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Resune

Cette these se concentre sur des bases threoriques utilesopir I'analyse d'algorithmes et de pro-
tocoles pour des sysemes epartis modernes. Deux caragtistiques importantes des moceles pour
ces sysemes sont les probabilies et la mobilie typee : des probabilies peuvent étre utilisses pour
guanti er des comportements incertains ou impevisibles, et des types peuvent &tre utilies pour
garantir des comportements sirs dans des sysemes mob#e Dans cette these nous ceveloppons
des techniques algebriques et des techniques bases swsltypes pour letude comportementale des
processus probabilistes et mobiles.

Dans la premere partie de la these nousetudions la treorie algebrique d'un calcul de processus
gui combine les comportements non-ceterministe et probaliiste dans le mocele des automates prob-
abilistes proposes par Segala et Lynch. Nous consiceronsliverses equivalences comportementales
fortes et faibles, et nous fournissons des axiomatisationsompktes pour des processusaetats nis,
limieesa la ecursion garcee dans le cas desequivalences faibles.

Dans la deuxeme partie de la these nousetudions la treorie algebrique du -calcul en pesence
des types de capacikes, qui sont tes utiles dans les calds de processus mobiles. Les types de
capacies distinguent la capacit de lire sur un canal, la capacie decrire sur un canal, et la capacie
de lire et decrirea la fois. lls introduisent egalement une relation de sous-typage naturelle et
puissante. Nous consicerons deux variantes de la bisimilde typee, dans leurs versions retardees
et anticipees. Pour les deux variantes, nous donnons des @&matisations compktes pour les termes
fermes. Pour une des deux variantes, nous fournissons unexematisation compkte pour tous les
termes nis.

Dans la dernere partie de la these nous developpons des échniques bases sur les types pour
\eri er la propree de terminaison de certains process us mobiles. Nous fournissons quatre sysemes
de types pour garantir cette propree. Les sysemes de types sont obtenus par des aneliorations
successives des types du-calcul simplement type. Les preuves de terminaison utilsent des tech-
nigues employees dans les sysemes de eecriture. Cesysemes de types peuvent étre utiliees pour
raisonner sur le comportement de terminaison de quelques erples non triviaux : les codages des
fonctions ecursives primitives, le protocole pour coderle choix spae en terme de compaosition
paralele, une table de symboles implemenee comme une cdne dynamique de cellules.

Ces esultatsetablissent des bases pour une future etuce de mockles plus avanes qui peuvent
combiner des probabilies avec des types. lls soulignenegalement la robustesse des techniques
algebriques et de celles bases sur les types pour le raisBnement comportemental.



Abstract

The focus of this thesis are the theoretical foundations forreasoning about algorithms and pro-
tocols for modern distributed systems. Two important features of models for these systems are
probability and typed mobility: probabilities can be used to quantify unreliable or unpredictable
behaviour and types can be used to guarantee secure behavioin systems with a mobile struc-
ture. In this thesis we develop algebraic and type-based tdmiques for behavioural reasoning on
probabilistic and mobile processes.

In the rst part of the thesis we study the algebraic theory of a process calculus which combines
both nondeterministic and probabilistic behaviour in the style of Segala and Lynch's probabilistic
automata. We consider various strong and weak behaviouralguivalences, and we provide complete
axiomatisations for nite-state processes, restricted to guarded recursion in the case of the weak
equivalences.

In the second part of the thesis we investigate the algebraitheory of the -calculus under the
e ect of capability types, which are one of the most useful fams of types in mobile process calculi.
Capability types allow one to distinguish between the capalility to read from a channel, to write
to a channel, and to both read and write. They also give rise toa natural and powerful subtyping
relation. We consider two variants of typed bisimilarity, b oth in their late and in their early version.
For both of them, we give complete axiomatisations on the cleed nite terms. For one of the two
variants, we provide a complete axiomatisation for the open nite terms.

In the last part of the thesis we develop a type-based technige for verifying the termination
property of some mobile processes. We provide four type sysins to guarantee this property. The
type systems are obtained by successive re nements of the pes of the simply typed -calculus.
The termination proofs take advantage of techniques from tem rewriting systems. These type
systems can be used for reasoning about the terminating bek@ur of some non-trivial examples:
the encodings of primitive recursive functions, the protool for encoding separate choice in terms of
parallel composition, a symbol table implemented as a dynaric chain of cells.

These results lay out the foundations for further study of mae advanced models which may
combine probabilities with types. They also highlight the robustness of the algebraic and type-
based techniques for behavioural reasoning.
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Resune en frarcais

L'informatique vise a expliquer d'une manere rigoureuse comment les sysemes informatiques se
comportent. Actuellement la notion de syseme informatique inclut non seulement dessysemes
f£quentiels, comme des programmes simples dans des ordinateurs isqsaisegalement dessysemes
paralkles, comme des eseaux informatiques, et méme des protinesn biologie et des particules en
physique. Les mockles mathematiques classiques (par exeple le -calcul [Bar84]), malge leur
suces pour cecrire des sysemes quentiels, demeurd insu sants pour raisonner sur des sysemes
paraleles.

Dans les anrees 80 lesalculs de processugparfois appeks algbres de processus notamment
CCS [Mil89a], CSP [Hoa85] et ACP [BK84, BW90], ontet prop o®s pour decrire et analyser des
sysemes paraleles. Tous ontek corcus autour de I'i cee centrale d'interaction ou de commu-
nication entre processus. Dans ces formalismes, un syseme compéest construita partir de
ses sous-composants, par un petit ensemble d'operateursrigitifs comme le pe xe , le choix non-
ceterministe, la restriction, la composition paraléle et la ecursion. La limitation de ces algebres
traditionnelles est qu'elles ne peuvent pas étre utilises pour cecrire e cacement des sysemes mo-
biles c'esta-dire des sysemes dont la topologie des liaisos change dynamiquement. Sur la base
de CCS, Milner, Parrow et Walker ont invene le -calcul [MPW92], qui ealise la mobilie par un
nmecanisme al un nom recu sur un canal peut étre lui-méme utilise comme un nom de canal en
emission ou en eception. Le -calcul est un formalisme tes expressif. |l permet d'encaer des
structures de donrees [Mil91], le -calcul [Mil92] et les communications d'ordre sugerieur (orsque
des processus sont transmisa la place des noms) [San93]. Batre, il peut étre utili’e comme un
outil de raisonnement sur deslangages orienes objet[Wal95].

Comme aucune treorie n'atteindra tous les objectifs, un gand nombre de variantes et d'extensions
des calculs de processus classiques sont parues dans l@iéture. Grosserement ils peuvent étre
regroupes en trois catgories en fonction des intentionsdes concepteurs.

Pour mieux capturer quelques caraceristiques speci ques des sysemes paralkles comme les
communications asynchrones, les communications d'ordreugerieur, les localies et les migra-
tions. On peut faire une longue liste d'exemples de calculsafts dans ce but : le -calcul
asynchrone [HT91, Bou92], le I-calcul [San96a], le L -calcul [Mer00], le calcul Fusion [PV98],
le -calcul [Fu99], le calcul Join [Fou98], CHOCS [Tho95], HO [San93], D [HRO02b], Klaim
[DFP98], le calcul des Ambients Mobiles [CGOOQ] et ses variaas, pour en citer juste quelques
uns.



Pourequiper les processus mobiles de types, de sorte queslprocessus interagissent entre eux
d'une manere plus sore et plus e cace. Par exemple, un cetain nombre de sysemes de types
ontek corcus pour le  -calcul ; ils sont utilises dans diverses applications corme la cetection
statique des erreurs dans les programmes paraleles [Mild, les optimisations de compilateur
[KPT99], le controle d'aces de ressources [PS96, HRO2bJEn plus, ils garantissent d'autres
proprees de scurie comme I'execution sans blocag e [Kob98], la non-intervention [HY05] et
la terminaison [YBHO4, DS04a].

Pour soutenir le raisonnement sur les comportements probadlistes qui existent, par exemple,
dans les sysemes akatoires, epartis et esistants aux pannes. L'approche cererale que l'on
adopte est detendre avec des probabilies les moctles eles techniques existants qui ont dea

et couronres de suces dans les cadres non-probabili®s. La caraceristique commune des
calculs de processus probabilistes est I'existence de lapteur de choix probabiliste; voir par

exemple des extensions probabilistes de CCS [GJS90, HJ900f84, YL92], CSP probabiliste
[Low91], ACP probabiliste [And99] et le -calcul asynchrone probabiliste [HP04].

Dans cette these nous illustrerons les calculs de processudes deuxeme et troiseme cakegories
en cetail.

A n detudier un langage de programmation ou un calcul de processus, on doit fournir une
signi cation colerentea chaque programme ou processus d ce langage. Cette signi cation est la
£mantique du langage ou du calcul. La £mantique est utile pour \eri er ou montrer que les pro-
grammes se comportent comme pevu. D'une manere cererale, il y a trois approches principales
pour donner des £mantiquesa un langage de programmationL'approche denotationnelle cherche
une fonction devaluation qui associea un programme sa gjni cation matlematique. Cette ap-
proche eussita moctliser beaucoup de langages fquetiels ; un programme est interpet comme
une fonction du domaine des valeurs d'entee vers le domaia des valeurs de sortie. Cependant,
jusqu'ici l'interpeetation cenotationnelle des progra mmes paralkles n'est pas aussi satisfaisante que
le traitement denotationnel des programmes squentiels

L'approche oferationnelle s'awere tes utile pour donner des mantiques aux sysemes paralkles.
Le comportement d'un processus est indigLe par ssemantique operationnelle structurelle [Plo81],
cecrite par un ensemble de egles de transitions etiqueees inductivement ce nies sur la structure
des termes. De cette facon chaque processus correspondan graphe de transitionsetiquetes La
limitation de la mantique operationnelle est qu'elle est trop concete, car un graphe de transitions
peut contenir beaucoup detats qui devraient intuitiveme nt étre confondus. On a alors propos
beaucoup dequivalences pour comparer les dierents grgphes de transitions.

L'approche axiomatique visea comprendre un langage par quelques axiomes et egsd'inerence.
Son importance est motivee, entre autres, par les deux raisns suivantes.

Les sysemes corrects, méme s'ils ne sont pas complets, peéent etre utiles pour la manipulation
des termes par un humain ou par des machines. En exploitant eesysemes, un certain nombre
de probkemes pratiques de \eri cation peuvent &tre abords.

Les sysemes complets aidenta comprendre la nature des quivalences. Par exemple, la
dierence entre deux equivalences peut etre caracerise par quelques axiomes, en partic-



ulier si en ajoutant ces axiomesa un syseme complet pour me equivalence on obtient un
syseme complet pour l'autre equivalence. Une autre methode de comparaison est de xer
uneequivalence et de changer les expressions. Parfois @tend le syseme complet d'un sous-
langage au langage entier, en ajoutant quelques axiomes suipmentaires. Comme nous le
verrons plus tard, les deux ptenorrenes se produisent aux ltapitres 3 et 4.

Dans les calculs de processus, un sujet important et toujowr actif est d'explorer la connexion
entre les £mantiques operationnelles et axiomatiques.Milner [Mil78] aet le premiera peconiser le
ceveloppement d'une algebre des comportements qui oleia un certain nombre d'axiomes exprines
par des equations. Dans [Mil80] un lien direct estetabli pour la premere fois entre une theorie
algebrique et une equivalence comportementale base suune £mantique operationnelle. Depuis,
un grand nombre de travaux portent sur les theories algebriques de processus, pour dierentes
equivalences comportementales et dans divers calculs dergpcessus. Cependant, on ne voit pas
beaucoup d'attention préee aux calculs de processus pioabilistes et types, bien qu'ils s'awerent
etre tes utiles dans l'analyse des sysemes epartis modernes.

Objectifs

Cette these se concentre sur des bases treoriques utilesour I'analyse d'algorithmes et de protocoles
pour des sysemes epartis modernes. Nous pensons que cemye de raisonnement est important
parce que si un syseme estetabli sans analyse rigoureusde toutes les interactions possibles entre
ses composants, alors son comportement est souvent incocte En est £moin la decouverte ecente
des cefauts de scurie dans les protocoles de transmissn sans | comme IEEE 802,11 et Bluetooth
[BGWO1, LLO3].

Dans les sysemes epartis il est ineressant de consigrer des moctles qui incluent des proba-
bilies. Une raison est qu'on espere que ces sysemes faunissent des services ables en cepit de
l'occurrence de divers echecs. Les processus probabilet peuvent etre utilises pour cecrire des
sysemes esistants aux pannes. Par exemple, I'informaton probabiliste peut &tre utiliee pour indi-
quer le taux de perte des messages par les canaux de transnmgscefectueux. En plus, les moceles
probabilistes peuvent &tre utiliees pour casser la syn#rie dans des probemes de coordinations dis-
tribiees (par exemple, le probeme des philosophes, le ppbeme delection de chef, et le probeme
de consensus), pour pevoir le comportement de sysemes dees sur le calcul des caraceristiques
d'execution, et pour repesenter et mesurer d'autres formes d'incertitude.

Un mocktle pour les sysemes epartis devraitegalement inclure la caraceristique de mobilie.
Les sysemes physiques tendenta avoir une structure xe. Mais la plupart des sysemes dans le
monde de l'information ne sont pas physiques car leurs lienpeuvent étre symboliques ou virtuels.
Par exemple, quand on clique sur un lien hypertexte dans unegge web, un lien symbolique est ce2
entre la machine et le serveur weba distance. Un exemple dedn virtuel est une connexion radio,
comme les liens entre les ekphones mobiles et un eseade stations de base. Cette connexion radio,
avec des liens transitoires, a une structure mobile.

Avec la mobilie, les types s'awerent &tre essentiels. Par exemple, la theorie du -calcul non type
est souvent insu sante pour prouver des proprees comportementales sur les processus. La raison



est que quand on utilise le -calcul pour cecrire un syseme, on suit normalement une nethode qui
cetermine comment utiliser des noms. Mais cette methode rest pas explicite dans les processus et
elle ne peut donc pas jouer un role dans les preuves. Des typ@euvent &tre utilises pour rendre
une telle nethode explicite (cf. Partie IV de [SWO01]). En outre, les types sont utiles pour exprimer
le contréle de lintervention, du droit d'aces, du cecl assement robuste, de la composition stre des
composants, et de la limite des consommations de ressourdgmr exemple, des allocations de temps
ou de memoire).

Il'y a une motivation pratique pour consicerer les probabilies et la mobilie en méme temps.
Comment un syseme de ekphone mobile peut-il s'executer de facon satisfaisante si le concepteur
ne consicere jamais le comportement probable des utilisaturs ? Un certain nombre de moctles
probabilistes ontek pesenes en tant que variantes d es chames de Markov, mais pour la mobilie
ils sont peu cevelopges.

Dans la literature, les probabilies et la mobilie typ ee sont souventetudees epaement. Des
techniques operationnelles ontee ceveloppees, mais tes peu d'e orts ontee faits sur des tech-
nigues algebriques. Cependant, elles sont tes utiles erinformatique. Par exemple, dans le mockle
relationnel pour les bases de donrees [Cod70], les lois aligiques ont servia I'optimisation de de-
mande [RG02]. Dans les calculs de processus, desequatioalgebriques peuvent etre consiceiees en
tant que egles de eecriture pour la manipulation autom atise de termes [vdPO1].

Dans cette these nousetudions des techniques algebriges en consicerant I'impact de la mobilig,
des probabilies et des types sur les treories algebriques des calculs de processus. Puisque chaque
caraceristiqgue pesente de nouveaux probemes non triviaux, il est di cile de cevelopper d'embke
des techniques algebriques pour des moceles bases sur lmobilie typee et les probabilies. Par
congquent, il vaut mieux lesetudier d'abord spaeme nt. Dans le chapitre 3 nous consicerons donc
des axiomatisations pour un calcul probabiliste sans mobik, et dans le chapitre 4 nous fournissons
des axiomatisations pour un calcul de processus mobile tygpsans probabilies. Les types que nous
utilisons sont lestypes de capacie[PS96], qui distinguent la capacit de lire sur un canal, lacapacie
decrire sur un canal, et la capacit de lire et decrire a la fois. Ce genre de types sont utiles et
fondamentaux pour les calculs de processus. lIs ontet uties pour garantir lechange de donrees
colerentes sur des canaux, et pour contréler des droits @ices aux canaux. Des variantes des types
de capacies sont maintenant pesentes dans presque toudes calculs de processus. Parfois, elles
deviennent une partie de la syntaxe, par exemple dans le L-calcul et le calcul Join, seules les
capacies decrire peuvent étre transmises.

Dans les calculs de processus mobiles, les types peuventetutilisess comme une technique de
\eri cation pour analyser diverses proprees des prog rammes concurrents, comme I'execution sans
blocage [Kob98], I'execution sans attente active [Kob00] et le ux d'information [HVY00, HR02a].
Dans le chapitre 5 nous ceveloppons une telle technique paude probeme de terminaison, qui est une
propree importante que beaucoup d'algorithmes et prot ocoles dans les sysemes epartis doivent
garantir. Dans le cas des sysemes epartis synetriques les algorithmes probabilistes sont souvent
plus e caces que les algorithmes deterministes, au prix qLe certaines proprees se produiront avec la
probabilie 1 mais pas recessairement avec certitude. Par tous les buts pratiques, cependant, cette
dierence est insigni ante. Par conequent, il estine ressant de parler de la terminaison probabiliste



aussi. Cependant, puisque la terminaison est elle-méme uprobeme non trivial, nous consicerons
des types sans probabilie.

Pour ecapituler, dans cette ttese nous developpons destechniques algebriques et des techniques
bases sur les types pour raisonner sur les processus avemlipabilies et mobilie type. Nous
consicerons ces deux caraceristiques spaement,a la fois dans le cas des axiomatisations et celui
de la terminaison, mais nous croyons que notre travail confbueaetablir des bases pouretudier des
mockles plus avan@s qui peuvent combiner les probabilés avec la mobilie typee.

Avant de discuter dans les sections suivantes des motivatits pour chaque sujet de la trese, nous
devons pesenter une certaine terminologie. Nous utilisas le concept gereral axiomatisations pour
esignera la fois des sysemes d'axiomes et des syseme de preuves. Pour une equivalence sur
un ensemble de termes, ursyseme d'axiomesse compose de quelques axiomesequationnels et des
egles du raisonnementequationnel (c'esta-dire, les egles de eexivie, de synetrie, de transitivie,
et les egles de congruence qui permettent de remplacer mtiporte quel sous-terme d'un processus
par un terme equivalent). Un syseme de preuvesa, en plus des axiomes et de certaines egles
du raisonnementequationnel, d'autres egles d'inErence. Gereralement un syseme d'axiomes est
pekrablea un syseme de preuves, parce que, par exempe, les techniques gererales de la eecriture
de termes peuvent alors étre applicables. Cependant, quakle calcul de processus en question inclut
des caraceristiques non triviales comme la ecursion oules types, parfois il est di cile d'obtenir
un syseme d'axiomes qui est complet parce que nous devonstiliser d'autres egles d'inerence,
c'esta-dire, ce que nous obtenons est eellement un sysine de preuves. Dans ce cas nous appelons
aussi ce syseme une axiomatisation, comme on l'a fait danta literature [Mil89b, Par01]. Pour une
axiomatisation, la compeétude signi e que si deux processus montrent un comportement semable,
c'esta-dire, leurs graphes de transition sontequivalents, alors on peut prouver qu'ils sontegaux
dans un syseme d'axiomes ou un syseme de preuves; laorrection signi e l'inverse.

Axiomatisations pour les processus probabilistes

La dernéere cecennie aet emoin de l'inerét crois sant dans le domaine des nmethodes formelles pour
la speci cation et I'analyse des sysemes probabilistes[Seg95, BH97, ABO1, PLS00, Sto02, CS02].
Dans [vGSS95] van Glabbeelet al. ont classie les moctles probabilistes dans trois caegories :
les moctleseactifs , les mocklesereratifs et les mocklesstraties . Dans les moceles eactifs, une
probabilie est assoceea chaque transitionetiquet ee, et pour chaqueetat la somme des probabilies
de ses transitions avec la mémeetiquette est 1. Les models gereratifs dierent des moctles eactifs
parce que pour chagqueetat la somme des probabilies de totes les transitions sortantes est 1. Les
mockles straties ont plus de structure et pour chaqueet at soit il y a exactement une transition
etiqueke sortante soit il y a seulement des transitions nonetiqueees et la somme de leurs probabilies
est 1.

Dans [Seg95] Segala a indigwe que ni les mockles eactifai les mockles greratifs ni les moceles
straties ne capturent le vrai non-ceterminisme, une not ion essentielle pour moctliser la libere
d'ordonnancement, la libere d'impkmentation, I'envi ronnement externe et l'information incompkte.

Il a donc pesent une sorte de moctles, lesautomates probabilistes(PA), ai les probabilies et le
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Figure 1: Moctles probabilistes

non-ceterminisme sont tous deux pris en consiceration. Le choix probabiliste est exprine par la
notion de transition, qui, dans les PA, nenea une distribution probabiliste sur des paires (action,
etat) et des impasses (c'esta-dire, desetats qui n‘ont pas de transitions sortantes). Le choix non-
ceterministe, par contre, est exprine par la possibilit e de choisir dierentes transitions. Segala
a propos egalement une version simpliee de PA appeke automates probabilistes simplegSPA),
qui sont comme les automates ordinaires mais sont tels qu'un transition etiquetee nene a une
distribution probabiliste sur un ensemble detats au lieu d'un seuletat.

La gure 1 donne un exemple des mockles probabilistes disdes ci-dessus. Dans les moctles
al les probabilies et le non-ceterminisme sont pesentsa la fois, comme ceux des diagrammes (4)
et (5), une transition est repesente comme un paquet de eches qui sont lees par un petit arc.
[SdV04] fournit une comparaison cetailee entre les di erents mockles, et montre dans un certain
sens que les PA subsument tous les autres moctles ci-desssmuf les mockles straties.

Nousetudierons au chapitre 3 les sysemes d'axiomes pouun calcul de processus ba sur les PA,
dans le sens a la £mantique operationnelle de chaque gxression du langage est un automate Les
sysemes d'axiomes sont tes importants car au niveau theorique, ils aidenta comprendre le calcul
etaetablir ses bases, et au niveau pratique, ils peuventétre utilies comme un outil ineressant de
speci cation et de \eri cation des sysemes. Notre calc ul est essentiellement une version probabiliste
du calcul employe par Milner pour exprimer les comportemeris detats nis [Mil84, Mil89b].

Nous consicererons deux equivalences fortes, une equilence faible qui est commune dans la
literature, ainsi qu'une notion dequivalence faible a yant l'avantage d'étre sensible a la diver-
gence. Pour les expressions sans kecursion nous fournigsodes axiomatisations competes des quatre
equivalences. Pour lesequivalences fortes nous donnoreggalement des axiomatisations competes
pour toutes les expressions, alors que pour lesequivalers faibles nous obtenons ce esultat seule-
ment pour les expressions garcees.

La raison pour laquelle nous sommes ineresses par letide d'un mocele qui exprime le com-

1sauf le cas du blocage qui est traie egrement dierem ment : en suivant la tradition des calculs de processus,
dans notre cas le blocage est unetat, mais dans les PA il est u n des composants possibles d'une transition.



portement non-ceterministe et probabiliste, et d'uneeq uivalence sensiblea la divergence, est qu'un
des butsa long terme de cette ligne de recherche est de cel@pper une theorie qui nous permettra
de raisonner sur des algorithmes probabilistes utilises dns des sysemes epartis. Dans ce domaine
il est important d'assurer qu'un algorithme fonctionne sous n'importe quel ordonnanceur, et sous
d'autres facteurs inconnus ou incontrélables. Le composd non-ceterministe de notre calcul nous
permet de traiter toutes ces conditions d'une manere unibrme etekgante. En outre, dans beau-
coup d'applications des sysemes epartis il est important d'assurer I'execution sans attente active,
et donc nous aurons besoin d'une £mantique qui n'ignore pala divergence.

Nous nissons cette section par une discussion au sujet de dains travaux voisins dans cette
direction de recherche. Dans [Mil84] et [Mil89b] Milner a dawre des axiomatisations compktes
pour la bisimilarie forte et lequivalence observation nelle, respectivement, dans le cadre d'un noyau
de CCS [Mil89a]. Ces deux articles nous servent de point de cepart dans plusieurs preuves de
compktude qui comportent la ecursion nous adoptons dew tteoemes de Milner : le tleoeme
de caracerisation equationnelle et le treoeme de solution unique. Dans les section 3.4.1 et 3.5.2
nous etendons [Mil84] et [Mil89b] (pour les expressions gakes) respectivement, dans le cadre de
l'algebre de processus probabiliste.

Dans [SS00] Stark et Smolka ont donre une version probabidite des esultats de [Mil84]. Nous
etendons donc les esultats de [SS00] parce que nous comsions egalement le non-ceterminisme.
Quand le choix non-ceterministe est ajouk, la technique de Stark et Smolka pour prouver la cor-
rection des axiomes n'est plus utilisable (voir la discussina l'annexe A.2.) La m&me remarque
s'appligueegalementa [A EIO02] qui suit I'approche de [SS00] mais utilise quelques axmes d'algebre
d'ieration pour caraceriser la ecursion. En revanch e, notre version probabiliste de la technique
\bisimulation up to" [Mil89a] marche bien avec la technique ordinaire de l'induction sur les transi-
tions.

Dans [BS01] Bandini et Segala ont donre les axiomatisatios desequivalences comportementales
fortes et faibles pour les calculs de processus correspomii@ux SPA eta une version de SPA pourvue
d'une £mantique alternative. Puisque leur calcul de pro@ssus avec la £mantique non-alternative
correspond aux SPA, nos esultats de la section 3.6 peuventtre consickies comme une extension
de leurs travaux aux PA.

Pour l'algebre de processus probabiliste de style ACP, plgieurs sysemes complets d'axiomes
sont apparus dans la literature. Cependant, dans chacun @& ces sysemes soit la bisimilarie faible
n'est pasetudee [BBS95, And99], soit le choix non-ceterministe est supprime [BBS95, ABO1].

Axiomatisations pour les processus mobiles types

La treorie du -calcul aee profoncementetudee [Mil99, SWO01], et d eux tremes majeurs y sont
la theorie algebrique et les sysemes de types. La majeue partie de la theorie algebrique aee
ceveloppee sur le calcul non type ; les esultats incluent les axiomatisations qui sont corrects et
complets sur les processus nis pour lesequivalences coroptementales principales : les bisimilaries
retarcees et anticipees, les congruences retarcees et @ticipees [PS95, Lin94, Lin03], la bisimilarie
ouverte [San96b], lequivalence de test [BD95]. Une grand partie de la recherche sur les types



s'est concentee sur leurs e ets comportementaux. Par exmple, on a propo® des variantes des
equivalences comportementales standards a n de tenir comte des types [PS96, SWO01].

