call each other thus producing a divergence. Our type system

requires that in any replication !a(x):P, the level of a is greater than the level of any name that

appears as subject of an active output ofP. In other words, a process spawned by the resource

!a(x):P can only access other resources with a lower level. Process (5.1) is therefore illegal because

!a:�b requires lv(a) > lv (b) while !b:�a expects lv(b) > lv (a). For the same reason, for the process

P def= a(x):!x: �c j!c:�b to be well typed it is necessary that names received along channel a have a

higher level than lv(c). Therefore P j �ab is illegal, since, due to the right component ofP, we have

lv(c) > lv (b). As a �nal example, consider the process

�a j!a:(�c j!b:�a): (5.2)

In this process, there is an output ata underneath the replication at a. The output at a, however, is

not active in the body �c j!b:�a of the replication because it is located underneath anotherreplication.

Therefore this process is typable by our type system. We callT this type system and write T ` P

to mean that P is a well-typed process underT . The subject reduction theorem of the simply typed

� -calculus can be easily adapted toT .

Before proceeding to prove the termination property of well-typed processes, we need some

preliminary notations. If name a appears as the subject of some active output in a subterm ofP

and lv(a) = i , then we say a has at least oneoutput (subject) occurrence at level i . It does not

matter whether a is free or bound in the whole processP. For example, let

Q def= (�d :]1Nat)(a(x):b(y):(�xy j �cd:�cd:�d3)):

It is easy to see that Q is a well-typed process if the types ofa; b and c are]3]1Nat;]3Nat and

]2]1Nat, respectively. In this processx and d have one output occurrence at level 1 respectively,

c has two output occurrences at level 2,a and b have zero output occurrence at any level. Thus,

the identity of names that appear in output occurrences is not important: what we need is the

number of output occurrences of names belonging to the same level, and this for each level. For

every well-typed processP, we useni to stand for the number of output occurrences at leveli ; hence

ni is simply calculated by scanning the process expression. Then the weight, wt(P), of a process

P is the vector hnk ; nk � 1; � � � ; n1i , with k representing the highest level on which the process has

non-zero output occurrence. As to the processQ de�ned above, it has the weight wt(Q) = h2; 2i .

Formally we have the following de�nition of wt(P). It is related to the set os(P) since we only count

the levels of names appearing inos(P).

wt(0) def= 0 wt(�uw:P) def= wt(P) + 0lv (u)

wt(!u(x):P) def= 0 wt(P j Q) def= wt(P) + wt(Q)

wt(u(x):P) def= wt(P) wt(P + Q) def= maxf wt(P); wt(Q)g

wt(�aP) def= wt(P)

94 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

The next lemma says that weight is a good measure because it decreases at each reduction

step. This property leads naturally to the termination theo rem of well-typed processes, by the

well-foundedness of weight.

Lemma 5.1 SupposeT ` P; P ��! P0, then wt(P0) � wt(P):

Proof: By induction on transitions. See Appendix C.1. ut

Theorem 5.2 If T ` P, then P terminates.

Proof: By induction on the weight of well typed processes.

� Base case: All processes with weight0 are terminating because they have no active output.

� Inductive step: Suppose all processes with weights less than wt(P) are terminating. We show

that P is also terminating. Consider the setI = f i j P ��! Pi g. For each i 2 I we know that:

(i) T ` Pi by the subjection reduction property of T , (ii) wt(Pi) � wt(P) by Lemma 5.1. So

each suchPi is terminating by induction hypothesis, which ensures that P is terminating.

ut

The type system T provides us with a concise way of handling nested inputs. Forexample, let

a :]1]1Nat; b :]2Nat; c :]1Nat, then process (1.1) is well-typed and therefore terminating. Similarly,

process (5.2) is well-typed if the types ofa; b and c are]2Nat;]3Nat and]1Nat, respectively.

Lemma 5.1 implies that the weight of a process gives us a boundon the time that the process

takes to terminate. First we de�ne the size of a process as thewhole number of literals in the process

expression.

Proposition 5.3 Let n and k be the size and the highest level in a well-typed processP, respectively.

Then P terminates in polynomial time O(nk).

Proof: Let wt(P) be hnk ; :::; n1i , thus
P k

i =1 ni < n . The worst case is that when an active output

of level i is consumed, all (less thann) new active outputs appear at level i � 1. Hence one output

occurrence of leveli gives rise to at mostf (i) steps of reduction, where

f (i) =

(
1 if i = 1

1 + n � f (i � 1) if i > 1.

In other words,

f (i) =
i � 1X

j =0

nj =
ni � 1
n � 1

:

Since the weight of P is hnk ; :::; n1 i , the length of any reduction sequence fromP is bounded by
P k

i =1 ni � f (i). As

kX

i =1

ni � f (i) �
kX

i =1

ni � f (k) = (
kX

i =1

ni) � f (k) < n � f (k) =
n(nk � 1)

n � 1

we know that P terminates in time O(nk). ut

5.3. ALLOWING LIMITED FORMS OF RECURSIVE INPUTS 95

As a consequence of Proposition 5.3 we are not able to encode the simply typed � -calculus into

the � -calculus with type system T , according to the known result that computing the normal form

of a non-trivial � -term cannot be �nished in elementary time [Sta79, Loa98]. However, we shall

see in the next section an extension ofT that makes it possible to encode all primitive recursive

functions (some of which are not representable in the simplytyped � -calculus).

5.3 Allowing Limited Forms of Recursive Inputs

The previous type system allows nesting of inputs but forbids all forms of recursive inputs (i.e.

replications !a(x):P with the body P having active outputs at channel a). In this and the following

sections we study how to relax this restriction.

5.3.1 The Type System

Let us consider a simple example. ProcessP below has a recursive input: underneath the replication

at a there are two outputs at a itself. However, the values emitted ata are \smaller" than the value

received. This, and the fact that the \smaller than" relatio n on natural numbers is well-founded,

ensures the termination ofP. In other words, the termination of P is ensured by the relation among

the subjects and objects of the pre�xes { rather the subjectsalone as it was in the previous system.

P def= �ah10i j !a(n): if n > 0 then (�ahn � 1i j �ahn � 1i)
��! �ah9i j �ah9i j !a(n): if n > 0 then (�ahn � 1i j �ahn � 1i)

For simplicity, the only well-founded values that we consider are naturals. But the arguments below

apply to any data type on whose values a well-founded relation can be de�ned.

We use function out(P) to extract all active outputs in P. The de�nition is similar to that

of os(P) in Section 5.2. The main di�erence is that each element ofout(P) is a complete output

pre�x, including both subject and object names. For example, we have out(!a(x):P) = ; and

out(�aw:P) = f �awg [out(P).

In the typing rule, in any replication ! a(x):P we compare the active outputs inP with the input

a(x) using the relation / below. We have that �bw / a(x) holds in two cases: (1)b has a lower level

than a; (2) b and a have the same level, but the objectw of b is provably smaller than the object x

of a. For this, we assume a mechanism for evaluating (possibly open) integer expressions that allows

us to derive assertions such asx � i < x if i > 0. We adopt an eager reduction strategy, thereby the

expression in an output is evaluated before the output �res.

De�nition 5.4 Let u :]n S and v :]m T. We write �vw / u (x) if one of the two cases holds: (i)

m < n ; (ii) m = n; S = T = Nat and w < x .

By substituting the following rule for T-rep in Table 5.1, we get the extended type systemT 0.

The second condition in the de�nition of / allows us to include some recursive inputs and gives us

the di�erence from T .

T-rep ` u :]n V x : V ` P 8�vw 2 out(P0); �vw / u (x)
` !u(x):P

96 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

The termination property of T 0 can also be proved with a schema similar to the proof in last

section. However, the details are more complex because we need to be clear about how the �rst-

order values in which we are interested evolve with the reduction steps. So we use a measure which

records, for each output pre�x, the value of the object and the level information of the subject.

More precisely, the measure is acompound vector, which consists of two parts: theNat-multiset and

the weight, corresponding to each aspect of information that we wish to record.

To a given processP and level i , with 0 < i � k and k is the highest level in P, we assign a

unique Nat-multiset M P;i = [n1; � � � ; nl], with nj 2 N [f1g for all j � l . (Here we consider1 as

the upper bound of the in�nite set N.) Intuitively, this multiset is obtained as follows. For ea ch

active output �bw in P with lv(b) = i , there are three possibilities. Ifw is a constant value (w 2 N),

then w is recorded in M P;i . If w contains variables of type Nat, then a 1 is recorded in M P;i .

Otherwise, w is not of type Nat and thus contributes nothing to the Nat-multiset. For insta nce,

supposea :]3Nat; b :]2Nat; c :]1Nat and P def= �ah1i j �ah1i j �bh2i j !a(n):�bhn + 1 i j b(n):�chni , then

T 0 ` P and there are three Nat-multisets: M P;3 = [1 ; 1]; M P;2 = [2] and M P;1 = [1]. Formally,

we de�ne M P;i as follows:

M 0;i
def= [] M �aP;i

def= M P;i

M !a(x) :P;i
def= [] M P jQ;i

def= M P;i] M Q;i

M a(x) :P;i
def= M P;i M P + Q;i

def= M P;i] M Q;i

M �aw:P;i
def=

8
>><

>>:

M P;i] [w] if a :] i Nat and w 2 N

M P;i] [1] if a :] i Nat and fvn(w) 6= ;

M P;i otherwise

where fvn(w) is the set of variables of type Nat. We de�ne an operator & to combine a set of

Nat-multisets fM Q;i j 0 < i � kg with the weight of Q (as de�ned in the previous section),

wt(Q) = hnk ; � � � ; n1i , so as to get acompound vectortQ = h(M Q;k ; nk); � � � ; (M Q; 1; n1)i . For the

above examplewt(P) = h2; 1; 1i , so tP = fM P;i j 0 < i � kg & wt(P) = h([1; 1]; 2); ([2]; 1); ([1]; 1).

The order � and the operator + can be extended to compound vectors.

De�nition 5.5 SupposetP = h(sk); � � � ; (s1)i and tQ = h(s0
k); � � � ; (s0

1)i , where si = M P;i ; ni and

s0
i = M Q;i ; n0

i for 0 < i � k:

1. si � s0
i if M P;i < mul M Q;i _ (M P;i = M Q;i ^ ni < n 0

i)

2. si = s0
i if M P;i = M 0

Q;i ^ ni = n0
i

3. si + s0
i = M P;i] M 0

Q;i ; ni + n0
i

4. tP � tQ if 9i � k; sj = s0
j for j > i and si � s0

i

5. tP = tQ if si = s0
i for all i � k

6. tP + tQ = h(sk + s0
k); � � � ; (s1 + s0

1)i

Using compound vectors as the measure, we can build, with similar proof schemas, the counter-

parts of Lemma 5.1 and Theorem 5.2.

5.3. ALLOWING LIMITED FORMS OF RECURSIVE INPUTS 97

Lemma 5.6 If T 0 ` P and P ��! P0 then tP 0 � tP .

Proof: See Appendix C.2. ut

Theorem 5.7 If T 0 ` P then P terminates.

Proof: Followed from Lemma 5.6. ut

Note that the measure used here is much more powerful than that in Section 5.2. With weights,

we can only prove the termination of processes which always terminate in polynomial time. By

using compound vectors, however, as we shall see in Section 5.3.2, we are able to capture the

termination property of some processes which terminate in time O(f (n)), where f (n) a is primitive

recursive function. For example, we can write a process to encode therepeated exponentiation, where

E(0) = 1, E(n + 1) = 2 E (n) . Once received a numbern, the process does internal computation in

time O(E(n)) before sending out its result.

5.3.2 Example: Primitive Recursive Functions

For simplicity of presentation, we have concentrated mainly on monadic communication. However,

it is easy to extend our calculus and type systems to allow polyadic communications and an if-then-

else construct1 (see Appendix C.3), which are needed in this example. The advantage of T 0 over

T lies in the fact that primitive recursive functions can now be captured.

De�nition 5.8 (Primitive recursive functions)[Bec80] The class of primitive recursive functions

consists of those functions that can be obtained by repeatedapplication of composition and primitive

recursion starting with (1) the successor function, f (x) = x + 1 , (2) the zero function, f (x) = 0 , (3)

the generalized identity functionsf (n)
i (x1; � � � ; xn) = x i , with the generating rules for composition

and primitive recursion being

1. Composition f (x1; � � � ; xn) = g(e1(x1; � � � ; xn); � � � ; em (x1; � � � ; xn))

2. Primitive recursion
(

f (0; x2; � � � ; xn) = e(x2; � � � ; xn)

f (x1 + 1 ; x2; � � � ; xn) = g(x1; f (x1; � � � ; xn); x2; � � � ; xn)

Proposition 5.9 All primitive recursive functions can be represented as terminating processes in

the � -calculus.

Proof: A function f (ex) can be represented as a processFa which has replicated input like !a(ex; y):R,

where namea is called port of F , with type Tm;n =]m (gNat;]n Nat) where m > n . After receiving

via a some argumentsex and a return channel y, processR does some computation, and �nally the

result is delivered at y. For the three basic functions, the results are returned immediately. This

1For convenience of presention, in the rest of the thesis we sh all use an if-then-else construct in place of the

nondeterministic choice construct, instead of considerin g the two constructs simultaneously.

98 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

style of encoding follows from Milner's encoding of� -terms into � -processes [Mil92]. In the similar

way can the correctness of the following �ve encodings be veri�ed.

The encoding of the three basic functions is straightforward.

(1) The zero function Fa
def= ! a(x; y):�yh0i :

(2) The successor function Fa
def= ! a(x; y):�yhx + 1 i

(3) The identity functions F (i;n)
a

def= ! a(ex; y):�yhx i i :

By assigning to a the type T2;1, the three processes de�ned above are typable in our core type

system T , thus typable in T 0.

(4) Composition

Suppose thatE i a i
is de�ned for ei with the type of ai being Tm i ;n i for all 1 � i � m, and Gc is

de�ned for g with the type of c being Tm 0;n 0. By induction hypothesis, they are well typed in T 0.

Then we can de�ne Fa for f as:

Fa
def= ! a(ex; y):(� eaebc)(E1a1

j �a1hex; b1i j � � � j Em am
j �am hex; bm i

j b1(z1): � � � :bm (zm):�chez; yi j Gc)

Let m00= maxf m1; � � � ; mm ; m0g+ 1 and give namea the type Tm 00;n 0. It can be easily checked that

processFa is typable in T 0.

(5) Primitive recursion

Suppose thatEb is de�ned for e with the type of b being Tm 1 ;n 1 , and Ga0 is de�ned for g with

the type of a0 being Tm 2 ;n 2 . By induction hypothesis they are well typed in T 0. We de�ne Fa as

follows.

Fa
def= ! a(ex; y): if x1 = 0 then (�b)(Eb j �bhx2; � � � ; xn ; yi)

else (�b 0)(�ahx1 � 1; x2; � � � ; xn ; b0i

j b0(z):(�a 0)(Ga0 j �a0hx1 � 1; z; x2; � � � ; xn ; yi))

Let m = maxf m1; m2g + 1 and give type Tm;n 2 to a. It is easy to see thatFa is well typed in T 0.

ut

For the processF in (1.2), which represents the factorial function, it is typ able if we give name

a the type]2(Nat;]1Nat). By contrast, the encoding of functions that are not primit ive recursive

may not be typable. An example is Ackermann's function.

5.4 Asynchronous Names

In this section we start a new direction for extending our core type system of Section 5.2: we prove

termination by exploiting the structure of processes instead of the well-foundedness of �rst-order

values. The goal of the new type systems (in this and in the next section) is to gain more
exibility

in handling nested inputs. In the previous type systems, we required that in a replicated process

!a(x):P, the highest level should be given toa. This condition appears rigid when we meet a process

like !a:b:�a because we do not take advantage of the level ofb. This is the motivation for relaxing

the requirement. The basic idea is to take into account the sum of the levels of two input subjects

5.4. ASYNCHRONOUS NAMES 99

a; b, and compare it with the level of the output subject a. However, this incurs another problem.

Observe the following reduction:

P def= �a j �b j!a:b:�a
��! �b j b:�a j!a:b:�a
��! �a j!a:b:�a

The weight of P does not decrease after the �rst step of reduction (we consume a copy of �a but

liberate another one). Only after the second reduction doesthe weight decrease. Further,P might

run in parallel with another process, sayQ, that interferes with P and prevents the second reduction

from happening. This example illustrates two new problems that we have to consider: the weight

of a process may not decrease at every step; because of interferences and interleaving among the

activities of concurrent processes, consecutive reductions may not yield \atomic blocks" after which

the weight decreases.

In the new type system we allow the measure of a process to decrease after a �nite number

of steps, rather than at every step, and up to some commutativities of reductions and process

manipulations. This di�erence has a strong consequence in the proofs. For technical reasons related

to the proofs, we require certain names to be asynchronous.

5.4.1 Proving Termination with Asynchronous Names

A name a is asynchronousif all outputs with subject a are followed by0. That is, if �av:P appears in

a process thenP = 0. A convenient way of distinguishing between synchronous and asynchronous

names is using Milner's sorts (cf. Section 2.2.3). Thus we assume two sorts of names,�a and �s ,

for asynchronous and synchronous names respectively, withthe requirement that all names in �a

are syntactically used as asynchronous names. We assume that all processes are well-sorted in this

sense and will not include the requirements related to sortsin our type systems. (We stick to using

both asynchronous and synchronous names instead of workingon asynchronous� -calculus, because

synchronous� -calculus is sometimes useful { see for instance the examplein Section 5.5.2 { and it is

more expressive [Pal03]. However, all the results in this paper are valid for asynchronous� -calculus

as well.)

We make another syntactic modi�cation to the calculus (with an if-then-else construct in place

of the nondeterministic choice in Table 2.4) by adding a construct to represent a sequence of inputs

underneath a replication:

� ::= u1(x1): � � � :un (xn) n � 1 and 8i < n; u i : �a

P ::= : : : j!�:P

This addition is not necessary { it only simpli�es the presentation. It is partly justi�ed by the

usefulness of input sequences in applications. (It also strongly reminds us of the input pattern

construct of the Join-calculus [Fou98]). We call� an input pattern. Note that all but the last input

subject in � are required to be asynchronous. As far as termination is concerned, we believe that

the constraint { and therefore the distinction between asynchronous and synchronous names { can

be lifted. However, we do not know how to prove Theorem 5.10 without it.

100 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

The usual form of replication !u(x):P is now considered as a special case where the input pattern

has length 1, i.e., it is composed of just one input pre�x. We extend the de�nition of weight to input

patterns by taking account of the levels of input subjects: wt(u1(x1): � � � :un (xn)) = 0k1 + � � � + 0kn

where lv(ui) = ki . The typing rule T-rep in Table 5.1 is replaced by the following one.

T-rep ` �:P wt (�) � wt(P)
` !�:P

Intuitively, this rule means that we consume more than what we produce. That is, to produce

a new processP, we have to consume all the pre�xes fromu1(x1) to un (xn) on the left of P, which

leads to the consumption of corresponding outputs atu1; � � � ; un . Since the sum of weights of all

the outputs is larger than the weight of P, the whole process has a tendency to decrease its weight.