Nous etudierons au chapitre 4 l'impact des types sur la theorie algebrique du -calcul. Plus
pecisement, nousetudions des axiomatisations du -calcul type. Bien que quelques lois algebriques
pour les calculs types de processus mobiles aientet cosiccees dans la literature [SWO01], nous
n'‘avons vu aucune axiomatisation.

Le syseme de types que nous consicerons a des types de caphs (parfois appeks les types
I/0) [PS96, HRO2b]. Ces types nous permettent de distinguey par exemple, la capacie d'utiliser
un canal pour lire des noms de la capacit d'utiliser le can&pourecrire des noms. Un type montre
la capacie d'un canal et, en plus, les capacies des canaxi pores par ce canal. Par exemple, le
type a : iob T (pour une expression appropree de types) indique que le gaal a peut étre utilie
seulement pour lire des noms ; et n'importe quel canal lu sula peut &tre utiliee seulement pour
ecrire des canaux qui ont la capacie decrire et de lire des noms de typeT. Alors, le processus
a(x):xb:N(y):by est bien type dans I'environnement de typagea : iob T;b: bT. Rappelons queab:P
designe un processus qui veutecrire le nonb sur le canala, puis continuer son execution P ; a(x):P
designe un processus qui veut lire un nom sur le canah, puis reprendre son excutionP, ai les
occurrences libres dex ontee remplaees par le nom que l'on a lu.

Dans les calculs pour la mobilie, les types de capacies ent devenus les types les plus utiles,
et dont les e ets comportementaux sont les plus connus. Lesapacies sont utiles pour proeger
des ressources ; par exemple, dans un mockle de client/sexur, elles peuvent etre utiliees pour
empeécher un client de saisir le canal d'aces au serveur electure et de voler des messages au
serveur ; d'une facon similaire, elles peuvent &tre utileees dans la programmation epartie pour
exprimer des contraintes de ®curie [HR02b]. Les capades introduisent la relation de sous-typage:
les capacies decrire sont contravariantes, tandis que les capacies de lire sont covariantes. Par
exemple, nous montrons une relation de sous-typagea la gte 2, ai une eche indique la relation
de sous-typage. Il y a trois formes de types pour les nhoms de aux : i T, oS et bhT; Si, elles
donnent aux noms les capacies de lire des valeurs du typd, decrire des valeurs du type S, ou
de faire les deux. Nous notondT comme l'abeviation de bhT; Ti. La profondeur de l'imbrication
des capacies est 1 pour tous les types dans le diagramme (agt 2 pour tous les types dans le
diagramme (b) (les e nitions formelles des types et de la relation de sous-typage seront donrees
a la section 4.1.1). Le sous-typage est utile en particulie quand le -calcul est exploie pour la
programmation orienee objet, ou pour donner une £mantique aux langages orienes objet.

Pour voir pourquoi I'addition des types de capacies a des onequences £mantiques, consicerons

PE cheay)(yjo QF cbeay):(yic+ cy):

Ces processus ne sont pas comportementalement equivalentn -calcul non type. Par exemple,
si le canal lu sura estc, alors P peut se terminer apes 2 interactions avec |'observateur gterne.
En revanche, Q se termine toujours apes 4 interactions avec l'observater. Cependant, si nous
imposons la condition que seulement la capacie de lire desanaux peut &tre transmise surb, alors
P et Q montrent le méme comportement dans n'importe quel contexe bien type. Par exemple,

puisque l'observateur recoit seulement la capacie de lre des noms surc, il ne peut pas ecrire ¢
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Figure 2: Un exemple de la relation de sous-typage, al = unit

sur a : les canauxecrits sur a exigent au moins la capacie décrire (cf. l'occurrence dey). Par
consquent, dans le cas type, les processus sont compaepar un observateur avec certaines capacies
(c'esta-dire, types sur des canaux). Si I'on denote ces apacies par , alors la bisimilarie typee
entre P et Q estecrite P1 Q.

En -calcul non tyge, les sysemes de transitionsetiquee s (LTS pour labelled transition system$
sont & nis sur des processus ; la transitionP !  P%signie que P peut accomplir I'action et
puis devenirP?% En -calcul type, les informations sur les capacies de I'obsrvateur sont pertinentes
parce que l'observateur ne peut interroger des processus gar des interactions pour lesquelles il
a toutes les capacies recessaires. Par conequent leyysemes de transitionsetiquees types (TLTS
pour typed labelled transition systemgsont & nis sur des con gurations, et une con guration ]P se
compose d'un processuB et des capacies (parfois nous appelons l'observateur | ‘environnement
externe). Maintenant une transition P ! 9P % signi e que P devient P apes avoir accompli
une action permise par I'environnement , qui se transforme en  © par ailleurs.

Une version de types de capacies aet pesente dans PS96]. Et depuis on a propos un certain
nombre de variantes et d'extensions. Nous suivons le sysae de Hennessy et Riely [HR02b], dans
lequel, au contraire du syseme dans [PS96] : (i) il existe @ux operations partielles sur les types
(meetet join) ; (ii) la egle de typage pour la construction comparaison (la construction utilisee pour
tester legalie entre deux noms) est tes likerale, pa rce qu'elle peut etre appliqiee aux canaux de
n'importe quel type (dans [PS96] deux canaux peuvent étre ampaes s'il possdent la capacie de
lire et la capacie décrirea la fois). Tandis que (i) sim pli e seulement certains cetails techniques,
(ii) semble essentiel. En e et, limportance de la comparason pour la treorie algebrique du -calcul
est bien connue (c'est la raison principale de I'existencealla comparaison dans le calcul non tyge).

La bisimilarie typee et I'utilisation des con guration s pour ¢ nir la bisimilarie typee ontee
pesenees dans [BS98]. Nous suivons une de ses variantpsopose par Hennessy et Rathke [HR04],
parce gu'elle emploie le syseme de types de [HR02b] et inat la construction de comparaison.

Deux esultats importants que nous avons obtenus sont un sgeme de preuve et un syseme
d'axiomes pour la bisimilarie typee (| ). Le syseme de preuve a une preuve de correction simple
mais il marche seulement pour les termes fermes. Le sysemd'axiomes traite tous les termes nis.
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Notre bisimilarie | est une variante de celle de [HR04]. Pour la bisimilarie typee de [HR04] nous
fournissons un syseme de preuve pour les termes fernest@ne axiomatisation indirecte pour tous
les termes parce qu'elle exploite le syseme dé . Nous n'‘avons pas pu donner une axiomatisation
directe qui ne cepend pas du syseme dd : les di cules principales sont discueesa la section 4 .4.1.
Tous les esultats sont donres pour les versions retardes et anticipees des bisimilaries.

Les sysemes d'axiomes et les sysemes de preuves sont astus en modi ant certaines egles des
sysemes pour le -calcul non type, et en ajoutant quelques nouvelles lois. les preuves de correction
et de compéktude, bien que nous suivions le schema gereal des preuves du calcul non type, dierent
beaucoup dans les cetails. Un exemple de ceci est le traiteemt des canaux frais dans les actions de
lecture et la fermeture par les substitutions injectives que nous commentons ci-dessous.

Dans le -calcul non type, l'assertion suivante est vraie :

SiP |l Qet estinjective sur fn(P;Q), alorsP | Q .

Par consequent, il est su sant de consicerer tous les canaux libres dansP; Q et un seul canal frais
en comparant les actions de lecture qu'accomplisse®® et Q dans le jeu de bisimulation. Ce esultat
est crucial dans la treorie algbrique du calcul non type. Par exemple, dans le syseme de preuve
pour la bisimilarie (version retarcee) la egle d'inf erence pour le pe xe de lecture est la suivante :

Si Pfb=xg = Qfb=xg pour tout b2 fn(P;Q;c), a c est un canal frais,
alors a(x):P = a(x):Q.

Pour la bisimilarie typee la situation est dierente. P renons les processus

p &f a(x : obT):xc:c Qd:ef a(x : obT):xc
et comparons-les contre un observateur . Consicerons ce @i se passe quand la variablex est
remplace par un canal fraisb, dont le type dans est S. Par la contrainte impose par le typage,
S doit etre un sous-type deobT (cf. Figure 2 (b)). Nous remarquons que les dierents choix pour
S donnent des esultats dierents. Par exemple, si S est obT lui-méme, I'observateur n'a aucune
capacie de lire sur b, il ne peut donc pas communiquer aved® et Q sur b. C'esta-dire, du point de
vue de I'observateur le pe xeecriture bcn'est pas observable et les deux processus sont considse
commeequivalents. De mé&me sB estboT alors le pe xeecriture Tn'est pas observable. Cependant,
si S estbbT alors bcc n'est pasequivalenta bg puisque toutes lesecritures deviennent observables.
Cet exemple illustre les di cules essentielles pour la formulation des sysemes de preuves pour les
bisimilaries typees :

1. La pesence de sous-typage dans les substitutions chaade type original d'une variable en un
de ses sous-types.

2. Le choix de ces sous-types joue sur lequivalence compt@mentale.

3. Les dierents sous-types peuvent étre incompatibles {Is n‘'ont aucun sous-type commun) entre
eux (par exemple,boT et bbT dans I'exemple ci-dessus ; ils sont tous les deux sous-typds
obT).
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Une congquence de (2) et de (3), par exemple, est qu'il n'y @as un \meilleur sous-type", qui est un
type unique avec la propree que lequivalence sous ce ype implique lequivalence sous n'importe
guels autres types.

Un autre exemple des modi cations apporees par des types dns la theorie algebrique est la
egle de congruence pour les pe xes : nous devons distinger le cas dans lequel le sujet du pe xe
est un canal, du cas dans lequel le sujet est une variable. Geune dierence plutoét subtile et
technique ; elle est discutea la Section 4.3.

Terminaison de processus mobiles par la typabilie

Un terme termine si toutes ses £quences de eduction sontle longueur nie. Dans les langages
de programmation, la terminaison signi e que tous les calcls dans un programme niront par
s'arréter. En informatique la terminaison aee intensi vementetudee dans les sysemes de eecriture
[DM79, DH95] et le -calcul [Gan80, Bou03] (a1 la normalisation forte est un synonyme souvent
utilie). La terminaison aetegalement discuee dan s les calculs de processus, notamment le-
calcul.

En e et, la terminaison est ineressante dans la concurrerce. Par exemple, si nous interrogeons
un processus, Nous aimerions savoir qu'une eponse sera atlement produite (la terminaison toute
seule ne garantit pas ceci, mais elle serait lI'ingedient pincipal dans une preuve). D'une facon
similaire, quand nous chargeons une applet nous voudrionsagoir que l'applet ne s'executera pas
in niment sur notre machine, qui plus est en absorbant toutes les ressources informatiques (une
attaque du type \refus de service"). En gereral, si la vie d'un processus est in nie, nous voudrions
savoir que le processus ne demeure pas vivant simplement eaison de l'activie interne in nie, et
gue le processus acceptera nalement des interactions avd'environnement.

Deux langages de processus qui terminent ontete propos dans [YBHO04] et [San05]. Dans les
deux cas, les preuves de la terminaison se servent des retais logiques, une technique bien connue
pour les langages fonctionnels. Les langages de processiussaobtenus sont plutét \fonctionnels"”,
parce que les structures permises sont semblablesa celld=rivees en encodant des fonctions comme
processus. En particulier, les langages sont tes restritfs sur les lectures imbrigees (c'esta-dire, la
possibilie d'avoir des lectures sur des noms libres suivat d'autres lectures), et les lectures ecursives
(c'esta-dire, les eplications comme !a(x):P dans lequel le corpsP peut appeler ecursivement la
garde a de la eplication). On interdit enterement de tels motif s dans [YBHO04] ; on permet des
lectures imbriglees dans [San05] mais sous une forme tesestreinte. Par exemple, le processus

a(x):!bx:0j aco (1)

(parfois le 0a la n est omis) n'est kgal ni pour [YBHO4] ni pour [San05] . Les restrictions dans
[YBHO4, San05]eliminentegalement des processus fonctinnels qui sont utiles, par exemple

F € a(n;b): if n=1 then brli else c(am 1;cij ¢(m):bm ni) )

qui repesente la fonction factorielle.
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Pour garantir la terminaison des processus mobiles nous ppmsons plusieurs sysemes de types
pour le -calcul. Nous commercons par un syseme simple de types,j ajoute une information de
niveau aux types du -calcul simplement type. L'information de niveau nous aidea construire une
mesure qui diminue le long de chaque chemin de eduction d'n processus bien type. Par conequent
le fait que cette mesure soit bien fondee implique la termiraison des processus. Comme le syseme
de types n'est pas tes expressif, nous letendons en relehant quelques contraintes sur les lectures
imbriquees et les lectures ecursives, pour obtenir trois sysemesetendus de types. L'utilie de ces
sysemes de types est montee par trois exemples non trivaux : (1) il sS'awere que toutes les fonctions
kecursives primitives peuvent étre encodees comme desnpcessus qui terminent ; (2) la methode qui
consistea encoder les choix £pake en termes de compositn paralkle, propoge dans [Nes00, SWO01],
n'introduit pas de divergence ; (3) chaque demandea la tabé de symboles (impemente comme une
cha™me dynamique de cellules), propose dans [Jon93, S@8], recoit toujours une eponse en temps
ni.

De facon cererale, pour chaque syseme de types qui garatit la terminaison des processus
nous choisissons une mesure qui diminue apes certains pafe eduction. Pour comparer deux
mesures, nous exploitons des ordrelexicographiqueset des ordresmulti-ensemble des techniques
bien connues dans les sysemes de eecriture [DM79, DJ9D Pour le syseme simple de types, la
mesure est seulement un vecteur qui compte, pour chaque niaa, le nombre decritures (qui ne
sont pas garcees par des lectures epliguees) sur les caaux dont les types ont ce niveau. Pour les
sysemesetendus de types, les ickes sont semblables, nmles mesures deviennent plus sophistiqlees
puisque nous leur permettons de diminuer apes un certain mmbre (inconnu et variable mais ni)
de eductions, avec quelques commutativies de eductions et des manipulations de processus.

Plan de la tlese

Nous introduisons au chapitre 2 quelques notions de base siles calculs de processus comme CCS
et le -calcul. Nous prétons une large attention aux types des caaux ; nous rappelons les notions
de sortes, de types simples de canaux, et de sous-typage pregsivement. Le matriel pesent dans
ce chapitre serta peparer le ceveloppement technique des chapitres suivants.

Au chapitre 3 nous pesentons un calcul de processus probadliste qui inclut les choix non-
ceterministe et probabiliste, en plus de la ecursion. Nous donnons sa £mantique par les automates
probabilistes proposes par Segala et Lynch. Nous peserdns deux equivalences fortes et deux
equivalences faibles. Nous montrons quelques propregs desequivalences, en utilisant une version
probabiliste de la technique de preuve dite \bisimulation up to". Pour lesequivalences fortes nous
donnons des axiomatisations compktes pour toutes les expssions, mais pour lesequivalences faibles
nous kealisons ce esultat seulement pour des expressiangarcees. Nous conjecturons que dans le
cas cereral de la ecursion non-garcee lesequivalenaes faibles sont incecidables. Dans les preuves
de compektude, nos sctemas de preuve sont inspies par [Ni84, Mil89b, SS00], mais les cetails sont
plus compligiesa cause de la pesence des dimensions pbabiliste et non-ceterministe. En e et,

il s'avere que, pour obtenir une axiomatisation compkte de lequivalence d'observation, lextension
probabiliste des trois lois concernant de Milner [Mil89a] ne serait pas su sante, et que nous



13

avons besoin d'une nouvelle egle. Enn, pour les expressins sans kecursion nous fournissons des
axiomatisations compktes des quatre equivalences, ave des preuves de compktude bien simples.

Au chapitre 4 nous etudions la treorie algebriqgue d'un  -calcul de processus types nis. Le
syseme de types utilise des types de capacies. Premeement nous consicerons un sous-langage
sans paralelisme. Ce petit langage montre cep les obstcles principaux pour les axiomatisations.
En suivant [HR04] nous donnons la £mantique operationndle du langage par un syseme de transi-
tionsetiquetes typees, sur lequel nous ¢ nissons la bisimulation typee (retarcee). Deuxemement
nous construisons un syseme complet de preuve pour les tares fernes. Ensuite nous pesentons
une axiomatisation compkte pour les termes ouverts. Le sema de la preuve de compektude est
semblablea celui du -calcul non type [PS95]. Les cktails, cependant, sont toua fait dierents, en
raison de la relation de sous-typage du syseme de types. Tisemement nous rappelons la bisimi-
larie typee propose dans [HRO04], et fournissons un syeme de preuve pour les termes fernes, avec
une axiomatisation indirecte pour tous les termes. Quatremement nous prouvons que la dierence
entre la bisimilarie retarcee et la bisimilarie antic ipee peut étre captuee par un axiome. Finale-
ment nous admettons la composition paralele. Son e et surles axiomatisations est d'ajouter une
loi d'expansion poureliminer toutes les occurrences de bperateur.

Au chapitre 5 nous consicerons plusieurs sysemes de typg tels que les processus bien types
dans chaque syseme terminent. D'abord, nous pesentonsain syseme simple de types, qui ajoute de
l'information de niveau aux types du -calcul simplement type. Puis nous donnons trois aneliorations
de ce syseme, en vue notamment de traiter les lectures imbguees et les lectures ecursives. Pour
tous les sysemes de types (sauf le deuxeme, qui peut capirer toutes les fonctions ecursives
et primitives) nous pesentonsegalement des bornes suprieures du nombre de pas de normalisa-
tion. Ces bornes cependent des structures des processus @és types des noms dans les processus.
Nous montrons l'utilie des sysemes de types sur trois exemples non triviaux : les codages des
fonctions ecursives et primitives, la methode pour coder le choix ®pae par la composition par-
alele [Nes00, SWO01], une table de symboles impementeepar une chame dynamique de cellules
[Jon93, San99].

Au chapitre 6 nous ecapitulons les esultats de cette these et discutons quelques directions pour
les travaux futurs.

Provenance du maeriel

Cette tlese est partiellement base sur desecrits publkes. La pesentation d'un calcul de processus
probabiliste et les axiomatisations de plusieurs equivaénces comportementales probabilistes sont
ea parues dans [DPO05] ; letude du -calcul type et les axiomatisations des bisimilaries ty pees
ontet rapporees dans [DS04b, DS05]; le ceveloppemert des sysemes de types pour assurer la
propree de terminaison de -processus aet pesene dans [DS04a].
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Chapter 1

Introduction

1.1 Background

Computer science aims to explain in a rigorous way how compuattional systems behave. Nowadays
the notion of computational systems includes not onlysequential systemssuch as single programs in
free-standing computers, but alsocconcurrent systems such as computer networks, and even proteins
in biology and particles in physics. Some classical mathential models (e.g. the -calculus [Bar84]),
in spite of their success for describing sequential systemsurn out to be insu cient for reasoning
about concurrent systems.

In the 1980's process calculi(sometimes calledprocess algebras notably CCS [Mil89a], CSP
[Hoa85] and ACP [BK84, BW90], were proposed for describing @d analyzing concurrent systems.
All of them were designed around the central idea ofinteraction or communication between pro-
cesses. In these formalisms, complex systems are built frosimple subcomponents structurally,
by a small set of primitive operators such aspre x, nondeterministic choice, restriction, parallel
composition and recursion. The limitation of these traditional process algebras is that they are not
able to e ectively specify mobile systemsi.e., systems with a dynamically changing communication
topology. On the basis of CCS, Milner, Parrow and Walker devéoped the -calculus [MPW92],
which achieves mobility by a powerful name-passing mechasm. The -calculus is a very expres-
sive formalism. It allows to encode data structures [Mil91] the -calculus [Mil92] and higher-order
communications [San93]. Furthermore, it can be used for resoning about object-oriented languages
[Wal95].

As no single theory will serve all purposes, a great many vaants and extensions of the classical
process calculi have appeared in the literature. In the casef process calculi for distributed systems,
there are three strands of work that have been developed andhewn to be extremely important.

The rst strand is concerned with tuning the syntactic const ructions of terms in order to better
capture some speci ¢ features of concurrent systems such asynchronous communications,
higher-order communications, localities and migrations. In this respect one can make a long
list: the asynchronous -calculus [HT91, Bou92], the I-calculus [San96a], the L -calculus
[Mer00], the Fusion calculus [PV98], the -calculus [Fu99], the Join calculus [Fou98], CHOCS

15
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[Tho95], HO [San93], D [HRO02b], Klaim [DFP98], the Ambient calculus [CGO00] and its
variants, just to name a few.

The second strand consists in equipping untyped process aalli with types so that processes
interact in a safer and more e cient way. For example, a number of type systems are de-
signed for the -calculus; they are used in various applications such as st detection of
errors in concurrent programs [Mil91], compiler optimizations [KPT99], resource access con-
trol [PS96, HRO2b], guaranteeing other security properties such as deadlock-freedom [Kob98],
noninterference [HY05] and termination [YBHO4, DS04a].

The third strand deals with probabilistic process calculi that support reasoning about prob-
abilistic behaviour, as exhibited for instance in randomizd, distributed and fault-tolerant

systems. The typical approach is based on extending with prbabilities existing models and
techniques that have already proved successful in the nonpbabilistic settings. The usual
feature of probabilistic process calculi is the existence foa probabilistic choice operator, see
for example probabilistic extensions of CCS [GJS90, HJ90, df94, YL92], probabilistic CSP
[Low91], probabilistic ACP [And99] and probabilistic asynchronous -calculus [HP0O4].

Brie y speaking, this thesis includes our contributions in the second and third strands.

In order to study a programming language or a process calcukj one needs to assign a consistent
meaning to each program or process under consideration. Thimeaning is the semantics of the
language or calculus. Semantics is useful to verify or provthat programs behave as intended. Gen-
erally speaking, there are three major approaches for givig semantics to a programming language.
The denotational approach seeks a valuation function which maps a program tot$ mathematical
meaning. This approach has been very successful in modelirmany sequential languages; programs
are interpreted as functions from the domain of input valuesto the domain of output values. How-
ever, so far denotational interpretation of concurrent programs has not been as satisfactory as the
denotational treatment of sequential programs.

The operational approach is shown to be quite useful for giving semantics ofancurrent systems.
The behaviour of a process is speci ed by itstructural operational semantics[Plo81], described via a
set of labelled transition rules inductively de ned on the structure of a term. In this way each process
corresponds to a labelledtransition graph. The shortcoming of operational semantics is that it is
too concrete, as a transition graph may contain many states Wich should be intuitively identi ed.
Thus a lot of equivalences have been proposed and di erent &nsition graphs are compared modulo
some equivalence relations.

The axiomatic approach aims at understanding a language through a few axims and inference
rules. Its importance is motivated by, among others, the folowing two reasons.

Sound systems, even if they are not complete, may be usefulfduman or machine manipu-
lation of terms. By exploiting these systems, a number of pratical veri cation problems can
be addressed.

Complete systems help gaining insight into the nature of theoperators and the equivalences
involved. For example, the di erence between two equivaleges can be characterised by a
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few axioms, particularly if adding these axioms to a compleé system for one equivalence
gives a complete system for the other equivalence. Another ay of comparison is to x a
notion of equivalence and vary the expressions. Sometimese lifts a complete system from a
sublanguage to the whole language, by adding some extra axits. Comparisons of both kinds
are carried out in Chapter 3 and Chapter 4.

To explore the connection between operational and axiomati semantics has always been an
important and active subject in process calculi. Milner [Mil78] was the rst person to advocate
the development of an algebra of behaviours which are subjédo a number of axioms expressed
as equations. In [Mil80] a direct link is made for the rst tim e between an algebraic theory and
a behavioural equivalence based on an operational semansic Since then there has been a large
amount of work on algebraic theories of processes, for vanirs behavioural equivalences in a wide
range of process calculi. However, no much attention was pdito probabilistic and typed process
calculi, though they turn out to be very useful in the analysis of modern distributed systems.

1.2 Objectives

This thesis focuses on the theoretical foundations of reasing about algorithms and protocols for
modern distributed systems. We believe that this kind of reaoning is important because, as happens
too often, if a system is built without rigorous analysis of dl the possible interactions between its
components, then its behaviour is frequently incorrect. Ore witness is the recent discovery of security
aws in the IEEE 802.11 and the Bluetooth wireless communicdion protocols [BGWO01, LLO3].

For distributed systems it is interesting to consider modek which encompass probabilities. One
reason is that these systems are expected to provide reliadlservices despite the occurrence of
various types of failure. Probabilistic processes can be esl to describe fault-tolerant systems. For
example, probabilistic information can be used for specifing the rate at which faulty communication
channels drop messages and for verifying message-delivgmoperties of the corresponding system.
In addition, probabilistic modelling can be used to break synmetry in distributed coordination
problems (e.g. dining philosophers' problem, leader ele@n problem, and consensus problem), to
predict system behaviour based on the calculation of perfanance characteristics, and to represent
and quantify other forms of uncertainty.

A model for distributed systems should also include the featre of mobility. Physical systems
tend to have a xed structure. But most systems in the information world are not physical; their
links may be symbolic or virtual. For example, when one clicls on a hypertext in a web page, he
induces a symbolic link between his machine and the remote vkeserver. These symbolic links can
be created or destroyed on the y. An example of a virtual link is a radio connection, like the linkage
between mobile phones that are roaming around and a networkfdbase stations. Systems like these,
with transient links, have a mobile structure.

With mobility, types turn out to be essential. For example, t he theory of the untyped -calculus
is often insu cient to prove \expected" behavioural proper ties of processes. The reason is that when
one uses the -calculus to describe a system, one normally follows a diggline that controls how
names may be used; but this discipline is not explicit in -terms, and therefore it cannot play a role
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in proofs. Types can be used to make such discipline explicifcf. Part IV of [SWO01]). Furthermore,
types are useful for expressing control of interference, &ess rights, robust declassi cation, secure
composition of components, as well as bounds on resource mptions (e.g. time or memory
allocations).

In fact, there is a strong practical motivation for considering both probability and mobility.
How can a mobile phone system perform to satisfaction if the dsigner never considers the probable
behaviour of users? A number of probabilistic models have bn introduced which are variants of
Markov chains, but for mobility they are at an early stage.