Although the idea behind this type system (T 00) is simple, the proof of termination is non-trivial

because we need to �nd out whether and when a whole input pattern is consumed and thus the

measure decreases. The rest of the subsection is devoted to proving the following theorem.

Theorem 5.10 If T 00` P then P terminates.

Below we brie
y explain the structure of the proof and proceed in four steps. Firstly, we decorate

processes and transition rules with tags, which indicate the origin of each reduction: whether it is

caused by calling a replicated input, a non-replicated input or it comes from an if-then-else structure.

This information helps us to locate some points, calledlandmarks, in a reduction path. If a process

performs a sequence of reductions that are locally ordered (that is, all and only the input pre�xes

of a given input pattern are consumed), then the process goesfrom a landmark to the next one

and decreases its weight (Lemma 5.12). (This is not su�cient to guarantee termination, since

in general the reductions of several input patterns may interleave and some input patterns may

be consumed only partially.) Secondly, by taking advantageof the constraint about asynchronous

names, we show a limited form of commutativity of reductions(Lemma 5.13). Thirdly, by commuting

consecutive reductions, we adjust a reduction path and establish on it some locally ordered sequences

separated by landmarks. Moreover, when an input pattern is not completely consumed, we perform

some manipulations on the derivatives of processes and erase some inert subprocesses. Combining

all of these with the result of Step 1, we are able to prove the termination property of tagged

processes Lemma (5.14). Finally, the termination of untagged processes follows from the operational

correspondence between tagged and untagged processes (Lemma 5.11), which concludes our proof

of Theorem 5.10.

We begin with introducing the concepts of atomic tag, tag and tagged process. Atomic tags

are names from a separate in�nite setN 0, which is disjoint from the set N used for constructing

untagged processes. We use the function� : N 0 7! N to associate every atomic tag with a natural

number. Note that we require N 0 to be an in�nite set so that it can always supply fresh atomic tags

as we need. We letl; l 0; l1; � � � range over atomic tags and� stand for a special atomic tag by setting

� (�) = 0. A tag is a pair (l; n) where l is an atomic tag and n is an integer with n � � (l). We let

t; t 0; � � � range over tags and write� as the abbreviation of the special tag (�; 0). The only di�erence

between tagged processes and untagged ones is that the former gives tags for all non-replicated

inputs.

P ::= � � � j ut (x):P

5.4. ASYNCHRONOUS NAMES 101

if-t
if true then P else Q � 0

�! P
if-f

if false then P else Q � 0

�! Q

com1 P
(� ea)�uw
�! P0 Q u t w�! Q0 ea \ fn (Q) = ;

P j Q t�! (� ea)(P0 j Q0)
in

ut (x):P u t w�! P f w=xg

rep � = u1(x1): � � � :un (xn) l fresh � (l) = n

!�:P
u (l; 1)

1 w
�! !�:P j (u(l; 2)

2 (x2): � � � :u(l;n)
n (xn):P)f w=x1g

Table 5.2: Transition rules for tagged processes

Note that we do not give tags to input patterns. A tagged processP is regular if the only tag that

appears in P is the special tag � . On the contrary, if there is a tag t with t 6= � in P, then P is

irregular. We reserve the tag� 0 for the transition rules if-t and if-f (see Table 5.2). Unlike� , � 0 only

appears in transitions, not in tagged processes. We de�ne the operator erase(�) to erase all tags in

a tagged process so as to get an untagged process. LetP be a tagged process. We de�newt(P) as

wt(erase(P)), and we write T 00` P if T 00` erase(P). The transition rules for tagged processes are

the same as in Table 2.3 except for rulesin, com1, rep, if-t and if-f, which are displayed in Table 5.2. In

the rule rep, a fresh atomic tagl is introduced to witness the invocation of the replicated input ! �:P .

The result of invoking !�:P is the generation of a new process (u(l; 2)
2 (x2): � � � :u(l;n)

n (xn):P)f w=x1g.

The condition � (l) = n relates l to � by requiring the number of input pre�xes in � to be � (l). So

if an input pre�x has tag (l; � (l)) then it originates from the last input pre�x in � .

Note that substitutions of names do not a�ect tags. More precisely, we have that (at (x):P)

f c=bg = (af c=bg)t (x):Pf c=bg. From the transition rules it can be seen that tags are never used as

values to be transmitted between processes and that there isno substitution for tags.

Tags give us information about the transitions of tagged processes. For example, ifP is regular

and P t�! P0, then at least we know the following information:

� if t = � 0 then an if-then-else structure in P disappears whenP evolves into P0;

� if t = � then the reduction results from an internal communication between an active output

and a non-replicated input;

� if t = (l; 1) then the reduction results from an internal communication between an active

output and a replicated input of the form ! u1(x1): � � � :u� (l) (x � (l)):Q; moreover, if � (l) > 1 then

P0 has a subprocessu(l; 2)
2 (x2): � � � :u(l;� (l))

� (l) (x � (l)):Q.

We de�ne the operator (�)� , which is complementary to erase(�), to translate untagged processes

into regular processes by giving all non-replicated inputsthe special tag� .

0� def= 0 (u(x):P)� def= u� (x):P �

(�uw:P)� def= �uw:P � (�aP)� def= �aP �

(P j Q)� def= P � j Q� (!�:P)� def= ! �:P �

(if w then P else Q)� def= if w then P � else Q�

102 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

Note that erase(P �) = P holds but (erase(P)) � = P may not be valid. For example !a:b:�c j �a
(l; 1)
�!

!a:b:�c j b(l; 2) :�c � P0, and thus (erase(P0)) � =! a:b:�c j b� :�c 6= P0. However, there exists operational

correspondence between tagged and untagged processes since tags do not have semantic meaning

and the purpose of using tags is to identify every newly created process from some replicated process.

This is precisely what the next lemma shows.

Lemma 5.11 Let P be a tagged process andQ an untagged one.

1. If P t�! P0 then erase(P) ��! erase(P0).

2. If Q ��! Q0 and erase(P) = Q, then P t�! P0 and erase(P0) = Q0 for some t.

As expressed in Lemma 5.12 and 5.13, (well-typed) tagged processes have some interesting

properties such as decrement of weight after some speci�c steps of reduction and commutativity

of reductions.

Lemma 5.12 1. If P ��! P0 then wt(P) � wt(P0).

2. If P � 0

�! P0 then wt(P) � wt(P0)

3. If P
(l; 1)
�! P1

(l; 2)
�! � � � Pn � 1

(l;n)
�! P0 and n = � (l) > 0 then wt(P) � wt(P0).

Proof: See Appendix C.4. ut

Generally speaking, commutativity of reductions does not hold in the � -calculus. For instance,

the processP = a:b j �a j �b has reduction path P
� a�!

� b�! but not
� b�!

� a�! , where
� c�! means that

an internal communication happens on channelc. As we shall see in the next two lemmas, this

property does hold in the presence of certain constraints. We write P
et=) R for P

t 1�! � � �
t n�! R,

where et = t1 � � � tn .

Lemma 5.13 1. If P is regular and P
et=) R

(l;i)
�! R1

t�! R0, t 2 f �; � 0g and i < � (l), then there

exists R0
1 such that R t�! R0

1
(l;i)
�! R0.

2. If P is regular and P
et=) R

(l 0;j)
�! R1

(l;i)
�! R0, l 6= l0; j < � (l0) and i � � (l), then there exists

someR0
1 such that R

(l;i)
�! R0

1
(l 0;j)
�! R0.

Proof: See Appendix C.4. ut

In the following lemma, we make full use of commutativity and reorganize a reduction path in a

way easy of pinpointing landmarks, which witness the decrement of the measure that we choose for

the beginning process of the path.

Lemma 5.14 All the regular tagged processes terminate.

Proof: We sketch the idea of the proof; more details are given in Appendix C.4.

Let P be a regular tagged process. We show thatP terminates by induction on its weight wt(P).

� Base case: All processes with weight0 must be terminating because they have no active outputs.

� Inductive step: SupposeP is non-terminating and thus has an in�nite reduction sequence

P � P0
t 1�! P1

t 2�! � � �
t i�! Pi

t i +1�! � � �

5.4. ASYNCHRONOUS NAMES 103

Now the tag t1 takes one of the three forms:� 0, � or (l; i). By doing case analysis we can prove that

in every case there always exists someQ such that: (i) Q is also non-terminating; (ii) Q is regular;

(iii) wt(P) � wt(Q). When Q is found, we get a contradiction since by induction hypothesis all

processes with weights less thanwt(P) are terminating. So the supposition is false andP should

be terminating.

In seeking for this Q, we carefully manipulate the reduction path of P by commuting reductions

(Lemmas 5.13) in order to put all tags belonging to the same input pattern in contiguous positions.

Then we can use Lemma 5.12 to prove (iii). If an input pattern cannot be completed, which means

that its continuation does not contribute to the subsequent reductions of P, we can substitute 0

for the continuation. For example, supposeP def= �a 2(�a1 j!a1:a2:R1) j R2 and there is a reduction

sequence like:

P
(l; 1)
�! P1

t 2�! P2
t 3�! � � �

with P1 � �a 2(a(l; 2)
2 :R1 j!a1:a2:R1) j R2. Sincea(l; 2)

2 :R1 is never consumed in the reduction sequence,

it contributes nothing to the subsequent reductions starting from P1. So we can safely takeQ to be

�a 2(0 j!a1:a2:R1) j R2, and the same transition sequence can still be made, with0 in place of the

top level a(l; 2)
2 :R1 in all derivatives.

Consequently, for each new atomic tagl with � (l) > 0 created by the derivatives ofP, either we

have found the complete input pattern corresponding tol , or the input pattern cannot be completed

but no l appears in the in�nite reduction path starting from Q. As a result, no new tag appears in

Q, i.e. (ii) is satis�ed. ut

Now we are ready to prove Theorem 5.10 by applying the last lemma.

Proof of Theorem 5.10:

By Lemma 5.11 it is easy to prove the following claim:

Let P be a untagged process andQ be a tagged process such thaterase(Q) = P, then

P is non-terminating i� Q is non-terminating.

Since erase(P �) = P, it follows that P � is non-terminating i� P is non-terminating. By the

de�nition of the translation (�)� we know that P � is regular. Therefore Lemma 5.14 applies andP �

must be terminating, which in turn implies the termination o f P. ut

Proposition 5.15 For a process P well-typed under T 00, let n and k be its size and the highest

level, respectively. ThenP terminates in polynomial time O(nk+1).

Proof: Let wt(P) be hnk ; :::; n1i . From the proof Lemma 5.14 we know that: (i) commutation

of reductions does not change the length of a reduction sequence; (ii) the measure diminishes from

one landmark to the next one; (iii) the distance between two neighboring landmarks is less thann.

In addition, by similar arguments as in the proof of Proposition 5.3 it can be shown that in each

locally ordered reduction path there are at most n (n k � 1)
n � 1 landmarks. Therefore the whole length of

each reduction path is bounded byn 2 (n k � 1)
n � 1 . ut

104 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

[� n
i =1 �ai di :Pi]

def= �s (�shtrue i

j � n
i =1 �e �ai hdi ; s; ei :e(x): if x then [Pi] else 0)

[� m
i =1 bi (z):Qi]

def=

�t (�thtrue i

j � m
i =1 �g (�g

j !g:bi (z; s; e):t(x): if x then

(s(y): if y then

(�thfalse i j �shfalse i j �ehtrue i j [Qi])

else

(�thtrue i j �shfalse i j �ehfalse i j �g))

else
�thfalse i j �bi hz; s; ei))

where t; s and e are fresh and � n
i =1 Pi meansP1 j � � � j Pn .

Table 5.3: The protocol of encoding separate choice

5.4.2 Example: the Protocol of Encoding Separate Choice

Consider the following protocol which is used for encoding separate choice (the summands of the

choice are either all inputs or all outputs) by parallel composition [Nes00], [SW01, Section 5.5.4].

One of the main contributions in [Nes00] is the proof that theprotocol does not introduce divergence.

Here we prove it using typability.

The protocol uses two lockss and t. When one input branch meets a matching output branch,

it receives a datum together with lock s and acknowledge channele. Then the receiver testst and

s sequentially. If t signals failure, because another input branch has been chosen, the receiver is

obliged to resend the value just received. Otherwise, it continues to test s. When s also signals

success, the receiver enables the acknowledge channel and let the sender proceed. At the same time,

both t and s are set to false to prevent other branches from proceeding. If the test ofs is negative,

because the current output branch has committed to another input branch, the receiver should

restart from the beginning and try to catch other send-requests. This backtracking is implemented

by recursively triggering a new copy of the input branch.

Usually when a protocol employs a mechanism of backtracking, it has a high probability to give

rise to divergence. The protocol in this example is an exception. However, to �gure out this fact

is non-trivial, one needs to do careful reasoning so as to analyze the possible reduction paths in

all di�erent cases. With the aid of type system T 00, we reduce the task to a routine type-checking

problem. We show that the protocol does not add any in�nite loop by proving that the typability of

[Pi] and [Qi] implies that of [� i �ai di :Pi] and [� i bi (z):Qi]. Then we conclude by Theorem 5.10. Here

we take the i -th branch of input guarded choice as an example and assume that bi does not appear

in Qi . Suppose that [Qi] is typable by T 00and the highest level of names inQi is n with n > 1. Let

us give type]1bool to t, type]n +1 Nat to g and type]2(Tz ;]1bool ;]1bool) to bi whereTz is the type

5.5. PARTIAL ORDERS 105

of the datum z. Take g:bi (z; s; e) as the input pattern, noted as � , and abbreviate its continuation

asP. Then !�:P is well typed under T 00becausewt(�) = h1; � � � ; 1; 0i and wt(P) = h1; � � � ; 0; 3i (the

dots stand for a 0-sequence of length (n � 2)), thus wt(�) � wt(P).

5.5 Partial Orders

The purpose of our �nal type system is to type processes even if they contain replications whose

input and output parts have the same weight. Of course not all such processes can be accepted.

For instance, !a:b:(�a j �b) should not be accepted, since it does not terminate when running together

with �a j �b. However, we might want to accept

!g(a; b):a:(�gha; bi j �b) (5.3)

wherea and b have the same type. Processes like (5.3) are useful. For instance they often appear in

systems composed of several \similar" processes (an example is the chain of cells in Section 5.5.2).

In (5.3) the input pattern g(a; b):a and the continuation �gha; bi j �b have the same weight, which

makes rule T-rep of T 00 inapplicable. In the new system, termination is proved by incorporating

partial orders into certain channel types. For instance, (5.3) will be accepted if the partial order

extracted from the type of g shows that b is below a (both b and a being names that are received

along g).

5.5.1 The Type System

We present the new type systemT 000. The general structure of the associated termination proof

goes along the same line as the proof in Section 5.4.1. But nowwe need a measure which combines

lexicographic and multiset orderings.

To begin with, we introduce some preliminary notations. Let A be a set andR � A � A be

a partial order on elements ofA . The set of names appearing in elements ofR is n(R) = f a j

aRb_ bRa for somebg. Let ex be a tuple of namesx1; � � � ; xn , we write the length n of the tuple as

j ex j. In the following, we de�ne some operators for partial orders. They will be used for simplifying

the presentation of our typing rules in Table 5.4.

De�nition 5.16 Let R � N � N and S � Nat � Nat be two partial orders and ex is a tuple of

names in N . We de�ne two operators = and � to transform one partial order into the other.

1. R=ex def=

8
>><

>>:

; if n(R) \ ex = ;

f (i; j) j x i Rx j g if n(R) � ex

unde�ned otherwise

2. S � ex def= f (x i ; x j) j iSj g if maxf n(S)g �j ex j

As shown by the following lemma, the two operators are complementary to each other to some

extent.

Lemma 5.17 1. (R=ex) � ex = R if n(R) � ex

106 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

2. (S � ex)=ex = S if maxf n(S)g �j ex j

Proof: By the de�nition of = and � directly. ut

Remark: In this paper we use partial order in a very narrow sense. We require each partial

order on names to satisfy the following two conditions: (i) mathematically it is a strict partial order

(irre
exive, antisymmetric and transitive); (ii) all name s in n(R) are of the same type (this type is

written TR).

Let R be a partial order. We extract the sub-partial order de�ned on n(R) nex by R+ ex = f (a; b) j

a; b 62ex and aRc1R � � � R cn b for someec � ex and n � 0g. Given two partial orders R 1, R 2 with

TR 1 = TR 2 , we let R 1 + R 2 be R 1 [R 2 if such a union is a partial order. Otherwise, it is unde�ned.

The operator os(�) of Section 5.2 is now re�ned to bemosR (�), which de�nes a multiset recording

all subject occurrences of names in active outputs and with type TR .

mosR (0) def= []

mosR (!u(ex):P) def= []

mosR (u(ex):P) def= mosR (P)

mosR (�aP) def= mosR (P)

mosR (�u ew:P) def=

(
[u]] mosR (P) if u : TR

mosR (P) otherwise

mosR (P j Q) def= mosR (P)] mosR (Q)

mosR (if b then P else Q) def= mosR (P)] mosR (Q)

The operator mosR (�) can be extended to input patterns by de�ning: mosR (�) def= mosR (�u1ex1 j

� � � j �un exn) if � = u1(ex1): � � � :un (exn).

Let R be a partial order and R mul be the induced multiset ordering on multisets overn(R).

The binary relation de�ned below will act as the second component of our measure, which is a

lexicographic ordering with weight of processes as its �rstcomponent.

De�nition 5.18 Let R be a partial order on names,Q be a process,P be either an input pattern or

a process. It holds thatP bR Q if the following three conditions are satis�ed, for some multisets on

namesM 1; M 2 and M : (i) mosR (P) = M] M 1; (ii) mosR (Q) = M] M 2; (iii) M 1 R mul M 2.

Essentially the relation bR is an extension of the multiset orderingR mul . One can easily prove that
bR is also well-founded: ifR is �nite, then there exists no in�nite sequence like P0 bR P1 bR P2 bR � � �

Now we are well-prepared to present our types and type system. Here we consider polyadic

� -calculus and rede�ne channel type as follows.

L ::=]n
S

eV where 8i; j 2 n(S); Vi = Vj

where S � Nat � Nat is a partial order on the indexes ofeV (that is, if j eV j= m then S is a partial

order on the set f 1; :::; mg). The condition in the de�nition says that if i and j are two indexes

related by S, then the i -th and j -th components of eV have the same type.

If �aP is a subprocess ofQ, we say that the restriction �a is unguardedif �aP is not underneath

any input or output pre�x. More precisely, we de�ne a set ur (P) to collect all unguarded restrictions

5.5. PARTIAL ORDERS 107

in P.
ur (0) def= ; ur (u(ex):P) def= ;

ur (!u(ex):P) def= ; ur (�u ew:P) def= ;

ur (�aP) def= f ag [ur (P) ur (P j Q) def= ur (P) [ur (Q)

ur (if b then P else Q)
def
= ur (P) [ur (Q)

If we pull all unguarded restrictions of Q to the outmost positions, the resulting process� eaQ0

has the same behavior asQ. In literature this property is often characterized by a sequence of

structural rules describing scope extension, see for example [Par01]. Since we assume that bound

names are di�erent from free names, the side conditions of those rules are met automatically. We

use this property implicitly and often write Q as � eaQ0 without unguarded restrictions in Q0.

Besides the two sorts�a and �s introduced in the beginning of Section 5.4.1, now we need another

sort � r . It requires that

if �:P is a process withsubj(�) : � r then ur (P) = ; .

In other words, if a name of sort� r appears in the subject position of a pre�x (either input or output),

then the continuation process has no unguarded restrictions. This technical condition facilitates the

presentation of De�nition 5.19.

Suppose� = a1(ex1): � � � :an (exn) and eachai has type]m i
Si

eV . We extract a partial order from �

by de�ning R � = S1 � ex1 [� � � [S n � exn . It is well de�ned because all the bound names are assumed

to be di�erent from each other. For example, if � = a1(x11; x12; x13):a2(x21; x22; x23), S1 = f (1; 2)g

and S2 = f (2; 1)g, then we haveR � = f (x11; x12); (x22; x21)g.

De�nition 5.19 Let � = u1(ex1): � � � :un (exn). The relation � :� P holds if one of the following two

cases holds: (i)wt(�) � wt(P); (ii) wt(�) = wt(P), � cR � P and un : � r .

The second condition indicates the improvement ofT 000over T 00. We allow the input pattern to

have the same weight as that of the continuation, as long as there is some partial order to re
ect a

tendency of decrement.

The typing rules of T 000are presented in Table 5.4. Now the judgmentR ` P means that P is

a well-typed process and the free names inP respect the (possibly empty) partial order R. In the

premise of ruleT-in, if there exists some non-empty partial order relation onex, then it is exactly

captured by R, the partial order built upon free names of P. In rule T-out for R + S � ev to be well

de�ned, the partial order on ev should not con
ict with the partial order exhibited by P. Similarly

in rules T-par and T-if the partial orders contributed by P and Q should be compatible and thus

can be combined together. As we only consider the partial order on free names of�aP , in rule T-res

all pairs concerning a are deleted fromR while the relative partial order relation on other names

are kept intact. In rule T-rep the appearance of the replication operator does not a�ect the existing

partial order, but it requires the validity of the condition � :� P , which plays an important role in

Lemma 5.21 and gives us the possibility of doing terminationproof.

In De�nition 5.19 the constraint imposed on un is used to prohibit potential extension of partial

orders caused by the restriction operator. Let us consider two examples, concerning two di�erent

occurrences of restricted names.

108 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

T-in
u :]n

S
eV ex : eV R ` P S = R=ex

R+ ex ` u(ex):P
T-nil

; ` 0

T-out
u :]n

S
eV ew : eV R ` P

R + S � ew ` �u ew:P
T-par

R 1 ` P R 2 ` Q

R 1 + R 2 ` P j Q

T-if
b : bool R 1 ` P R 2 ` Q

R 1 + R 2 ` if b then P else Q
T-res

a : L R ` P

R+ a ` �aP

T-rep
R ` �:P � :� P

R ` !�:P

Table 5.4: Typing rules of T 000

(i) Underneath an input pattern

P def= ! g(a; b):a:�c (�ghb; ci j �b) j �gha; bi j �a j �gha; bi
��! !g(a; b):a:�c (�ghb; ci j �b) j a:�c (�ghb; ci j �b) j �a j �gha; bi
��! !g(a; b):a:�c (�ghb; ci j �b) j �c (�ghb; ci j �b) j �gha; bi

� �d (!g(a; b):a:�c (�ghb; ci j �b) j �ghb; di j �b j �gha; bi)
def= �dP 0

(ii) Outside an input pattern

Q def= ! g(a; b):a:(�gha; bi j �b) j �gha; bi j �a:�c �ghb; ci
��! !g(a; b):a:(�gha; bi j �b) j a:(�gha; bi j �b) j �a:�c �ghb; ci
��! !g(a; b):a:(�gha; bi j �b) j �gha; bi j �b j �c �ghb; ci

� �d (!g(a; b):a:(�gha; bi j �b) j �gha; bi j �b j �ghb; di)
def= �dQ 0

Let the type of name g be]2
f (1 ;2)g(]1

; V;]1; V). Assume R = f (a; b)g and R 0 = f (a; b); (b; d)g. If

the condition an : � r in De�nition 5.19 was lifted, then both P and Q would be well typed: in the

�rst example, it could be derived that R ` P and R 0 ` P0; in the second example,R ` Q and

R 0 ` Q0. In both cases the new named extends the partial order R to be R 0.

However, the processP does not terminate because it can make cyclic reduction and the two steps

from P to �P 0 form a cycle. Therefore the structure in (i) is dangerous andshould be disallowed.

The processQ always terminates in at most 6 steps, but ruling out the structure in (ii) simpli�es

our proof of Lemma 5.22.

For this type system, we have the following subject reduction property.

Theorem 5.20 (Subject reduction) SupposeR ` P and P ��! P0.

1. If � = � due to a communication thenR ` P0.

2. If � = � due to a conditional thenR 0 ` P0 with R = R 0+ R 00 for some R 0 and R 00.

5.5. PARTIAL ORDERS 109

3. If � = a ew then there existsn; S and eV such that

(a) a :]n
S

eV and ew : eV

(b) if S � ew is a partial order then R + S � ew ` P0:

4. If � = (� eb)�a ew then there existsn; S; R 0 and eV such that

(a) a :]n
S

eV and ew : eV

(b) R 0 ` P0

(c) R = (R 0 + S � ew) +eb

Proof: See Appendix C.5. Most e�orts are made to check the consistency of partial orders in the

type environments. ut

The following lemma is the counterpart of Lemma 5.12.

Lemma 5.21 Suppose thatur (P) = ; , R ` P, P
(l; 1)
�! P1

(l; 2)
�! � � � Pn � 1

(l;n)
�! P0 and n = � (l) > 0.

Then one of the following two cases holds.

1. wt(P) � wt(P0);

2. P bR P0 and ur (P0) = ; .

Proof: See Appendix C.5. ut

With the last lemma we are able to prove Lemma 5.22, whose rolein T 000is the same as that of

Lemma 5.14 inT 00.

Lemma 5.22 All the regular tagged processes (well-typed underT 000) terminate.

Proof: Compared with the proof of Lemma 5.14, the main di�erence is that when we have

completed some input patterns and get a reduction sequence like

P0
et 1=) P1

��! P2
et 2=) � � � � 0

�! Pi � 1
et i=) Pi � � �

it may be possible that 8j < i; wt (Pj) = wt(Pj +1). Let R ` P0, we can show by contradiction

that the sequence of processes of equal weight is �nite, by the well-foundedness ofR mul . See

Appendix C.5 for more details. ut

Finally we have the following termination theorem for T 000, due to the operational correspondence

between tagged and untagged process and Lemma 5.22.

Theorem 5.23 If R ` P then P terminates. Moreover, let n and k be its size and the highest level,

then P terminates in time O(nk+3).

Proof: The proof of termination is straightforward. Let us look at t he time complexity. Clearly the

sizes of the two setsn(R) and mosR (P) are less thann. If there is a sequenceP0 bR P1 bR � � � bR Pm ,

then it can be shown that m < n 2. By similar arguments as in the proof of Proposition 5.15 it can

be shown that in each locally ordered reduction path there are at most n (n k � 1)
n � 1 landmarks and the

distance between two neighbouring landmarks is less thann3. Therefore the whole length of each

reduction path is bounded by n 4 (n k � 1)
n � 1 . ut

110 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

1, Chinese 2, English 5, French

(Italian, i)
 ...

a b c e nil

(French, f)

Figure 5.1: An example of symbol table

G def= ! g(a; b; n; s):a(t; x):

if t = s then

�xhni :�gha; b; n; si

else if b = nil then

�xhn + 1 i :�c (�ghc; nil; n + 1 ; ti j �gha; c; n; si)

else �bht; x i :�gha; b; n; si

ST0
def= �g (G j �gha; nil; 1; s0i)

STm
def= ST0 j �aht1; x1 i j � � � j �ahtm ; xm i

Table 5.5: The implementation of a symbol table

5.5.2 Example: Symbol Table

This example comes from [Jon93, San99]. It is about the implementation of a symbol table as a

chain of cells. In Table 5.5G is a generator for cells;ST0 is the initial state of the symbol table

with only one cell; STm is the system in which the symbol table hasm pending requests.

Every cell of the chain stores a pair (n; s), where s is a string and n is a key identifying the

position of the cell in the chain. A cell is equipped with two channels so as to be connected to

its left and right neighbours. The �rst cell has a public left channel a to communicate with the

environment and the last cell has a right channelnil to mark the end of the chain. Once received a

query for string t, the table lets the request ripple down the chain until either t is found in a cell, or

the end of the chain is reached, which means thatt is a new string and thus a new cell is created to

store t. In both cases, the key associated tot is returned as a result. See Figure 5.1 for a concrete

example, where three cells and two requests are shown; the �rst cell stores the string \Chinese" and

its key \1", while the �rst request queries the string \Frenc h" and an answer will be delivered at

channel f . There is parallelism in the system: many requests can be rippling down the chain at the

same time.

As to termination, the example is interesting for at least two reasons. (1) The chain exhibits a

syntactically challenging form. The replicated processG has a sophisticated structure of recursive

inputs: the input pattern has inputs at g and a, while the continuation has a few outputs at g and

one output at b, which has the same type asa. (2) Semantically, the chain is a dynamic structure,

which can grow to �nite but unbounded length, depending on the number of requests it serves.

5.6. SUMMARY 111

Moreover, the chain has a high parallelism involving independent threads of activities. The number

of steps that the symbol table takes to serve a request depends on the length of the chain, on the

number of internal threads in the chain, and on the value of the request.

SupposeT def=]2
; (String;]1Nat), S def= f (1; 2)g and let the type of g be]1

S (T; T;Nat; String), where

String is the type for strings. We considernil as a constant name of the language studied in this

section and take it for the bottom element of any partial order R � N � N with TR = T. For any

m 2 N, processSTm is well typed under T 000and thus terminating.

5.6 Summary

In this chapter we have proposed a core type system and three extensions of it to ensure termina-

tion of processes in the� -calculus. Based on the type systems we are able to prove the termination

property of some challenging applications: the encodings of primitive recursive functions, the pro-

tocol for encoding separate choice in terms of parallel composition, a symbol table implemented as

a dynamic chain of cells. For all (but one of) the type systemswe also present upper bounds to the

number of steps well-typed processes take to terminate.

We believe that the idea of using levels can be applied to other name-passing calculi. For

instance, in Appendix C.6, we have checked that in the Join-calculus [Fou98] the type system

presented in Section 5.4 can be simpli�ed. Intuitively, this is because the Join-calculus can be

encoded into a sublanguage of the asynchronous� -calculus with each input channel being unique,

thus our assumption about asynchronous names in Section 5.4is automatically met and recursive

inputs are easier to be handled.

In Section 1.5 we have already discussed related work on termination, notably [San05] and

[YBH04]. Our systems are incomparable with those in [San05]and [YBH04]. Roughly, in [San05]

and [YBH04] processes are mainly \functional" and indeed include the standard encodings of the

� -calculus into the � -calculus. These processes are not typable in our type systems. In this chapter

the processes are mainly \imperative". For instance, the examples in sections 5.4.2 and 5.5.2 are not

typable in [San05] and [YBH04]. One way of interpreting the results of this chapter is to consider

combinatory approach (on which our termination proofs are based) as a complementary technique

to logical relations (on which [San05] and [YBH04] are based) for showing termination of processes.

It would be interesting to see whether the two approaches canbe successfully combined.

112 CHAPTER 5. TERMINATION OF MOBILE PROCESSES BY TYPABILITY

Chapter 6

Conclusions and Future Work

In this thesis we have investigated various issues on probabilistic processes and typed mobile pro-

cesses. The major contributions are, brie
y, the following:

1. A complete axiomatisation of a calculus which contains both nondeterministic and probabilistic

choice, and recursion. We have axiomatized both strong and weak behavioural equivalences.

It is the �rst time, as far as we know, that a complete axiomati sation of weak behavioural

equivalences is presented for a language of this kind.

2. A complete axiomatisation of typed bisimilarity in the � -calculus with capability types. An

indirect axiomatisation of a variant typed bisimilarity gi ven in [HR04]. To our knowledge, this

is the �rst attempt towards an algebraic theory of typed mobi le processes.

3. A core type system and three re�nements of it for guaranteeing termination property of well-

typed processes in the� -calculus. In the termination proofs we have exploited two term

rewriting techniques: lexicographic and multiset orderings. In contrast, the conventional

proof techniques for concurrency, such as coinduction and structural induction, do not play

an important role here.

In summary, we have developed algebraic techniques for reasoning about the behaviour of prob-

abilistic processes and typed mobile processes. We have also studied a type-based technique for

verifying the termination property of mobile processes. These results lay out the foundations for

further study of more advanced models which may combine probability with typed mobility. They

also highlight the robustness of the algebraic and typed-based techniques for behavioural reasoning.

In the rest of this chapter we discuss possible future work, including several problems that have

been left open.

Generalisation of the results

Due to the di�culty discussed at the end of Section 4.4.1 we are only able to give an indirect

axiomatisation of the bisimilarity proposed by Hennessy and Rathke [HR04]. We are not clear

whether it is possible to directly axiomatize the equivalence in the language considered in Chapter 4.

113

114 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

We do not know at present how to adapt our results to the language in [BS98] either. We recall

that the main di�erences are: (i) no distinction between channels and variables, (ii) no matching

construct, (iii) the use of Pierce and Sangiorgi's types. Because of (i), some care is needed in a

proof system, for instance in de�ning the appropriate rules for manipulating names that will later

be bound in an input. Because of (ii), the expansion law cannot be used without appropriate

modi�cation. Another issue is axiomatisations of typed weak bisimilarities. In this case, however,

types may not be so central, and the addition of the usual tau laws [Mil89a] might be su�cient.

For Hennessy and Rathke's bisimilarity, as well as the typedbisimilarity de�ned in [SW01], there

are results that relate them to contextual equivalences such as barbed equivalence. It would be

interesting to see what kind of contextual equivalence (if any) corresponds to our typed bisimilarity

(De�nition 4.9).

Our type system in Chapter 4 allows matching names to have arbitrary types. It is not clear

how to restrict our use of matching. Limiting matching to nam es of compatible types might pose a

problem for subject reduction. On the other hand, allowing matching only on names with types of the

form bT, as in [PS96], would seem di�cult, for matching plays an important role in axiomatisations.

For example, one would not be able to rewritex j �y asx: �y+ �y:x+[x = y]� under the type environment

� = x : i T; y : oT . In [HR04], a particular typing rule for matching is presented, which allows meet

of types on successful matches. It might be interesting to know whether the presence of this typing

rule would a�ect the validity of our proof systems.

Type inference

In Chapter 5 for the sake of simplicity we have given our type systems in the Church version. It

is not di�cult to transform them into the Curry version. For t he Curry version of T and T 0, it is

possible to check automatically whether a program is well-typed by using type inference, following

for instance Vasconcelos and Honda's type inference algorithm for polyadic � -calculus [VH93]. Here

one needs an extra constraint, which is a partial order between levels of names. By inspecting the

structure of a process, this task can be done in linear time w.r.t. the size of the process. ForT 00

and T 000, however, type inference is not straightforward. In the future we would like to investigate

e�cient type inference algorithms for them.

Parallel composition

Parallel composition plays an important role for modelling distributed concurrent systems, as it

allows to specify the structural properties of systems composed of several interacting parts. However,

having both recursion and parallel composition in a processcalculus complicates the matters to

establish a complete axiomatisation, mostly because this can give rise to in�nite-state systems even

with the guardedness condition. For example, letE be the expression� X (a:(X j b)), then we can

easily see that there is an in�nite transition graph startin g from E, though it is guarded in the sense

of De�nition 3.2. Milner points out in [Mil89b] that in order to have a complete axiomatisation

for CCS with both recursion and parallel composition, a su�c ient condition is that the parallel

composition does not occur in the body of any recursive expression.

115

In [DPP05] we relax this restriction by requiring, instead, that free variables do not appear in

the scope of parallel composition1. In addition, due to the di�culty of de�ning parallel compos ition

on probabilistic automata as discussed in [Seg95], we have re�ned the probabilistic process calculus

given in Chapter 3. We restrict ourselves to simple probabilistic automata in [DPP05], and we have

given complete axiomatisations for strong bisimilarity and observational equivalence. To obtain the

completeness of the axiomatisations, we have developed a probabilistic version of the expansion law

to eliminate all occurrences of parallel composition. In order to do that, we heavily rely on the

condition that only closed terms are put in parallel. We are now considering how to adapt these

results to axiomatize probabilistic branching bisimilari ty.

Metric semantics of probabilistic processes

Usually probabilistic bisimulation is adapted from the classical notion of bisimulation by treating

probabilities as labels (see for example [LS91, Seg95, PLS00, DP05]), but this does not provide a

robust relation, since quantities are matched only when they are identical. Processes that di�er for

a very small probability, for instance, would be consideredjust as di�erent as processes that perform

completely di�erent actions. This is particularly relevan t to security systems where speci�cations

can be given as perfect, but impractical processes and other, practical processes are considered safe

if they only di�er from the speci�cation with a negligible pr obability.

To �nd a more
exible way to di�erentiate processes, researchers in this area have borrowed

from pure mathematics the notion of metric [DJGP02, DJGP04, vBW04, vBW01]. A metric is

de�ned as a function that associates a distance with a pair ofprocesses. In [DCPP05] we have

de�ned a notion of metric called state-metric. It turns out that in a probabilistic transition system

each state-metric corresponds to a probabilistic bisimulation and that the greatest state-metric

corresponds to probabilistic bisimilarity. Furthermore, the greatest state-metric can be characterised

as the greatest �xed point of a monotonous function on state-metrics, which is closely analogous

to Milner's characterisation of bisimilarity as the greatest �xed point of a monotonous function on

bisimulations [Mil89a]. We would like to investigate whether it is possible to apply state-metrics to

some fully-
edged probabilistic process calculus.

Implementation of the � -calculus

We consider it an interesting problem to develop a fully distributed implementation of the (syn-

chronous) � -calculus (�) [Mil99] using a probabilistic asynchronous� -calculus (� pa) [HP04] as an

intermediate language. The reason of requiring a probabilistic calculus is that it has been shown

impossible to implement certain mechanisms of the� -calculus without using randomization [Pal03].

Some results in this research direction are obtained in [PH04], but the part on implementation is

very preliminary. A more realistic and e�cient implementat ion remains to be worked out.

We believe it important that an implementation does not intr oduce livelocks (or other kinds of

unintended outcomes), hence the translation from� to � pa should preserve livelock-freedom, and

1A similar restriction is adopted, independently, in [BB05] for axiomatizing observational equivalence in a generic

nonprobabilistic process algebra.

116 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

the semantics should be sensitive to divergency. For this reason, a probabilistic testing semantics is

introduced in [PH04]. However, it turns out that probabilis tic testing semantics is rather di�cult

to use. The correctness proofs are ad-hoc, by hand, and rather complicated. For the realistic (and

necessarily more sophisticated) implementation, we need feasible and (at least in part) automatic

proof methods. So it is appealing to investigate a divergency-sensitive bisimulation-like semantics.

In the future, we plan to extend our results on divergency-sensitive equivalence obtained in Chapter 3

to the probabilistic asynchronous � -calculus.