In the literature, probability and typed mobility are usual ly studied separately. Corresponding
operational techniques have been developed. But very litk has been done on algebraic techniques.
However, algebraic techniques are very useful in computercgence. For example, in the relational
model for database [Cod70], algebraic laws have served as adis for query optimisation and queries
could be e ciently implemented through indexing and join te chniques [RG02]. In process calculi,
algebraic equations may be considered as rewriting rules fautomated term manipulation [vdPO1].

In this thesis we investigate algebraic techniques by condering the impact of probability and
type mobility on the algebraic theories of process calculi.As each feature introduces new and non-
trivial problems, to develop algebraic techniques for modks that have both probability and typed
mobility would be very complex. Therefore it is better to study them rst in isolation. Due to this
reason, in Chapter 3 we consider axiomatisations for a proHailistic calculus without mobility, and
in Chapter 4 we provide axiomatisations for a typed mobile process calculus without probability.
The types that we shall use arecapability types[PS96], which distinguish between input capability,
output capability, both input and output capability. This k ind of types are one of the most useful and
basic form of types in process calculi. They have been used &nsure type-consistent data exchange
on communication channels, and to control access rights tolannels and locations. Variants of
capability types are now present in almost all experimentalprocess calculi such as Klaim [DFP98],
Spi [Aba99], and the Ambients Calculus [LS00]. Sometimes,hHey even become part of the syntax,
e.g. in the Join calculus and the L -calculus only output capabilities can be transmitted.

In mobile process calculi, types themselves can be used as arivcation technique to analyse var-
ious properties of concurrent programs, such as deadlock 98], livelock [Kob00], and information
ow [HVY00, HRO2a]. In Chapter 5 we develop one such techniqe for the problem of termination,
which is an important property that many algorithms and prot ocols in distributed systems need to
guarantee. In the case of symmetric distributed systems, pwbabilistic algorithms are usually more
e cient than their deterministic counterparts, at the (ins igni cant) price that certain properties
will happen with probability one but not necessarily with certainty (e.g., when tossing a fair coin,
a \head" will eventually occur with probability one, but not with certainty). For all practical pur-
poses, however, this di erence is meaningless. Thereford,is interesting to talk about probabilistic
termination as well. However, since termination is itself anon-trivial problem, we consider types in
isolation, without probability.

To summarise, in this thesis we develop algebraic and typedsed techniques for reasoning about
processes that feature probability and typed mobility. We consider the two features separately,
both in the case of axiomatisations and in the case of termingon, but we believe that our work
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contributes building the basis for studying more advanced nodels which may combine probability
with typed mobility.

Before proceeding to discuss in the following sections the ativations for each research topic
of the thesis, we need to introduce some terminology. We usehe general conceptaxiomatisations
to mean both axiom systems and proof systems. For an equivafee on a set of terms, anaxiom
systemconsists of some equational axioms and the rules of equatiahreasoning (that is, rules on
re exivity, symmetry, transitivity, and congruence rules that make it possible to replace any subterm
of a process by an equivalent term). Aproof systemhas, in addition to axioms and rules of equational
reasoning, other inference rules. Usually an axiom systensipreferable to a proof system, because
for example general techniques from term rewriting may thenbe applicable. However, when the
process calculus in question includes non-trivial feature such as recursion or types, sometimes it
is hard to get a complete axiom system because we have to usehet inference rules, i.e., what we
obtain is actually a proof system. In that case we still call that system an axiomatisation, as in
literature [Mil89b, Par01]. For an axiomatisation, completenesameans that if two processes exhibit
similar behaviour, i.e., their transition graphs are equivalent, then they are provably equal in the
axiom system or the proof system;soundnessmeans the converse.

1.3 Axiomatisations for Probabilistic Processes

The last decade has witnessed increasing interest in the aaeof formal methods for the speci cation
and analysis of probabilistic systems [Seg95, BH97, ABO1, IFS00, Sto02, CS02]. In [vGSS95] van
Glabbeek et al. classi ed probabilistic models into reactive, generativeand stratied . In reactive
models, each labelled transition is associated with a proHaility, and for each state the sum of the
probabilities with the same label is 1. Generative models der from reactive ones in that for each
state the sum of the probabilities of all the outgoing transttions is 1. Strati ed models have more
structure and for each state either there is exactly one outging labelled transition or there are only
unlabelled transitions and the sum of their probabilities is 1.

In [Seg95] Segala pointed out that neither reactive nor gemative nor strati ed models capture
real nondeterminism, an essential notion for modeling sctauling freedom, implementation freedom,
the external environment and incomplete information. He then introduced a model, theprobabilistic
automata (PA), where both probability and nondeterminism are taken into account. Probabilistic
choice is expressed by the notion ofransition, which, in PA, leads to a probabilistic distribution
over pairs (action, state) and deadlock. Nondeterministicchoice, on the other hand, is expressed
by the possibility of choosing di erent transitions. Segala proposed also a simpli ed version of PA
called simple probabilistic automata(SPA), which are like ordinary automata except that a labelled
transition leads to a probabilistic distribution over a set of states instead of a single state.

Figure 1.1 exempli es the probabilistic models discussedlaove. In models where both probability
and nondeterminism are present, like those of diagrams (4)rad (5), a transition is usually represented
as a bundle of arrows linked by a small arc. [SdV04] provides detailed comparison between the
various models, and argues that PA subsume all other modelskave except for the strati ed ones.

We shall investigate in Chapter 3 axiom systems for a processalculus based on PA, in the sense
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Figure 1.1: Probabilistic models

that the operational semantics of each expression of the layuage is a probabilistic automatort.

Axiom systems are important both at the theoretical level, as they help gaining insight into the

calculus and establishing its foundations, and at the pracical level, as tools for systems speci cation
and veri cation. Our calculus is basically a probabilistic version of the calculus used by Milner to
express nite-state behaviours [Mil84, Mil89b].

We shall consider two strong equivalences, one weak equiwalce common in the literature, plus
one novel notion of weak equivalence having the advantage dieing sensitive to divergency. For
recursion-free expressions we provide complete axiomatisons of all the four equivalences. For the
strong equivalences we also give complete axiomatisatiorfer all expressions, while for the weak
equivalences we achieve this result only for guarded expre®ns.

The reason why we are interested in studying a model which exgsses both nondeterministic
and probabilistic behaviour, and an equivalence sensitivéo divergency, is that one of the long-term
goals of this line of research is to develop a theory which wiilallow us to reason about probabilis-
tic algorithms used in distributed computing. In that domai n it is important to ensure that an
algorithm will work under any scheduler, and under other unknown or uncontrollable factors. The
nondeterministic component of the calculus allows coping \th these conditions in a uniform and
elegant way. Furthermore, in many distributed computing applications it is important to ensure
livelock-freedom (progress), and therefore we will need aesnantics which does not simply ignore
divergencies.

We end this section with a discussion about some related worln this research direction. In
[Mil84] and [Mil89b] Milner gave complete axiomatisationsfor strong bisimulation and observational
equivalence, respectively, for a coreCCS [Mil89a]. These two papers serve as our starting point:
in several completeness proofs that involve recursion we agt Milner's equational characterisation
theorem and unique solution theorem In Section 3.4.1 and Section 3.5.2 we extend [Mil84] and
[Mil89b] (for guarded expressions) respectively, to the s#ing of probabilistic process algebra.

1Except for the case of deadlock, which is treated slightly di  erently: following the tradition of process calculi, in
our case deadlock is a state, while in PA it is one of the possib le components of a transition.
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In [SS00] Stark and Smolka gave a probabilistic version of th results of [Mil84] by replacing
nondeterministic choice with probabilistic choice. So we gtend the results of [SS00] in that we con-
sider also nondeterminism. Note that when nondeterministc choice is added, Stark and Smolka's
technique of proving soundness of axioms is no longer usabléSee the discussion at the beginning
of Appendix A.2.) The same remark applies also to [AI102] which follows the approach of [SS00]
but uses some axioms from iteration algebra to characteriseecursion. In contrast, our probabilis-
tic version of \bisimulation up to" techniques [Mil89a] wor k well when combined with the usual
transition induction.

In [BS01] Bandini and Segala axiomatized both strong and wela behavioural equivalences for
process calculi corresponding to SPA and to an alternated-mdel version of SPA. As their pro-
cess calculus with non-alternating semantics correspond® SPA, our results in Section 3.6 can be
regarded as an extension of that work to PA.

For probabilistic process algebra of ACP-style, several amplete axiom systems have appeared
in the literature. However, in each of the systems either wek bisimulation is not investigated
[BBS95, And99] or nondeterministic choice is prohibited [BBS95, ABO1].

1.4 Axiomatisations for Typed Mobile Processes

The theory of the -calculus has been studied in depth [Mil99, SWO01]. Relevanparts of it are
the algebraic theory and the type systems. Most of the algelaic theory has been developed on
the untyped calculus; the results include axiomatisationsthat are sound and complete on nite
processes for the main behavioural equivalences: late andmy bisimilarity, late and early congruence
[PS95, Lin94, Lin03], open bisimilarity [San96b], testingequivalence [BD95]. But at the same time,
much of the research on types has focused on their behavioure ects. For instance, modi cations
of the standard behavioural equivalences have been propadeso as to take types into account
[PS96, SWO1].

We shall study in Chapter 4 the impact of types on the algebrat theory of the -calculus.
Precisely, we study axiomatisations of the typed -calculus. Although algebraic laws for typed
calculi of mobile processes have been considered in the lisdure [SWO01], we are not aware of any
axiomatisation.

The type system that we consider hascapability types (sometimes called 1/0 types) [PS96,
HRO02b]. These types allow us to distinguish, for instance, the capability of using a channel in input
from that of using the channel in output. A capability type sh ows the capability of a channel and,
recursively, of the channels carried by that channel. For irstance, a typea : iob T (for an appropriate
type expressionT) says that channela can be used only in input; moreover, any channel received at
a may only be used in output | to send channels which can be used koth in input and in output.
Thus, processa(x):xb:0(y):by0 (sometimes the trailing 0 is omitted) is well-typed under the type
assignmenta : iob T;b: bT. We recall that ab:P is the output at a of channelb with continuation P;
a(x):P is an input at a with x a placeholder for channels received in the input whose comiuation
isP.

On calculi for mobility, capability types have emerged as ore of the most useful forms of types,
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Figure 1.2: An example of subtyping relation, with T = unit

and one whose behavioural e ects are most prominent. Capalities are useful for protecting re-
sources; for instance, in a client-server model, they can based for preventing clients from using
the access channel to the server in input and stealing messag to the server; similarly they can be
used in distributed programming for expressing security castraints [HR02b]. Capabilities give rise
to subtyping: the output capability is contravariant, whereas the input capability is covariant. As
an example, we show a subtyping relation in Figure 1.2, wher@n arrow from one type to another
means that the source of the arrow is a subtype of the target. here are three forms of types for
channel names:i T;0S and bhT; Si; they correspond to the capability to receive values of typeT,
send values of typeS, or to do both. We usebT as an abbreviation ofbhT ; Ti. The depth of nesting
of capabilities is 1 for all types in diagram (a), and 2 for all types in diagram (b). (The formal
de nitions of types and subtyping relation will be given in Section 4.1.1.) Subtyping is useful when
the -calculus is used for object-oriented programming, or for fying semantics to object-oriented
languages.
To see why the addition of capability types has semantic consquences, consider

f def

cbcdy)(yic) Q=

These processes are not behaviourally equivalent in the ugped -calculus. For instance, if the

p d ¢ be:ay):(y:c+ cy):

channel received ata is c, then P can terminate after 2 interactions with the external obserer. By
contrast, Q always terminates after 4 interactions with the observer. Fowever, if we require that only
the input capability of channels may be communicated atb, then P and Q are indistinguishable in
any (well-typed) context. For instance, since the observemnly receives the input capability on ¢, it
cannot resendc along a: channels sent ata require at least the output capability (cf. the occurrence
of y). Therefore, in the typed setting, processes are compared wt. an observer with certain
capabilities (i.e., types on channels). Denoting with the se capabilities, then typed bisimilarity
betweenP and Q is written P | Q.

In the untyped -calculus, labelled transition systems (LTS) are de ned onprocesses; the transi-
tion P !  P%means thatP can perform action and then becomeP?. In the typed -calculus, the
information about the observer capabilities is relevant beause the observer can only test processes
on interactions for which the observer has all needed capalities. Hence typed labelled transition
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systems (TLTS) are de ned on con gurations, and a con guration ]P is composed of a process
P and the observer capabilities (we sometimes call the exte rnal environment). A transition

P ! 9P 9 now means thatP can evolve into P° after performing an action allowed by the
environment , which in turn evolves into  °.

Capability types have been introduced in [PS96]. A number ofvariants and extensions have
then been proposed. We follow Hennessy and Riely's system R02b], in which, in contrast with
the system in [PS96]: (i) there are partial meet and join opeations on types; (ii) the typing rule for
the matching construct (the construct used for testing equality betweenchannels) is very liberal, in
that it can be applied to channels of arbitrary types (in [PS96] only channels that possess both the
input and the output capability can be compared). While (i) o nly simpli es certain technical details,
(i) seems essential. Indeed, the importance of matching fothe algebraic theory of the -calculus
is well-known (it is the main reason for the existence of mathing in the untyped calculus).

Typed bisimilarity and the use of con gurations for de ning typed bisimilarity have been intro-
duced in [BS98]. We follow a variant of them put forward by Hemessy and Rathke [HR04], because
it uses the type system of [HR02b] and includes the matching @nstruct.

Two important results that we have obtained are a proof systen and an axiom system for typed
bisimilarity (|1 ). The proof system has a simple correctness proof but only w&s on the closed
terms. The axiom system is for all nite processes. The bisinlarity | is a variant of the one in
[HRO4]. For the typed bisimilarity in [HRO4] we provide a pro of system for the closed terms, and
an indirect axiomatisation of all terms that exploits the sy stem ofl . We have not been able to give
a direct axiomatisation: the main di culties are discussed in Section 4.4.1. All results are given for
both the late and the early versions of the bisimilarities.

The axiomatisations are obtained by modifying some of the rles of the systems for the untyped

-calculus, and by adding a few new laws. While the proofs of smdness and completeness follow
the general schema of the proofs of the untyped calculus, thehave quite di erent details. An
example of this is the treatment of fresh channels in input ations and the closure under injective
substitutions, that we comment on below.

In the untyped -calculus, the following holds:

If P1 Qand is injective on fn(P;Q), thenP | Q .

Hence it is su cient to consider all free channels in P; Q and one fresh channel when comparing the
input actions of P and Q in the bisimulation game. This result is crucial in the algebraic theory of
untyped calculi. For instance, in the proof system for (late) bisimilarity the inference rule for input
is:
If Pfb=xg= Qfb=xg for all b2 fn(P;Q;c), where c is a fresh channel,
then a(x):P = a(x):Q.
For typed bisimilarity the situation is di erent. Take the p rocesses

P a(x:obT)xc:c Q% a(x:obT)ixc

and compare them w.r.t. an observer with capabilities . Con sider what happens when the variable
X is replaced by a fresh channeb, whose type in is S. By the constraint imposed by types, S
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must be a subtype of the typeobT for x (see Figure 1.2 (b)). Now, di erent choices forS will give
di erent results. For instance, if S is obT itself, then the observer has no input capability onb, thus
cannot communicate with P and Q at b. That is, from the observer's point of view the output bc
is not observable and the two processes evolve to equivalemnes. Similarly if S is boT then the
output T is not observable. However, ifS is bbT then bcr is not equivalent to bg since all outputs
become observable. This example illustrates the essentiali culties in formulating proof systems
for typed bisimilarities:

1. Subtyping appears in substitutions and changes the origial type of a variable into one of its
subtypes.

2. The choice of this subtype is relevant for behavioural eqgivalence.

3. Dierent subtypes may be incompatible (have no common sultype) with one another (for
instance, boT and bbT in the example above; they are both subtypes obbT).

A consequence of the last two clauses, for instance, is thahere is not a \best subtype”, that is a
single type with the property that equivalence under this type implies equivalence under any other
types.

Another example of the consequences brought by types in thelgebraic theory is the congruence
rule for pre xes: we have to distinguish the cases in which tke subject of the pre x is a channel
from the case in which the subject is a variable. This is a ratler subtle and technical di erence,
that is discussed in Section 4.3.

1.5 Termination of Mobile Processes by Typability

A term terminates if all its reduction sequences are of nitelength. As far as programming languages
are concerned, termination means that computation in progams will eventually stop. In computer
science termination has been extensively investigated inerm rewriting systems [DM79, DH95]
and -calculi [Gan80, Bou03] (where strong normalization is a syonym more commonly used).
Termination has also been discussed in process calculi, radily the -calculus.

Indeed, termination is interesting in concurrency. For ingance, if we interrogate a process, we
may want to know that an answer is eventually produced (termination alone does not guarantee
this, but termination would be the main ingredient in a proof). Similarly, when we load an applet
we would like to know that the applet will not run for ever on our machine, possibly absorbing all
the computing resources (a \denial of service" attack). In general, if the lifetime of a process can
be in nite, we may want to know that the process does not reman alive simply because of non-
terminating internal activity, and that, therefore, the pr ocess will eventually accept interactions
with the environment.

Languages of terminating processes are proposed in [YBHO4)hd [San05]. In both cases, the
proofs of termination make use of logical relations, a welknown technique from functional languages.
The languages of terminating processes so obtained are hoves rather \functional”, in that the
structures allowed are similar to those derived when encodig functions as processes. In particular,
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the languages are very restrictive on nested inputs (that is the possibility of having free inputs
underneath other inputs), and recursive inputs (that is, replications !a(x):P in which the body P
can recursively call the guarda of the replication). Such patterns are entirely forbidden in [YBHO4];
nested inputs are allowed in [San05] but in a very restrictedform. For example, the process

a(x):!bx:0j acO (1.2)

is legal neither for [YBHO04] nor for [San05]. The restrictims in [YBHO04, San05] actually rule out
also useful functional processes, for instance

F € an;b): if n=1 then brli else c(am 1;cij c(m):bm ni) (1.2)

which represents the factorial function.

To guarantee the termination property of mobile processes w propose several type systems
(which are quite di erent from the type systems discussed inSection 1.4) for the -calculus. We
start from a core type system, which adds level information b the types of the simply typed -
calculus. The level information helps us to construct a measre which decreases along with each
reduction path of a well-typed process. Therefore the welfoundedness of the measure implies the
desired termination property of processes. As the core typsystem is not very expressive, we extend
it by relaxing some constraints on nested inputs and recursie inputs, thus we obtain three extended
type systems. The usefulness of these type systems are showyn some non-trivial examples. For
instance, it turns out that all primitive recursive functio ns can be encoded as terminating processes;
the protocol of encoding separate choice in terms of paralleomposition proposed in [Nes00, SW01]
does not introduce divergency; each request to the symbol tale (implemented as a dynamic chain
of cells) given in [Jon93, San99] is always answered withinnite amount of time.

Roughly, for each type system to prove termination we choos@a measure which decreases after
nite steps of reduction. To compare two measures, we explailexicographic and multiset orderings,
well-known techniques in term rewriting systems [DM79, DJ®]. For the core type system, the
measure is just a vector recording, for each level, the numlyeof outputs (unguarded by replicated
inputs) at channels with that level in the type. For the extended type systems, the ideas are
similar, but the measures become more sophisticated sinceenallow them to decrease after some
nite (unknown and variable) number of reductions, up to some commutativities of reductions and
process manipulations.

1.6 Outline of the Thesis

The material presented in Chapter 2 is meant to prepare the tehnical development in the rest of the
thesis. We introduce some basic notions about process calguwith CCS and the -calculus as our
templates. We then focus on channel types; we review sortsjmple channel types and subtyping
progressively.

In Chapter 3 we introduce a probabilistic process calculus Wwich includes both nondeterministic
and probabilistic choice, as well as recursion. We give itsesmantics in terms of Segala and Lynch's
probabilistic automata. We introduce two strong equivalences and two weak equivalences. We show
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some properties of the equivalences, using a probabilistizersion of \bisimulation up to" proof tech-
nigues. For the strong equivalences we give complete axiortigations for all expressions, while for
the weak equivalences we achieve this result only for guardeexpressions. We conjecture that in
the general case of unguarded recursion the \natural" weak guivalences are undecidable. In the
completeness proofs, our proof schemas are inspired by [M#, Mil89b, SS00], but the details are
more involved due to the presence of both probabilistic and nndeterministic dimensions. Indeed,
it turns out that, to give a complete axiomatisation of observational equivalence, the simple proba-
bilistic extension of Milner's three -laws [Mil89a] would not be su cient, thus we need a new rule.
At last, for recursion-free expressions we provide axiomasations of all the four equivalences, whose
completeness proofs are very simple.

In Chapter 4 we study the algebraic theory of a nite -calculus with capability types. Firstly we
consider a sublanguage without parallelism. This small laguage already shows the major obstacles
for axiomatisations. Following [HRO4] we give the operaticmal semantics of the language in terms
of a typed labelled transition system, from which we de ne typed (late) bisimulation. Secondly we
set up a complete proof system for closed terms. Then we presea complete axiom system for
open terms. The schema of the completeness proof is similaptthat for the untyped -calculus
[PS95]. The details, however, are quite di erent, due to therich subtyping relation of the type
system. Thirdly we recall the typed bisimilarity proposed in [HR04], and provide a proof system
for closed terms, together with an indirect axiomatisation for all terms. Fourthly we show that
the di erence between late and early bisimilarity can be cagured by one axiom. Lastly we admit
parallel composition. Its e ect on the axiomatisations is to add an expansion law to eliminate all
occurrences of the operator.

In Chapter 5 we consider several type systems such that wetlyped processes under each system
are ensured to terminate. First, we present a core type systa, which adds level information to the
types of the simply typed -calculus. Then we give three re nements of the core systemNested
inputs and recursive inputs are the main patterns we focus on For all the type systems (except for
the second one, which can capture primitive recursive fundgbns) we also present upper bounds to
the number of steps well-typed processes take to terminateSuch bounds depend on the structure
of the processes and on the types of the names in the process®¥e show the usefulness of the type
systems on some non-trivial examples: the encodings of priitive recursive functions, the protocol
for encoding separate choice in terms of parallel composian from [Nes00, SWO01], a symbol table
implemented as a dynamic chain of cells from [Jon93, San99].

In Chapter 6 we summarise the achievements of this thesis andiscuss some directions for
potential future work.

Provenance of the material

This thesis is partially based on published material. The pesentation of a probabilistic process cal-
culus and the axiomatisations of several probabilistic belavioural equivalences appeared in [DP05];
the study of the typed -calculus and the axiomatisation of typed bisimilarity were presented in
[DS04b, DS05]; the type systems for ensuring the terminatio property of -processes were proposed
in [DS04a].



Chapter 2

Preliminaries

This chapter introduces some basic notions about process kauili. They are going to be lifted to richer
settings in the following chapters by accommodating probaliities and more advanced types. The
presentation is based on CCS and the -calculus, and partly guided by two textbooks [Mil99, SWO01]

2.1 A Calculus of Communicating Systems

We presuppose an in nite set of process variablesVar = fX;Y;:::g, and an in nite set of names
N = fu;v;::g. We use the set ofconames N = fu j u 2 Ng. Given a special name , we let
* range over the set oflabels L = N[ N [f g. A label represents an indivisible action that a
communicating system performs, such as reading a datum, orending a datum. The class ofprocess
expressionsE.s is given by the following grammar:

E;F 5=0JE JE+F|JEjF] UE JX ] xE

The expression0 representsinaction. The pre x “:E describes the behaviour of rst performing
an action labelled" then behaving like E. The sum or nondeterministic choice E + F behaves either
like E or F nondeterministically. The parallel composition E j F allows each of its components to
behave independently, but also to synchronize with each otlr by a handshake on a complementary
name. The restriction UuE restricts the scope ofu to E. The recursion x E provides in nite
behaviour by unfolding itself to be Ef x E=Xg. Operator precedence is (1) pre X, restriction,
recursion, (2) parallel composition, and (3) nondeterminstic choice.

Note that in CCS [Mil89a] the operators dier a little. The re striction uE is written Enu.
There is also arenaming operator E[vi=us; ::}; Vh =Uy ], Which is not present here; its job is largely
done by syntactic substitution of names. We shall write E f e=ag for syntactic substitution of names
e for namese.

We use fpv(E) for the set of free process variables (i.e., not bound by any x) in E. As
usual we identify expressions which di er only by a change ofbound process variables. We shall
write EfFy; 5 Fro=Xq; 5 Xhg or Ef B=Xg for the result of simultaneously substituting F; for each
occurrence ofX; in E (1 i n), renaming bound variables if necessary.

27
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X 0
act ——— sumlu
“ElE E+F! E°
’ 0 u 0 u 0
parl E!‘ E comlE!, E F(!), OF
EjF! E°F EjF! E°%F
X 0 = l\ 0
res —E' E°  forus rec Ef xE=Xg! E
ue ! ue? xE! E°

Table 2.1: The transition rules for E.s

For operational semantics, we use a labelled transition syem
(Bees; LTI E ccs Eccsj\ZLg)

with E,s as the set of states andL as transition labels. The transition relation is de ned as the
smallest relation generated by the rules in Table 2.1. The sspnmetric rules of suml, parl and coml
are omitted. As can be seen from the rulecoml, for a communication between two processes to
take place, one of them must o er an atomic actionu, the other its complementary action u. The
communication results in a -action, meaning that the communication serves as synchrosation and
the result is invisible. On the other hand, in some literature on the analysis of distributed systems,
parallel composition is de ned as in CSP [Hoa85], where a comunication between two processes
occurs if both of them o er the same actionu, and the result is still a u-action.

2.2 The -calculus

We rst give the motivation and introduce the untyped -calculus. Then we focus on channel types;
we review sorts, simple channel types and subtyping progresvely.