Speci�cation and veri�cation of modern distributed system s

Unlike other probabilistic process algebras,� pa has the advantage of being able to describe mobile

systems. To equip� pa with capability types might make it a good candidate language for specifying

randomized, distributed, and mobile computational systems. Thus, as a natural development of our

work, it is interesting to build an algebraic theory for this language by combining our results on

probabilistic and mobile processes. A possible way to proceed is to �rst extend the results on �nite

processes in Chapter 3 to the setting of� pa , then take type information into account as we have

done in Chapter 4. As far as �nite processes are concerned, this does not seem to be a di�cult

task. By contrast, we do not know how to extend our results in Chapter 5 so that probabilistic

termination can be ensured by typability. We are not aware of any work on this problem.

Once an algebraic theory for typed � pa is built, one might be able to exploit it to develop

some automated veri�cation tools, which would pave the way for verifying some useful randomized

distributed algorithms and protocols. Therefore, another possible research direction is to develop

automated tools that can check probabilistic and/or typed bisimulations, for which the results on

axiomatisations in this thesis would be useful.

Appendix A

Proofs from Chapter 3

A.1 Proof of Lemma 3.14

We begin with several derived rules.

Lemma A.1 The following rules are derivable:

wea2'
E �) c f (` i ; E i : pi)gi] f (`; F : p)g F �) c f (�; F j : qj)gj

E �) c f (` i ; E i : pi)gi] f (`; F j : pqj)gj

wea3'
E �) c f (` i ; E i : pi)gi] f (�; F : p)g F �) c f (hj ; Fj : qj)gj

E �) c f (` i ; E i : pi)gi] f (hj ; Fj : pqj)gj

wea4'
E �) c f (�; E i : pi)gi 8i; E i

�) c #(X)

E �) c #(X)

Proof: By induction on inference. We also need to prove some other derived rules at �rst. For

example, Before inferringwea2'we need to show its simpler version:

wea2"
E) f (` i ; E i : pi)gi] f (`; F : p)g F �) c f (�; F j : qj)gj

E) c f (` i ; E i : pi)gi] f (`; F j : pqj)gj

The whole proof is tedious and non-instructive so it is omitted here. ut

Lemma A.2 Let R be a weak probabilistic bisimulation. IfE R F then wheneverE) � , there

exists � 0 such that F �) c � 0 and � � R � 0.

Proof: By transition induction, on the depth of the inference by which the transition E) � is

inferred. We argue by cases on the last rule used.

� wea1: This is the induction basis. The result follows from the de�nition of weak probabilistic

bisimulation.

� wea2: Let � = f (` i ; E i : pi)gi 2 I] f (`; E j : pqj)gj 2 J , � 1 = f (` i ; E i : pi)gi 2 I] f (`; E 0 : p)g,

� 2 = f (�; E j : qj)gj 2 J , E) � 1 and E 0) � 2. By induction hypothesis, there exists � 0
1 such

117

118 APPENDIX A. PROOFS FROM CHAPTER 3

that F �) c � 0
1 and � 1 � R � 0

1. Let � 1(`; [E 0]R) = r for the equivalence class [E 0]R 2 E=R

with E 0 as its representative. It is clear that r � p. Since � 1 � R � 0
1, we have� 0

1 in the form

f (`; F i : qi)gi 2 I 1] f (hi ; Fi : qi)gi 2 I 2 such that

1. I 1 \ I 2 = ; ;

2. for all i 2 I 1, Fi R E 0;

3. for all i 2 I 2, either hi 6= ` or (Fi ; E 0) 62 R;

4.
P

i 2 I 1
qi = r .

From condition 2 and induction hypothesis, we know that for each i 2 I 1 there exists � 2i s.t.

Fi
�

) c � 2i , � 2 � R � 2i and � 2i in the form f (�; F ij : qij)gj 2 J i . By repeated use of rulewea2'we

can infer F �) c � 0
2 where

� 0
2 = f (`; F ij : qi qij)gi 2 I 1 ;j 2 J i] f (hi ; Fi : qi)gi 2 I 2 :

Now let � 0 = r � p
r � 0

1 + p
r � 0

2. By Lemma 3.5 we know that F �) c � 0. We can verify that � � R � 0

as follows. For anyN 2 E=R and h 2 L , there are three possibilities:

1. h 6= `: Then � (h; N) = � 1(h; N) = � 0
1(h; N) = � 0

2(h; N). Hence

� 0(h; N) =
r � p

r
� 0

1(h; N) +
p
r

� 0
2(h; N) =

r � p
r

� (h; N) +
p
r

� (h; N) = � (h; N):

2. h = ` and E 0 62N : Then we have

� 0(h; N) = r � p
r � 0

1(h; N) + p
r � 0

2(h; N)

= r � p
r � 0

1(h; N) + p
r (

P
i 2 I 1

qi � 2i (�; N) + � 0
1(h; N))

= r � p
r � 0

1(h; N) + p
r (

P
i 2 I 1

qi � 2(�; N) + � 0
1(h; N))

= r � p
r � 0

1(h; N) + p
r (r� 2(�; N) + � 0

1(h; N))

= � 0
1(h; N) + p� 2(�; N)

= � 1(h; N) + p� 2(�; N)

= � (h; N)

3. h = ` and N = [E 0]R : Then we have

� 0(h; N) = r � p
r � 0

1(h; N) + p
r � 0

2(h; N)

= r � p
r � 1(h; N) + p

r (
P

i 2 I 1
qi � 2i (�; N))

= r � p
r r + p

r (
P

i 2 I 1
qi � 2(�; N))

= (r � p) + p
r (r� 2(�; N))

= (r � p) + p� 2(�; N)

= (� 1(h; N) � p) + p� 2(�; N)

= � (h; N)

� wea3: Similar to the last case.

A.2. PROOF OF PROPOSITION 3.34 119

� wea4: Then � = #(X). Let � 1 = f (�; E i : pi)gi , E i) #(X) for each i and E) � 1. By

induction hypothesis there exists� 0
1 such that F �) c � 0

1 and � 1 � R � 0
1. It is clear that � 0

1 must

be in the form f (�; F j : qj)gj and by induction hypothesis Fj
�) c #(X) for each j . Therefore

by rule wea4'we infer F �) c #(X). By taking � 0 as #(X), the desired result follows.

ut

Now Lemma 3.14 follows immediately from Lemma A.2, 3.5 and 3.9.

A.2 Proof of Proposition 3.34

In [SS00] Stark and Smolka used a special functionf that associates a probability to a nonprob-

abilistic transition so as to form a probabilistic transiti on. For example, let E � 1
3 a � 2

3 b, then

f (E a�! 0) = 1
3 and f (E b�! 0) = 2

3 . The function f can be characterised asf = sup i � 0f i for some

functions f 0; f 1; ::: that take nonprobabilistic transitions to probabilities a nd respect some ordering.

Therefore in the soundness proofs of some axioms, to show that f (E a�! E 0) = f (F a�! F 0),

it su�ces to prove by induction on i that: (1) f i (E
a

�! E 0) � f (F
a

�! F 0) for all i � 0; (2)

f i (F
a�! F 0) � f (E a�! E 0) for all i � 0. In the presence of nondeterministic choice, however,

this technique becomes unusable because now the probability with which an expression performs

an action and evolves into another expression is not deterministic any more. For example, let

E def= (1
3 a � 2

3 b) + (1
2 a � 1

2 c), then what is the value of f (E a�! 0)? Should it be 1
3 , 1

2 , or some

value between them? Now the meaning of the functionf is unclear because it depends on how

the nondeterminism is resolved. Nevertheless our \bisimulation up to" techniques work well with

Milner's transition induction technique, as can be seen in the proof of Proposition 3.34.

Lemma A.3 1. If E ! f (` i ; E i : pi)gi then Ef G=X g ! f (` i ; E i f G=X g : pi)gi ;

2. If E) f (` i ; E i : pi)gi then Ef G=X g) f (` i ; E i f G=X g : pi)gi ;

3. If E) c f (` i ; E i : pi)gi then Ef G=X g) c f (` i ; E i f G=X g : pi)gi ;

4. If E �) c f (` i ; E i : pi)gi then Ef G=X g �) c f (` i ; E i f G=X g : pi)gi .

Proof: Straightforward by induction on inference. ut

Lemma A.4 1. If E ! #(X) and G ! � then Ef G=X g ! � .

2. If E) #(X) and G ! � then Ef G=X g) � .

Proof: Straightforward by examining the structure of E . ut

Lemma A.5 If E f G=X g ! � then one of the following two cases holds.

1. E ! #(X) and G ! � ;

2. � = f (` i ; E i f G=X g : pi)gi and E ! f (` i ; E i : pi)gi .

120 APPENDIX A. PROOFS FROM CHAPTER 3

Proof: By induction on the depth of the inference of E f G=X g ! � . ut

Proposition A.6 If E � F then Ef G=X g � F f G=X g for any G 2 E.

Proof: Consider the relation R = f (E f G=X g; F f G=X g) j E; F 2 E and E � F g. Since � is

an equivalence relation, it follows that R is also an equivalence relation. So if we can show the

assertion:

\If E f G=X g ! � 1 then there exists � 2 s.t. F f G=X g �) c � 2 and � 1 � R � 2"

then it follows from De�nition 3.13 that R is a weak probabilistic bisimulation.

We now prove the above assertion. From Lemma A.5 we know that there are two possibilities:

1. E ! #(X) and G ! � 1. Thus F �) c #(X) becauseE � F . From Lemma 3.51 we know that

F) #(X). By Lemma A.4 it follows that F f G=X g) � 1. We can simply take � 1 as � 2 and

�nish this case.

2. � 1 = f (` i ; E i f G=X g : pi)g and E ! � 1 = f (` i ; E i : pi)gi . Since E � F there exists � 2 =

f (hj ; Fj : qj)gj s.t. F �) c � 2 and � 1 � � � 2. By Lemma A.3 we can deriveF f G=X g �) c � 2 =

f (hj ; Fj f G=X g : qj)gj . Observe that for any E 0; F 0 2 f E i gi [f Fj gj it holds that E 0 � F 0 i�

E 0f G=X g R F 0f G=X g. Hence it follows from � 1 � � � 2 that � 1 � R � 2 and we complete the

proof of this case.

ut

Proposition A.7 If E ' F then Ef G=X g ' F f G=X g for any G 2 E.

Proof: Due to symmetry, it su�ces to verify that if E f G=X g ! � 1 then there exists � 2 s.t.

F f G=X g) c � 2 and � 1 � � � 2. From Lemma A.5 we know that there are two possibilities:

1. E ! #(X) and G ! � 1. Thus F) c #(X) becauseE ' F . From Lemma 3.51 we know that

F) #(X). By Lemma A.4 it follows that F f G=X g) � 1. We we can simply take � 1 as � 2

and �nish this case.

2. � 1 = f (` i ; E i f G=X g : pi)g and E ! � 1 = f (` i ; E i : pi)gi . Since E ' F there exists � 2 =

f (hj ; Fj : qj)gj s.t. F) c � 2 and � 1 � � � 2. By Lemma A.3 we can deriveF f G=X g) c � 2 =

f (hj ; Fj f G=X g : qj)gj . By Proposition A.6 it holds that for any E 0; F 0 2 f E i gi [f Fj gj if

E 0 � F 0 then E 0f G=X g � F 0f G=X g. Hence it follows from � 1 � � � 2 that � 1 � � � 2 and we

complete the proof of this case.

ut

Lemma A.8 1. The following rules are derivable:

A.2. PROOF OF PROPOSITION 3.34 121

D1
E j) �

� i 2 1::n E i) �
for some j 2 1::n D2

Ef � X E=X g) �

� X E) �

D3
E j) c �

� i 2 1::n E i) c �
for some j 2 1::n D4

Ef � X E=X g) c �

� X E) c �

D5
E) c f (` i ; E i : pi)gi] f (`; F : p)g F) c f (�; F j : qj)gj

E) c f (` i ; E i : pi)gi] f (`; F j : pqj)gj

D6
E) c f (` i ; E i : pi)gi] f (�; F : p)g F) c f (hj ; Fj : qj)gj

E) c f (` i ; E i : pi)gi] f (hj ; Fj : pqj)gj

2. If
P

i 2 1::n E i) � then E j) � for some j 2 1::n, with a shorter inference.

3. If � X E) � then Ef � X E=X g) � , with a shorter inference.

Proof: Straightforward by induction on inference. ut

Proof of Proposition 3.34 Let � = f � X E=X g and � = f � X F=X g. We show that the relation

R = f (G�; G�) j E; F; G 2 E and E ' F g

is an observational equivalence up to' . Because of symmetry we only need to show that ifG�) �

there exists � 0 s.t. G�) c � 0 and � � R � � 0. The proof is carried out by induction on the depth of

the inference ofG�) � . There are several cases depending on the structure ofG.

� G � X : Then G� � � X E) � . By Lemma A.8 we have a shorter inference with the conclusion

E�) � . By induction hypothesis there exists � s.t. E�) c � and � � R � � . SinceE ' F we

haveE� ' F � by Proposition A.7. By Lemma 3.17 there exists� 0 s.t. F �) c � 0 and � � � � 0.

By rule D4 it holds that � X F) c � 0. At last it follows from Lemma 3.8 and the transitivity

of � R � that � � R � � 0.

� G �
P

i 2 1::n Gi : If G�) � then by Lemma A.8, Gj �) � for some j 2 1::n with a shorter

inference. By induction hypothesis there exists� 0 s.t. Gj �) c � 0 and � � R � � 0. By rule D3

it holds that G�) c � 0.

� G � � Y G0: If G�) � then by Lemma A.8 there is a shorter inference with conclusion

G0� f G�=Y g � G0f G=Yg�) � . By induction hypothesis there exists � 0 s.t. G0f G=Yg�) c � 0

and � � R � � 0. By rule D4 it can be derived that G�) c � 0.

� G �
L

i 2 I pi ` i :Gi : In this caseG� ! � = f (` i ; Gi � : pi)gi 2 I . When � = #(Y) for some variable

Y the argument is simple. So we suppose that� is a distribution on L � E . By induction on

inference it can be proved that � is an extension of� , i.e., there is a partition of I into three

disjoint set I 1; I 2 and I 3 such that

1. 8i 2 I 2 [I 3; Gi �) � i with a shorter inference than that of G�) � ;

2. 8i 2 I 2; � i = f (�; E ij : pij)gj ;

3. 8i 2 I 3; ` i = � and � i = f (` ij ; E ij : pij)gj ;

122 APPENDIX A. PROOFS FROM CHAPTER 3

4. � = f (` i ; Gi � : pi)gi 2 I 1]
U

i 2 I 2
f (` i ; E ij : pi pij)gj]

U
i 2 I 3

f (` ij ; E ij : pi pij)gj .

For each i 2 I 2 [I 3, by induction hypothesis there exists � 0
i such that Gi �) c � 0

i , � i � R � � 0
i

and

1. 8i 2 I 2; � 0
i = f (�; F ik : qik)gk ;

2. 8i 2 I 3; � 0
i = f (hik ; Fik : qik)gk .

Let m; n be the sizes ofI 2 and I 3 respectively. Using ruleD5 for m times and rule D6 for n

times, we can deriveG�) c � 0, where

� 0 = f (` i ; Gi � : pi)gi 2 I 1]
]

i 2 I 2

f (` i ; Fik : pi qik)gk]
]

i 2 I 3

f (hik ; Fik : pi qik)gk :

It remains to show that � � R � � 0.

Let p =
P

i 2 I 1
pi , � 0 = f (` i ; Gi � : pi =p)gi 2 I 1 and � 00= f (` i ; Gi � : pi =p)gi 2 I 1 . It is immediate

that � 0 � R � � 00. For all i 2 I 2, we let � i = f (` i ; E ij : pij)gj and � 0
i = f (` i ; Fik : qik)gk . It

follows from � i � R � � 0
i that � i � R � � 0

i . Obviously we can rewrite � and � 0 as:

� = p� 0+
P

i 2 I 2
pi � i +

P
i 2 I 3

pi � i

� 0 = p� 00+
P

i 2 I 2
pi � 0

i +
P

i 2 I 3
pi � 0

i

By Lemma 3.9 we have the desired result that� � R � � 0.

ut

A.3 Proof of Lemma 3.36

Lemma A.9 Let dX (G) = n > 0 and � = f (` i ; Gi : pi)gi 2 I . SupposeGf E=X g ! � . For all i 2 I ,

it holds that Gi = G0
i f E=X g and

1. If ` i = � then dX (G0
i) � n;

2. If ` i 6= � then dX (G0
i) � n � 1.

Proof: By induction on the depth of the inference ofGf E=X g ! � . Let us examine the structure

of G.

� G � X or Y : Impossible becausedX (E) = 0.

� G �
L

i pi ` i :Gi : Straightforward by de�nition.

� G �
P

i 2 1::n Gi : Then Gf E=X g ! � must be derived from a shorter inference with conclusion

Gj f E=X g ! � for somej 2 1::n. Thus the result follows from induction hypothesis, noting

that dX (Gj) � dX (G).

� G � � Y G0: Then Gf E=X g ! � is derived from the shorter inference of

G0f E=X gf Gf E=X g=Yg � G0f G=Ygf E=X g ! �:

So the result follows from induction hypothesis, by noting that dX (G0f G=Yg) = dX (G).

A.3. PROOF OF LEMMA 3.36 123

ut

Lemma A.10 Let dX (G) = n and � = f (` i ; Gi : pi)gi 2 I . SupposeGf E=X g) � . For all i 2 I , it

holds that

1. If n > 0 and ` i = � then Gi = G0
i f E=X g and dX (G0

i) � n;

2. If n > 1 and ` i 6= � then Gi = G0
i f E=X g and dX (G0

i) � n � 1.

Proof: By induction on the depth of the inference of Gf E=X g) � . There are three cases,

depending on the last rule used in the inference.

� wea1: In this case Gf E=X g ! � and the result follows from Lemma A.9.

� wea2: Then � = f (` i ; Gi : pi)gi 2 I] f (`0; H j : p0qj)gj 2 J and Gf E=X g) � is derived from the

shorter inferencesGf E=X g) f (` i ; Gi : pi)gi 2 I] f (`0; G0 : p0)g and G0) f (�; H j : qj)gj 2 J .

By induction hypothesis, for each i 2 I [f 0g, it holds that

1. If n > 0 and ` i = � then Gi = G0
i f E=X g and dX (G0

i) � n;

2. If n > 1 and ` i 6= � then Gi = G0
i f E=X g and dX (G0

i) � n � 1.

Particularly for G0 there are two cases:

1. if `0 = � then G0 = G0
0f E=X g and dX (G0

0) � n > 0. By induction hypothesis on the

transition of G0
0f E=X g, we haveH j = H 0

j f E=X g and dX (H 0
j) � dX (G0

0) � n for each

j 2 J ;

2. if `0 6= � then G0 = G0
0f E=X g and dX (G0

0) � n � 1 > 0. By induction hypothesis on

the transition of G0
0f E=X g, we haveH j = H 0

j f E=X g and dX (H 0
j) � dX (G0

0) � n � 1 for

eachj 2 J .

� wea3: Then � = f (` i ; Gi : pi)gi 2 I] f (hj ; H j : qj)gj 2 J and Gf E=X g) � is derived from the

shorter inferences ofGf E=X g) f (` i ; Gi : pi)gi 2 I]f (�; G 0 : p0)g and G0) f (hj ; H j : qj)gj 2 J .

By induction hypothesis, for each i 2 I [f 0g, it holds that

1. If n > 0 and ` i = � then Gi = G0
i f E=X g and dX (G0

i) � n;

2. If n > 1 and ` i 6= � then Gi = G0
i f E=X g and dX (G0

i) � n � 1.

Particularly for G0 we haveG0 = G0
0f E=X g and dX (G0

0) � n > 0. By induction hypothesis

on the transition of G0
0f E=X g, it follows that for each j 2 J

1. if hj = � then H j = H 0
j f E=X g and dX (H 0

j) � dX (G0
0) � n for each j 2 J ;

2. n > 1 and hj 6= � then H j = H 0
j f E=X g and dX (H 0

j) � dX (G0
0) � 1 � n � 1.

ut

Lemma A.11 SupposedX (G) > 1, � = f (` i ; Gi : pi)gi 2 I and Gf E=X g) � . Then Gi = G0
i f E=X g

for each i 2 I . Moreover, Gf F=X g) � 0 and � � R � � 0, where � 0 = f (` i ; G0
i f F=X g : pi)gi 2 I and

R = f (Gf E=X g; Gf F=X g) j for any G 2 Eg.

124 APPENDIX A. PROOFS FROM CHAPTER 3

Proof: A direct consequence of Lemma A.10. ut

Proof of Lemma 3.36 Let � = r1� 1 + :::+ rn � n and Gf E=X g) � i for eachi � n. By Lemma A.11,

for each i � n, there exists � 0
i s.t. Gf F=X g) � 0

i and � i � R � � 0
i . Now let � 0 = r1� 0

1 + ::: + rn � 0
n ,

thus Gf F=X g) c � 0. By lemma 3.9 it follows that � � R � � 0. ut

A.4 Proof of Lemma 3.45

Proof:

1. We proceed by transition induction on the inference ofE) � . There are three cases, con-

cerning the last rules used.

� wea1: Then E ! � and there are several subcases.

(a) psum: Then E �
L

i pi ` i :E i and the result is obvious by axiomS2.

(b) nsum: Then E �
P

i 2 I Fi and Fj ! � for some j 2 I , with a shorter inference.

By induction hypothesis we infer A gd ` Fj = Fj +
L

i pi ` i :E i , from which we have

A gd ` E �
P

i 2 I Fi =
P

i 2 I Fi +
L

i pi ` i :E i = E +
L

i pi ` i :E i .

(c) rec: Then E � � X E 0 and E 0f E=X g ! � for someE 0, with a shorter inference. By

induction hypothesis A gd ` E 0f E=X g = E 0f E=X g +
L

i pi ` i :E i . By axiom R1 we

have A gd ` E = E 0f E=X g = E 0f E=X g +
L

i pi ` i :E i = E +
L

i pi ` i :E i .

� wea2: Then E) f (` i ; E i : pi)gi] f (`; F : p)g, F) f (�; F j : qj)gj and � � f (` i ; E i :

pi)gi] f (`; F j : pqj)gj . So we can infer as follows.

A gd ` E IH= E +
L

i pi ` i :E i � p`:F
IH= E +

L
i pi ` i :E i � p`:(F +

L
j qj �:F j)

T3= E +
L

i pi ` i :E i � p`:(F +
L

j qj �:F j) +
L

i pi ` i :E i �
L

j pqj `:F j

= E +
L

i pi ` i :E i �
L

j pqj `:F j

� wea3: Then E) f (` i ; E i : pi)gi] f (�; F : p)g, F) f (hj ; Fj : qj)gj and � � f (` i ; E i :

pi)gi] f (hj ; Fj : pqj)gj . So we can infer as follows.

A gd ` E IH= E +
L

i pi ` i :E i � p�:F
IH= E +

L
i pi ` i :E i � p�: (F +

L
j qj hj :Fj)

T2= E +
L

i pi ` i :E i � p�: (F +
L

j qj hj :Fj) +
L

i pi ` i :E i �
L

j pqj hj :Fj

= E +
L

i pi ` i :E i �
L

j pqj hj :Fj

2. Let � = r1� 1 + ::: + rn � n , � i � f (` ij ; E ij : pij)gj and E) � i , for each i � n. We can do the

following inference.

A gd ` E
(1)
= E +

P
i 2 1::n

L
j pij ` ij :E ij

C= E +
P

i 2 1::n

L
j pij ` ij :E ij +

L
i

L
j r i pij ` ij :E ij

= E +
L

i

L
j r i pij ` ij :E ij

A.4. PROOF OF LEMMA 3.45 125

3. By induction on the inference E) #(X). There are two cases, depending on the last rules

used.

� wea1: This case includes several subcases.

{ var: Then E � X and the result is obvious by axiomS2.

{ nsum: Then E �
P

i 2 I E i and E j) #(X) for some j 2 I . By induction hypothesis

we infer A gd ` E j = E j + X , from which we haveA gd ` E �
P

i 2 I E i =
P

i 2 I E i +

X = E + X .

{ rec: Then E � � Y E 0 and E 0f E=Yg ! #(X) for some E 0 and Y 6= X . By induction

hypothesis A gd ` E 0f E=Yg = E 0f E=Yg + X . By axiom R1 we haveA gd ` E =

E 0f E=Yg = E 0f E=Yg + X = E + X .

� wea4: Then E) f (�; E i : pi)gi and for eachi it holds that E i) #(X). By the result

of Clause 1 just proved above, we know thatA gd ` E = E +
L

i pi �:E i . By induction

hypothesis on eachE i we infer A gd ` E = E +
L

i pi �: (E i + X). At last it follows from

T1 that A gd ` E = E +
L

i pi �: (E i + X) + X = E + X .

ut

126 APPENDIX A. PROOFS FROM CHAPTER 3

Appendix B

Proofs from Chapter 4

B.1 Some More Derived Rules

Cvn [x = a]P = � [x = a][x 6= a1] � � � [x 6= an]P if a 62 fai j 1 � i � ng

Tv2 P = � [x = a1]P + [x = a2]P + � � � + [x = an]P

if f b 2 dom(� c) j �(b) <: �(x)g = f a1; � � � ; an g

Tv3 If P = � ;x :T Q then P = � ;x :S Q for S <: T

Iv1 If P = � ;y :�(x) i Q then x(y : T1):P = � x(y : T2):Q

Iv2 If P = � u v:�(x)o Q then �xv:P = � �xv:Q
Proof: Among all the rules, the proof of Iv2 is the hardest, so we report it below in details and

omit the others.

Let f b 2 dom(� c) j �(b) <: �(x)g = f a1; � � � ; an g. When n = 0, the result is immediate by

using Tv1 . Supposen > 0. For eachi � n, �(ai) <: �(x), there are two possibilities: (i) if �(ai)6#i
then �ai b:P = � 0 = � �ai b:Q by Tout* ; (ii) if �(ai)#i , then we have �(x)o <: �(ai)o <: �(ai) i by

Proposition 4.2. There are two cases, depending on namev.

� v is a channel, sayb. It follows from P = � u b:�(x)o Q that P = � u b:�(a i) i Q by Twea* . Using

Iout* , we have

�ai b:P = � �ai b:Q (B.1)

Finally,
�xb:P = � [x = a1]�xb:P + � � � + [x = an]�xb:P by Tv2

= � [x = a1]�a1b:P + � � � + [x = an]�an b:P by Tpre*

= � [x = a1]�a1b:Q+ � � � + [x = an]�an b:Q by (B.1)

= � �xb:Q by Tpre*, Tv2

� v is a variable, sayy. By hypothesis, �] �xy:P and �] �xy:Q are con�gurations, then it holds

that �(y) <: �(x)o. By Proposition 4.1, it is easy to see that � u y : �(x)o = �. Let the set

f b 2 dom(� c) j �(b) <: �(y)g = f b1; � � � ; bm g. We consider the non-trivial case that m > 0.

For each i � n; j � m, by Proposition 4.2 we have

�(bj) <: �(y) <: �(x)o <: �(ai)o <: �(ai) i :

127

128 APPENDIX B. PROOFS FROM CHAPTER 4

So � u bj : �(ai) i = � = � u y : �(x)o. Therefore we can rewrite the hypothesisP = � u y :�(x)o

Q as P = � u bj :�(a i) i Q. Using Iout* , we get the result

�ai bj :P = � �ai bj :Q (B.2)

At last we can do the inference.
�xy:P

= � [x = a1]�xy:P + � � � + [x = an]�xy:P by Tv2

= � [x = a1][y = b1]�xy:P + � � � + [x = a1][y = bm]�xy:P +

� � � + [x = an][y = b1]�xy:P + � � � + [x = an][y = bm]�xy:P by Tv2

= � [x = a1][y = b1]�a1b1 :P + � � � + [x = a1][y = bm]�a1bm :P +

� � � + [x = an][y = b1]�an b1 :P + � � � + [x = an][y = bm]�an bm :P by Tpre*

= � [x = a1][y = b1]�a1b1 :Q + � � � + [x = a1][y = bm]�a1bm :Q+

� � � + [x = an][y = b1]�an b1 :Q + � � � + [x = an][y = bm]�an bm :Q by (B.2)

= � �xy:Q by Tpre*, Tv2

ut

B.2 Proof of Theorem 4.36

Proof: We sketch the completeness proof of clause (ii), which is carried out by induction on the

depth of P + Q; clause (i) can be shown in a similar way. Assume thatP; Q are in hnf w.r.t. � and

� = � c; ex : eT. Let �]Q be a con�guration respecting �. For some complete condition ' which are

satis�able by some legal substitution on �, let P';a be the sum of all active summands' i � i :Pi of

P such that f C1 ; Tpre �g ` ' i � i :Pi = � 'a (x : Ti):Pi . We write

P';a =
nX

i =1

'a (x : Ti):Pi and Q';a =
mX

j =1

'a (x : Sj):Qj

The key of the proof is to �nd, for each 1 � i � n, a term Ri satisfying the following two properties.

A e ` 'a (x : Ti):Pi = � 'a (x : �(a) i):Ri (B.3)

A e ` Q';a = � Q';a + 'a (x : �(a) i):Ri (B.4)

Let � = f eb=exg be a substitution which satis�es ' and � c ` eb : eT. From P � l e
� c

Q� we derive that

P';a � l e
� c

Q';a � . Given � c]P ';a �
a(x :T i)
�! � 0]P i � , for each b 2 f b 2 dom(� c) j � c(b) <: � c(a)og =

f c1; � � � ; ck g we have a matching transition � c]Q ';a �
a(x :SJ (i;b))

�! � 00]Q J (i;b) � such that

Pi � f b=xg l e
� c

QJ (i;b) � f b=xg

for some function J from [1; n] and f ci j 1 � i � kg to [1; m]. By the de�nition of hnf, Pi and

QJ (i;b) are of the form 'P 0
i and 'Q 0

J (i;b) respectively. Here' is complete ondom(�), but not on

dom(�) [f xg. We can complete it by adding conditions on the top which respects f b=xg. Let

' b = [x = b] ^
V

u2 dom (�) nb[x 6= u]. It is easy to see that

([' b ^ ']P0
i)� f b=xg l e

� c
([' b ^ ']Q0

J (i;b))� f b=xg:

B.2. PROOF OF THEOREM 4.36 129

By Lemma 4.20 we have [' b ^ ']P0
i l e

� ;x :�(a)o
[' b ^ ']Q0

J (i;b) . By induction hypothesis

A e ` ' bPi = � ;x :�(a)o ' bQJ (i;b) : (B.5)

Now de�ne Si;l for l � k by

Si; 1 = QJ (i;c 1)

Si;l = [x = cl] QJ (i;c l) Si;l � 1 for 1 < l � k

Let Ri be de�ned as Si;k . Using C9 and Cvn , we decompose binary conditions inRi into unary

conditions.

A e ` Ri = � ;x :�(a)o ' ck QJ (i;c k) + ' ck � 1 QJ (i;c k � 1) + � � � + ' c1 QJ (i;c 1)

On the other hand by Tv2 and Cvn we have

A e ` Pi = � ;x :�(a)o ' ck Pi + � � � + ' c1 Pi :

By using (B.5) we haveA e ` Pi = � ;x :�(a)o Ri , from which we infer that A e ` a(x : Ti):Pi = � a(x :

�(a) i):Ri and A e ` 'a (x : Ti):Pi = � 'a (x : �(a) i):Ri by Iin* and Icon . So we get the property in

(B.3).

Finally with axiom SP we can show by induction on 0< l � k that

A e ` Q';a = � Q';a + 'a (x : �(a) i):Si;l : (B.6)

Therefore (B.4) follows because it is the special case of (B.6) when l = k. ut

130 APPENDIX B. PROOFS FROM CHAPTER 4

Appendix C

Proofs from Chapter 5

C.1 Proofs from Section 5.2

Lemma C.1 For two well-typed processesP and P0, if w : x (i.e., w and x have the same type)

and P0 = Pf w=xg, then wt(P) = wt(P0).

Proof: Trivial. ut

Below we usej wt(P) j to stand for the length of the vector wt(P).

Lemma C.2 SupposeT ` P and P ��! P0, then j wt(P0) j � j wt(P) j.

Proof: Straightforward by induction on the structure of P. ut

Since the length of a vector can be extended by inserting zeros to the left end, we often assume

implicitly, for simplicity of presentation, that several v ectors have already been extended so as to

be of equal length when discussing their relationship.

Lemma C.3 SupposeT ` P; P aw�! P0, lv(a) = i , wt(P) = hnk ; nk � 1; � � � ; n1i and wt(P0) =

hmk ; mk � 1; � � � ; m1i . Then mj � nj for all j satisfying i � j � k.

Proof: By induction on the transition of P aw�! P0.

1. P � a(x):P1
aw�! P1f w=xg � P0, in this case,wt(P) = wt(P1) = wt(P0) by lemma C.1.

2. P � P1 j P2; P1
aw�! P0

1 and P0 � P0
1 j P2, then we have

wt(P) = wt(P1) + wt(P2) = hn1
k ; n1

k � 1; � � � ; n1
1i + hn2

k ; n2
k � 1; � � � ; n2

1i

wt(P0) = wt(P0
1) + wt(P2) = hm1

k ; m1
k � 1; � � � ; m1

1i + hn2
k ; n2

k � 1; � � � ; n2
1i

By induction hypothesis, 8j; i � j � k; m1
j � n1

j , it follows that mj = m1
j + n2

j � n1
j + n2

j = nj :

3. P � �bP1; P1
aw�! P0

1; P0 � �bP 0
1 and b 6= a, then wt(P1) = wt(P) = hnk ; nk � 1; � � � ; n1i ,

wt(P0
1) = wt(P0) = hmk ; mk � 1; � � � ; m1i . By induction hypothesis, we know that 8j; i � j �

k; m j � nj :

131

132 APPENDIX C. PROOFS FROM CHAPTER 5

4. P � P1 + P2; P1
aw�! P0

1 and P0 � P0
1, then

wt(P) = maxf wt(P1); wt(P2)g = maxfhn1
k ; n1

k � 1; � � � ; n1
1i ; hn2

k ; n2
k � 1; � � � ; n2

1ig

wt(P0) = wt(P0
1) = hm1

k ; m1
k � 1; � � � ; m1

1i

By induction hypothesis, 8j; i � j � k; m1
j � n1

j , so m1
j � n1

j � nj :

5. P � !a(x):P1
aw�! P j P1f w=xg � P0. According to T-rep, any name which appears as subject of

active output in P1 has a level lower than that ofa. Supposewt(P1) = hn0
l ; n0

l � 1; � � � ; n0
1i , then

l < lv (a) = i . Hencewt(P0) = wt(P) + wt(P1f w=xg) = wt(P) + wt(P1) = hnk ; � � � ; nl +1 ; nl +

n0
l ; nl � 1 + n0

l � 1; � � � ; n1 + n0
1i . Therefore mj = nj for all j satisfying l � i � j � k:

ut

Lemma C.4 SupposeT ` P; P
(� eb)�aw
�! P0, lv(a) = i , wt(P) = hnk ; nk � 1; � � � ; n1i and wt(P0) =

hmk ; mk � 1; � � � ; m1i . Then mi < n i and mj � nj for all j satisfying i < j � k.

Proof: Similar to the proof of Lemma C.3. As an example, let us consider one case. Suppose

P � �aw:P1
�aw�! P1 � P0. After the transition, process P lost one output occurrence at leveli

previously contributed by name a. Other output occurrences remain unchanged. So it holds that

mi = ni � 1 and mj = nj for all j 6= i . ut

Proof of Lemma 5.1

By induction on the transition system. We consider a typical case. SupposeP � P1 j P2,

P1
aw�! P0

1; P2
(� eb)�aw
�! P0

2 and P0 � (� eb)(P0
1 j P0

2): Let lv(a) = i and

wt(P) = wt(P1) + wt(P2) = hn1
k ; n1

k � 1; � � � ; n1
1i + hn2

k ; n2
k � 1; � � � ; n2

1i

wt(P0) = wt(P0
1) + wt(P0

2) = hm1
k ; m1

k � 1; � � � ; m1
1i + hm2

k ; m2
k � 1; � � � ; m2

1i

It follows from Lemma C.3 that 8j; i � j � k; m1
j � n1

j . From Lemma C.4 we infer that m2
i < n 2

i

and 8j; i < j � k; m2
j � n2

j : Combining the two results, we can draw the conclusion thatmi < n i

and 8j; i < j � k; m j � nj , in other words, wt(P0) � wt(P): ut

C.2 Proofs from Section 5.3

When P is known or unimportant, we simply write M i for M P;i . There are two additional special

vectors widely used in this section.

1. 00
i = h(M k ; nk); � � � ; (M 1; n1)i where (1) 8j � k; M j = []; (2) hnk ; � � � ; n1i = 0i .

2. 000
ij = h(M k ; nk); � � � ; (M 1; n1)i where (1) M i = [j] and M l = [] for all l such that l 6= i ; (2)

hnk ; � � � ; n1i = 0i .

The proofs of the following lemmas are carried out by induction on the transition P ��! P0:

Here we write a :] i : Nat to mean that a :] i T and T 6= Nat for someT.

C.2. PROOFS FROM SECTION 5.3 133

Lemma C.5 SupposeT 0 ` P and P aw�! P0.

1) If a :] i : Nat, then tP 0 � tP + 00
i

2) If a :] i Nat, then tP 0 � tP + 000
iw .

Proof: Let tP = h(M k ; nk); � � � ; (M 1; n1)i and tP 0 = h(M 0
k ; n0

k); � � � ; (M 0
1; n0

1)i . We consider two

typical cases.

1. P � a(x):P1
aw�! P1f w=xg � P0.

(a) If a :] i : Nat, then all Nat values and output occurrences inP remain intact after the

transition. So tP 0 = tP � tP + 00
i .