2.2.1 Fom CCS to the -calculus

A signi cant limitation of CCS, as argued in [Mil99], is that it is not able to naturally specify
communicating systems with dynamically changing connectiity. For example, let us consider the
system composed of three component®; Q and R as displayed in Figure 2.1(1). Initially P and R
are connected by the linka, while P and Q are connected byb. In the con guration of Figure 2.1(2),
P and Q have evolved intoP°and QP respectively and the link to R has moved fromP to Q. Since
CCS gives us no way of creating new links among existing compents, we are not able to specify
the system in (1) as a CCS expression that can evolve into (2).However, this kind of evolution
occurs often in many real systems. For instance, we may image R as a critical section that are
accessed byP and Q successively. A natural way of dealing with link mobility li ke this is to give
actions more structures so that links can be passed around icommunicating systems. This is the
method adopted by the -calculus.
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Figure 2.1: Link mobility

2.2.2 The Untyped  -calculus

Let the set N of names be de ned as in Section 2.1. The seP of processes is de ned by the
following syntax:

P;Q = Oj u(x):Pj uv:Pj Pj Qj P+ Qj uP j lu(x):P

The input pre x u(x):P can receive any hame viau and continue asP with the received name
substituted for x. The output pre x uv:P can sendv via u and continue asP. The replicated
input 'u(x):P can be thought of as an in nite composition u(x):P ju(x):P j , and it can encode
recursive de nitions [Mil91]. For example, take the simple CCS expressionE def x (u:(X j X)),
which has the in nite behaviour:

E!" EjE!Y EJjEjE!"
The same e ect can be derived by using a replicated input:

v (v ijlviui(vjv))

LY v(vijviiviu(viv))

Lot v(vijvijviiviu(vijv))

oY

All other operators (inaction, sum, restriction, and parallel composition) keep their meaning as in
Section 2.1.

The -calculus has two name-binding operators. In the processegVv):P and vP the occurrences
of v in P are consideredbound with scope P. An occurrence of a name in a process ifee if it
is not bound. We write bn(P) (resp. fn(P)) for the set of hames that have a bound (resp. free)
occurrence inP. Changing a bound name into a fresh name is calle@lpha-conversion and we
identify processes up to alpha-conversion.

A substitution fv=ug is a function on names that mapsu to v and acts as identity on other
names. Hence the post x operatorPfv=ug is de ned as the result of replacing all free occurrences
of uin P by v, possibly applying alpha-conversion to avoid hame capturdy introducing unintended
bound occurrences of names.

Convention: ~ When considering a collection of processes and substitutits, we assume that each
bound name of the processes is chosen to be unique, i.e., dient from other names of the processes
and the substitutions.
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kind subj( ) obj( ) fn( ) bn()
input uv u % fu;vg ;
free output uv u % fu;vg ;
bound output  u(v) u % fug fvg

internal action - - ; ;

Table 2.2: Terminology and notation for actions

The early style [MPW92] of operational semantics for proceses inP is speci ed via a labelled

transition system
(P ;Act;f! P P | 2Actg)

where Act stands for the set ofactions, of which there are four kinds.

1. The internal action . Asin CCS,P ! Q means that P can evolve into Q without any
interaction with the environment. Internal actions arise from internal communication within
a process.

2. An input action uv. The transiton P 1" Q means that P can receivev along u before
evolving into Q. This departs from CCS because an input action contains the etual received
value. Input actions arise from input pre xes.

3. A free output action uv. The transiton P 1Y Q implies that P can emit the free namev
along nameu. Free output actions arise from output pre xes.

4. A bound outputaction u(v). Intuitively, P T(V) Q means that P can emit the private name v
(i.e. v is bound in P) along u before evolving into Q. Bound output actions arise from free
output actions which carry names out of their scope, as in theprocess v (uv:Q) for example.

Table 2.2 displays each kind of action, itssubject its object, its set of free names and its set of
bound names We let n( ) % fn( ) [ bn( ) denote the set of names occurring in .

The transition relation ! is de ned by the rules in Table 2.3. The symmetric rules ofsum1,
parl, comland closelare omitted. Some of the rules deserve to be explained. We sé®m the rule
in that u(x):P can receiveany name via u, and when a name is received it is substituted for the
placeholderx in P. The rule openexpresses extrusion of the scope of the namg which can be seen
in the rule closel A process capable of performing a bound outpuu(v) can interact with a process
that can receivev via u and in which v is not free. The interaction is represented by a -transition,
and in the derivative the two components are within the scopeof a restriction v. We may say that
the scope ofv is opened viaopenwhile closed again viaclosel The scope of the restricted name
is extended to include the process that receives it. The sideondition in the rule parlis necessary
because it prevents free names i@ from being incorrectly identi ed as bound names in P2 The
rule rep captures the idea that u(x):P can spawn in nitely many copies of u(x):P and each copy
can perform an input action as in the rulein.

Sometimes we use the notatiors) which is an abbreviationfor (! ) !I' (! ) ,where(! )
is the re exive and transitive closure of !
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in out —
u(x):P 1" Pfv=xg uv:P Y P
sumi—P L _P°%_ parlP ! P° bn()\ fn(Q)=;
P+Q! P? PjQ! P%Q
comi P P° Q1™ @ close1P FMpo Q™ Q° v64n(Q)
PiQ! P%Q° PiQ! v(P°QY
res P! PO uen( ) OpenP!‘” P° v6u

uP ! uP?® vp 1) po

ep u(x):P 1" 1u(x):P j Pfv=xg

Table 2.3: The transition rules for P

The capacity to change the connectivity of a network of procases is the crucial di erence between
the -calculus and CCS. Let us consider an example based on Figutz1l. Suppose two processes
P; Q need to use some resourcR in a critical section. Initially only process P has access to the
resource, represented by a communication linka. After an interaction with Q along other link b
this access is transferred tdQ. This kind of behaviour can be described in the -calculus as follows:
processP that sends a along b is ba:P° (supposea does not appear inP%; processQ that receives
some link alongb and then uses it to send datac is b(x):xc:Q% The interaction between P and Q
is formulated as:

ba:P%j b(x):xc:Q%®!  P%j ac:Q™
After the interaction, the connection between P and R disappears while a new connection between
Q%and R is built, where QY is the processac:Q"

The -calculus presented above igmonadic in that a message consists of exactly one name.
Sometime we want to send messages consisting of more than oname. So it is useful to allow
polyadic inputs and outputs: u(xs;:::;Xn):P and uhvy; i vhi:Q. Accordingly we can extend the
transition rules in Table 2.3 to allow for polyadic communication:

uR):Pjuhei:Q! Pfe=rgjQ

wherer and e have the same length. After the extension we obtain the polydic -calculus [Mil91].

2.2.3 Sorts and Sorting

To regulate the use of names, Milner introduced the notionsorting [Mil91], which is essential to avoid
disagreement in the arities of tuples carried by a given namen the polyadic -calculus. Assume a
basic collection of sorts. To every nameu is assigned a sort, and we write u : . A sort list over

is a nite sequence e= ;;::;  of sorts. is the set of all sort lists over . We write 8 : eif
ui . ; foralliwithl i n. A sorting over is a partial function

f: 7!
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Figure 2.2: A printer example

and we say that a process respects if, for every subterm of the form u(e):P or uhei:Q,
ifu: thene:f().
For example, for the procesd in (1.2), let us choose = fS;; Sy; Natg with
a:S;a; b:Sy; €¢:Sye; m:Nat; n: Nat:
Then a sorting f respected byF is such that

Sa 7! Nat; Sy
Spe 7! Nat:

2.2.4 A Simple Example

Before proceeding to the formal presentation of type systemfor the -calculus, we informally explain
the usefulness of types, capability types in particular, bya simple example from [PS96]. Imagine
the common situation in which two processes must cooperatenithe use of a shared resource such
as a printer. The printer provides a request channelu on which the client processes send their data
for printing. If one client process has the form Q; def uvi:uvz:0, then we expect that executing
the program u (P j Q1 j Q2) should result in the print jobs represented by v; and v, eventually
being received and processed, in that order, by the printer ppcessP (see Figure 2.2(1), where an
arrow from one process to another means that some data are tresmitted from the source of the
arrow to the target). However, this is not necessarily the cae: a misbehaving implementation of
Q2 can disrupt the protocol expected by P and Q; simply by reading print requests from u and
throwing them away: Q: % u(v):0 (see Figure 2.2(2)). We can prevent this kind of bad behaviou
by distinguishing three kinds of access to a channel { the cagbility to write values, the capability
to read values, and the capability to do both { and requiring each process to use its channels with
some prescribed capabilities. Here, for instance, the clig¢ processes should only be allowed to write
to u. The printer, on the other hand, should only read from u. When we impose this constraint,
processQ2 will be ruled out because it attempts to read from u.

2.2.5 The Simply Typed -calculus

To begin with, we introduce some terminology and notation cacerning types. An assignmentof a
type T to a nameu is of the formu : T. A type environmentis a nite set of assignments of types
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T = Vj L types
== L] bool | Nat value types
L == v channel types
n= p) oxe T type environments
w o= xj true; false J 0;1;2; values
P;Q = OJux:V)PJuwP JPjQJP+QJ(a:L)P]Jlu(x:V):P processes
) Tu:lVv Xx:V' P Tu:lv TwV i
T-in T-out T-nil
Tu(x:V)P T uw:P 0
P : P : ;a:L” P
T-par —Q T-sum _F Q Tres——
TPjQ TP+Q “(a:L)P
Tu(x:V)P
T-rep 4
Tlu(x V)P

Table 2.4: Processes, types and typing rules of the simply fyed -calculus

to names, where the names in the assignments are all di erent We use ; to range over type
environments. Sometimes we regard a type environment as a grtial function from names to types.
Thus we write ( u) for the type assigned tou by , and say that the names of the assignments in
are the names on which is de ned. We write dom() for the set of names of the assignments in
. When dom() \ dom()= ;, we write ; forthe union of and .
A process type judgment ~ P asserts that process is well typed under the type environment
, and a value type judgment ~ w:V that value w has type V under the type assumptions in .
P can be derived by using the typing rules of

We say P is well typed under if the judgment
a given type system.

A channelis a name that may be used to engage in communications. Thealuesare the objects
that can be exchanged along channels. The&hannel typesare the types that can be ascribed to
channels. Thevalue typesare the types that can be ascribed to values. In the -calculus, channel
types can be used as value types. In other words, we allow chagrls to be transmitted as values,
and hence allow mobility.

Since our purpose in this section is to introduce the type sy®m of the simply typed -calculus
rather than to propose a pragmatic notation for programming, we adopt an explicitly typed presen-
tation in which every bound name is annotated with a type. The syntax of types and processes as
well as the typing rules are shown in Table 2.4. The syntacticdistinction between value types and
channel types is made by the use of to range over value types andL over channel types (the letter
C is reserved for other use later). However, in typing and opeational rules, unless important for
the sense we will use only the lettersS; T, which stand for arbitrary types. We observe that in the
simply typed -calculus there is only one channel type constructoV . A type assignmentu : |V
means that u can be used as a channel to carry values of typ¥. Value types include channel types
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and basic types thus both channels and basic values are allowed to be commigated. In the above
table, we only display the typing rules for processes. The tping rules for values are the usual ones.
For example, we may have the following rules:

X:T T x: T * true : bool * 0:Nat

For simplicity we only consider two basic types: bool, for boolean values, andNat, for natural
numbers. Values of basic types are said to be of rst-order beause, unlike channels, they cannot
carry other values. We also assume some basic operations omst-order values. For example, we
may use addition (n+ m), subtraction (n m), multiplication ( n m) for Nat expressions. To avoid
being too speci ¢, we do not give a rigid syntax and typing rules for rst-order expressions. We just
assume a separate mechanism for evaluating expressions gpe Nat.

The inert processO is well typed under any type environment. The parallel compgsition and the
sum of two processes are well typed if each is well typed in itation. A process (a : L)P is well
typed if P observes the constraints imposed both by the type environmet and by the declared type
L of the new namea. Note that here L is a channel type. In an input u(x : V):P the subject u
should have a channel type, which is compatible with the typeof x, moreover, the bodyP is well
typed under the extension of with the type of x. The case for u(x : V):P is similar. An output
uw:P is well typed if u has a channel type compatible with that of w, and P itself is well typed.

The transition rules for typed processes are similar to thoe of the untyped processes (Table 2.3).
We just need to annotate bound names with their types. For exanple, the rule openwould take
this form:

p(F"™ po 5 fn(w) nfe; ug

( E:?I;a:L)uw

(a:L)P po

Given the operational semantics for typed processes, we cgmove the subject reductionproperty,
which represents the fact that type judgments are invariant under computation. In particular, if
*PandP ! PY%thenitholds that ~ P°

2.2.6  Subtyping

Subtyping is a preorder on types. IfS is a subtype of T then all operations available on values of
type T are also available on values of typeS; therefore an expression of typeS can always replace
an expression of typeT. The possibility of having operations that work on all subtypes of a given
type is a major advantage of subtyping in a programming langage.

We shall write subtype judgmentsin the form S <: T, which asserts that S is a subtype of T
(equally T is a supertype ofS). A type construct is covariant in its i-th argument if the construct
preserves the direction of subtyping in that argument. Dualy, a type construct is contravariant
in its i-th argument if the construct inverts the direction of subty ping in that argument. A type
construct is invariant in its i-th argument if it is both covariant and contravariant in tha t argument.

We now re ne channel types by distinguishing between the capbilities of using a channel in
input or in outputs. For this we introduce the types iV and oV, with the intended meanings: i V
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T<TO TO<:T® _
S-ref —— S-tra S-b

Ii
T<T T<T® IT<:iT
. T<TO T<TO
S-bo——— Seii ————— S-00——
IT <:oT iT<iTO oT%<: oT
S-bb T<TO TO<:T
JT <:JT9°
Tiins TuliVv XV P T-outs TuioVv TwiV TP
Tu(x:V)P T uw:P
subsum u:T T<TO

u:To

(rules T-ins and T-outs replace T-in and T-out respectively)

Table 2.5: Additional rules on subtyping

is the type of a channel that can be used only in input and that arries values of typeV; similar
for oV w.r.t. output. By extending the simply typed -calculus with the two capability types, we
obtain the simply typed -calculus with subtyping For this, we rede ne channel types as

L=V j iVj oV channel types

and use the additional rules reported in Table 2.5.

We brie y comment on the subtyping rules. The rules S-refand S-tra show that <: is a preorder.
The axioms S-biand S-boshow that a name of all capabilities can be used in places wheronly the
input or only the output capability is required. Rule S-ii says thati is a covariant construct, while
S-oosays that o is a contravariant construct. Finally S-bbshows that] is invariant.

The typing rules T-ins and T-outs are similar to the rules T-in and T-out, except that now the
subject of a pre x is checked to have the appropriate input or output capability. The old rules are
derivable from the new ones.
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Chapter 3

Axiomatisations for Probabilistic
Processes

In this chapter we study a process calculus which combines b nondeterministic and probabilistic
behaviour in the style of Segala and Lynch's probabilistic atomata. We consider various strong and
weak behavioural equivalences, and we provide complete ainatisations for nite-state processes,
restricted to guarded recursion in the case of the weak equalences. We conjecture that in the
general case of unguarded recursion the \natural" weak equalences are undecidable.

The contents of this chapter are organized as follows. Firstve brie y recall some basic concepts
and de nitions about probabilistic distributions. In Sect ion 3.2 we introduce a probabilistic process
calculus, with its syntax and operational semantics. In Setion 3.3 we de ne the four behavioural
equivalences we are interested in, and we extend the \bisinlation up to" techniques of [Mil89a] to
the probabilistic setting. These techniques are extensivig used for the proofs of soundness of some
axioms, especially in the case of the weak equivalences. Ire&ions 3.4 and 3.5 we give complete
axiomatisations for the strong equivalences and for the wea equivalences respectively, restricted
to guarded expressions in the second case. Section 3.6 givasnplete axiomatisations for the four
equivalences in the case of the nite fragment of the languag. The interest of this section is that we
use di erent and much simpler proof techniques. At last we caclude with some discussions about
the conjecture mentioned above.

3.1 Probabilistic Distributions

Let M be aset. Afunction :M 7! [0;1] is called adiscrete probability distribution, or distribution
for short, on M if the supportof , dened asspt( )= fx2 M j (x) > Og, is nite or countably
inniteand  ,,,, (X)=1.1If isa distribution with nite supportand N  spt( ) we use the set
f(si: (si))gs2n to enumerate the probability associated with each element BN . To manipulate

37
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the set we introduce the operator] de ned as follows.

f(si '(pi)gi2| If (s:p)g ™

f(si:pi)Gi2in [T s :(p +Pg if s=s; for somej 2 1
f(si:pi)gizi [T (s:p)g otherwise.

f(si :pi)giZI ]f (tj :pj)ngl::n d:ef

(f(si:pi)giz1 If (tr:p)@) If (4 pj)Gi22im

Given some distributions 1;:::; n onS and some real numbers1;:::;ry 2 [0; 1] with P 210 Fi =1,
we de ne the convex combinationry 1 + i+ r, , of 1;::; , to be the distribution  such that
(s)= 1. Ti i(s), foreachs2 S.

Lemma 3.1 If is a convex combination of 1;:::;  and each ; (i n) is a convex combination
of some distributions 1;::;; m on S, then is also a convex combination of 1;:::; m.
ProofI:D Suppose that = ry 1+ i+ ry  with P io1n fi=1,and that | = piz 14 i+ Pm m
with = ;55 Bj =1, forall i n. Foreachs2 S, we have that

X X X X X

(s)= ri i(s)= ri pij j(s)= ripy j(s):
i21:n i21:n j21:m j21xm i21:n

P P
So is the convex combination (5., riPi1) 1+ i+ j51.4 FiPim) m. Indeed it can be checked
that j21om iz iR = 1. u

3.2 A Probabilistic Process Calculus

The setVar of process variables and the sett of labels are de ned as in Section 2.1. We let range
over the setVar [L . The class of expression& is de ned by the following syntax:

M . X .

E:F = piiEi ] EiJ]X ] xE
i21:n i21:m
Here - i»1-n Pi i:Ei stands for aprobabilistic_choice operator, where thep;'s represent positive

probabilities, i.e., they satisfy pp 2 (0;1] and ,,., B = 1. When n = 0 we abbreviate the
probabilistic choice as0; when n = 1 we abbreviate it as ‘1:E1.L Sometimes we are interested in
certain branEhes of the probabilistic choice; in tl?_is case wwrite  ;,,., P i:Ej asp1 1:E1
P niEnoOr( o1 1P itEi) PnniEn where 50 1) PiiiEi atl)Dbreviates (with a slight abuse
of notation) p; 1:E; Ph 1 n 1:En 1. The second construction ,,.., Ei stands forindexed
nondeterministic choice, and occasionally we may write it asE; + i + Epy.

De nition 3.2  The variable X is weakly guarded (resp. guarded) in E if every free occurrence
of X in E occurs within some subexpression:F (resp. :F but = 6 ), otherwise X is weakly
unguarded (resp. unguarded) in E.

The operational semantics of an expressiork is de ned as a probabilistic automaton whose
states are the expressions reachable frofe and the transition relation is de ned by the axioms and
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L . U .
var X I #(X) psum L. PiiE! L, TCHE Tp)g
Ef xE=Xg! E; ! _
rec nsum for somej 2 1::m
x E! i21:m Ei !

Table 3.1: Strong transitions

inference rules in Table 3.1, whereE ! describes a transition that leaves fromE and leads to a
distribution  over (Var [L ) E . We shall use#(X) for the special distribution f(X; 0: 1)g. Itis
evidentthat E! #(X)i X is weakly unguarded inE.

The behaviour of each expression can be visualized by a trait®n graph. For instance, the
expression ga  Ib)+(2a 3c)+(3b 3c) exhibits the behaviour drawn in diagram (5) of
Figure 1.1.

As in [BS01], we de ne the notion of combined transition as follows: E ! . if there exists a

collectionf i;rigi21.n Of distributions and probabilities such that =, .., ri =1, =ry 1+:+r, p
and E! , for eachi 2 1:n.

Lemma33 If =ry 1+ :i+ry, nandE! . jforeachi n,thenE! .

Proof: Suppose that for eachi n, ; is a convex combination of i1;:::; im,, with E! j for
j m;. Let

[
fii img=1F 1505 mg
i21:n
Clearly each ; (i n) is also a convex combination of 3;:::; . It follows from Lemma 3.1 that
is a convex combination of 1;::;; m. Note that E! ; for eachj m. Therefore we have the

resultthat E ! . . u

We now introduce the notion of weak transitions, which genealizes the notion of nitary weak
transitions in SPA [Sto02] to the setting of PA. First we discuss the intuition behind it. Given an
expressionE, if we unfold its transition graph, we get a nitely branchin g tree. By cutting away
all but one alternative in case of several nondeterministiccandidates, we are left with a subtree
with only probabilistic branches. A weak transition of E is a nite subtree of this kind, called weak
transition tree, such that in any path from the root to a leaf there is at most one visible action. For
example, letE be the expression x (%a % :X). It is represented by the transition graph displayed
in Diagram (1) of Figure 3.1. After one unfolding, we get Diagam (2) which represents the weak
transiton E) , where =f(a;0:3);(;E :1)g.

Formally, weak transitions are de ned by the rules in Table 3.2. Rule wealsays that a weak
transition tree starts from a bundle of labelled arrows derved from a strong transition. The meaning
of Rule weaz2is as follows. Given two expression&; F and their weak transition trees tr (E); tr (F),
if F is a leaf oftr (E) and there is no visible action intr (F), then we can extendtr (E) with tr (F) at
nodeF. If F; is a leaf oftr (F) then the probability of reaching F; from E is pq, wherep and g are
the probabilities of reaching F from E, and F; from F, respectively. Rulewea3is similar to Rule
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m

1/2 1/2

1/2 1/2

@ )

Figure 3.1: A weak transition

E !
weal ——
E

E)f Ci:Ei:p)ailf CGF :p)g F)f (GFj:q)g
E)f CiiEi:p)ailf C5F; :pg)g
E)f CoEip)alf (F :p)g F)f (hj;F :q)g
E)f (Ci;Ei:p)a 1f (h;Fj :pqg)g;
E)f (GEitp)g 8hEi) #(X)
E) #(X)

weaz2

wea3

wead

Table 3.2: Weak transitions

wea2, with the di erence that we can have visible actions in tr (F), but not in the path from E to
F. Rule wea4allows to construct weak transitions to unguarded variables. Note that if E ) #(X)
then X is unguarded inE.

For any expressionE, we use (E) for the unique distribution f(;E : 1)g, called the virtual
distribution of E. We de ne a weak combined transition E ) . if there exists a collection

f i;rigi21.n Of distributions and probabilities such that ;.. ri =1, =ry 1+ 1+ 71, 5 and
for eachi 2 1::n, eitherE) or ;is (E). We write E ) . if every component of is derived
from a weak transition, namely, E) ; forall i n. Note in particular that for any expression E

we can derive a virtual distribution by E ) ¢ (E), but E 6); (E).
Lemma 3.4 1.IfE) ¢ then :E ) . ;
2. If E) ¢#(X) thenE ) #(X).

Proof:  The rst clause is easy to show. Let us consider the second onelf #(X) is a convex
combination of 1;:;; ,andE ) ; foralli 2 1:n, then each ; must assign probability 1 to (X; 0),
thus ;| = #(X). u

Lemma 3.5 1.If =ry1+::+ry pandE) .  foreachi n,thenE) .
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2.If =ry1+:+ry nandE) .  foreachi n,thenE) .

Proof:  Similar to the proof of Lemma 3.3. u

3.3 Behavioural Equivalences

In this section we de ne four behavioural equivalences, nanaly, strong bisimulation, strong proba-
bilistic bisimulation, divergency-sensitive equivalene and observational equivalence. We also intro-
duce a probabilistic version of \bisimulation up to" techni ques to show some interesting properties
of the behavioural equivalences.

To de ne behavioural equivalences in probabilistic proces calculi, it is customary to consider
equivalence of distributions with respect to equivalence elations on processes.

3.3.1 Equivalence of Distributions

P
If is adistributionon M1 Mj,s2MyandN M, we write (s;N) for ., (s;t). We lift
an equivalence relation onE to a relation between distributions over (Var [L ) E in the following
way.

De nition 3.6  Given two distributions ; and , over(Var[L ) E , we say that they are equivalent
w.r.t. an equivalence relationR on E, written 1 g 2, if

8N 2E=R;8 2Var[L; 1(;N)= 2o(;N):

Lemma 3.7 Given three distributions 1; »; 3 and an equivalence relationR, if ; r > and

2 rR 3then 1 r 3.

Proof:  Straightforward by de nition. u

The above lemma says that r is transitive. It follows immediately that g is an equivalence rela-
tion. Next we report two fundamental lemmas that underpin many other results in the subsequent
sections.

Lemma 3.8 If 1 R; zande R gthen 1 R, 2-

Proof: Let N 2 E=R,. SinceR; is contained in Ry, we know that N is the disjoint union of a
family of setsfN;gi2, such that N; 2 E=R; for eachi 2 I. It follows from ; g, » that

8 n;8 2Var[L; 1(;Nij)= 2(;Nj):

Therefore we have b b
1GN) = 5 1GN) = 5 205N = 2(5N):

P
Lemma 39 Let =ry 1+ i+ry pand %°=ry 9+ i+ rpy Qwith L, ri=1.0f | R |

for eachi n, then R 0
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Proof: Forany N 2E=R and 2 Var [L , we have

X X
(;N)= rii(;N)= i 9GN)Y= (GND):
i21:n i21:n

Therefore g by de nition. u

3.3.2 Behavioural Equivalences

Strong bisimulation is de ned by requiring equivalence of dstributions at every step. Because of the
way equivalence of distributions is de ned, we need to restict to bisimulations which are equivalence
relations.

De nition 3.10  An equivalence relationR E E is a strong bisimulation if E R F implies:
wheneverE ! 4, there exists , such thatF! ,and 1 r 2

Two expressionsk; F are strong bisimilar, written E  F, if there exists a strong bisimulation R
st ERF.

If we allow a strong transition to be matched by a strong combhed transition, then we get a
relation slightly coarser than strong bisimulation.

De nition 3.11  An equivalence relationR E E is a strong probabilistic bisimulation if E R F
implies:

wheneverE ! 1, there exists , suchthatF! . and ;1 r »:
We write E ¢ F, if there exists a strong probabilistic bisimulationR s.t. E R F.

To show that . is an equivalence relation, we need the following lemma, whh can be used to
prove the transitivity of .

Lemma 3.12 If E . F then wheneverE ! . , there exists °such thatF ! . %and &

Proof: Supposethat =ry 1+ i+, yandE! fori n. SinceE . F, there exists ?
foreachi nsuchthatF! . %and ; . 2 Nowlet 9=r; $+ ::+r, O. By Lemma 3.3 we
know that F ! . % By Lemma 3.9 it holds that . u

We now consider the case of the weak bisimulation. The de niion of weak bisimulation for PA
is not at all straightforward. In fact, the \natural" weak ve rsion of De nition 3.10 would be the
following one.

De nition (Tentative). An equivalence relationR E E is a weak bisimulation if E R F
implies:
wheneverE ! 1, then either ; r (F) or there exists some , such thatF ) , and
1 R 2.

E and F are weak bisimilar, written E F, whenever there exists a weak bisimulatiolR s.t.
ERF.
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F G
t) T\t t
172 172
a a a a a a
0 0 0 0 0 0

Figure 3.2: Transition graphs of E;F and G

Unfortunately the above de nition is incorrect because it de nes a relation which is not transitive.
That is, there exist E, F and G with E  F and F G but E 6 G. For example, consider the
following expressions (their transition graphs are displged in Figure 3.2) and relations:

g & (3:a Zm@)+(3a 3ia)

F € la la

G £

Ri €' f(EiF)i(FE):(EiE); (FiF);(aia);(0,0)g
Rz % f(FG);(GiF);(FiF);(G:iG);(a;a); (0,00

It can be checked that R; and R, are weak bisimulations according to the tentative de nition.
However we haveE 6 G. To see this, consider the transitionE !  ,where = f(;a: %);(a;o: %)g.
From G there are only two possible weak transitonsG) andG) ,with ;= 1f(;a :1)g
and , = f(a;0: 1)g. Now, among the three distributions (G), 1 and »,, none is equivalent to .
Therefore, E and G are not bisimilar. Nevertheless, if we consider the weak cobined transition:
G) ¢ %where °= 1 ;+ 1, we observe that 0

The above example suggests that for a \good" de nition of we& bisimulation it is necessary
to use combined transitions. So we cannot give a weak varianof De nition 3.10, but only of
De nition 3.11, called weak probabilistic bisimulation.

De nition 3.13  An equivalence relationR E E is a weak probabilistic bisimulation if E R F
implies:

wheneverE ! 1, there exists , suchthatF) . and 1 R 2:

We write E F whenever there exists a weak probabilistic bisimulatioR s.t. E R F.

The following lemma is indispensable to show the transitivly of

Lemma 3.14 Let R be a weak probabilistic bisimulation. IfE R F then wheneverkE ) . , there
exists ©such thatF ) . °and R °

Proof: See Appendix A.1. u
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S
Lemma 3.15 Let R = ;fR; j R; is a weak probabilistic bisimulatiorg. Then the equivalence
closure of R, written R , is a probabilistic weak bisimulation.

Proof: If E R F then there exist some weak probabilistic bisimulations 1;:::; 5, and some
expressionsEyg;:;;En suchthat E  Eg;E, F,andforalli withO i<n,we haveE; Rj Ej+1.
If E! ¢ then there exists 1 suchthatE;) ¢ 1and ¢ r, 1. Foralliwithl i<n, by
Lemma 3.14 there exists j+; such that Ej+; ) ¢ +1 and ; gr, j+1. By Lemma 3.8 and the
transitivity of g itholdsthat ¢ r 1. u

Because of the above lemma we can equivalently express as R , which is the biggest weak
probabilistic bisimulation.
As usual, observational equivalence is de ned in terms of wak probabilistic bisimulation.

De nition 3.16  Two expressionsk; F are observationally equivalent, written E ' F, if
1. wheneverE ! i, there exists , suchthatF) . , and 1 2

2. wheneverF ! ,, there exists 1 suchthatE ) . 1 and ; 2.

The following lemma plays the same role as Lemma 3.14, and thproof of the former is similar

to that of the latter. Then it is evident that is an equivalence relation.

Lemma 3.17 SupposeE ' F. If E) . then there exists °s.t. F) . %and

Often observational equivalence is criticised for being isensitive to divergency. We therefore
introduce a variant which does not have this shortcoming.

De nition 3.18  An equivalence relationR E E is a divergency-sensitive equivalencéf E R F
implies:

wheneverE ! 1, there exists , suchthatF) . and 1 R 2:
We write E h F whenever there exists a divergency-sensitive equivalenBes.t. E R F.

Here the di erence from De nition 3.13 is that we use the transition F ) . ,in place ofF ) ¢ »
to match a strong transition. In other words, F cannot stay idle; it must make some real move.

It is easy to see thath lies between . and' . For example, we have that x (:X + a) and
:a are related by ' but not by h (this shows also that h is sensitive to divergency), while :a
and :a + a are related by h but not by .. Further, :a and a are not related by h because the
transition :a !'f ;a : 1g cannot be matched up bya) fa;0: 1g. Soh does not simply detect
divergency, it counts internal moves in a certain sense.

One can check that all the relations de ned above (except for ) are indeed equivalence relations
and we have the inclusion ordering: ( ¢ (h( " (

3.3.3 Probabilistic \Bisimulation up to" Techniques

In the classical process algebra, the conventional approacto show E ~ F, for some expressions
E;F, is to construct a binary relation R which includes the pair (E; F), and then to check that R
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is a bisimulation. This approach can still be used in probabiistic process algebra, but things are
more complicated because of the extra requirement thaR must be an equivalence relation. For
example we cannot use some standard set-theoretic opera®to construct R, because, even iR

and R, are equivalencesR1R, and R; [R 2 may not be equivalences.

To avoid the restrictive condition and at the same time to reduce the size of the relationR,
we introduce the probabilistic version of \bisimulation up to" techniques, whose usefulness will be
exhibited in the next section.

In the following de nitions, for a binary relation R we denote the relation R [ ) by R
Similar for other notations such asR and R .

De nition 3.19 A binary relation R is a strong bisimulation up to  if E R F implies:
1. wheneverE ! 4, there exists > suchthatF! ,and 1 Rr 2;
2. wheneverF ! 5, there exists ; suchthatE! ;and 1 r 5.

A strong bisimulation up to  is not necessarily an equivalence relation. It is just an orthary
binary relation included in , as shown by the next proposition.

Proposition 3.20 If R is a strong bisimulation up to , then R is a strong bisimulation and
R

Proof: If E R F then there exist some expression&y;::;;E, suchthat E Eq;E, F, and

for all i with 1 i < n we have either E; Eis1 or Ej R Ej«1. Suppose thatE; ! i If
Ei R Ei+1 then there exists j+1 such that Ei;; ! 41 and i R i+1. If Ej Ei«1 then
there exists j+; such thatEj«1 ! 41 and | i+1. Since R , we know from Lemma 3.8
that ; r i+1. So in both cases we have matching transitions and; r  j+1, which implies
o R n bylLemma 3.7. ThereforeR is a strong bisimulation, i.e., R . SinceR R it
follows that R . u

One can also de ne a strong probabilistic bisimulation up to . relation and show that it is
included in ..

Lemma 3.21 Let R be a strong probabilistic bisimulation up .. If E R F then wheneverE ! .
o

[

there exists %such thatF ! . %and R

Proof:  Similar to the proof of Lemma 3.12. u

Proposition 3.22 If R is a strong probabilistic bisimulation up to ¢, then R c-

Proof:  Similar to the proof of Proposition 3.20. The only di erence is that when matching
transitions, we use Lemma 3.21 instead of directly applyinghe de nitions. u

For weak probabilistic bisimulation, the \up to" relations can be de ned as well, but we need to
be careful.

De nition 3.23 A binary relation R is a weak probabilistic bisimulationupto if E R F implies:
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1. wheneverE ) i, there exists , suchthatF ) . and 1 r 2
2. wheneverF ) ,, there exists ; suchthatE) . ;and 1 r 2.

In the above de nition, we are not able to replace the rst double arrow in each clause by a simple
arrow. Otherwise, the resulting relation is not included in . A counterexample isR = f( :a:0;0)g,
as in the nonprobabilistic setting [SM92].

Proposition 3.24 If R is a weak probabilistic bisimulation up to , then R

Proof:  Similar to the proof of Proposition 3.22. u

De nition 3.25 A binary relation R is an observational equivalence up to' if E R F implies:
1. wheneverE ) i, there exists , suchthatF ) . and 1 r 2
2. wheneverF ) ,, there exists ; suchthatE) . ;and 1 r 2.
As expected, observational equivalence up to is useful because of the following property.
Proposition 3.26 If R is an observational equivalence up t6 , thenR '

Proof: Note that if R is an observational equivalence up td , then it is also a weak probabilistic
bisimulaton upto . SoR and it becomes evident thatR ' by the de nition of observa-
tional equivalence. u

3.3.4 Some Properties of Strong Bisimilarity

In this section we show some properties of strong bisimilaty, by exploiting the probabilistic \bisim-
ulation up to" techniques introduced in Section 3.3.3 and Miner's transition induction technigue
[Mil89al].

Proposition 3.27 and . are congruence relations.

Proof:  This is a special version of the proof of Proposition 3.35, tavhich we shall give detailed
arguments. u
Proposition 3.28 xE Ef xE=Xg.

Proof: Observe that x E ! i Ef xE=Xg! . u

Lemma 3.29 If fpv(E) f %X;Z g and Z 6Zpv(F) then
EfE&ZgfP=Xg EfP=RgfEX¥P=Xg=Zg:
Proof: By induction on the structure of E. u

We now extend two results seen in nonprobabilistic processlgebra [Mil84]. It should be em-
phasized that the \strong bisimulation up to" technique plays an important role in the subsequent
proofs, because in these two cases it is dicult to directly construct an equivalence relation and
prove that it is a strong bisimulation.
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Proposition 3.30 x (E + X) x E.

Proof: We show that the relation
R=f(Ff x(E+ X)=Xg;Ff xE=XgjF 2E andfpv(F) f Xgg
is a strong bisimulation up to . Below we prove the following two assertions:

1. If Ff x(E + X)=Xg! ;thenthere exists , s.t. Ff xE=Xg! and 1 r 2;
2. If Ff xE=Xg! 5 thenthere exists 1 s.t. Ff x(E+ X)=Xg! :and 1 r 2.

We consider (1) by induction on the depth of the inferenceFf x (E+ X)=Xg! ;. Letus examine
two typical cases, among others.

F  X: Then (E + X)f x(E + X)=Xg! 1 by a shorter inference. Hence, by induction
hypothesis, E + X)f xE=Xg! ,with 1 r 2. Then we have either xE ! , or
Ef xE=Xg! . From the latter case we can also derive that xE ! .

F zF% Then F& y (E + X)=XgfFf x(E + X)=Xg=Zg! 1 by a shorter inference.
By Lemma 3.29 we haveF ¥F=Zgf x (E + X)=Xg! ;. By induction hypothesis, we have
F¥F=zgf xE=Xg! ,st 1 Rr 2. Inverselyitis easyto derive thatFf x E=Xg! ».

Similarly (2) can be shown by induction on the depth of the inferenceFf x E=Xg! ,. For
example, if F X, then Ef x E=Xg! > by a shorter inference. By induction hypothesis, there

exists ; s.t. Ef x(E+ X)=Xg! ,and 1 R 2. By rule nsumwe have € + X)f x(E +
X)=Xg Ef x(E+ X)=Xg+ Xf x(E+ X)=Xg! ;. Atlastby rule recwe infer that x (E +
X))l . u

The lemma below states that if X is weakly guarded inE, then di erent substitutions for X do
not a ect the rst transition of E.

Lemma 3.31 Suppose fpyE) f X g and all free occurrences ofX in E are weakly guarded. If
EfF=Xg! 1 with 1 f (Ci;E; : pi)g then E; takes the form Eiof F=Xg; Moreover, for any G,
EfG=Xg! ,with , f (‘i;EiofG=Xg:pi)gi and ; r 2 where

R =f(EfF=Xg;EfG=Xg)jE 2 E and fpv(E) f Xgg

Proof: By transition induction. u

Proposition 3.32 If E FfE=Xgand X weakly guarded inF, then E xF.

Proof:  Similar to the proof of Proposition 3.30. Now we takeR as:
R = f(GfE=Xg;Gf xF=XgjG2E andfpv(G) f Xgg
Let us consider the case thatG X . SupposeE ! ;. SinceE FfE=Xg, there exists ? s.t.
FfE=Xg! %and ; 9. By Lemma 3.31 there exists  s.t. Ff x F=Xg! ,and ? r .
By rule recwe have x F ! 5. By Lemma 3.8 and the transitivity of g ,we have 1 r 2.
With similar reasoning, one can show thatif x F! ,thereexists ;st. E! jand 1 r 2.
u
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3.3.5 Some Properties of Observational Equivalence

In this section we report some properties oh and' , especially those concerning recursions. As in
last section, we heavily rely on the \bisimulation up to" tec hniques and transition induction.

Proposition 3.33 1.E Fi E' F;
2.1f E' E+Fand :F' :F +Ethen :E"' :F.

Proof:  The rst clause is straightforward. For the second one, it suces to prove that E F.
Consider the relation

R=f(E;F)jE;F 2E;cE' :E +Fand :F' F +Eg

We show that R is a weak probabilistic bisimulation upto . Suppose thatE ) . By the condition
E+ :F ' :F and Lemma 3.17, there exists °s.t. :F ) . %and 0 Since :F F, by
Lemma 3.14 there exists ©®s.t. F) . %and ° % Then it is easy to see that g @
Similar result holds when E and F exchange their roles. u

Proposition 3.34 If E' F then xE' xF.
Proof: We show that the relation
R = f(Gf xE=Xg;Gf xF=Xg)jE;F;G2EandE"' Fg
is an observational equivalence up to' . To achieve this goal, we need to prove the important

property that ' is closed under all substitutions. See Appendix A.2 for moreletails. u

Proposition 3.35 ' is a congruence relation.

Proof: Given E' [, we need to show the following three clauses:

L ._.,L
1. ;piE iPicF

P P
2. i21:n Ei i21:n Fi
3. X E]_ ' X F]_.
Among them, the rst two clauses are easy to prove; the third ;e is shown in Proposition 3.34.
u

We use a measuraly (E) to count the depth of guardedness of the free variableX in expression
E.

d(x) € o
d(Y) ¥ 0
dy (2E) L' dy(E)+1
| & CE) € dy (E)
dx ( ipli:;i:Ei) € minfdy (i:Eig
dx ( E) % minfdy (Ei)g
dx( vE) £ dy(E)
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If dx (E) > 0 then X is guarded inE.
The following Lemma is a counterpart of Lemma 3.31.

Lemma 3.36 Letdy (G) > 1. If GFE=Xg) . thenGfF=Xg) . %suchthat g °where
R = f(GfE=Xg;GfF=Xg) ] for any G 2 Eg.

Proof: See Appendix A.3. u

Proposition 3.37 If E' FfE=Xgand X is guarded inF thenE ' xF.

Proof: We show that the relation R = f(GfE=Xg;Gf x F=Xg)] for any G 2 Eg is an observa-
tional equivalence up to' . That is, we need to show the following assertions:

1. if GFE=Xg) then there exists °s.t. Gf xF=Xg) . %and r &
2. if Gf xF=Xg) Othen there exists s.t. GFE=Xg) . and g ©

We concentrate on the rst clause since the second one is sitar. The proof follows closely the
arguments in proving Proposition 3.34, thus we only considethe case thatG  X.

We write G(E) for GfE=X g and G?(E) for G(G(E)). Since E ' F(E), we haveE ' F?2(E)
since' is an congruence relation by Proposition 3.35. IfE ) then by Lemma 3.17 there exists
1 st F?(E)) ¢ 1 and 1. Since X is guarded in F, i.e., dx (F) > 0, then it follows
that dy (F?(X)) > 1. By Lemma 3.36, there exists » s.t. F?( xF)) ¢ 2and 1 r 2. From
Proposition 3.28 we have x F  F?( xF),thus xF ' F?( xF). By Lemma 3.17 there exists
Ost. xF) ¢ %and , % From Lemma 3.8 and the transitivity of r it follows that

R ° u
It is not di cult to see that all the propositions proved in th is section for' , except for Propo-
sition 3.33, are also valid forh . In other words, h is a substitutive congruence relation.

3.4 Axiomatisations for All Expressions

In this section we provide sound and complete axiomatisatias for two strong behavioural equiva-
lences: and .. The class of expressions to be considered i

3.4.1 Axiomatizing Strong Bisimilarity

First we present the axiom systemA ., which includes all axioms and rules displayed in Table 3.3.
We assume the usual rules for equality (re exivity, symmetry, transitivity and substitutivity), and
the alpha-conversion of bound variables.

The notation A, ° E = F (and A, ° E = F for a nite sequence of equations) means that the
equation E = F is derivable by applying the axioms and rules fromA,. The following theorem
shows that A, is sound with respect to

Theorem 3.38 (Soundness of A;) If A, ° E=EthenE E°
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S1 E+0=E
S2 E+E=E
P P , ,
S3 L2l Ei = i2||_E (i is any permutation on |
S4 Li2! PiiEi= 5 PGy (i):E (i is any permutation on |
$5 ( ;pi:E) p:E gq:E=( ;pi:E) (p+qE
Rl xE=Ef xE=Xg
R2 If E = FfE=Xg, X weakly guarded in F, thenE = xF
R3 x(E+X)= xE

Table 3.3: The axiom systemA,

Proof: The soundness of the recursion axiom&1-3 is shown in Section 3.3.4; the soundness of
S1-4 is obvious, andS5 is a consequence of De nition 3.6. u

For the completeness proof, the basic points are: (1) if two xpressions are bisimilar then we
can construct an equation set in a certain format (standard brmat) that they both satisfy; (2)
if two expressions satisfy the same standard equation set,hen they can be proved equal byA,.
This schema is inspired by [Mil84, SS00], but in our case the @lnition of standard format and the
proof itself are more complicated due to the presence of botlprobabilistic and nondeterministic
dimensions.

De nition 3.39 Let X = fX1;:5;Xmg and W = fWi1;W5;:::g be disjoint sets of variables. Let
1 = fHq;:Hmg be expressions with free variables inf€ [ ¥. In the equation set : ¥ = 1€,
\Igve call ® forlgnal variables and v free vlflriables We say is standard if each H; takes the form

P Braiy * 1 Wheny WhereBrqijy = Prik ) f(ijk )Xok ). We call - weakly guarded if
there is no H; s.t. H; ! #(X;). We say that E provably satises if there are expressions
B=fEy:Eng with E; E and fov(B) W, such thatA, ° B = BfE=Xq.

We rst recall the theorem of unique solution of equations originally appeared in [Mil84]. Adding
probabilistic choice does not a ect the validity of this the orem.

Theorem 3.40 (Unique solution of equations 1) If is a weakly guarded equation set with free
variables in W, then there is an expressionE which provably satis es . Moreover, if F provably
satises and has free variables inW, thenA, " E=F.

Proof: Exactly as in [Mil84]. u

Below we give an extension of Milner's equational charactéasation theorem by accommodating
probabilistic choice.

Theorem 3.41 (Equational characterisation I) For any expression E, with free variables in
W, there exist some expression&€ = fE;;::;;Emg, with E; E and fpv(E) W, satisfying m
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equations X X
Ar " Ei = Efgy) + Whij ) (i m)
j21:n (i) j21:0(i)
where Eq (i ) k21z0(ij ) P¥ Gk ) f (k) Egigk )-
Proof: By induction on the structure of E, similar to the proof in [Mil84]. u

The following completeness proof is closely analogous to #t of [SS00Q]. It is complicated some-
what by the presence of nondeterministic choice. For exampl, to construct the formal equations, we
need to consider a more re ned relationL; o0 underneath the relation Kj o while in [Mil84, SS00]
it is su cient to just use Kjo.

Theorem 3.42 (Completeness of A,) IfE  EC°thenA, " E = EC

Proof: Let E and E° have free variables intv. By Theorem 3.41 there are provable equations
suchthatE E;, E° E?and

~ X X -
A, Ei= Efgjy + Whii ) (i m)
j21:n (i) j21:l(i)
) X X .
At Efb = Efogojo + Whoio; o) (i° md
j021:n9(i0) j021::19(i %)
with M
Ef (i) Pr (isiok ) f (k) “Egiix )
k2 1:0(i;j )
0 0 N =0 .
Erogiojo Progioj oxo) 1oqio k) Egeio oxo)’

k02 1::00(i%;j 0)
Let | = fhi;i%j E; EXg. By hypothesis we haveE; EJ, sohl;1i 2 |. Moreover, for each
h;i% 2 1, the following holds, by the de nition of strong bisimilari ty:

1. There exists a total surjective relation K j o betweenf 1;:::;n(i)g and f 1; ::;; nXi%9g, given by
Kio = fhj;j Gjhf (i;j );fXi%j%i2 1g

Furthermore, for each h;j 4 2 Kjo there exists a total surjective relation Lji oo between
f1,:50(;) )gand f1;:::;0%1%j9g, given by

Liji o0 = fhk; kqj ‘f(i;j;k ) = \?O(io;j 0k 0 and hg(i; j; k );go(io;j C. ko)l 2 1g:

P P
2. A 21y Whaig) = oz 1oy Whogiogj o).
Now, let Ljji o0(k) denote the image ofk 2 f 1;:::; o(i;j )g under Ljji o0 and LijilOj o(k9) the preimage
of k2 f 1;:::;0%i% ) 9g under Lij ojo. We write [K]iji ojo for the set L. % o(Lii o o(k)) and [k;i ojo for

iji o
Ljji OjO(Lijilojo(ko)). It follows from the de nitions that

1. If h,|0|2 |,h,|0|2 |, , O|2 Kiio and , O|2 Kiio,then ki'iO'Oz[k]i'i 0i0.
1 2 J1 9 J2 9 ji 959 i 939

2. If op 2 [KJiji ojo and & 2 [K]iji oj0, then "t (ijq 1) = "t (iiq o) @Nd Eg(ijig 1) Egiia 2)-



52 CHAPTER 3. AXIOMATISATIONS FOR PROBABILISTIC PROCESSES

P
De ne, ik = q2pdy oo Pt i) for any i%j° such that h;i% 2 | and K;j 9 2 Kjo; dene

Yoo = Q21K o0 p?o(io;j oq0 fOr any i;j such that hii 92 1 and h;j 92 Kjo. Itis easy to see
that whenever h;i%2 I, h;j 92 Kjoand k32 Lij oo then j = %oy
We now consider the formal equations, one for eachi;i 42 I:

X X
Xi;i 0= Hf (isj )i 9% 0) + Wh(i;j )
hiij %2 K0 j21:1(i)
where " X
Pt (isiik ) Pfogio; o) |«
He (i )it ooy o) ( (i9%] )) f (k) X glik ):g0(i% OO -

hkik %12 L o0 ik

These equations are provably satis ed when eactX; o is instantiated to E;, since Kjjo and L oo

are total and the right-hand side di ers at most by repeated summands from that of the already

proved equation for E;. Note that each probabilistic branch pr ¢ijx )t ik ):Eg(ijik ) In Ei becomes

the probabilistic summation of several branches like
M (pf(i:j;k )p](‘DO(iO;j oq

A2 [k o0

9\~ .

- )"t Gk ) ‘Egin )

ijk

in Hf(i;]‘ )if 0(i 0 O)fEi:Xi;i ogi, Where hH:i% 2 1, h;j % 2 Kjo and H;KG 2 Liji oo. But they are

provably equal because
P

(pf (k) p?O(i 0 0,q0y ) — Pt (ijk ) po
Q%2 [K%;; ;0 ik ik Q2 [k 050 FF O(i%j %5q0)

= PO D= P
and then the axiom S5 can be used. Symmetrically, the equations are provably sasied when each
Xii o is instantiated to Eioo; this depends on the surjectivity of Kjjo and Jjji ojo.
Finally, we note that each X;; o is weakly guarded in the right-hand sides of the formal equabns.

It follows from Theorem 3.40 that * E; = E% for eachhi;i% 2 I, and hence’ E = E°. u

3.4.2 Axiomatizing Strong Probabilistic Bisimilarity

The di erence between and . is characterised by the following axiom:
X M X M M M .
C pi i Ej = pj i Ej + ripg i Ej
i21l:n j i21l:n j i21l:n j
P
where ,,., ri = 1. It is easy to show that the expressions on the left and righ sides are strong
probabilistic bisimilar. We denote A, [f Cgby Ar.

Theorem 3.43 (Soundness and completeness of Ac) E (E% A, E=EC°

Proof: The soundness part follows immediately by the de nition of ! .. Below we focus on the
completeness part.
Let E and E° have free variables infv. By Theorem 3.41 there are provable equations such that
E E;, E° Eand
A Ei = A i m)
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A’ Ei00 = Aioo (io mO)
P P
where A; j2aen () EfGid * 210 ) Whei ) and
M ~
Ef i) Pr(iik ) f ik ) Bk )
k2 1:0(ij )

Similar for the form of A%.

Next we shall use axiomC to saturate the right hand side of each equation with some sumands
so as to transform eachA; (resp. A%) into a provably equal expressionB; (resp. B%) which satis es
the following property:

(*) For any C1;C, 2 B[ BOwith C;  C,, if C; ! 1 then there exists some , S.t.
Cy! > and i ¢ 2-

Initially we set & = & and Bo= A0 LetV = f(Cy;C2) jC1 ¢ CrandCy;Cr 2 & fAOg.
Clearly the set V is nite because there are nitely many expressions in& [ Ao, without loss of
generality, we take a pair (C1;C,) from V such that C; A% 2 MNoandcC, A 2 A& (we do
similar manipulations for other three cases, namely (i)C1;C, 2 &; (i) C1;C, 2 A% (i) C, 2 &
and C, 2 A9). If A% ! Othen for some we haveA;! . and . % by the de nition of .
If Al (obviously we are in this case if = #(X)) we do nothing but go on to pick another pair
from V to do the analysis. Otherwise is a convex combination =ry 1+ i+ 71y nandA; !
for eachj n. Hence each; must be in the form f ("¢ ik y: Eqeijik ) © Pr ik ))9k and Eg iy is a
summand of A; (so it is also a summand ofB;). By axiom C we have

M M
Arc " Bi=Bi+ i Pr ik )t Gk ) "B )
j21:n  k
Now we update B; to be to the expression on the right hand side of last equation To this point we
have nished the analysis to the pair (C1;C,). We need to pick a di erent pair from V to iterate
the above procedure. When all the pairs inV are exhausted, we end up with& and B o which are
easy to be veri ed to satisfy property (*). Observe that only axiom C is involved when updating
Bi, so we have the following results:

A EX=B% (i° m9

From now on, by using the above equations as our starting poit) the subsequent arguments are like
those for Theorem 3.42, so we omit them. u

3.5 Axiomatisations for Guarded Expressions

Now we proceed with the axiomatisations of the two weak behalural equivalences:h and' . We
are not able to give a complete axiomatisation for the whole et of expressions (and we conjecture
that it is not possible, see Section 3.7), so we restrict to te subset ofE consisting of guarded
expressionsonly. An expression is guarded if for each of its subexpressn of the form x F, the
variable X is guarded inF (cf. De nition 3.2).
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R20 E‘E: FfE=Xg, X guarLded inF, thenE = xF

L P B+ X)= X+ p(Bi+ X) L

T2 ( ;piE) pi(F+ L hi:F)+( ;piE) ( ;pghi:F)
=L( i\pi‘i:Ei) \p:(Fl-_’- thj:Fi)L \ L \

T3 P ilEi) pu(F+ L4 F)+C picE) (5 pgiFy)
=( ;picE) puF+ q:Fj)

Table 3.4: Some laws for the axiom systenA yq

3.5.1 Axiomatizing Divergency-Sensitive Equivalence

We rst study the axiom system for h. As a starting point, let us consider the systemA .. Clearly,
S1-5 are still valid for h, as well asR1. R3 turns out to be not needed in the restricted language
we are considering. As forR2, we replace it with its (strongly) guarded version, which we shall
denote asR2° (see Table 3.4). As in the standard process algebra, we needrse -laws to abstract
from invisible steps. For h we use the probabilistic -laws T1-3 shown in Table 3.4. Note that T3
is the probabilistic extension of Milner's third -law ([Mil89b] page 231), andT1 and T2 together
are equivalent, in the nonprobabilistic case, to Milner's £cond -law. However, Milner's rst -law
cannot be derived fromT1-3, and it is actually unsound for h. Below we letAgq =fR2% T1-3 g
[A (cnfR2-3¢.