(b) If a :] i Nat, there are two subcases.

i. If 8�bu 2 out(P1); x 62fvn(u) then no new Nat value is created in P1. So we have

tP 0 = tP � tP + 000
iw .

ii. For each active output �bu with fvn(u) = f xg, new constant values are generated. Let

uf w=xg = m 2 N. Sinceu is consider as1 in M lv (b) and it becomesm in M 0
lv (b) ,

we infer that M 0
lv (b) � M lv (b) by the fact that m < 1 . As wt(P) does not change,

hencetP 0 � tP � tP + 000
iw .

2. P � !a(x):P1
aw

�! P j P1f w=xg � P0:

(a) If a :] i : Nat, in this case only the �rst condition in De�nition 5.4 is appl icable, which

ensures that all active outputs in P1 have levels lower thani . So wt(P0) � wt(P) + 0i

and M j = M 0
j for all j � i . Therefore it holds that tP 0 � tP + 00

i .

(b) If a :] i Nat, there are also two subcases.

i. If 8b 2 os(P1); lv(b) < i , then we are in the same situation as that of case 2.(a). So

tP 0 � tP + 00
i � tP + 000

iw :

ii. If there are outputs at level i in P1, say �bu, then rule T-rep requires that u < x , i.e.,

uf w=xg < w . It is easy to see thatM P1 f w=x g;i � [w]. It follows that M 0
i � M i] [w].

Although it may occur that n0
i > n i , the relation tP 0 � tP + 000

iw still holds because

the compound vector is constructed in such a way that Nat-multisets are compared

in a higher priority than output occurrences.

3. The other three cases can be analyzed by using induction hypothesis.

ut

Lemma C.6 SupposeT 0 ` P and P
(� eb)�aw
�! P0.

1) If a :] i : Nat, then tP 0 � tP � 00
i .

2) If a :] i Nat, then tP 0 � tP � 000
iw .

Proof: By induction on transitions. Consider the base case. Suppose that P � �aw:P1
�aw�! P1 � P0.

If a :] i : Nat, P lost one output occurrence after the transition. There is nochange forNat values

in P1. So wt(P0) = wt(P) � 0i and M P 0;j = M P;j for all j �j wt(P) j. In other words, we have

134 APPENDIX C. PROOFS FROM CHAPTER 5

tP 0 = tP � 00
i . If a :] i Nat, P lost one output occurrence and a constantw at channel a. So

M P 0;i = M P;i � [w], wt(P0) = wt(P) � 0i and 8j 6= i; M P 0;j = M P;j , which meanstP 0 = tP � 000
iw .

For other cases, induction hypothesis is applied. ut

Proof of Lemma 5.6

Similar to the proof of Lemma 5.1. We consider the base case, the other cases follow from

induction hypothesis. Let P � P1 j P2; P1
aw�! P0

1; P2
(� eb)�aw
�! P0

2 and P0 � (� eb)(P0
1 j P0

2).

1. If a :] i : Nat, then we have that tP 0
1

� tP1 + 00
i from Lemma C.5 and tP 0

2
� tP2 � 00

i from

Lemma C.6. So it can be derived thattP 0 = tP 0
1

+ tP 0
2

� tP1 + 00
i + tP2 � 00

i = tP1 + tP2 = tP .

2. If a :] i Nat, then from Lemma C.5 we have the result that tP 0
1

� tP1 + 000
iw and from Lemma

C.6 we havetP 0
2

� tP2 � 000
iw . Hence it holds that tP 0 = tP 0

1
+ tP 0

2
� tP1 + 000

iw + tP2 � 000
iw =

tP1 + tP2 = tP . ut

C.3 Extending T 0 with Polyadicity and Conditional

To allow for polyadic communication and if-then-else constructor, the extension of typing rules is

straightforward.

T-rep ` u :]n eV ex : eV ` P 8�vhewi 2 out(P); �vhewi / u (ex)
` !u(ex):P

T-if ` w : bool ` P ` Q
` if w then P else Q

The de�nition of / should be changed accordingly.

De�nition C.7 Supposeu :]n (T1; � � � ; Tk) and v :]m (S1; � � � ; Sl). We write �vhewi / u (ex) if one of

the two cases holds:

1. m < n

2. both of the following two conditions are met:

(a) m = n and k = l

(b) there exists somei � k such that Ti = Nat, wi < x i and wj � x j for all j 6= i with

Tj = Nat.

In clause 2 we require that at least one argument of �rst-order should decrease its value, while

in monadic case the unique �rst-order argument decreases.

In an input u(ex) or an output �vhewi , the order of arguments in the tuplesex and ew is not important.

Without loss of generality, we assume that arguments of typeNat are always in the left end. In

other words, we may consider that a tupleex is composed of two parts:ex = fx1; fx2, and x i is of type

Nat only if it is an element of fx1. That is, all elements of fx2 are of channel type orbool type.

C.4. PROOFS FROM SECTION 5.4 135

Let �vhwn ; � � � ; w1; w0
m ; � � � ; w0

1i be an active output appearing in processP. De�ne wi below for

every wi , where i 2 f 1; � � � ; ng.

wi =

(
wi if wi is a constant, i.e., fvn (wi) = ;

1 otherwise:

The de�nition of Nat-multiset, for the case of output, needs to be modi�ed.

M �vw:P;i =

(
M P;i] [wn ; � � � ; w1] if v :] i (gNat; eT)

M P;i otherwise

where w = hwn ; � � � ; w1; w0
m ; � � � ; w0

1 i . The intuition is that during a communication we consume

an output �vw and probably get some new outputs at leveli , of the form �vhwn � mn ; � � � ; w1 �

m1; w0
m ; � � � ; w0

1 i . As wi � mi < w i for some i and wj � mj � wj for all other j with i; j � n, we

immediately infer that M P 0;i < mul M P;i . The de�nition of compound vector remains unchanged.

For conditionals, we can extend the de�nition of weight in th is way: wt(if b then P else Q) =

maxf wt(P); wt(Q)g. According to the new de�nition of Nat-multiset, propertie s similar to Lemma

C.5 and C.6 are easy to prove. Lemma 5.6 and Theorem 5.7 still hold.

C.4 Proofs from Section 5.4

Proof of Lemma 5.12

1. There is a communication performed between a non-replicated input and an output mes-

sage. That is, P � (� eb)(a� (x):P1 j �aw:Q1 j Q2) for some a; P1; Q1; Q2; w and eb, and

P0 � (� eb)(P1f w=xg j Q1 j Q2). Therefore we have that

wt(P) = wt(P1) + wt(�aw) + wt(Q1) + wt(Q2)

� wt(P1) + wt(Q1) + wt(Q2) = wt(P0)

2. To derive this kind of transition, either if-t or if-f is used. If if-t is used then we have that

P � (� eb)((if true then P1 else Q1) j Q2) and P0 � (� eb)(P1 j Q2) for some eb; P1; Q1 and

Q2. Depending on the relation betweenwt(P1) and wt(Q1) we have wt(P) � wt(P0) if

wt(P1) � wt(Q1) and wt(P) = wt(P0) if wt(P1) � wt(Q1). The symmetric case for if-f is

similar.

3. By the transition rule rep, each time a replicated process is invoked a fresh tag is produced. So

there is no replicated process invoked inPi for 1 � i � n � 1. Then there are two possibilities:

(a) No replicated process invoked inP either. Therefore all communications take place

between non-replicated inputs and outputs. Reasoning as inclause 1, one can derive that

wt(P) � wt(P1) � � � � � wt(P0)

(b) A replicated process !�:Q , with � = a1(x1): � � � :an (xn), is invoked in P and a new process

(a(l; 2)
2 (x2): � � � :a(l;n)

n (xn):Q)� , for some � , is spawned. The subsequent reductions con-

sume the input pre�xes from a(l; 2)
2 � (x2) to a(l;n)

n � (xn) and their corresponding outputs.

136 APPENDIX C. PROOFS FROM CHAPTER 5

Thus we have the relation

wt(P0) + wt(�) = wt(P) + wt(Q� 0):

Substitution of names does not a�ect the weight of a process,so wt(Q� 0) = wt(Q). The

side condition of rule rep requires that wt(�) � wt(Q). Hence we have the conclusion

that wt(P) � wt(P0).

ut

Proof of Lemma 5.13

Let n = � (l).

1. SinceP is regular, the transition with tag (l; i) must originate from a communication between

an active output and a replicated input. So R must be of the form:
(

(� eb)(!a1(x1): � � � :an (xn):P j �a1w j Q) if i = 1

(� eb)(!a1(x1): � � � :an (xn):P j (a(l;i)
i (x i): � � � :a(l;n)

n (xn):P)� j �a0
i w j Q) if 1 < i < n

with ai � = a0
i . To have a subsequent transition with tag � , Q must be of the form: c� (x):Q1 j

�cw:Q2 j Q3 for somec; w; Q1; Q2 and Q3. It is evident that R also have the reduction path

R ��! R0
1

(l;i)
�! R0. The case fort = � 0 is also straightforward.

2. Let m = � (l0). As in the proof of clause 1 we know that the transitions with non-special

tags come from replicated inputs. Depending on whetherl and l0 come from the same input

pattern or not, we have the following two cases:

(a) They are generated by two di�erent input patterns, that i s, there exist at least two

replicated inputs in P, say !a1(x1): � � � :an (xn):P1 and !b1(x1): � � � :bm (xm):P2 respectively.

There are four possibilities. Let us consider the typical case that j 6= 1 and i 6= 1. Then

R should be of the form

R � (� ec)(!b1(y1): � � � :bn (yn):P2 j!a1(x1): � � � :an (xn):P1

j (b(l 0;j)
j (yj): � � � :b(l 0;m)

m (ym):P2)� 1 j (a(l;i)
i (x i): � � � :a(l;n)

n (xn):P1)� 2

j �b0
j w0 j Q)

with bj � 1 = b0
j . Sincej < � (l0) the consumption of bj � 1(yj) does not liberate any output,

and an output on ai � 2 should be directly available in Q so as to make the subsequent

communication on ai � 2 possible, which means that

Q �

(
�a0

i w j Q2 if i < n

�a0
i w:Q1 j Q2 if i = n

with ai � 2 = a0
i . Obviously in both casesR can take another reduction path: R

(l;i)
�!

R0
1

(l 0;j)
�! R0 for someR0

1.

(b) l and l0 originate from the same input pattern !a1(x1): � � � :an (xn):P1, which has been

invoked two times. The arguments are similar to Case (a).

C.4. PROOFS FROM SECTION 5.4 137

ut

Proof of Lemma 5.14

We consider the inductive step. SupposeP has an in�nite reduction sequenceP � P0
t 1�!

P1
t 2�! � � �

t i�! Pi
t i +1�! � � � . We shall do case analysis to �nd some processQ satisfying the three

conditions: (i) Q is also non-terminating; (ii) Q is regular; (iii) wt(P) � wt(Q).

At �rst it is clear that if t j = (l; i) and i < � (l), then the atomic tag l is generated by invoking

an input pattern, since in P there are only special tags.

Case 1: If t1 = � 0, by Lemma 5.12 there are two possibilities. Ifwt(P) � wt(P1) we can set

Q = P1. If wt(P) = wt(P1), we need to start the search fromt2. Note that any reduction sequence

by consecutively using rulesif-t or if-f is �nite since the size of the starting process decreases step

by step. So we will �nd either a tag � 0 that decreases weight or a tag of the form� or (l; i), which

directs the analysis to Case 2 or Case 3 accordingly.

Case 2: If t1 = � , then by Lemma 5.12 we know thatwt(P) � wt(P1). P1 is just the processQ we

are �nding.

Case 3: If t1 = (l; i) and � (l) > 0, then i = 1 since P is regular. Let n = � (l).

� If n = 1, then by Lemma 5.12 it holds that wt(P) � wt(P1). So we can setQ = P1.

� If n > 1 and hence a new processR def= (a(l; 2)
2 (x2): � � � :a(l;n)

n (xn):R0)� appears inP1.

1. If R does not participate in any communication among the in�nite sequenceP1
t 2�! � � �

t i�!

Pi
t i +1�! � � � , then replacing R with 0 does not a�ect the sequence. More precisely, letP1 =

(� ec)(!a1(x1): � � � :an (xn):R0 j R j R1), for some R1, and Q = (� ec)(!a1(x1): � � � :an (xn):R0 j 0 j

R1). Q can produce the same in�nite reduction sequence as that ofP1 with 0 in place of R at

the top level, but with wt(Q) � wt(P) becauseP consumes an output during the transition

P
(l; 1)
�! P1.

2. If R participates in a communication among the sequence, then there existsi such that t i =

(l; 2). We need to classify all the reductions betweenP1 and Pi . There are two subcases to

consider.

(a) If all t j for 1 < j < i are of the forms � or � 0, then we use Lemma 5.13 for (i � 2) times

and push (l; 1) forward until to the proper left of (l; 2). The resulting sequence is of the

form:

P
t 2�! P0

2
t 3�! � � �

t i � 1�! P0
i � 1

(l; 1)
�!

(l; 2)
�! P0

i �! � � �

By Lemma 5.12, we have the relations

wt(P) � wt(P0
2) � � � � � wt(P0

i � 1)

(b) If there is a partition of the set f j j 1 < j < i g by I 1 and I 2 such that all t j 2 C1 = f t i j i 2

I 1g = f t11; � � � ; t1k g are of the forms� or � 0 and all t j 2 C2 = f t i j i 2 I 2g = f t21; � � � ; t2k 0g

are of the form (l j ; nj) with � (l j) > 0.

i. If 8j 2 I 2; nj < � (l j), i.e., no input pattern is complete (since for eachj not all tags

from (l j ; 1) to (l j ; � (l j)) are in the set C2), then by using Lemma 5.13 for �nite many

138 APPENDIX C. PROOFS FROM CHAPTER 5

times we can push all tags inC1 to the left of (l; 1) and preserve their order. The

sequence changes into this form:

P
t 11�! P11

t 12�! � � �
t 1k�! P1k

(l; 1)
�!

t 21�! � � �
t 2k 0
�!

(l; 2)
�! � � �

Similarly, by using Lemma 5.13, we can push all tags inC2 to the right of (l; 2).

P
t 11�! P11

t 12�! � � �
t 1k�! P1k

(l; 1)
�!

(l; 2)
�! P0

i
t 21�! � � �

t 2k 0
�! � � �

By Lemma 5.12 it follows that

wt(P) � wt(P11) � � � � � wt(P1k):

ii. If there is a set I 0
2 � I 2 such that 8j 2 I 0

2; t j = (l j ; � (l j)), i.e., all tags in I 0
2 are

the tags of ending inputs in some input patterns. These patterns can be completed

by tags between (1; l) and (l; 2). We shall use Lemma 5.13 to sort out all complete

patterns and push them to the left of (l; 1).

A. Starting from (l; 1) we scan the sequence forward to �nd the �rst tag (l1; � (l1))

for some atomic tag l1 because we want to make all tags with atomic tagl1 be

in consecutive positions by \sequeezing out" other tags to the left of (l1; 1) or to

the right of (l1; � (l1)). All tags between (l1; 1) and (l1; � (l1)) are of one of the

three forms: � , � 0 or (l j ; nj) with nj < � (l j). As we did in Case i, it is feasible to

push all � and � 0 backward and all (l j ; nj) forward so that only tags with atomic

tag l1 are left between (l1; 1) and (l1; � (l1)) (these tags are already in ascending

order since they come from the same input pattern, saya1(x1): � � � :a� (l 1) (x � (l 1)),

and the consumption of these input pre�xes goes from left to right). After the

operations, we get a reduction sequence like

P
(l; 1)
�! � � � ��! � 0

�! � � �
(l 1 ;1)
�!

(l 1 ;2)
�! � � �

(l 1 ;� (l 1))
�!| {z }

� l 1

� � �
(l j ;n j)
�! � � �

(l; 2)
�! � � �

B. Find the next tag (l2; � (l2)) for some atomic tag l2 and make all tags with atomic

tag l2 in consecutive positions. Now we can treat tags in group� l 1 as a whole

and push them backward just as what we do for tag� . We repeat this operation

for other group � l j as long as (l j ; � (l j)) lies between (l; 1) and (l; 2). At the end

of this stage, we have a sequence as follows.

P
(l; 1)
�! � � � � l 1

=) � � � � l 2

=) � � � � l j

=) � � �
(l; 2)
�! � � �

where � l j

=) stands for
(l j ;1)
�!

(l j ;2)
�! � � �

(l j ;� (l j))
�! .

C. For other tags t j with j 62I 0
2 and j 2 I 2, which do not belong to a complete

group, we push them forward to the right of (l; 2), keeping their order. At this

moment, there are still tags like � and � 0 between (l; 1) and (l; 2).

P
(l; 1)
�! � � � t�! � � � � l 1

=) � � � t�! � � � � l j

=) � � �
(l; 2)
�! � � �

where t 2 f �; � 0g.

C.5. PROOFS FROM SECTION 5.5 139

D. Push (l; 1) forward until to the proper left of (l; 2) so as to yield this sequence:

P t�! P0
11 � � � t�! � l 1

=) � � � t�! � l j

=) � � � t�! P0
j 0k j 0

(l; 1)
�!

(l; 2)
�! P0

i � � �

where t 2 f �; � 0g. By Lemma 5.12 it follows that

wt(P) � wt(P0
11) � � � � � wt(P0

j 0k j 0
)

In the above four steps, when we commute reductions like
(l j ;n j)
�!

t i�! , the condition

nj < � (l j) is always satis�ed. This ensures the correct use of Lemma 5.13.

If n = 2, by Lemma 5.12 and the transitivity of � , we have that wt(P) � wt(P0
i) and so Q can

be set asP0
i . If n > 2 we repeat the operations done for (l; 1) on (l; i) with 1 < i < � (l). There are

two possibilities for the ultimate result:

1) either (l; i + 1) does not appear in the subsequent reductions, then we replace the processR def=

(a(l;i +1)
i +1 (x i +1): � � � :a(l;n)

n (xn):R0)� with 0 and get a non-terminating processQ such that wt(P) �

wt(Q);

2) or we complete the input pattern with atomic tag l and have a sequence like

P
t i�! � � �

(l; 1)
�!

(l; 2)
�! � � �

(l;n)
�! Q

t j
�! � � �

In this case we also havewt(P) � wt(Q) according to previous operations and Lemma 5.12.

Note that there are possibly three kinds of tags lying in the ultimate sequence betweenP and

Q:

1) tags � or � 0;

2) tags belonging to complete input patterns;

3) tags not belonging to complete input patterns, but the continuations of these incomplete input

patterns are discarded inQ since we have substituted0 for them.

Therefore each new atomic tagl with � (l) > 0 created by the derivatives ofP is usded up when

reachingQ. As P is regular, Q must be regular as well. Hence the induction hypothesis applies and

it maintains that Q is terminating. At this point contradiction arises. ut

C.5 Proofs from Section 5.5

Lemma C.8 If n(R) \ ex = ; then (R + R 0) +ex = R + R 0+ex .

Proof: Let R 00= R + R 0.
(R + R 0) +ex

= f (a; b) j a; b62ex and aR 00c1R 00� � � R 00cn R 00b for someec � ex and n � 0g

= f (a; b) j a; b62ex and aRbg

[f (a; b) j a; b62ex and aR 0c1R 0� � � R 0cn R 0b for someec � ex and n � 0g

= R [R 0+ex

= R + R 0+ex
ut

140 APPENDIX C. PROOFS FROM CHAPTER 5

Let R be a partial order and � be a substitution of names. We sayR� is well de�ned if

R � = f (x�; y�) j (x; y) 2 Rg is a partial order. For the multiset M = [x1; � � � ; xn] we write

M � = [x1�; � � � ; xn �].

Lemma C.9 If M 1 R mul M 2 then

(1) M 1 R 0
mul M 2 with R 0 = R + S.

(2) (M 1] M) R mul (M 2] M) for any multiset M over n(R).

(3) M 1� R � mul M 2� when R� is well de�ned.

Proof: We only need the de�nition of multiset ordering. (1) Since R 0 is a superset ofR, it

holds that xRy implies xR 0y. (2) Trivial. (3) Since R� is well de�ned, it follows that xRy implies

x� R � y� . ut

Given a multiset M and a partial order R on names, we extract fromM a sub-multiset in the

following way:

M R (x) def=

(
M (x) x 2 n(R)

0 x 62n(R)

Note that here we consider a multisetM with elements from set V as a function M : V 7! N (cf.

[Bez03]). Clearly all elements inM R belong to n(R).

The following lemma provides an alternative characterisation of the relation bR. It shows that

names not in n(R) are invariant with respect to the multiset ordering.

Lemma C.10 SupposeP bR Q; M 1 = mosR (P) and M 2 = mosR (Q). Then M 1
R R mul M 2

R .

Proof: From P bR Q we know that: (i) M 1 = M] M 1; (ii) M 2 = M] M 2; (iii) M 1 R mul M 2.

Since all elements inM 1 and M 2 belong to n(R), it is easy to see that M 1
R = M R] M 1 and

M 2
R = M R] M 2. From Lemma C.9(2), it follows that M 1

R R mul M 2
R . ut

Lemma C.11 If the partial order R is �nite, then there exists no in�nite sequence like

P0 bR P1 bR P2 bR � � �

Proof: Since R is �nite, it is well-founded, so is the induced multiset ordering R mul . Suppose

there exists such an in�nite sequence. LetM i = mosR (Pi). By Lemma C.10, we would have the

sequence

M 0
R R mul M 1

R R mul M 2
R R mul � � �

which contradicts the well-foundedness ofR mul . ut

Lemma C.12 If P bR Q then

(1) P cR 0 Q with R 0 = R + S

(2) P j R bR Q j R

(3) P � dR� Q� when dR� is well de�ned.

(4) P0 bR Q0 with mosR (P) = mosR (P0) and mosR (Q) = mosR (Q0).

C.5. PROOFS FROM SECTION 5.5 141

Proof: Straightforward. The �rst and third clause of Lemma C.9 are used to prove (1) and (3)

respectively. ut

The next two lemmas illustrate the basic properties of the type systemT 000.

Lemma C.13 If R ` P then n(R) � fn (P).

Proof: By trivial induction on the structure of P. ut

Lemma C.14 If R ` P, ex : ew, � = f ew=exg and R� is well de�ned, then R� ` P � .

Proof: The derivation of R ` P forms a tree tr with the conclusion as root. If we replace all

occurrences ofx i with wi we get another treetr 0. By induction on the depth of tr 0 it can be shown

that tr 0 is a valid derivation tree with root R� ` P � . ut

Proof of Theorem 5.20

By induction on the depth of the derivation P ��! P0. Let us consider the last rule used in the

derivation.

1. Rule in In this case P = a(ex):P1 and P0 = P1� , where � = f ew=exg. From R ` P we infer

that a :]n
S

eV , ex : eV , R 0 ` P1, S = R 0=ex and R = R 0+ex .

(a) If S = ; then n(R 0) \ ex = ; . Obviously R 0� is well de�ned since R 0� = R 0. By Lemma

C.14 we haveR 0� ` P1� . Observe that S � ew = ; and R 0+ex = R 0, i.e., R 0� = R 0 = R 0+ex

+ ; = R + S � ew. Therefore it holds that R + S � ew ` P0:

(b) If S 6= ; , then n(R 0) � ex by de�nition and S � ex = R 0 by Lemma 5.17. By hypothesis

S � ew is a partial order, so R 0� is well de�ned since R 0� = (S � ex)� = S � ew. By

Lemma C.14 we haveR 0� ` P1� . The conclusion is straightforward by noting that

R + S � ew = R 0+ex + R 0� = ; + R 0� = R 0�:

2. Rule com1 We have P = P1 j P2; P1
(� eb)�a ew
�! P0

1; P2
a ew�! P0

2;eb\ fn (P2) = ; and P0 = (� eb)(P0
1 j

P0
2). From R ` P we derive that R 1 ` P1, R 2 ` P2 and R = R 1 + R 2. By induction

hypothesis on the transition of P1 we have the following results: (1)a :]n
S

eV and ew : eV ; (2)

R 0
1 ` P0

1; (3) R 1 = (R 0
1 + S � ew) +eb. By inductive assumption on the transition of P2 we infer

that R 2 + S � ew ` P0
2. Using T-par it follows that R 2 + R 0

1 + S � ew ` P0
1 j P0

2. Using T-res

we have that (R 2 + R 0
1 + S � ew) +eb` (� eb)(P0

1 j P0
2). By the condition eb \ fn (P2) = ; and

Lemma C.13,eb\ n(R 2) = ; holds. By using Lemma C.8 we have that (R 2 + R 0
1 + S � ew) +eb=

R 2 + (R 0
1 + S � ew) +eb= R 2 + R 1 = R. Therefore R ` P0 is valid.

3. Rule rep SupposeP =! �:P 1 with � = a(ex):� 0. Let � = f ew=exg. After the transition P

changes intoP0 = P j (� 0:P1)� . From R ` !�:P 1 we haveR ` �:P 1 according to the typing

rule T-rep. Applying the arguments in Case 1 to �:P 1 we have the results: (1)a :]n
S

eV and

ew : eV; (2) if S � ew is a partial order then R + S � ew ` (� 0:P1)� . Using T-par we can infer that

R + S � ew + R ` P0, i.e., R + S � ew ` P0.

142 APPENDIX C. PROOFS FROM CHAPTER 5

4. Rule open Let P = �cP 1. The transition P
(� eb;c)�a ew

�! P0 comes fromP1
(� eb)�a ew
�! P0 with c 2

fn (ew) � f eb; ag. From R ` P we have that R 0 ` P1 and R = R 0+c. By induction hypothesis

on the transition of P1 we have the following results: (1)a :]n
S

eV and ew : eV ; (2) R 00` P0 (3)

R 0 = (R 00+ S � ew) +eb. Therefore R = R 0+c= ((R 00+ S � ew) +eb) +c= (R 00+ S � ew) +f eb;cg. Now

all conditions required for P are satis�ed and thus we complete this case.

5. Rule if-t Let P = if true then P1 else P2 and P0 = P1. From R ` P we have that

R 1 ` P1, R 2 ` P2 and R = R 1 + R 2. By setting R 0 = R 1 and R 00= R 2 the conclusion is

obvious. The symmetric rule if-f is similar.

6. Rule par1 and res Followed from induction hypothesis. ut

Let R ` P. If P appears underneath an input pre�x as in a(ex):P, then either all names in n(R)

are shielded by the pre�x or none of them is bound. In other words, ex cannot include only a portion

of names inn(R). This observation is made explicit by the following lemma, where we write 9!i:::

to mean that there exists a unique i satisfying the succeeding condition. Usually if namea is given

type]n
S

eV we say that the partial order of a is S, written as po(a) = S.

Lemma C.15 SupposeR 0 ` P and R ` �:P with � = a1(ex1): � � � :an (exn) and n � 1. Then one of

the following two cases holds.

1. R � = ;

2. 9!i � n; R � = po(ai) � ex i

Proof: We prove a stronger proposition: when the conditions in the above hypothesis are met,

then one of the following two cases holds:

1. 8i � n; po(ai) = ; ^ n(R 0) \ ex i = ; ^ R = R 0:

2. 9!i � n; po(ai) = S 6= ;^ n(R 0) � ex i ^R 0 = S� ex i ^ (8j 6= i; po(aj) = ;^ n(R 0)\ ex j = ;)^R = ; .

By induction on the length of � . Since �:P is well-typed, the sub-processan (exn):P must be

well-typed as well. Let R 1 ` an (exn):P . Then R 1 = R 0 +ex n , an :]m
S

eV , exn : eV and S = R 0=exn . Let

� 0 = a1(x1): � � � :an � 1(exn � 1).

1. If R 0 = ; then S = ; , i.e., po(an) = ; . We also haveR 1 = R 0 = ; . Now take a(exn):P as

P and � 0 as � , we can do similar reasoning to show thatpo(an � 1) = ; and R 2 = R 1 = ;

if R 2 ` an � 1(exn � 1):an (exn):P . Repeat the game until a1, it can be shown at last that 8i �

n; po(ai) = ; ^ R = R 0.

2. If R 0 6= ; there are two possibilities.

(a) n(R 0) � exn . In this case we haveS 6= ; but R 0 +ex n = ; and R 0 = S � exn . So it

holds that po(an) 6= ; and R 1 = ; . By the arguments of Case 1, it is easy to see that

8j � n � 1; po(aj) = ; ^ R j = R 1 = ; . Since we assume that bound names are di�erent

from each other,n(R 0) \ ex j = ; holds.

C.5. PROOFS FROM SECTION 5.5 143

(b) n(R 0) \ exn = ; . In this case S = ; and R 1 = R 0. By induction hypothesis on R `

� 0:an (exn):P , we have the following results: (1) either8i � n � 1; po(ai) = ;^ n(R 0) \ ex i =

; ^ R = R 0 (2) or 9!i � n � 1; po(ai) = S0 6= ; ^ n(R 0) � ex i ^ R 0 = S0 � ex i ^ (8j 6=

i; po(aj) = ; ^ n(R 0) \ ex j = ; ^ R = ;). The conclusion follows immediately.

ut

Proof of Lemma 5.21

By the transition rule rep, each time a replicated process is invoked a fresh tag is produced. So

there is no replicated process invoked inPi for 1 � i � n � 1. Then there are two possibilities:

1. No replicated process is invoked inP either. Therefore all communications onai , with 1 �

i � n, take place between non-replicated inputs and outputs. By similar analysis in Lemma

5.12, one can derive that

wt(P) � wt(P1) � � � � � wt(P0)

2. A replicated process !�:Q , with � = a1(ex1): � � � :an (exn), is invoked in P and a new process

(a(l; 2)
2 (ex2): � � � :a(l;n)

n (exn):Q)� is spawned. The subsequent reductions consume the input pre-

�xes from a(l; 2)
2 � (ex2) to a(l;n)

n � (exn) and their corresponding outputs. Then we have the relation

wt(P0) + wt(�) = wt(P) + wt(Q� 0)

Note that substitution of names does not a�ect the weight of a process, sowt(Q� 0) = wt(Q).

According to the side condition of rule T-rep there are two cases:

(a) wt(�) � wt(Q). It follows that wt(P) � wt(P0).

(b) wt(�) = wt(Q), � R � Q and an : � r . First, observe that P must be of the following form

in order to have the reduction sequence.

P =! a1(ex1): � � � :an (exn):Q j �b1 ew1 j � � � j �bn ewn :R1 j R2

with a1 = b1 and bi +1 = ai +1 � 1 � � � � i for i � 1 by letting � i = f ewi =ex i g. Let � = � 1 � � � � n .

According to our bound name convention that bound names are di�erent from each other,

ex i \ ex j = ; if i 6= j . If follows that bi = ai � for all i � 1. Hence we have the result that

mosR (��) = mosR (�b1 ew1 j � � � j �bn ewn). We also haveP0 in the form:

P0 =! a1(ex1): � � � :an (exn):Q j Q� j R1 j R2

Let P1 =! a1(ex1): � � � :an (exn):Q, P2 = �b1 ew1 j � � � j �bn ewn :R1 and P0
2 = Q� j R1. From

R ` P we have the results that R 1 ` P1, R 2 ` P2 and R 3 ` R with R = R 1 + R 2 + R 3.

Let R 21 = � n
i =1 po(bi) � ewi and R 22 ` R1. Then R 2 = R 21 + R 22. Note that R 1 ` �:Q is

valid and by Lemma C.15 there are two possibilities:

i. R � = ;

ii. 9!i � n; R � = po(ai) � ex i

144 APPENDIX C. PROOFS FROM CHAPTER 5

From the condition � cR � Q we know that R � 6= ; , so the second possibility is true. It

follows that R 21 = po(bi) � ewi = R � � i = R � � by bound name convention. Hence we have

the following inference sequence

� cR � Q

) �� dR � � Q� by Lemma C.12(3)

) �� dR 21 Q� R � � = R 21

) (�b1 ew1 j � � � j �bn ewn) dR 21 Q� by Lemma C.12(4)

) (�b1 ew1 j � � � j �bn ewn) j R1 dR 21 Q� j R1 by Lemma C.12(2)

) P2 dR 21 P0
2 by Lemma C.12(4)

) P1 j P2 j R2 dR 21 P1 j P0
2 j R2 by Lemma C.12(2)

) P bR P0 by Lemma C.12(1)

Sincean : � r we have that ur (Q) = ; , thus ur (Q�) = ; and no unguarded restriction is liberated

by the reduction sequence. Note thatbn and an are of the same type, hence of the same sort, which

means that ur (R1) = ; . TheoreforeP0 has no unguarded restrictions either. ut

Proof of Lemma 5.22

Suppose that there exists an in�nite reduction sequence like

P0
� l 1

=) P1
� 0

�! P2
� l 2

=) � � � � 0

�! Pi � 1
� l

=) Pi � � � (C.1)

then there must be in�nitely many transitions
� l j

=) because the transition
� 0

�! decreases the size of

processes. LetP0 = � eaQ0, without unguarded restrictions in Q0, i.e., ur (Q0) = ; . SupposeR ` P0,

then Q0 is also well-typed, sayR 0 ` Q0 for someR 0. There is a corresponding reduction sequence

starting from Q0:

Q0
� l 1

=) Q1
� 0

�! Q2
� l 2

=) � � � � 0

�! Qi � 1
� l

=) Qi � � �

By Lemma 5.21 and transition rules if-t and if-f we know that no unguarded restriction is created

in the sequence, thus8j � i; P j = � eaQj and wt(Pj) = wt(Qj). From Lemma 5.21 and Subject

Reduction Theorem we have that all Qj are well-typed, noted asR j ` Qj , and

� if Qj
� l n

=) Qj +1 then R j = R j +1 and Qj cR j Qj +1

� if Qj
� 0

�! Qj +1 then R j = R j +1 + R 0
j +1 for someR 0

j +1 .

If follows that 8j � i; R = R j + R 00
j for some R 00

j and by Lemma C.12(1) if Qj cR j Qj +1 then

Qj bR Qj +1 . Let M j = mosR (Qj). It can be derived that

� if Qj
� l n

=) Qj +1 then M j
R R mul M j +1

R by Lemma C.10.

� if Qj
� 0

�! Qj +1 then M j
R R =

mul M j +1
R by rules if-t and if-f

where the notation M R =
mul M 0 meansM R mul M 0 or M = M 0. Since there are in�nitely many

transitions � l j

=) in (C.1), there are in�nitely many R mul in the sequence

M 0
R R mul M 1

R R =
mul M 2

R R mul � � �

which contradicts the well-foundedness ofR mul .

Consequently, by means of commuting reductions used in Lemma 5.14, we can always �nd aQ

with wt(P0) � wt(Q) in �nite number of steps. ut

C.6. LEVELS IN THE JOIN-CALCULUS 145

P ::= 0 j xhyi j def D in P j P j P0 processes

D ::= T j J . P j D ^ D 0 de�nitions

J ::= xhyi j J j J 0 join-patterns

` P1 j P2
 ` P1; P2 Str-join

` 0
 ` Str-null

D1 ^ D2 `
 D1; D2 ` Str-and

T `
 ` Str-nodef

` def D in P
 D� ` P � Str-def

J . P ` J� �! J . P ` P � Red

Table C.1: Syntax and semantics of the Join-calculus

C.6 Levels in the Join-calculus

The idea of introducing level information into type system so as to enforce termination is also

applicable in other process calculi. In this section, we investigate termination of processes in the

Join-calculus [Fou98] by taking advantage of levels as we did in Section 5.2. We recall the syntax

and semantics of the Join-calculus in Table C.1. Detailed description about the calculus can be

found in [Fou98].

For ease of understanding, we consider the monadic Join-calculus. The extension to allow

polyadic communication is straightforward. We preserve all notations of [Fou98] for the syntax

and semantics, but add two multisetsmdv[J] and mdv[P] which are de�ned below.

mdv[xhyi]
def
= [x]

mdv[J j J 0] def= mdv[J]] mdv[J 0]

mdv[def D in P] def= mdv[P]

mdv[P j Q] def= mdv[P]] mdv[Q]

mdv[0] def= []

The reason of using multisets instead of the setdv[J] given in [Fou98] comes from the mechanism

of inter-process synchronisation of the Join-calculus: pattern-matching. Consider the following two

processes:

Q def= def xhi . x hi in xhi

Q0 def= def xhi j xhi . x hi in xhi

Obviously Q0 is terminating while Q is not. Without multiset, we would not be able to distinguish

Q0 from Q and wrongly take both of them as illegal processes. For the type system, we assume

that the only primitive type is unit and we do not consider polymorphism. Hence the concepts of

type scheme and simple type environment in [Fou98] coincidewith type and typing environment

respectively. Due to these simpli�cation our type system becomes less complicated than the original

146 APPENDIX C. PROOFS FROM CHAPTER 5

T-message� ` x :]n V � ` y : V
� ` xhyi T-par � ` P � ` Q

� ` P j Q

T-def � 1; � 2 ` D :: � 2 � 1; � 2 ` P
� 1 ` def D in P T-null � ` 0

T-rule

� ; ey : eV `
Y

i 2 1::n

x i hyi i � ; ey : eV ` P lv(ex) > mul lv(mdv[P])

� `
Y

i 2 1::n

x i hyi i . P :: � #ex

T-and � ` D1 :: � 1 � ` D2 :: � 2
� ` D1 ^ D2 :: � 1 � � 2

T-nodef
� ` T :: � 0

T-soup 8P 2 P ; � ` P 8D 2 D ; � ` D
� ` D ` P T-multi � ` D :: � 0

� ` D

Figure C.1: Typing rules for the join calculus

one presented in [Fou98]. The syntax of types is the same as that of � -calculus studied in Section

5.2. Given a set of namesN , the restriction of type environment � on N , written � #N , is a

new type environment which only binds names belonging toN . Let N = f x1; � � � ; xn g, we de�ne

lv(N) = f lv(x1); � � � ; lv(xn)g as the multiset of levels for names inN . The typing rules are reported

in Figure C.1, where
Q

i 2 1::n Pi represents the parallel compositionP1 j � � � j Pn and > mul is the

multiset ordering between two multisets of natural numbers.