Theorem 3.44 (Soundness of Agq) If Ags * E = E%thenE h E°

Proof: The rule R2°can be shown to be sound as Proposition 3.37. The soundnessTf-3 , and
therefore of Ayq, is evident. u

For the completeness proof, it is convenient to use the follving saturation property, which relates
operational semantics to term transformation, and which cax be shown by using the probabilistic
-laws and the axiomC.

LemmLa 3.45 (Saturation) 1.If E) with
ipicEis

fCi;Ei : pi)gi, then Agg © E = E +

L

2.1fE) ¢ with =f(Ci;Ei:p)gi,thenAy E=E+  piiE;

3.1FE) #(X)thenAg  E=E+X.

Proof: The rst and third clauses are proved by transition inductio n on the inference ofE ) ;
the second clause can be considered as a corollary of the rsine. See Appendix A.4 for more
details. u

To show the completeness ofAyq, we need some notations. Given a standard equation set
: @ = |, which has free variablesfv, we de ne the relations ! X P ((Var [L) X) (the
notation P (V) represents all distributions on V) as X; ! i Hi! . From! we can dene
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the weak transition ) in the same way as in Section 3.2. We writeX Xk i Xi) , with

=10 Xj :1p)g2s, k23 and 'y = . We shall call guardedif there is no X; s.t. X Xi.
We call saturatedif for all X 2 X, X ) implies X ! . The variable W is guardedin if it
is not the case thatX 1! #(W) or X; o #(W).

For guarded expressions, the equational characterisatiotheorem and the unique solution theo-
rem given in last section can now be re ned, as done in [Mil89b

Theorem 3.46 (Equational characterisation Il) Every guarded expressionE with free vari-
ablestv provably satis es a standard guarded equation set with free variables in . Moreover, if
W is guarded in E then W is guarded in .

Proof: By induction on the structure of E. Consider the case thatE - i1 Pii:Ei. For
eachi 2 1, let X; be the distinguished variable of the equation set; for E;. We can dene as
fX = o, pi:Xig[l i, i,withthe new variable X distinguished. All other cases are the same
as in [Mil89b]. u

Lemma 3.47 Let E provably satis es the standard guarded equation set. Then there is a satu-
rated, standard, and guarded equation set® provably satis ed by E.

Proof: Let be the equation set¥ = ¥ and Ay ~ E = I9fE=Xg. By using Lemma 3.45,
we show that if X; ) then Agg ~ Ej = Ei + ;pjj:Ej when f (X @ p)g, and
Agd ~ Ei = Ej + X when #(X). Repeat this procedure for all weak transitions ofE;, at last
we getAg ~ Ej = H¥E=Xg. Hence we can take °to be the equation set¥ = fo u

Theorem 3.48 (Unique solution of equations Il) If is a guarded equation set with free vari-
ables infv, then there is an expressiorE which provably satis es . Moreover, if F provably satis es
and has free variables inW, thenAg " E=F.

Proof: Nearly the same as the proof of Theorem 3.40, just replacinghe recursion ruleR2 with
R2° u

The completeness result can be proved in a similar way as Theem 3.42. The main di erence
is that here the key role is played by equation sets which are ot only in standard format, but also
saturated. The transformation of a standard equation set irto a saturated one is obtained by using
Lemma 3.45.

Theorem 3.49 (Completeness of  Agq) If E and E° are guarded expressions an& h E° then
Age  E=EC

Proof: By Theorem 3.46 there are provable equations such thaE  E;, E° E? and
Arc ) Ei = A (I m)
A E%= A% (i° mH

Forany C 2 & 1O, we assume by Lemma 3.47 thaCC is saturated. Therefore it is easy to show
that C) . impliesC! . . Let C°2 &[ A% We note the interesting property that if C h C°
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T4 "::E ="E
T5 If .E = :E+Fand :F = :F + E then :E = F.

Table 3.5: Two -laws for the axiom systemA g,

and C!  then there exists °s.t. C°! . %and |, © Thanks to this property the remaining
arguments are quite similar to that in Theorem 3.43, thus areomitted. u

3.5.2 Axiomatizing Observational Equivalence

In this section we focus on the axiomatisation of' . In order to obtain completeness, we can
follow the same schema as for Theorem 3.42, with the additicl machinery required for dealing
with observational equivalence, like in [Mil89b]. The crudal point of the proof is to show that,
if E' F, then we can construct an equation set in standard format wheh is satis ed by E and
F. The construction of the equation is more complicated than n [Mil89b] because of the subtlety
introduced by the probabilistic dimension (cf. Theorem 3.53). Indeed, it turns out that the simple
probabilistic extension of Milner's three -laws would not be su cient, and we need an additional
rule for the completeness proof to go through. We shall furter comment on this rule at the end of
Section 3.6.

The probabilistic extension of Milner's -laws are axiomsT1-4 , whereT1-3 are those introduced
in previous section, andT4 , de ned in Table 3.5, takes the same form as Milner's rst -law [Mil89b].
In the same table TS is the additional rule mentioned above. We letAg, = Agg[f T4-50.

Theorem 3.50 (Soundness of Ag) If Ago " E=F thenE"' F.

Proof: Rule T5 is proved to be sound in Proposition 3.33. The soundness df4 , and therefore of
Ago, is straightforward. u

The rest of the section is devoted to the completeness prooffdAy,. First we need two basic
properties of weak combined transitions.

Lemma 3.51 1.IfE) ¢ then :E) . ;
2. If E) ¢#(X) thenE) #(X).
Proof:  The rst clause is easy to show. Let us consider the second onelf #(X) is a convex
combination of i;:;; ,andE ) ; foralli2 1:n,then each ; must assign probability 1 to (X; 0),
thus ;| = #(X). u
: . . L.
Lemma 352 If E) ¢ with =f(i;Ei :pi)gi then Agg E=E+ piE.
Proof: It follows from Lemma 3.51 and Lemma 3.45. u

The following theorem plays a crucial role in proving the conpleteness ofA y.
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Theorem 3.53 Let E provably satisfy and F provably satisfy ©, where both and °are standard,
guarded equation sets, and leE ' F. Then there is a standard, guarded equation set® satis ed
by bothE and F.

Proof: Suppose thatX = fX1;:5;Xmg, ® = fY1;::5Yag and W = fWy; W,; g are disjoint sets
of variables. Let
k=19
O:e=p
with fpv(18) X[ W, fov(® €[ W, and that there are expressions = fE;;::;Emg and
F=fF;;;Fhgwith E;y E,Fy  F, andfpv(E)[ fpv(F) W, so that
Ago = E = BfE=Xg
Ag = F= FfE=%¥g
Consider the least equivalence relatiorR (R [ ¥) (R [ ¥) such that
1. whenever g;Z% 2R andZ ! , then there exists °s.t. Z%) . ®and R ¢

2. X1;Y1) 2R andif X1 ! then there exists °s.t. Y1) . %and Rr ©

Clearly R is a weak probabilistic bisimulation on the transition system over X [ ¥, determined by
e [! o Now for two given distributions = f(i; Xi : pi)di2i, °= f(h;;Y] 1 G)g2s, with

r ° we introduce the following notations:

K. o = f(@i;j)ji21l;j 23 "i=hyand (Xi;Yj) 2Rg

Po= fpioji®2 1; ujo="i; and (X;; X)) 2RRg fori 2|

j = fpojj®2J; vjo=h;; and (Y;;Yj0) 2 Rg forj2J
Since r it follows by de nition that if ( i;j) 2 K. o, for some; O then ;= ;. Thus we can
de ne the expression

def M Pig .
G; 0o = —_iZZij
(ij)zk, o '

which will play the same role as the expressiom; i y.f oio; o) in the proof of Theorem 3.42. On the
other hand, if = %= #(X) we simply de ne the expressionG . o e x .

Based on the aboveR we choose a new set of variableZ such that
E=fZ; Xi2X% Yj2¥and(Xi;Yj)2Rg:

Furthermore, for each Z; 2 2 we construct three auxiliary nite sets of expressions, deoted by
Aj , Bj and Cj , by the following procedure.

1. Initially the three sets are empty.

2. For each with X; ! | arbitrarily choose one (and only one | the same principle applies
in other cases too) © (if it exists) satisfying R %andY; ) . 9 construct the expression
G. oand update Aj to be Aj [f G. og; Similarly for each °with Y; ! 0 arbitrarily choose
one (if it exists) satisfying R %and X; ) ¢ , construct G. o and update Aj to be
Aj [f G; og.
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3. For each with X; ! , arbitrarily choose one © (if it exists) satisfying R %Y )¢ ©
but not Y; ) . © construct the expressionG. o and update B to be Bj [f G. og.

4. For each %with Y; ! 9 arbitrarily choose one (if it exists) satisfying R % Xi) ¢
but not X;) . , construct G. o and update C; to be Cj [f G, og.

Clearly the three sets constructed in this way are nite. Now we build a new equation set
0.2=-F

where ¥ is the distinguished variable and

(P _
Lij = ?)ZAij G if Bij [ Cij =
‘(" G2a,18B,1c, © Otherwise.

We assert that E provably satis es the equation set % To see this, we choose expressions

Ei By [ C =3

Gij = i
:E; otherwise

and verify that Ag, = Gj = Lj f6=2qg.

In the case that Bj [ Cj = ;, all those summands ofL f &=2g which are not variables are of
the forms:
M ' M '
ﬁ‘i:Ei or ﬁ‘i: Ei:
(ii)2k, o ' (e, o !

By T4 we can transform the second form into the rst one. Then by sone arguments similar to
those in Theorem 3.42, together with Lemma 3.45, we can showhat

Ago ) Lij f@:Eg: HifE:ﬁg: E;:

On the other hand, if Bj [ C; 6 ;, we let Cj = fDy;:::;D0g (Cj = ; is a special case of the
following argument) and D = |,,., D|fG=2g. As in last case we can show that

Ago  LjfG=Bg= :(HifE=Xg+ D):

L
For any | with 1 I o, let D|fG=Eg = | pxux:Ex. It is easy to see thatE; ) o with
= f(uk; Ek : px)gk- So by Lemma 3.52 it holds that

Ag =~ :Ei= :E;+ DfG=Eq:

As a result we can infer

by Lemma 3.45. Similarly,
Ag (Ei+ D)= :(Ei+ D)+ E;:
Consequently it follows from T5 that

Ag Ei= :(Ei+ D)= :(HifE=Xg+ D)= L; fG=Eq:
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Figure 3.3: Observationally equivalent statesX 1;Y; and Z

(i) \ Ajj Bij Cij
(1;1) fiaiZy 3aZzsg ; ;
(1;2) fa:Zpsg : f 1Z 130
(1;3) fa:iZoog : ;
(2;1) flaZ, 1aZxg f2aiZ,, %aZx 3:Zug :
(2;2) | faiZos; 3a:Zps 1 :Z130 : f :Z 230
(2;3) faiZg flaZ, 1:Zi1s9 :

Table 3.6: The construction of setsAj ; Bj ; Cj

In the same way we can show thatF provably satises 0 Atlast %is guarded because and °
are guarded. u

To help understanding the proof of the above theorem, we illgtrate the construction of the
equation set by a simple example. Consider the equation sets and © as follows.

X1
X2

aX, v, = lay, lavs
aXy + taX, X Y, = avYs+ :Yj
Y = av;

N[

The two equation sets describes the transition graphs in Figre 3.3 (1) and (2) respectively. Note
that if E1;E, provably satisfy , and Fy;F,;F3 provably satisfy © then E;' F;' 2 (a:Z) (cf.
Figure 3.3 (3)).

Let R be the equivalence relation that has a unique equivalence absf X 1; X 2; X3; Y1; Yog. Itis
easy to check thatR is a weak bisimulation on the transition system overX [ ¥. Now we take new
variablesfZ; j1 i 2,1 j 3g and form the setsA; ;B and C; for each variable Z; , as
displayed in Table 3.6, by using the procedure presented inlte above proof.
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We construct the equation set % based on all expressions shown in Table 3.6.

0: 7y = lazy, iazxs
Zip = (aiZyg+ :Z13)
Ziz = alx»
Zy = (3aZyp taZxp+ taiZy, iaZx; 1iZun)
Zyp = (aZxs+ 3aZy 1:Ziz+ Zi)
Zys = (aZxn+t 3aZypy 1iZi)

We can see thatE; provably satises ©by substituting E;, :Ei, E1, :Eo, :Ej, :E, for
Z11;Z12;Z13;Z21;Z22; Z 23, respectively; similarly F; provably satis es by substituting Fy, :F»,
Fs, :F1, :F5, :F3 for these variables.

Theorem 3.54 (Completeness of Ago) If E and F are guarded expressions an& ' F, then
Ag E=F.

Proof: A direct consequence by combining Theorem 3.46, 3.53 and 384 u

3.6 Axiomatisations for Finite Expressions

In this section we consider the recursion-free fragment oE, that is the class E of all expressions
which go Cot contain consﬁtructs of the form x F. In other words all expressions inE have the
form: i Pi Uj Ej + Xk

We de ne four axiom systems for the four behavioural equivaénces studied in this paper. Basi-
cally As; Asc; At ; Afo are obtained fromA;, A, Agd, Ago respectively, by cutting away all those

axioms and rules that involve recursions.

A, ¥ fsi-5g A T Af Cg
Aw E Axlf T1-3g Ao € Aulf T45g
Theorem 3.55 (Soundness and completeness) For any E;F 2 E;,

1.E Fi As” E=F;
22E ¢(Fi Ag E=F;

3. EhFi Afd‘EzF;

4. E' Fi Apw E=F.

The soundness part is obvious. The completeness can be sholwy following the lines of previous
sections. However, since there is no recursion here, we hagemuch simpler proof which does not
use the equational characterisation theorem and the uniquesolution theorem. Roughly speaking,
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all the clauses are proved by induction on the depth of the expessions. We de ne the depth of a
process,d(E), as follows.

dio) = 0

L dx) = 1
d( ;piiEi) = 1+ maxfE;g
d¢ ;Ei) = maxfd(Ei)g

The completeness proof ofA, is a bit tricky. In the classical process algebra the proof ca
be carried out directly by using Hennessy Lemma [Mil89a], with says that if E ~ F then either
‘E' ForE' ForE' :F.Inthe probabilistic case, however, Hennessy Lemma does hbold.
For example, let

E®a and F Olésfa+(% ‘a %a):
We can check that: (1) :E 6'F, (2) E 6'F, (3) E 6' :F . In (1) the distribution f(;E :1)gcannot
be simulated by any distribution from F. In (2) the distribution f(;a : %); (a;0: %)g cannot be
simulated by any distribution from E. In (3) the distribution f( ;F : 1)g cannot be simulated by
any distribution from E.
Fortunately, to prove the completeness ofAs, , it is su cient to use the following weaker property.

Lemma 3.56 (Promotion) Forany E;F 2E¢,if E F thenAy = E = :F.

Proof: By induction on d = d(E) + d(F). We consider the nontrivial case thatd > 0.

If X is a nondeterministic summand ofE, then E ! #(X). SinceE F it holds that F ) .
#(X). By Lemma 3.51 we have :F ) #(X). It follows from (the recursion-free version of)
Lemma 3.45 thatAygy =~ :F = F + X.

Let ,, pi'i:E; be any summand ofE. Then we haveE ! , with = f(Ci;Ei : pi)Gizi-
SinceE  F, there exists % with °= f(h;;F : g)gj2s st F) . %and % For any
k;l 21 with "y = "y and Ex  Ey, it follows from T4 and indLuction hypothefis that Atg = "k:Ek =
“wiiEx = "11:E = E). By S5 we can derive thatAf, © 5 PiilEi = oy, 0P% :ES, Where
the process on the right hand side is \compact”, i.e., for anyk%1°2 19 if "2, = "% and EQ, = EQ
then k%= 1° Similarly we can derive Aro ~ 5, Ghj:Fj = oy 509%h%:F% with the process on
the rigEt hand side \comEact". From 0and the soundness ofAq, it is easy to prove that
At~ jogoPR ER = oy 50G0hP:F since each probabilistic branch of one process is provably
equal to a unique branch of the other process. It follows thatAr, ~ i, P ilEi = ;5 ghjF.
Ey (a recursion-free version of) Lemma 3.52 we infeAr, ~ :F = :F + ,;qghjiF = F +

i21 PiicEi

Insummary Ag, ~ :F = F + E. Symmetrically A, = :E = :E + F. ThereforeAs, = E =
‘F by T5. u

The promotion lemma is inspired by [FY03], where a similar result is proved for a language of
mobile processes.

At last, the completeness part of Theorem 3.55 (4) can be proed as Lemma 3.56. Note that
for any k;1 2 | with ux = u; and Ex  E|, we derive As, ~ ux:Ex = uj:E| by using T4 and the
promotion lemma instead of using induction hypothesis.
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S1 E+0=E
S2 E+E=E
P P

S3 L Ei= i2||_E (y is any permutation on |
S4 Li2! PiiEi= 0 Py (i):E (i is any permutation on |
S5 ( imi:E) p:E q:E=( ;pi:E) (p+qE
P . . L .
Cc izzzn P BB = 2nn P BT o TP R

T1 LLipii(Ei+X):X+Lipi1(Ei+X) .

T2 ( Lpi‘iiEi) p:(F + thj:Fi)"'( i PCicE)  (jpghF)
=( ;P iE) DZ(FLIr i G h:Fy) L

Lpi‘iiEi) pi(F + Ld Fp)+C piE) (5 pgiFy)

( ypiE) p:(F+ 9 :Fj)

T4 B =E

T5 If .E = :E+Fand:F = :F +Ethen :E = :F.

T3

n -
—

R1 x E = Ef xE=Xg

R2 If E= FFE=Xg, X weakly guarded in F, thenE = xF
R2° If E = FfE=Xg, X guarded in F,thenE = xF

R3 x(E+ X)= xE

P
In C, there is a side condition ;,,., ri =1.

Table 3.7: All the axioms and rules

It is worth noticing that rule T5 is necessary to prove Lemma 3.56. Consider the following two
expressions: :a and :(a+( % ‘a %a)). It is easy to see that they are observational equivalent.
However, we cannot prove their equality if rule T5 is excluded from the systemAy, . In fact, by using
only the other rules and axioms it is impossible to transform : (a+( % a %a)) into an expression
without a probabilistic branch p :a occurring in any subexpression, for some with 0 <p < 1. So
it is not provably equal to :a, which has no probabilistic choice.

3.7 Summary

In this chapter we have proposed a probabilistic process calllus which corresponds to Segala and
Lynch's probabilistic automata. We have presented strong lisimilarity, strong probabilistic bisimi-
larity, divergency-sensitive equivalence and observatioal equivalence. Sound and complete inference
systems for the four behavioural equivalences are summasez in Table 3.8.

Note that we have axiomatized divergency-sensitive equivi@nce and observational equivalence
only for guarded expressions. For unguarded expressions whe transition graphs include -loops,
we conjecture that the two behavioural equivalences are unecidable and therefore not nitely
axiomatizable. The reason is the following: in order to deale whether two expression€& and F are



3.7. SUMMARY 63

strong equivalences| nite expressions all expressions

As: S1-5 A;: S1-5,R1-3
¢ Asc: S1-5,C A: S1-5R1-3,C
weak equivalences| nite expressions guarded expressions
h Atq: S1-5,C,T1-3 | Agq: S1-5,C,T1-3,R1,R2 ©
' Afo: S1-5,C,T1-5 | Ago: S1-5,C,T1-5R1,R2 ©

Table 3.8: All the inference systems

observationally equivalent, one can compute the two sets
Se=f JE) g and Sg=f jF) g

and then compare them to see whether each element & is related to some element of5Sg and vice
versa. For guarded expressiong and F, the setsSg and Sg are always nite and thus they can
be compared in nite time. For unguarded expressions, theseets may be in nite, and so the above
method does not apply. Furthermore, these sets can be in nie even when we factorize them with
respect to an equivalence relation as required in the de niton of weak probabilistic bisimulation.
For example, consider the expressioe = (%a % :X ). It can be proved that Sg is an in nite
setf ;ji 19, where

= 1@0:(L 2)iGE 1)y
Furthermore, for each i;j 1 with i 6 j we have ; 6r ; for any equivalence relationR which
distinguishesE from 0. Hence the setSg modulo R is in nite.

It should be remarked that the presence of -loops in itself does not necessarily cause non-
decidability. For instance, the notion of weak probabilistic bisimulation de ned in [Seg95, CS02]
is decidable for nite-state PA. The reason is that in those works weak transitions are de ned in
terms of schedulers, and one may get some weak transitions & are not derivable by the ( nitary)
inference rules used in this paper. For instance, considehe transition graph of the above example.
The de nition of [Seg95, CS02] allows the underlying probaliistic execution to be in nite as long
as that case occurs with probability 0. Hence with that de nition one has a weak transition that
leads to the distribution = f(a;0: 1)g. Thus each ; becomes a convex combination of and (E),
i.e. these two distributions are enough to characterise alpossible weak transitions. By exploiting
this property, Cattani and Segala gave a decision algorithmfor weak probabilistic bisimulation in
[CS02].

In this chapter we have chosen, instead, to generate weak tresitions via ( nitary) inference rules,
which means that only nite executions can be derived. This gproach, which is also known in the
literature ([SL94]), has the advantage of being more formaland in the case of guarded recursion
it is equivalent to the one of [Seg95, CS02]. In the case of ungrded recursion, however, we feel
that it would be more natural to consider also the \limit* wea k transitions of [Seg95, CS02]. The
axiomatisation of the corresponding notion of observatioml equivalence is an open problem.
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Chapter 4

Axiomatisations for Typed Mobile
Processes

In this chapter we study the impact of types on the algebraic theory of the -calculus. The type
system has capability types, which give rise to a natural andpowerful subtyping relation { the main
source of challenges and interests of this chapter. We comgr two variants of typed bisimilarity,
both in their late and in their early version. For both of them, we give complete axiomatisations
for the closed nite terms. For one of the two variants, we provide a complete axiomatisation for
the open nite terms.

The contents of this chapter are presented in the following oder. In Section 4.1 we introduce
the syntax, semantics and typed bisimilarity for a version o the -calculus without parallelism.
This small language already shows the major obstacles for @matisations and hence makes the
presentation of our ideas neater. In Section 4.2 we set up a omplete axiomatisation for closed terms.
In Section 4.3 we axiomatize the typed bisimilarity for all nite terms. In Section 4.4 we examine
other equivalences and relate their axiomatisations to theresults obtained in the previous sections.
In Section 4.5 we show how the operator of parallel compositin is admitted in the language. The
e ect on the axiomatisations is to add an expansion law to elminate all occurrences of the operator.
Finally we end this chapter with some concluding remarks.

4.1 A Fragment of The Typed -calculus

In this section we review the -calculus (without parallelism), capability types, the usual operational
semantics, typed labelled transition system as well as type bisimilarity.

4.1.1 Standard Operational Semantics

We assume an in nite set of channels, ranged over by; b; :: 3 and an in nite set of variables, ranged
over by x;y;:::. We write for the unit value (we shall useunit as the only base type). Channels,
variables and are the names ranged over byu;v;:::. Below is the syntax of nite processes (also

65
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called terms).
P:Q 0] P jux:T)PjuvPjP+Qj(a:T)P]J'PQ
oo [u:v]j:'j"‘

It has the usual constructors of nite monadic -calculus: inaction, pre x, sum and restriction.

The match constructor is replaced by a more generatondition, ranged by ';  etc, and produced
by match, negation and conjunction. Mismatching like [u 6 v] abbreviates: [u = v]. We also use
_, which can be derived from” as usual. Here'PQ is an if-then-else construct on the boolean
condition ' . We omit the else branchQ when it is 0. We have not included an operator of recursion
because our main results in this chapter are about axiomatiations for nite terms. However, all
results and de nitions in Section 4.1 remain valid when recusion is added.

There is a channel-binding and a variable-binding operator In ( a : S)P the displayed occur-
rence of channela is binding with scopeP. In u(x : T):P the occurrence of variablex is binding
with scope P. An occurrence of a channel (resp. variable) in a process isound if it lies within
the scope of a binding occurrence of the channel (resp. vatige). An occurrence of a channel or a
variable in a process isfree if it is not bound. We write fn(P) and fv(P) for the set of free names
and the set of free variables, respectively, irP. We usen(' ) for all names appearing in' . When''
has no variables, [ ] denotes the boolean value of .

When fv(P) 6 ;, P is an open term. We can make open terms closed by the use ofosing
substitutions, ranged over by ; % ;; , which are substitutions mapping variables to channels
and acting as identity on channels (thus similar to the concet of ground substitution used in term
rewriting systems [Zan03]). In the calculus, the distinction between channels and variables simpli es
certain technical details; see for instance the discussionn the rules for substitutivity of pre xes
in Section 4.3: the rules are di erent depending on whether he pre xes use channels or variables.
(This is not the case in the untyped case: for instance, [PS95loes not distinguish between variables
and channels, but it is quite straightforward to adapt the work to the case where there is such a
distinction.)