The rule T-rule requires the condition lv(mdv[J]) > mul lv (mdv[P]) in order to make J . P

typable. It means that some output channels in J are replaced by �nite number of lower level

channels inP. According to the semantics of the join calculus, the only e�ective reduction relation

is

J . P ` J� �! J. ` P �:

Since the substitution � does not a�ect level information, as a whole the chemical soup will loose

some level information after the reduction step. This phenomenon is re
ected in the decrement of

our measure, weight, which is now de�ned on both processes and soups.

wt(0) = 0 wt(xhyi) = 0i if lv(x) = i

wt(P j Q) = wt(P) + wt(Q) wt(def D in P) = wt(P)

wt(J j J 0) = wt(J) + wt(J 0)

wt(D ` P) =
P

i 2 1::n wt(Pi) if P = f Pi j 1 � i � ng

As usual, the proofs of weakening and substitution lemmas are quite easy. The proof of subject

reduction theorem is simpler than that in [Fou98] because notype variable is involved. Details are

omitted.

Lemma C.16 If � ` J . P then wt(J) � wt(P).

Proof: By de�nitions it holds that lv (mdv[J]) > mul lv(mdv[P]) i� wt(J) � wt(P). ut

Theorem C.17 If D ` P is a well-typed chemical soup, there is no in�nite reduction sequence

starting from the soup.

C.6. LEVELS IN THE JOIN-CALCULUS 147

Proof: We need to prove three claims.

1. Claim 1: If D1 ` P1
 D2 ` P2 then wt(D1 ` P1) = wt(D2 ` P2). It is trivial by examining

all structural rules.

2. Claim 2: If D1 ` P1 �! D2 ` P2 then wt(D1 ` P1) � wt(D2 ` P2). The only reduction rule

is J . P ` J� �! J . P ` P � . Following from Lemma C.16, it holds that wt(J�) = wt(J) �

wt(P) = wt(P �), thus wt(D1 ` P1) � wt(D2 ` P2).

3. Claim 3: If D1 ` P 1
 � �!
 � D2 ` P 2 then wt(D1 ` P 1) � wt(D2 ` P 2). This is easy by

using the �rst two claims.

The required result follows from Claim 3. ut

148 APPENDIX C. PROOFS FROM CHAPTER 5

Bibliography

[AB01] Suzana Andova and J. C. M. Baeten. Abstraction in probabilistic process algebra. In

Tools and Algorithms for the Construction and Analysis of Systems, volume 2031 of

Lecture Notes in Computer Science, pages 204{219. Springer, 2001.

[Aba99] Martin Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749{

786, 1999.

[A �EI02] Luca Aceto, Zolt�an �Esik, and Anna Ing�olfsd�ottir. Equational axioms for prob abilistic

bisimilarity (preliminary report). Technical Report RS-0 2-6, BRICS, 2002.

[And99] Suzana Andova. Process algebra with probabilisticchoice. Technical Report CSR 99-12,

Eindhoven University of Technology, 1999.

[Bar84] Henk Barendregt.The lambda Calculus: Its Syntax and Semantics. North-Holland, 1984.

[BB05] Jos C. M. Baeten and Mario Bravetti. A ground-complete axiomatization of �nite state

processes in process algebra. InProceedings of the 16th International Conference on

Concurrency Theory, Lecture Notes in Computer Science. Springer, 2005. To appear.

[BBS95] Jos C. M. Baeten, Jan A. Bergstra, and Scott A. Smolka. Axiomatizing probabilistic

processes: ACP with generative probabilities.Information and Computation , 121(2):234{

255, 1995.

[BD95] Michele Boreale and Rocco De Nicola. Testing equivalences for mobile processes.Infor-

mation and Computation, 120:279{303, 1995.

[Bec80] Frank S. Beckman.Mathematical Foundations of Programming. Addison-Wesley, 1980.

[Bez03] Marc Bezem. Mathematical background. InTerm Rewriting Systems, pages 790{825.

Cambridge University Press, 2003.

[BGW01] Nikita Borisov, Ian Goldberg, and David Wagner. Int ercepting mobile communications:

The insecurity of 802.11. In Proceedings of the 7th Annual International Conference on

Mobile Computing and Networking, pages 180{189. ACM Press, 2001.

[BH97] Christel Baier and Holger Hermanns. Weak bisimulation for fully probabilistic processes.

In Proceedings of the 9th International Conference on Computer Aided Veri�cation , vol-

ume 1254 ofLecture Notes in Computer Science, pages 119{130. Springer, 1997.

149

150 BIBLIOGRAPHY

[BK84] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous communication.

Information and Computation , 60:109{137, 1984.

[Bou92] G�erard Boudol. Asynchrony and the � -calculus (note). Technical Report RR-1702,

INRIA Sophia-Antipolis, 1992.

[Bou03] G�erard Boudol. On strong normalization in the inte rsection type discipline. In Pro-

ceedings of the 6th International Conference on Typed Lambda Calculi and Applications,

volume 2701 ofLecture Notes in Computer Science, pages 60{74. Springer, 2003.

[BS98] Michele Boreale and Davide Sangiorgi. Bisimulationin name-passing calculi without

matching. In Proceedings of the 13th Annual IEEE Symposium on Logic in Computer

Science, pages 165{175. IEEE, Computer Society Press, 1998.

[BS01] Emanuele Bandini and Roberto Segala. Axiomatizations for probabilistic bisimulation.

In Proceedings of the 28th International Colloquium on Automata, Languages and Pro-

gramming, volume 2076 ofLecture Notes in Computer Science, pages 370{381. Springer,

2001.

[BW90] Jos C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 ofCambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 1990.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science,

240(1):177{213, 2000.

[Cod70] E.F. Codd. A relational model for large shared databanks. Communications of the ACM,

13(6):377{387, 1970.

[CS02] Stefano Cattani and Roberto Segala. Decision algorithms for probabilistic bisimulation.

In Proceedings of the 13th International Conference on Concurrency Theory, volume

2421 ofLecture Notes in Computer Science, pages 371{385. Springer, 2002.

[DCPP05] Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics for action-

labelled quantitative transition systems. In Proceedings of the 3rd Workshop on Quan-

titative Aspects of Programming Languages, Electronic Notes in Theoretical Computer

Science, 2005. To appear.

[DFP98] Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. Kaim: a kernel language for

agents interaction and mobility. IEEE Transactions on Software Engineering, 24(5):315{

330, 1998.

[DH95] Nachum Dershowitz and Charles Hoot. Natural termination. Theoretical Computer

Science, 142(2):179{207, 1995.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of

Theoretical Computer Science, chapter 6, pages 243{320. North-Holland, 1990.

BIBLIOGRAPHY 151

[DJGP02] Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. The

metric analogue of weak bisimulation for probabilistic processes. InProceedings of the

17th Annual IEEE Symposium on Logic in Computer Science, pages 413{422. IEEE

Computer Society, 2002.

[DJGP04] Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. Metrics

for labelled markov processes.Theoretical Computer Science, 318(3):323{354, 2004.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings.

Communications of the ACM, 22(8):465{476, 1979.

[DP05] Yuxin Deng and Catuscia Palamidessi. Axiomatizations for probabilistic �nite-state

behaviors. In Proceedings of the 8th International Conference on Foundations of Software

Science and Computation Structures, volume 3441 ofLecture Notes in Computer Science,

pages 110{124. Springer, 2005.

[DPP05] Yuxin Deng, Catuscia Palamidessi, and Jun Pang. Compositional reasoning for

probabilistic �nite-state behaviors, 2005. Submitted. A d raft version is available at

http://www.pps.jussieu.fr/ � yuxin/publications/par.ps .

[DS04a] Yuxin Deng and Davide Sangiorgi. Ensuring termination by typability. In Proceedings of

the 3rd IFIP International Conference on Theoretical Computer Science, pages 619{632.

Kluwer, 2004.

[DS04b] Yuxin Deng and Davide Sangiorgi. Towards an algebraic theory of typed mobile pro-

cesses. InProceedings of the 31st International Colloquium on Automata, Languages

and Programming, volume 3142 ofLecture Notes in Computer Science, pages 445{456.

Springer, 2004.

[DS05] Yuxin Deng and Davide Sangiorgi. Towards an algebraic theory of typed mobile pro-

cesses.Theoretical Computer Science, 2005. To appear.

[Fou98] C�edric Fournet. The Join-Calculus: A Calculus for Distributed Mobile Programming.

PhD thesis, �Ecole Polytechnique, Paris, France, 1998.

[Fu99] Yuxi Fu. Variations on mobile processes.Theoretical Computer Science, 221(1{2):327{

368, 1999.

[FY03] Yuxi Fu and Zhenrong Yang. Tau laws for pi calculus. Theoretical Computer Science,

308:55{130, 2003.

[Gan80] Robin O. Gandy. Proofs of strong normalization. InTo H.B. Curry: Essays on Combi-

natory Logic, Lambda Calculus and Formalism. Academic Press, 1980.

[GJS90] Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic reasoning for

probabilistic concurrent systems. In Proceedings of IFIP TC2 Working Conference on

Programming Concepts and Methods, 1990.

152 BIBLIOGRAPHY

[HJ90] Hans Hansson and Bengt Jonsson. A calculus for communicating systems with time and

probabilities. In Proceedings of IEEE Real-Time Systems Symposium, pages 278{287.

IEEE Computer Society Press, 1990.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[HP04] Oltea M. Herescu and Catuscia Palamidessi. Probabilistic asynchronous pi-calculus.

Technical report, INRIA Futurs and LIX, 2004.

[HR02a] Matthew Hennessy and James Riely. Information
ow vs. resource access in the asyn-

chronous pi-calculus. ACM Transactions on Programming Languages and Systems,

24(5):566{591, 2002.

[HR02b] Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.

Information and Computation , 173(1):82{120, 2002.

[HR04] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in

the presence of subtyping. Mathematical Structures in Computer Science, 14:651{684,

2004.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication.

In Proceedings of the 5th European Conference on Object-Oriented Programming, volume

512 ofLecture Notes in Computer Science, pages 133{147. Springer, 1991.

[HVY00] Kohei Honda, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Secure information

ow as typed process behaviour. InProceedings of the 9th European Symposium on Pro-

gramming Languages and Systems, volume 1782 ofLecture Notes in Computer Science,

pages 180{199. Springer, 2000.

[HY05] Kohei Honda and Nobuko Yoshida. Noninterference through
ow analysis. Journal of

Functional Programming, 2005. To appear.

[Jon93] Cli� B. Jones. A � -calculus semantics for an object-based design notation. In Proceedings

of the 4th International Conference on Concurrency Theory, volume 715 ofLecture Notes

in Computer Science, pages 158{172. Springer, 1993.

[Kob98] Naoki Kobayashi. A partially deadlock-free typed process calculus.ACM Transactions

on Programming Languages and Systems, 20(2):436{482, 1998.

[Kob00] Naoki Kobayashi. Type systems for concurrent processes: From deadlock-freedom to

livelock-freedom, time-boundedness. InProceedings of the 1st IFIP International Con-

ference on Theoretical Computer Science, volume 1872 ofLecture Notes in Computer

Science, pages 365{389. Springer, 2000.

[KPT99] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-

calculus. ACM Transactions on Programming Languages and Systems, 21(5):914{947,

1999.

BIBLIOGRAPHY 153

[Lin94] Huimin Lin. Symbolic bisimulation and proof systems for the � -calculus. Technical

Report 7/94, School of Cognitive and Computing Sciences, University of Sussex, 1994.

[Lin03] Huimin Lin. Complete inference systems for weak bisimulation equivalences in the � -

calculus. Information and Computation , 180(1):1{29, 2003.

[LL03] A. Laurie and B. Laurie. Serious
aws in bluetooth security lead to disclosure of personal

data, 2003. http://bluestumbler.org .

[Loa98] Ralph Loader. Notes on simply typed lambda calculus. Technical Report 381, LFCS,

University of Edinburgh, 1998.

[Low91] Gavin Lowe. Probabilities and Priorities in Time CSP . PhD thesis, Oxford, 1991.

[LS91] Kim G. Larsen and Aren Skou. Bisimulation through probabilistic testing. Information

and Computation, 94(1):1{28, 1991.

[LS00] Francesca Levi and Davide Sangiorgi. Controlling interference in ambients. InProceedings

of the 27th ACM symposium on Principles of Programming Languages, pages 352{364.

ACM Press, 2000.

[Mer00] Massimo Merro. Locality in the � -calculus and applications to distributed objects. PhD

thesis, Ecole des Mines de Paris, France, 2000.

[Mil78] Robin Milner. Synthesis of communicating behaviour. In Proceedings of the 7th Sympo-

sium on Mathematical Foundations of Computer Science, volume 64 ofLecture Notes in

Computer Science, pages 71{83. Springer, 1978.

[Mil80] Robin Milner. A calculus of communicating systems. volume 92 of Lecture Notes in

Computer Science. Springer, 1980.

[Mil84] Robin Milner. A complete inference system for a class of regular behaviours.Journal of

Computer and System Science, 28:439{466, 1984.

[Mil89a] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil89b] Robin Milner. A complete axiomatisation for observational congruence of �nite-state

behaviours. Information and Computation , 81:227{247, 1989.

[Mil91] Robin Milner. The polyadic � -calculus: A tutorial. Technical Report ECS-LFCS-91-180,

Department of Computer Science, University of Edingburgh,1991.

[Mil92] Robin Milner. Functions as processes.Mathematical Structures in Computer Science,

2(2):119{141, 1992.

[Mil99] Robin Milner. Communicating and Mobile Systems: the� -Calculus. Cambridge Univer-

sity Press, 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A ca lculus of mobile processes, part

I/II. Information and Computation , 100:1{77, 1992.

154 BIBLIOGRAPHY

[Nes00] Uwe Nestmann. What is a `good' encoding of guarded choice? Information and Com-

putation, 156:287{319, 2000.

[Pal03] Catuscia Palamidessi. Comparing the expressive power of the synchronous and the asyn-

chronous pi-calculus.Mathematical Structures in Computer Science, 13(5):685{719, 2003.

[Par01] Joachim Parrow. An introduction to the pi-calculus. In Handbook of Process Algebra,

pages 479{543. Elsevier, 2001.

[PH04] Catuscia Palamidessi and Oltea M. Herescu. A randomized encoding of the� -calculus

with mixed choice. Technical report, INRIA Futurs and LIX, 2 004.

[Plo81] Gordon Plotkin. A structural approach operational semantics. Technical Report DAIMI-

FN-19, Computer Science Department, Aarhus University, 1981.

[PLS00] Anna Philippou, Insup Lee, and Oleg Sokolsky. Weak bisimulation for probabilistic

systems. In Proceedings of the 11th International Conference on Concurrency Theory,

volume 1877 ofLecture Notes in Computer Science, pages 334{349. Springer, 2000.

[PS95] Joachim Parrow and Davide Sangiorgi. Algebraic theories for name-passing calculi.In-

formation and Computation, 120(2):174{197, 1995.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.

Mathematical Structures in Computer Science, 6(5):409{454, 1996.

[PV98] Joachim Parrow and Bj•orn Victor. The fusion calculu s: Expressiveness and symmetry

in mobile processes. InProceedings of the 13th Annual IEEE Symposium on Logic in

Computer Science, pages 176{185. IEEE, Computer Society Press, 1998.

[RG02] Raghu Ramakrishnan and Johannes Gehrke.Database Management Systems. McGraw-

Hill, 2002.

[San93] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-

Order Paradigms. PhD thesis CST{99{93, Department of Computer Science, University

of Edingburgh, 1993.

[San96a] Davide Sangiorgi. � -calculus, internal mobility and agent-passing calculi. Theoretical

Computer Science, 167:235{274, 1996.

[San96b] Davide Sangiorgi. A theory of bisimulation for the� -calculus. Acta Informatica , 33:69{

97, 1996.

[San99] Davide Sangiorgi. The typed� -calculus at work: A proof of jones's parallelisation

transformation on concurrent objects. Theory and Practice of Object-Oriented Systems,

5(1):25{33, 1999.

[San05] Davide Sangiorgi. Termination of processes.Mathematical Structures in Computer Sci-

ence, 2005. To appear.

BIBLIOGRAPHY 155

[SdV04] Ana Sokolova and Erik P. de Vink. Probabilistic automata: system types, parallel

composition and comparison. InValidation of Stochastic Systems: A Guide to Current

Research, volume 2925 ofLecture Notes in Computer Science, pages 1{43. Springer, 2004.

[Seg95] Roberto Segala. Modeling and veri�cation of randomized distributed real-time systems.

Technical Report MIT/LCS/TR-676, PhD thesis, MIT, Dept. of EECS, 1995.

[SL94] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes.

In Proceedings of the 5th International Conference on Concurrency Theory, volume 836

of Lecture Notes in Computer Science, pages 481{496. Springer, 1994.

[SM92] Davide Sangiorgi and Robin Milner. The problem of \weak bisimulation up-to". In

Proceedings of the 3th International Conference on Concurrency Theory, volume 630 of

Lecture Notes in Computer Science, pages 32{46. Springer, 1992.

[SS00] Eugene W. Stark and Scott A. Smolka. A complete axiom system for �nite-state proba-

bilistic processes. InProof, language, and interaction: essays in honour of RobinMilner ,

pages 571{595. MIT Press, 2000.

[Sta79] Richard Statman. The typed � -calculus is not elementary recursive.Theoretical Com-

puter Science, 9(1):73{81, 1979.

[Sto02] Mari•elle Stoelinga. Alea jacta est: veri�cation of probabilistic, real-time an d parametric

systems. PhD thesis, University of Nijmegen, 2002.

[SW01] Davide Sangiorgi and David Walker. The � -calculus: a Theory of Mobile Processes.

Cambridge University Press, 2001.

[Tho95] Bent Thomsen. A theory of higher order communicating systems. Information and

Computation, 116(1):38{57, 1995.

[Tof94] Chris Tofts. Processes with probabilities, priority and time. Formal Aspects of Comput-

ing, 6(5):536{564, 1994.

[vBW01] Franck van Breugel and James Worrell. An algorithm for quantitative veri�cation of

probabilistic transition systems. In Proceedings of the 12th International Conference on

Concurrency Theory, volume 2154 ofLecture Notes in Computer Science, pages 336{350.

Springer, 2001.

[vBW04] Franck van Breugel and James Worrell. A behavioural pseudometric for probabilistic

transition systems. Theoretical Computer Science, 2004. In press.

[vdP01] Jaco van de Pol. A prover for the mucrl toolset with applications { version 0.1. Technical

Report SEN-R0106, CWI, Amsterdam, 2001.

[vGSS95] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Ste�en. Reactive, generative, and

strati�ed models of probabilistic processes.Information and Computation , 121(1):59{80,

1995.

156 BIBLIOGRAPHY

[VH93] Vasco Thudichum Vasconcelos and Kohei Honda. Principal typing schemes in a polyadic

� -calculus. In Proceedings of the 4th International Conference on Concurrency Theory,

volume 715 ofLecture Notes in Computer Science, pages 524{538. Springer, 1993.

[Wal95] David Walker. Objects in the � -calculus. Information and Computation , 116(2):253{271,

1995.

[YBH04] Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation in the pi-

calculus. Information and Computation , 191(2):145{202, 2004.

[YL92] Wang Yi and Kim Larsen. Testing probabilistic and nondeterministic processes. In

Proceedings of the 12th IFIP International Symposium on Protocol Speci�cation, Testing

and Veri�cation , pages 47{61. North Holland, 1992.

[Zan03] Hans Zantema. Termination. In Term Rewriting Systems, pages 181{259. Cambridge

University Press, 2003.