The standard operational semantics is presented in the latestyle in Table 4.1. The symmetric
rule of sumis omitted. In a transiton P ! PO the closed termP may become open inP? after
performing the action . As usual there are four forms of actions: (interaction), a(x : T) (input),
ab (free output), a(b: T) (bound output). We also use to range over the set of extended pre xes,
which contains the tau, the input pre xes, the output pre xe s and the bound output pre xes. The
bound output u(a : T):P is an abbreviation of (a : T)ua:P. As in Section 2.2.2 we usesubj( ),
bn( ) and n( ) to stand for the subject, bound name and names of . As usual we identify terms
up to alpha-conversion.

We recall the capability types, as from [HR04, HR02b]. The sityping relation <: and the typing
rules for processes are displayed in Table 4.2. We writ& :: TYPEO mean that T is a well-de ned
type. There are three forms of types for channel namesi T;0S and bhT; Si, they correspond to
the ability to receive values of type T, send values of typeS, or to do both. For simplicity we often
abbreviate bhT; Ti to bT (which is actually the simple channel type]T given in Section 2.2.5). As
shown in [HRO2b], this extension to the original I/O types (cf. Section 2.2.6) makes it possible to
de ne two partial operators meet (u) and join (t). But the de nitions of the two operators are
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in out

aix :T):p T p ab:p 1 p
0
tau ——— sumLpO
P! P P+Q! P
' = | 0 ' = | 0
true[ J= True P! _ P false[ J=False Q! _ Q
"PQ ! P PQ ! Q
open P 1 p0 a6 p s P! P° bEn()
(b:T)p " po (b:T)P 1 (b :T)PO

Table 4.1: Transition rules

rather long, so we do not repeat them and recommend the readdo consult Section 6 of [HR02b]*
Intuitively, the meet (resp. join) of T and S is the union (resp. intersection) of their capabilities.

Proposition 4.1  Given typesT;y; T, and S with Ty <: T».
1. f TuSaedened, fori=1;2,thenTiuS<T,uS;

2. If Tit Saredened, fori=1;2,thenTit S< Tyt S;

3. TiuT, Tq;

4. T1t Ty = To.

Proof:  Following the de nitions of meet and join, the result is straightforward by structural
induction on types. u

A type environment is a partial function from channels and v ariables to types; we write .
and  for the channel and variable parts of , respectively. A type environment is unde ned on
in nitely many channels and variables (to make sure it can always be extended). We will often
view, and talk about, . as a set of assignments of the forna : T, describing the value of . on all
the channels on which . is de ned. Similarly for . If ( u) is de ned and takes the formi T or
bhT; Si, then the predicate ( u)# holds and we write ( u); for T, otherwise the predicate ( u)6#
holds, indicating that has no input capability on u. Similarly for ( u), and ( u)#, (output
capability). Notice that ( u)# is covariant and ( u)#, is contravariant.

Proposition 4.2 Suppose thatu;v 2 dom() and ( u) <: ( V).
1. 0If ( v)# then ( u)i < ( V)i;

2. 1f ( V)#, then ( Vv)o <: ( U)o.

1The only modi cation we have made is as follows. If two channe | types T and S have no common capability,
then in our setting Tt S is unde ned, while in [HR02b] Tt S is de ned to be a maximal type, which is a supertype
of every channel type.
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Types:
T TYPE T;S:TYPES<T
unit :: TYPE i T;0oT :: TYPE bhT; Si :: TYPE
Subtyping:
T<TO TO<: T T<TO
T<T T<TO iT<iTO
T<TO T<TO T<TO
oT%<: oT bHT;Si <:i T° bhS; TG <: oT
T<TO S<8°
bhT; S% <: bhT ¢ Si
Typing rules:
(u<T TP " Q X:T P Ui T
Tu: T TP+Q Tu(x:T):P
a: T P Tu:oT v T TP
"0 “(a:T)P T uviP
P TP Q n(") dom()
P T'PQ

Table 4.2: Types and typing rules

The typing rules for processes are standard except for contibns. We impose no constraint for
the types of names appearing in conditions. The reason is disissed in Section 1.4. This mild
modi cation does not a ect the proofs of the following two re sults [PS96, HR02b, HR04].

Lemma 4.3 (Substitution) If "~ a:Tand ;x:T  P,then ~ Pfa=xg.

Theorem 4.4 (LTS subject reduction) Suppose " P andP ! PC
1.if = then PO
2.iff =a(x:T)then (a)# and ;x:T PO
3.if = abthen (a)#,  b: (a),and " PO
4.if =a:T)then (a)#, ;b:T b:(ayand ;b:T  PC

4.1.2 Typed Labelled Transition System

Two known TLTSs were presented in [BS98, HR04], both of them w&re given in early style. We
prefer to write a TLTS in late style, so as to de ne the late version of bisimilarity in a concise way.
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Red o Out ((a)#
1P ! ]PO ]ab:P!ab ub: (a) 1P
( a)#o P !ab 01po -
i la(x:T):P aper) X:T]P oper ]](b:T)P a]fb:T) aO]Po
Res ]P ! O]PO aﬁm( ) sum ]p | O]PO
I(a:TPt °](a:T)P? [P+Ql  0]p°
True [ 1= -|-rU'e 1P !o 2] po Faisel 1= Fal'se 10 !0 ;)] QO
1'PQ ! 1P Q] S

Table 4.3: Typed LTS

First we extend the subtyping relation to type environments, but only considering the types
of channels. So <: meansthat , = ,dom( () dom( ¢)and .(a) <: (&) for all
a2 dom( o).

De nition 4.5 A con guration is a pair  ]P which respects some type environment, i.e., <:
and ° P.

The above de nition implies the condition fv(P) dom( ), because we havév(P) dom( ,)
by ° Panddom( )= dom( )by <: . Since alpha-conversion is implicitly used throughout
this thesis, we may assumebn(P)\ dom() = ;. Here there exists a mild dierence from the
de nitions of con guration given in [BS98, HR04]. We do not r equire the environment to have
knowledge of all the free channels used by . The less knowledge it grasps, the weaker testing
power it owns when observing the behaviour oP. In Table 4.3, we present a transition system built
on this de nition. In the premise of rule Red P !  P?stands for the standard reduction relation
of the typed -calculus, as given in Table 4.1.

Using the partial meet operation, we can extend a type envirament to uu:T, which is
just ;u: T if u62dom(), otherwise it diers from at name u because the capability of this
name is extended to be (u)uT (if ( u)u T is unde ned, thensois uu:T). Inthis way we can
dene ju , asthe meet of two environments 1 and . In rule Out, the process sends channel
b to the environment, so the latter should be dynamically extended with the capability on b thus
received. For this, we use the meet operator, and exploit thdollowing property on types:

R<:TandR<:Simply TuSdenedand R<:Tu S

for any type T;S and R. (This property does not hold for the capability types as in Section 2.2.6.)

The next three fundamental lemmas describe various propeies of the TLTS. They underpin
many later results. The well-de nedness of our TLTS is basetbn Lemma 4.6. The close relationship
between processes and con gurations is re ected by their coesponding transitions, as can be seen
in Lemma 4.7. Finally Lemma 4.8 says that the more capabilites an environment owns, the more
behaviours it can observe on a process.
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Lemma 4.6 (TLTS subjection reduction) If ]P is a con guration which respects and ]P !
9P O then 9P Ois also a con guration, respecting ° where
1. if = then %= and °=
2.if =akx:T)then °= ;x:Tand %= ;x:T.
3.if =abthen °= ub: ( a) and °=
4. if =a:T)then °= ;b: ( a) and °= ;b:T.

Proof: By induction on depth of inference. LTS subject reduction theorem is needed. u

Lemma 4.7 Suppose that ]P is a con guration.

1. P! PO P! PO

agx:T)

2. P X TIPOi (a)#oandPaix:T)

PO

3. 1P '™ ub:(aylP% (a)# andP 1™ PO

4. 1P "7 b (ayP%i (a)# andP H°T) po
Proof: By induction on depth of inference. u
Lemma 4.8 Suppose that P ! 9PO% <: and ]P is acon guration. Then ]P ! 9p o
and %<: O
Proof:  Straightforward by using the preceding lemma. u

4.1.3 Typed Bisimilarity

When comparing two typed actions, to require them to be syntectically the same is too restrictive.
For example one would not be able to say @ : T;)ua is bisimilar to ( a : T,)ua under the environ-
ment = u: bobT,whereT; = boT; T, = bbT. Therefore we do not check types in the bisimulation
game. We shall writej j for the action where its type annotations have been stripped o .

Pl Qreads\P and Q are bisimilar under type environment ". The type environme nt is
used as follows: . shows the channels that are known to the external observer &ing the processes
in the bisimulation game, and the types with which the obsener is allowed to use such channels. By
contrast,  shows the set of variables that may appear free in the process and the types for these
variables show how the observer can instantiate such varidls (in closing substitutions). Therefore:
the channels of . are to be used by the observer, with the types indicated in ; the variables
in , are to be used by the processes, but the observer can instaate them following the types
indicated in .

A process isclosedif it does not have free variables; similarly a type environment is closed if it
is only de ned on channels. Otherwise, processes and type emonments are open We rst de ne
| on the closed terms, then on the open terms. Bisimilarity is gven in the late style; we consider

the early style in Section 4.4.2.
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De nition 4.9 A family of symmetric binary relations over closed terms, irdexed by type envi-
ronments, and written fR g , is a typed bisimulation wheneverP R Q implies that, for two
con gurations P and ]Q,

1.if P! 9P %and is not an input action, then for some Q% 1Q ! 9% j j=i i
and P°R o QO
2.if P R 9P 9 then for someQ® ]Q ax:) NQP%and for all bwith . b: ( a), it

holds thatP%b=xg R Q% b=xg.

Two processesP and Q are typed -bisimilar, written P | Q, if there exists a typed bisimulation
fR g suchthatP R Q.

The dierence w.r.t. typed bisimilarity as in [BS98, HRO04] i s that, in the input clause, the
type environment is not extended. In other words, the knowl edge of the external observer does
not change through interactions with the process in which the value transmitted is supplied by the
observer itself (by contrast, the knowledge does change whethe value is supplied by the process;
cf. rule Out in Table 4.3). Thereforel is optimised for reasoning on nite systems. To deal with
in nite systems, it is more suitable to use the alternative egquivalence where the environment can be
extended. We shall turn to this topic in Section 4.4.1.

De nition 4.10 Two processesP and Q are bisimilar under the environment = S - -
written P 1 Q, if ]P, ]Q are congurations and, for all 8 with  ° ®: B, it holds that
Pfé=g | . Qff=g.

The intuition behind the above de nition is that channels ar e capabilities while variables are
obligations of the environment. The environment is obligedto Il in the variables at the speci ed
types. Once the obligations are determined, they cannot betsengthened or weakened. That's why
variables are invariant in the subtyping relation on type environments given before.

Below we report three basic properties of typed bisimilarity.

Lemma 4.11 If Pl Qand <: %thenPl Q.
Proof: By Lemma 4.7, 4.8 and the de nition of typed bisimilarity. u

The intuition behind this lemma is quite clear. When two processes exhibit similar behaviours
under an environment with stronger discriminating power, they are also indistinguishable by a
weaker environment. In the presence of distinction betweerchannels and variables, we have the
following interesting property for typed bisimilarity.

Lemma 412 If Pl st QandS<TthenPI| .sQ.
Proof: It follows easily from the de nition of typed bisimilarity o n open terms. u

As we said before in Section 1.4, generally speaking, typedehavioural equivalences are not closed
under injective substitutions. Nevertheless, if a substittion only maps channels and variables to
other channels and variables of the same types respectivelgalled type-preserving substitutior), we
do have the property seen in untyped -calculus, as expressed by the lemma below. (With a slight
abuse of notation, here we use to stand for type-preserving substitutions.)
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Lemma 4.13 If PI QthenP | Q for injective on fn(P;Q)[ dom() and is the
type environment which maps (u) to ( u) for all u2 dom() .

Proof:  Similar to the proof in untyped setting. It follows from the f act that [P ! 9P O
implies P ! 01P © | for injective type-preserving substitution . u
Since all processes are nite, and we do not use recursive tgs, inP | Q, the environment

can always be taken to be nite (i.e., de ned only on a nite number of channels and variables):
it is su cient that has enough names fresh w.rt. P and Q, for all relevant types. This can be
proved with a construction similar to that in Lemma 4.34. In t he remainder of the chapter all type
environments are assumed to be nite. (If is innite, our pr oof systems in Section 4.2 and 4.4.1
remain sound and complete; the axiom system in Section 4.3 ®ill sound, but its completeness proof
relies on the niteness of .) We should stress, however, that all results and de nitions presented
up to this section are also valid for non- nite processes (ie., processes extended with recursion) and
for in nite type environment.

4.2 Proof System for the Closed Terms

In this section we present a proof system for the closed terms

The proof system P for typed bisimilarity is composed of all inference rules ad axioms in
Table 4.4. Whenever we writeP = Q it is intended that both ]JP and ]Q are con gurations
(see De nition 4.5 and the explanations immediately follow the de nition), and in this section P;Q
are deemed to be closed terms. The rules are divided into sixgups, namely those for: substitutivity,
sums, looking up the type environment, conditions, restri¢cions and alpha-conversion. The rules that
are new or di erent w.r.t. those of the untyped -calculus are marked with an asterisk.

Tin* shows that an input pre x is not observable if the observer has no output capability on
the subject of the input. This comes as no surprise because ¢only means that the observer uses
for testing a process is to communicate with it. When no commuication happens, he/she simply
regards the process being tested a. Tout* is the symmetric rule, for output. Twea* gives
us weakening for type environments, corresponding to Lemmat.11. In Ires* , the side condition
a 62dom() is added for the sake of clarity, but formally it is not nee ded because of the de nition
of con gurations and our convention on bound names. Note tha di erent types Ti; T, are used for
the processes in the conclusion. We cannot repladees* with two simpler rules such as

fP= Qthen(a:T)P= (a:T)Q
(a:T)P = (a:Ty)P,

for equalities like (b : bi T)ab:i{x : i T):0=4.0p1 ( b : boT)ab:i{x : 0T):0 could not be derived (due
to the constraints given by the well-typedness of processgsSimilarly for rule linc* .

linc* and lout* are the rules for substitutivity for input and output pre xe s. In linc* , the
well-de nedness of the two con gurations Ja(x : T1):P and Ja(x : T2):Q implies the condition:
(@)o<:T fori=1;2. Inlout* , the observer knowledge of the type ob may increase when the
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linc* If Pfb=xg= Qfb=xgforall bwith .~ b: ( a), then
a(x : T1):P = a(x:T2):Q.

lout* If P= up(a Qthenab:P= ab:Q

Itau If P= Qthen :P = :Q

Isum fP= QthenP+R= Q+R

Ires* IfP= Qthen(a:T;)P= (a:T,)Q a62dom()

S1 P+0= P

S2 P+P= P

S3 P+Q= Q+P

S4 P+(Q+R)= (P+Q)+R

Tin* If ( a)6fthena(x:T):P= 0

Tout* If ( a)6ffthenau:P = 0

Twea* IfP= Qand <: %thenP= oQ

Ca 'PQ = P if[']= True

Cb 'PQ = Q if[']= False

R1 (a:T)0= 0

R2 (a:T):P = 0 ifsubj( )=a

R3 (a:T)b:S)P= (b:S)(a:T)P

R4 (a:T)P+Q)= (a:T)P+(a:T)Q

R5 (a:T)y:P = :(a:T)P ifaé2n()

A = Q if P alpha-equivalent to Q

Table 4.4: The proof systemP for the closed terms
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processes emitb themselves (for the type under whichb is emitted is composed with the possible
type of bin ).

Compared with the proof system for untyped -calculus [PS95],Tin* and Tout* are the main
di erences.

Theorem 4.14 (Soundness of P) If P P= QthenPI| Q.

Proof: By constructing appropriate bisimulations. u

The completeness proof uses a standard strategy. By using ¢haxiomsS1-4, R1-5 and Ca-b,
we can transform each closed term into a canonical form ; ;:P;. If P and Q are bisimilar, their

canonical formsP?and Q° are provably equal by induction on the depth of P+ QC

Theorem 4.15 (Completeness of P) If Pl QthenP "~ P = Q, whereP and Q are closed
terms.

Proof: This proof di ers from the completeness proof of untyped -calculus [MPW92] in one place:
instead of showing that each summand ofP is provably equivalent to a summand in Q, we only
require that each active summandof P is matched by an active summand ofQ, and vice versa.
By active summand, we mean that the pre x can perform actions allowed by the environment .
More precisely, ifai (x; : Ti):P; is a summand ofP and ( &)#, then this is an active input pre x.
Similarly for output pre xes. Inactive summand is provably equivalent to 0 by Tin* and Tout* |,
thus can be consumed byS1. After nite steps of transformation, we have P~ P = {‘:1 i:P
andP " Q= j’":l i :Qj, where all summands inP and Q are active.

Supposethat | = a(b: T1). Then ]P AP ;b: ( a@)i]Pi. Hence thereis some; = a(b: Ty)
such that P; | . ), Qj. Since the depth ofP; + Q; is less than the depth ofP + Q, we can
use induction hypothesis to deriveP = P; = .. 4, Qj. By A we assume that the bound name
béxdom(), so ;b: (@i = wub: ( a)i. Therefore we haveP * ab:R = ab:Q by lout* , and
furthermore P~ a(b: T1):Pi = a(b: T2):Q; by lres* .

Suppose that ; = a(x : T;). Then P ATy 9P;. There must exist a ; = a(x : Tp)
such that Pifb=xg | Qifb=xg, for all bst. " b: ( a),. Now observe that the depth of
Pifb=xg+ Qjfb=xg is less than the depth ofP + Q, thus it follows from induction hypothesis that
P~ Pifb=xg= Q;fb=xg. Using linc* we inferthat P~ a(x : T1):Pi = a(x : T2):Q;.

Other cases can be analyzed similarly. As a result, each aett summand ofP is provably equal
to some active summand ofQ. Symmetric arguments also hold. u

4.3 Axioms for Typed Bisimilarity

In this section we give an axiom system for typed bisimilarity and prove its soundness and com-
pleteness. This axiomatisation is for all nite terms of the language given in Section 4.1, including
both open and closed terms.
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4.3.1 The Axiom System

The axiom systemA for typed bisimilarity is presented in Table 4.5. Roughly speaking, it is obtained
from P by adding some axioms for dealing with conditions. In open tems usually the conditions
cannot be simply eliminated by Ca-b , so we need the axiom&£1-7 and R6-7 to manipulate them.
We use the notation' ) to mean that ' logically implies ; in C1 the condition '
means that' and are logically equivalent. In view of C3 and R6, axiom R1 is redundant. The
rule linc* of P now becomes the concise axiortin* in A. Tvar* shows that a variable can only
be instantiated with channels that in the type environment have types compatible with that of
the variable. Tpre* is used to replace names underneath a match. It implies, in th presence of
other axioms of A, a more powerful axiom: k = a]P = [x = a]Pfa=xgif ( a) <: ( x), which
substitutes through P. In the untyped setting, Tpre* has no side condition. Here we need one to
ensure well-typedness of the process resulting from the sahbtution, since the names in the match
can have arbitrary | and possibly unrelated | types.

The following axioms and rules are derivable fromf S1-S4, C1-C6, Tvar* g. More derived
rules are given in Appendix B.1.

Ccs8 P= P +:'P C9 PQ = P +:'Q

Clo [ _ P= P +P Cl1 '(P+Q= P +Q
Chnl J[a=bP= 0Oifaéb Tvnl |[x=a]P= O0if a62dom()
Chn2 [a6bP= Pifaéb Tvn2 [x6 aP= P ifa6Xom()
Tvl P = 4.1 Oifthere existsnoa2 dom()s.t. ( a<T

Note that in lin* and lout* , the free names of the input and output pre xes are channels ather
than variables. Below we discuss:

1. the unsoundness of the rules in which (some or all) the charels are replaced by variables;
2. other rules, that are valid for variables;
3. why these other rules are not needed in the axiom system.

Intuitively the reason for (1) is the di erent usage of channels and variables that appear in a type
environment: the information on channels tells us how thesehannels are to be used by thexternal
environment, while the information on variables tells us how these varidles are to be instantiated
inside the tested processes

To see thatlin* is unsound when the subject of the pre x is a variable, take . ' a: boT;b: oT

and %' c.;X 1 bhoT;bTi. Then we have

y=0 I y:(x,0

because (x)o = bT and nocin satis es the condition ¢ C:bT and can therefore instantiate
y. However,
x(y:oT)[y=hb B x(y:oT):O0:

To see this, let us look at the possible closing substitutios. In dom( ), a is the only channel
satisfying .~ a: ( x), and so the only substitution we need to consider if a=xg. After applying
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lin* IfP= .(a,Qthena(x:Ti):P = a(x:T2):Q

Icon If P Qthen'P = 'Q

Tvar* [x6 a] [x6an]P= O0iffb2dom( ¢)j (b<:(x)g f a; ;amg
Tpre* [x=a]:P = [x=a]( fa=xg):P if ( &) <: ( x)

C1 'P = P if"

Cc2 [a=pbP= [a=hQ ifa6b

C3 'PP = P

Cc4 'PQ = :'QP

C5 (P)= [~ P

c6 " (Pi+ P2) (Qu+ Q)= 'P1Qi+'P2Q;
Cc7 "(P)= " (P ) ifbn( )\ n(")=;

R6 (a:TMa=ulP= 0 ifa6u

R7 (a:Mu=v]P= [u=v](a:T)P ifa6 u;v

Pnflinc*, Ca-b, R1 ¢

Table 4.5: The axiom systemA

this substitution, the resulting closed terms are not bisimilar:
a(y:oT)[y=b b a(y:oT):0

This holds because the observer can serfdalong a and, after the communication, y is instantiated
to be b, thus validating the condition y = b and liberating the pre x . When the subject of the
pre X is a variable, the following rule is needed in place oflin* :

vl IfP= . Qthenx(y:T1):P = x(y:T2):Q

In rule lout* , both the subject and object of the output pre x are channels. The rule is also

valid when the object is a variable. However, it is not valid if the subject is a variable. As a

counterexample, let . def 5 i T,b: bbT and def ;X :bh T;bTi. Then we haveal a7t O

but xa:a b xa:0 because, under the substitutionf b=xg, it holds that ba:ab ba0: When the
subject of the pre x is a variable, we need the following rule

V2 IfP= ,y.(x,QthenxviP = xvQ

We show, by means of an example, why ruleiin* and lout* are su cient in the axiom system
(rules Ivl and Iv2 are derivable, see Appendix B.1). Consider the equality

x(y i Tyl x(y:ioT):0
where %" a:bib T;b:ibT;x:bibT. First, we infer
y= o0 for %= ;y:ibT (€8]

proceeding as follows:
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y = o [y=hby+[y6 by by C8

= o [y=hy by Tvar*
= o [y=Dbb by Tpre*
= o [y=D0 by Tin*
=0 0 by C3

Then we derivex(y :ii T):y= x(y:ioT):0in a similar way:

x(y i T)y
= [x=alx(y:ii T):)y+[x 6 aJx(y:ii T)y by C8
= [x =alx(y:ii T)y by Tvar*
= [x = ala(y :ii T)y by Tpre*
= [x = ala(y :i0o T):0 by (1), lin*, Icon
= x(y:ioT):0 by Tpre*, Tvar*, C8

4.3.2 Soundness and Completeness

The soundness of the axioms displayed in Table 4.5, and thefere of A, is easy to be veri ed.
Theorem 4.16 (Soundness of A) If A P= QthenPI| Q.

The remainder of the section is devoted to proving the compleeness ofA. The schema of the
proof is similar to that for the untyped -calculus [PS95]. The details, however, are quite di erent
An example of this is the manipulation of terms underneath input and output pre xes mentioned
above. We discuss below another example, related to the issuof invariance of bisimilarity under
injective substitutions. In the untyped case, the processx j a (the operational semantics of parallel
composition is standard and will be given in Section 4.5) is qual to x:a+a:x+ whenx is instantiated
to a, to x:a+ a:x otherwise. This can be expressed by expanding the process byeans of conditions:
that is, using conditions to make a case analysis on the podse values that the variable may take.
Thus, x j ais expanded to k = a](x j a)+[ x & a](x j @). Now, underneath [x = a] we know that x will
be a, and thereforex j a can be rewritten asx:a+ a:x+ , whereas underneath 6 a] we know that x
will not be a and thereforex j a can be rewritten asx:a+ a:x. In general, the expansion of a process
with a free variable x produces a summandX6 a;] [x6 a,]P wherea;; ;a, are all channels
(di erent from x) that appear free in P. The mismatch [x6 a;] [x 6 an] tells us that x in P will
be instantiated to a fresh channel, which is su cient for all manipulations of P involving X, since
bisimulation is invariant under injective substitutions. In the typed calculus, by contrast, knowing
that x is fresh may not be su cient: we may also need the information on the type with which x
will be instantiated. This type may be di erent from the type T of x in the type environment: x
could be instantiated to a fresh channel whose type is aubtypeof T (the behavioural consequences
of this type information can be seen in the example at the end bSection 4.4.1). We have therefore
adopted a strategy di erent from that in the proof for untype d calculi: rather than manipulating
processes that begin with \complete" sequences of mismat@s | as in the untyped case | we try
to cancel them, using ruleTvar* ; further, the conditional expansion of a process takes intaccount
also the names that appear in the type environment.
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De nition 4.17 A condition ' is satis able if [' ] = True for some closing substitution . Given

a set of namesV, a condition ' is complete onV if for some equivalence relationR on V, called
the equivalence relation corresponding td , it holds that' ) [u=v]i uRvand' ) [u6 v]i

: (URv), for any u;v 2 V.

In the untyped setting which does not distinguish channels fom variables, like in [PS95], every
complete condition is satis able, and two substitutions sédtisfying the same complete condition relate
to each other by some injective substitution. In this chapter, however, due to the distinction
between variables and channels and the concept of closing Isstitution, there exist some conditions
which are complete but not satis able. For instance,’ =[x = a]*[a= b " [b6 c]is complete
onV = fx;a;b;a, with the equivalence classedf x; a; bg;fcgg. This condition is not satis able
because closing substitutions do not map channels to otherhannels, then (a)= a6 b= (b) for
any closing substitution , i.e., [ ] = False. In a typed setting, there are even fewer conditions
which are satis able. For a given type environment = ;& : P we are only interested in closing
substitutions of the form (called legal substitution on ): = fB=eg where .  ®:F. As to the
simple condition [x; = a], with x;;a2 dom(), if ( a) 8: T;, the substitution fa=x;g is illegal and
not considered. So no legal substitution can satisfy¥; = a], i.e., the condition is not satis able.

Lemma 4.18 If ' is complete on don{) and; dom( ,) dom() , there is at most one legal
substitution which satis es ' .

Proof: Since' is complete, there is a corresponding equivalence relatioR. For ' to be satis able
by a closing substitution on dom(), each equivalence class of R, say fu;; ;ung, must meet
the following two conditions.

Not all u; are variables. Otherwise, for anya 2 dom( ¢);' ) |[u;i 6 a. Then' )
[ () & a] for all a 2 dom( (), contradicting the de nition of closing substitution, wh ich
maps variables to channels, i.e., (uj) 2 dom( ¢).

There is no more than one channel in any equivalence class. B¢rwise, leta; bbe two channels
and' ) [a=b,then’' ) [a= b, ie,[ ]= False

As aresult, in each equivalence class there is one and only ethannel, possibly with some variables.
So the class looks likefa;x1;  ;Xp 1gwheren 1. The substitution which satises ' must map
all the variables in the equivalence class into its unique chnnel. Moreover, to ensure that' is
satis ed by a legal substitution, there is a third constraint imposed on the equivalence class:

(a)< (xj)foralli n 1.
All these conditions determine the uniqueness of the legalubstitution, if it exists. u

Lemma 4.19 If ' and are complete conditions on donf) and are satis ed by the same legal
substitution on , then ' ()

Proof: ' ~ s also satis able by the same legal substitution. Then' ( '~ because

and are complete conditions. u



4.3. AXIOMS FOR TYPED BISIMILARITY 79

The following lemma shows that in the presence of complete culitions, it is su cient to test
one substitution for typed bisimilarity of open terms.

Lemma 4.20 LetP 'P andQ 'Q ° with ' complete on don{) . If is a legal substitution

on , satises' andP | _Q ,thenPI| Q.

Proof: By Lemma 4.18, besides there is no other substitution = fe=egwith . e:F which
can satisfy ' . In other words, (P 9 | _ 0l _ ('Q 9 . Therefore we haveP |  Q by the
de nitions of typed bisimilarity. u

As in [PS95], the de nition of head normal form exploits complete conditions. Here the di erence
is that we only consider those conditions which can be satised by some legal substitutions, while
in [PS95] all complete conditions are involved because allfdhem are satis able.

De nition 4.21 (head normal form) We say thatP is in head normal form w.r.t. if P is of
the form
X 0
Yiil P
i
where for all i,

1. bn( ;) 62dom() ;
2. ' i is complete on don{) and satis able by some legal substitution on ;

3.

-o

="' if jis an input or free action;

V .
4, ' 0=",1( v2dom () [@a6 v])if j=u(a:T).

-0

The proof of completeness is established by induction on thélepth, d(P), of a head norm form
(hnf) P. Its depth is de ned as:

Q.

do) %

e

0
dc L, i it %) = 1+ maxfd(P)jl i ng

Q.
=

Lemma 4.22 For each processP and environment , with fv(P) dom( ), there is someH of
no greater depth thanP and in hnf w.rt. , suchthatA™ P = H.

Proof: By structural induction on processes. LetV = dom(). We consider two interesting cases.

The rstiswhen P :P C Let x be any variable inV. If for each channela2 V, ( a) 6: ( x),
then we useTvl to derive that A~ P = 0. Otherwise, supposeVy = fa;; ;ang collects
all channels inV such that ( a) <: ( x). As in the untyped setting [PS95] we can infer that
A P= i”;l i - iP% where each ; is complete onV, but not necessarily satis able by some
legal substitution on . There are two occasions where ; is not satis able.

1. If ;) [a=blfora;b2 dom( .)and a6 b, we useCnnl togetA"> ;: {P°= O

2.If i) [x6 a;] [x6 a,] we can useTvar* to derive that A~ ;: {P°= O
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So we can remove the summand; : ;PPif ; is not satis able. All other summands are satis able
by some legal substitutions because ;i ) [x = a] foronea 2 V, and ) [x 6 b] for any other
b2 dom( ).

The second case is whe® Q R . By induction hypothesis Q and R can be transformed
into hnfw.rt. © A° Q= i i fQandAT R= L i PRy Let us examine the
general case thatn;m > 0. By C9 and C11, it is easy to see that

0 x
ATP= LMl kNl R

i=1 j=1
Clearly can be reduced to a disjunctive normal formwizl VLl "k wheres;t  land'y is
a match [ug = vi] or mismatch [ug 6 v]. Let Q%= i: %Q;. We transform each summand
[ ~ i]1QP as follows.
W, V

.Ll\} W)™ QP bycCl
’\V 1= K)IQP by C1
A QP by C10

AL A QY = R(Nizl

~ b

[

:1(i
o[

x n x

1L

V
Now we ass?;t that each summand [; » f:l ' 1 1QP is provably equal to 0 or QP
Let k= |, 'wift>1,and = Trueift=1. Soby Cl wehaveA" [ i* | ' wlQP=

[ w” k™ i1QY Here' \; may be a match or mismatch. We look at match rst. Let ' 3 =[Ux =

Vi1 ] for someugs ; k1 S.t. Ukg 6 Vi -

1. Ifugr;vike 2V, then [ w1 » ™ ] is semantically equivalent either to Falseorto [ « * ]
because ; is complete onV. That is, we can infer A~ [ g » ¢~ ilQ°= OorA"
[ ™ k™ ilQP= [ w” i1Q%

2. If uk1;vka 62V, then uy ;v are channels becausdv(P) V. By Cnnl we getA °
[ k™ i1Q%= o

3. Ifug 2V and vy 62V, then vy is a channel butuy,; can be either a channel or a variable.

(@) uky is also a channel. We inferA™ [ 1 * k" i]Qioz 0 by Cnnl.

(b) uks is a variable, i.e.,ux; 2 B. We infer A~ [« » «” i1Q°= O0by Tvnl.

When ' ; is a mismatch [ux; 6 vk ] we apply similar arguments. In Case 1 the result is the same.
In the last two cases, usingCnn2 or Tvn2 we infer that A~ [ 0 » «~ i1Q°= [« 1Q%
Since there are onlyt components in }=1 '« , We can repeat this inference for at most times and
eventually get either A~ [ ; # }=1 "wlQP= OorA” [~ }=1 "wlQP= QN

Similar result can be gotfor [~ ;] j: 'R; as well.

In summary we have shown that each summand oP can either be removed or put into the form
of the summands of a hnf. u

Theorem 4.23 (Completeness of A) If P1 QthenA™ P= Q.
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Proof: Let = ;B : B. If there is no legal substitution on , i.e., no awith . a:®, then
by Tvl we havethatA™ P= 0= Q.

Below we suppose that there exist legal substitutions on . By Lemma 4.22 we assume thaP
and Q are in hnf w.r.t. . Let

X X
A P= i iR and A Q= i jZQjZ

i J
For any summand ' ; i:P; of P, let ; be a legal substitution on which satises '; (actually
i is the only legal substitution satisfying ' ;, according to Lemma 4.18). So if'; ) [x = a]
then (a) < ( x) and x ; = a. By using Tpre* we can transform the action ; into ; j
which contains no free variable. For example, if ; = xy and'; ) [x = a]” [y = b], then
ixy:Pi = NixXy P ab:R. Furthermore, if the action ; ; is disallowed by the environment
(e.9., i i = aband ( a)6# similar for input actions), then by Tin* and Tout* the summand

"i i:Pj is provably equal to O and thus can be consumed by51. After nite steps of transformation,
all remaining summands are active, i.e., can perform some #ons allowed by . We do similar
transformation for Q.

Now we prove by induction on the depth of P + Q that each active summand ofP is provably

equal to some active summand ofQ. An active summand ' ; ;:P; of P gives rise to a transition
JdP i ! 9Py . SinceP I Q, we haveP ;I _ Q i. So there is a matching transition
JQ i V' %Q; i contributed by some active summand ; ;:Q; of Q, with ; satised by ;.
By Lemma 4.19 we know that' ; () j. From the de nition of | _ we have:
1.if § i = i Q= then P; ; | CQj i
2.if = j ;= ab for some channelsa;b then P; i | b a) Q i;
3.if j j=a(b:Ty)and j ; = a(b: T,) for some channelsa;bthen P; i | 4. ( &), Qi i;
4.if ; j=a(x:Ty)and ; ;j = a(x : Tp), for somea and x, then for all cwith ¢~ c: ( &),

it holds that P; ifc=xgl . Q; ifc=xg.

Let us analyze the last two cases in details. In Case 3,; is also a legal substitution on
;b (a)j. By Lemma 4.20 one can infer thatP; | .. 5 Q. By induction hypothesis
A" P = p(a Q. By lout*, Ires* Icon and C1 it can be inferred that A = ' a(b :

T1):Pi = ja(b: T2)Q;. The required result is got by using Tpre* .

In Case 4, we have thatP; ifc=xg!| . Q; ifc=xg for all c satisfying the conditon = c:
( @)o. Note that P; = ' {P%and Q; = Q. By Lemma 4.18, any substitution = fe=; d=xg,
with " e:®;d: ( a)o, which can satisfy' ; and ;, must coincide with on variablesg. That
is, = fd=xg. ThereforeP; | _ Q; . For any other substitution,say %[ i J=[ ; 9= False,
and soP; °I 0l _ Q; ° Consequently for all we haveP; | _Qj ,ie,Pil 4. (a),Q.
Now applying induction hypothesis, A~ P; = ..( 4, Q;. Itfollows that A" a(x : T1):P; = a(x:
T2):Q; by lin* . Then we can inferA™ ' :P; = i j:Qj byusinglcon, C1 and Tpre* , in the

listed order. u
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4.4 Other Equivalences

In this section we study a variant bisimilarity proposed in [HR04], which allows extension of en-
vironments and enjoys a nice contextual property. Proof sytems for closed terms are given. An
indirect axiomatisation is got by resorting to the system A of Section 4.3. We also show that the
di erence between late and early style of typed bisimilarity is characterised by one axiom.

4.4.1 Hennessy and Rathke's Typed Bisimilarity
Proof System for Closed Terms

In the input clause of | (De nition 4.9), the type environment is not extended. By c ontrast,
extensions are allowed in the bisimilarity used in [HR04]. W denote with m the variant of |
which allows extension; its de nition is obtained from that of| by using the following input clause:

agx:T) a‘x:S)

if P 9P © then for some Q% ]Q 9Q%and ; 90 p: ( a), implies
P%¥b=xg R . oo Q% b=xg, for any channelband closed type environment °Qwith dom( 2§\
(fn(P;Q) [ dom()) = ;.

Similarly, can be extended in the de nition on open terms.
Lemma4.24 If Pm QthenPI| Q.

In m , the environment collects the knowledge of the observerelative to the tested processes,
in the sense that the environment only tells us what the obsever knows of the free channels of
the processes. In contrast, inl , the environment collects the absolute knowledge of the observer,
including information on channels that at present do not appear in the tested processes, but that
might appear later | if the observer decides to send them to th e processes. The main advantage
of m is that the environment is allowed to invent an unbounded number of distinct names, so
it is more suitable for in nite systems. On the other hand, |  allows us to express more re ned
interrogations on the equivalence of processes, for it gigeus more exibility in setting the observer
knowledge. Indeed, whilem-equivalences can be expressed using (Lemma 4.24), the converse is
false. For instance, the processes

p def a(x : boT):[x = y] Q def a(x : baT):0

are in the relation |, for %" a: oboT;b: bbT;y : obT. However, they are not in a relationm

for any : the observer can always create a new channel of typéoT, and use it to instantiate both
x and y, thus validating the condition [x = y].

In the following lemma we give two properties ofm . They are analogous to Lemma 4.11 and
4.13 respectively, and can be proved as their counterparts.

Lemma 4.25 L.IfPm Qand <: %thenPm oQ.

22.f Pm QthenP m Q for injective on fn(P;Q) [ dom() and is the type
environment which maps (u) to ( u) for all u2 dom() .
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An important property which is enjoyed by m but not by | s as follows.
Lemma 4.26 If Pm Qanda62n(P;Q)[ dom() ,thenP m 5.7 Q.

This lemma says that increasing capabilities on irrelevantchannels does not raise an observer's
discriminating power. The reason is that the observer alredy has the ability to create new channels,
since in the de nitions of bisimulations we test all channek with appropriate types for the case of
input.

Lemma 4.27 It holds that a(x : T1):P m a(x : T»):Q, if the following two conditions are satis ed.
(i) Pfb=xgm Qfb=xgfor all bwith " b: ( a)o;
(i) given c62n(P;Q)[ dom() , Pfc=xgm ..t Qfc=xg for all T <: ( a)o.

Proof:  The action of the con guration Ja(x : T1):P can be matched by that of Ja(x : T2):Q.
So we only show thatPfb=xg m . o Qfb=xg for any band °with dom( 9\ fn(P;Q) = ; and
: 9 b: ( a),. There are two possibilities:

1. b2 dom(). When 0=, the result follows from the hypothesis (i). For other © we get
the result indirectly by using Lemma 4.26.

2. b 62dom(). We consider the case that °= b: T with T < ( a),. Base on this case,
the result for other %with %= b: T; %can be inferred from Lemma 4.26. From (ii)
we know that Pfc=xg m ...t Qfc=xg: Since bisimulation is insensitive to injective type-
preserving substitutions by Lemma 4.25 (2), we havePf c=xgfb=g m .,.1 Qf c=xgfb=a@. That
is, Pfb=xgm . o Qf b=xg, which is the required result.

u

We can derive a proof system form with a simple modi cation of that for | in Section 4.2. Let
PO be the system obtained fromP by replacing rule linc* with linc
linc © If Pfb=xg= Qfb=xgforall bwith . b: ( a),, and
given c 62n(P; Q) [ dom(),
Pfc=xg= .1 Qfc=xgforall T <: ( &),
then a(x : T1):P = a(x : T2):Q.
The quanti cation on T in the premises is nite: any type has only nitely many subty pes.

Theorem 428 P°° P= Qi Pm Q, whereP and Q are closed.

Proof:  According to Lemma 4.27, rulelinc ° is sound. The soundness of other rules is easy to
show. The completeness proof is similar to that of® (Theorem 4.15). u

Indirect Axiomatisation

The previous de nition of m involves in nitely many substitutions. Nevertheless we show in the
following lemma that there exists an e cient characterisation of the equivalence which employs
only nitely many substitutions. This characterisation re sult relies on the assumption that the set
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of subtypes of any type is nite and the environment contains nitely many variables (the terms
could even be extended with non- nite operators such as reasion, as long as they contain nitely
many free variables). First, we introduce a notation. Let ® = Ty; ;T,. There are only nitely
many di erent types, say Si;:::;Sm, each of which is a subtype of somé&; fori n. Then we pick
n fresh names (which do not appear in ;P and Q) a; ;ap for each type S; and extend in
the following way.

Env( ;1?;P;Q)d=ef [fak:Sijo<i m;0<k n;akx 62n( ;P;Q)g

Lemma 4.29 Suppose def ;& B. If for each legal substitution on Env( ;F;P;Q) it holds

that P Mgy (o BPQ) Q ,thenP m Q.

Proof: Let 1= Env( ;PF;P;Q), and the length of the tuple ¥ be n with n > 0. We prove

a stronger resultP m .. Q and then conclude by Lemma 4.25 (1). We shall show that

Pf8=g m ,. o QfB=eg for any  and closed environment °s.t. dom( 9\ fn(P;Q) = ; and
1; 2" 8:F. We proceed by induction on the number of names appearing it but not in dom( 1),

which is de ned as follows.
def

num(;) =
num (@) def num(b, by, 1)+1 if b, 6-210m( 1)
num(b, b 1) otherwise
Base step. Suppos@um(8) =0. When = ;, the result follows from the hypothesis. For other

0 the result is got indirectly by using Lemma 4.26.
Inductive step. Suppose that the result holds for all® which satisfy the conditions in the hypothesis
and num(®) k. Given another ® with num(®) = k + 1. Without loss of generality we assume that

there exists ac 62dom( 1) and! nsuchthatby = b, = =h=candh 6 cforalli>1. Then
1; %can be rewritten as ,;c: S; for some , and S sit. S T; for all j |. Choose one
name fromfajy; ;an g, say a; , which is di erent from any names in b+1; ; by, and construct
a substitution
= faj =x1; ;a5 =X b+ =X41;  sbh=XegQ
Obviously >~ aj :T1; ;& Ti;ber tTiea; by i To andnum(ay; , aj:be; b)) K

By induction hypothesis P m , Q . From Lemma 4.25 (2) we have
P fc=ajg m ,rc=a; g Q fCc=3y 0

e, PfB=®g m ,icm, ¢ QfB=g. As @ 62dom( »fc=g; g), by Lemma 4.26 we getPfB=gm |,
Qff=gfor 3= ofc=gga :Si= 1; 9 which is just the required result. u

Below we establish a property ofl , corresponding to Lemma 4.26 form . It allows the
extension of in a limited way. The proof employs the concept of depth of a processP, written
d(P), which we de ne as follows.

do) % o dP + Q) %" maxfd(P):d(Q)g
d:P) % 1+ dp) dPQ) % maxfd(P);d(Q)g
d(a:s)P) £ dP) dPjQ) %' dP)+ dQ)
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One can verify that if P ! QP %then d(P) > d (P9 and fn(P%) fn(P)[ bn( ).

Lemma 4.30 Given two closed termsP and Q, let = 0;C :T;u¢6 :Twithn dP+ Q)
and ¢ 62n(P;Q) forall i2 1:xn. If PI QthenP | ..t Q for a62n(P;Q)[ dom() .

Proof: By induction on the depth of P + Q. If d(P + Q) = 0 then it is obvious that P | 4.1

0l .7 Q. Below we supposa(P+ Q) > 0. If ;a:T]P ! 9P 9there must exist some s.t.
0= 00a:T becausea does not a ect the transition. In other words, we have P ! 9P O

SinceP |  Q, we have a matching transition ]Q ! °fQ0 wherej j=j j. It follows that
;a:T]Q ! 0093 : T]QY There are two cases:

1. is not an input action. In this case = 9%0and Pl «» Q% By induction hypothesis we
have POl w,.1 QO

2. is an input action b(x : S). Then for eachd with  * d: ( b), it holds that P%¥d=xg |
Q% d=xg.
(@ If d2 dom( o) with o~ d: ( b, thenn d(P + Q) >d(P%d=xg+ Q%d=xg) and
¢ 62 (P % d=xg; Q¥ d=xg) for i 2 1::n. By induction hypothesis we haveP%d=xg| ..t
Q% d=xg.
(b) If ¢ : T;u56 0 T 7 d: ( by, then without loss of generality we may assume that
d = c;. It can be checked thatn 1 d(P + Q) 1 d(P%d=xg+ Q%d=xg) and

¢ 62in(P% d=xg; Q% d=xg) for i 2 2::n. We can now appeal to induction hypothesis and
get the result that P¥d=xg| ...t Q¥ d=xg.

(c)ifa:T a: ( b thenT < ( bpandthus = c;: ( b)o, which implies P%¥ ¢=xg|
Q% c;=xg. As fa=qg is an injective type-preserving substitution, we have

P%¥ci=xgfa=cgl fazc,q Q¥ C1=xgfa=cig

i.e., Pfa=xgl fa=,qg Q¥a=xg. Now observe that
.n 1 dP+Q) 1 dP%a=xg+ Q%a=xg),
ii. ¢ 62n(P%a=xg;Q%a=xg) for i 2 2:n,
iii. ¢ 62n(P%a=xg;Q%a=xg) [ dom( fa=cg).
By induction hypothesis we haveP%¥a=xg | ¢ a=c,g.c;. 1 Q¥ a=xg. Note that fa=cg;c; :

T= ;a:T.

In summary, foreachdwith ;a:T " d: ( b),, italwaysholdsthat P¥a=xgl ...t Q¥a=xg,
which is the required result.

u
We know from Lemma 4.24 that | is weaker than m . This gives rise to an interesting
guestion: whether there exists some such that under the extended environment ; we have

that PI . Qi P m Q. We shall give a positive answer to this question, though we @l not
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succeed in obtaining the counterpart of Theorem 4.23 fom. The encountered problem is discussed
at the end of this subsection.
We de ne the depth, d(T), of a type T, indicating the maximum number of nesting of capabilities
in it.
d(unit )=0 diiT)= d(oT)=1+ d(T)
d(bhT; Si) =1+ maxfd(T);d(S)g
Let ° P. Each name inP has a type, either recorded in the syntax of® orin . If Tq;:::;T,
are all such types,d( ;P) is maxfd(T;) j 1 [ ng. Now, if ]P; is a con guration, for
i = 1;2, then there are type environments ; such that ; < and ; ° P;. In this case, we
setd(Py; P2; 1; 2) asmaxfd( 1;P1);d( 2;P2)g. There are only nitely many di erent types with
depth less than or equal tod(P1;P2; 1; 2), say Si1;:::;Sm, and  is de ned on nitely many

Si, wheren = maxfk; d(P; + P2)g, and construct a type environment

Env( ;P1;P2; 15 2)=fa; :S; jO<i m;0<]j ng:
We say that Py m Py under 1; ,if j<: and i P (i=1;2).
Lemma 4.31 If PLm P under 1; ,thenPy | gny( PP, 4o ) Pa

Proof: By Lemma 4.26 we haveP1 m .gny ( .p,:p,; .. ,) P2. Then the result follows from Lemma
4.24. u

In the above lemma, P1; P, can be either closed or open. For the opposite direction, weansider
closed terms rst.

Lemma 4.32 If ]P; respects ;, P; is closed, fori =1;2,and Py | .gny ¢ :py:ps: 4 5) P2, then
Pim P,.

Proof: By induction on the depth of P; + P,. In the cased(P; + P,) = 0, it is immediate that

P1 m O0Om P, Below we supposed(P; + P;) > 0. Let = Env( ;P1;P2; 1; 2). Since

dom( )\ fn(P1;P2) = ;, all actions of the con guration ; ]P; can be performed by ]P3,

and vice versa. Suppose that [P, ! 9P 9. It is easy to see that there is a matching transition
P2 ! 9P 3.

1. If is not an input action, then j j=j j, %= %and P21 o P2 Suppose that

9P O respects O fori = 1;2. Clearly d(P%PS; 9 9)  d(P1;P2; 1; 2) by Lemma 4.6.

From Lemma 4.30 we haveP?| |, Pdwhere ;= % Env( %P&PY 9 9). Now it

follows from Lemma 4.11 thatP? | ogny ( opops, o 9) P5: By induction hypothesis we get
Plom 0 on.

2. If is an input action a(x : T), then P¥b=xg | . PXb=xgforall bwith ; " b:

( @)o. Note that ; 1 for some 1 = Env( ; ( a)o;P% P by the de nition of

Env( ;®;Py;P) given in the beginning of this subsection. So for allc with 1~ ¢: ( a)o
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we have PX¥c=xg | . PJfc=xg: It can be checked that 1]P,¥c=xg is a con guration

respecting ?dgf i; fori=1;2. As

d( 1 PifeaxgPfexg 13 ) d( iPuiP2; 1 2)
we havePfc=xgl , P c=xg, where
2= 5 GEn( 1PEeaxgPleaxg 1 9)

by Lemma 4.30. It follows from Lemma 4.11 thatPfc=xg | , PXc=xg where 3= 1,
Env( 1;PXc=xg;Pdfc=xg; ?; 9). By induction hypothesis we get PXc=xg m , PJ¥c=xg:
By Lemma 4.29 it follows that PYm . a), P2, which is the required result.

u
Lemma 4.33 If ]P; respects , fori=1;2, and Py | gn( pyp,: ;) P2thenPrm Po.
Proof:  Similar to the second case of the proof in Lemma 4.32. Let = ;g : F and =
Env( ;P1;P2; 1; 2). Then for any legal substitution on ; we have thatP; | . P, :
We also have ; ; forsome ;= Env( ;%;P1;Py). Soforall = femwgwith ;  e:F
we haveP; | . P, . One can prove that 1]P; is a con guration respecting ?dgf i
Obviously d( 1;P1;P2; $ 9 = d( ;P1;P2; 1; 2),s0P; | , P, for some environment
2= ¢ L Env( 1;P1iPa; § 9). ltfollows that Py | env( ypapa,: 99 P2: By
Lemma 4.32 we haveP; m , P, , which implies Py m P, by Lemma 4.29. u

Combining Lemma 4.31 and 4.33 we have the result below.

Lemma 4.34 Pym Pyunder 1; 20 P1 | gnv( pyp,: ) P

1,
As a consequence of this lemma, we obtain the following theem.

Theorem 435 Pym Pyunder 1; 20 A" P1= e ( PPy 1: ) P2

1,

Directly axiomatizing m appears far from straightforward due to complications entaled by sub-
typing. We consider an example. LetT %" ynit and

o
llo
o,

a:oboT;y:obT

o
llo
o,

R :(( c:bT)ycc+ a(x :boT):[x = y] )
R: % :((c:bT)ycO+ a(x:boT)[x = y] )
R> def :(( ¢ :bT)ycc+ a(x : boT):0):

It holds that
R+R;+Rom R;+ Ry

Herey can be instantiated by channels with subtypes ofobT, which can be seen in Figure 1.2 (b).
When vy is instantiated by a channel with type boT, we can simulateR with R;. For other subtypes
of obT, we can simulateR with R,. That is, we have two equivalent processes, sap and Q, with
a free variabley, and the actions from a summand ofP have to be matched by di erent summands
of Q, depending on the types of the channels used to instantiatg. It appears hard to capture this
relationship among terms using axioms involving only the sandard operators of the -calculus.
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4.4.2 Early Bisimilarity

All bisimilarities considered so far in this chapter are in the late style. As usual, the early versions
are obtained by commuting the quanti ers in the input clause of bisimilarity. For example, typed
early bisimulation is de ned as in De nition 4.9 except for u sing the following input clause:

it P T

]Q aEX:S)

As in the untyped case, the di erence between late and early quivalences is captured by the axiom
SP [PS95]:

9P O then for eachb with . b: ( a), there exists someQP such that
9Q%and P%b=xg R Q% b=xg.

SP a(x : T1):P + a(x : T2):Q
= a(x : T):P +a(x:T2):Q+ a(x : T3):([x = ulPQ)
All results in this chapter also hold for the early versions d the equivalences, when ruleSP is added.
For example, by letting the early version of| bel ¢ A. be A[f SPgand P, beP [f SPg, we can
establish the counterparts of Theorem 4.15 and 4.23.

Theorem 4.36 1.PI1 ¢ Qi P P= Q,whereP and Q are closed;
2.P1®Qi A" P= Q.

Proof: See Appendix B.2. u

4.5 Adding Parallelism

So far the only -calculus operator that we have not considered is parallel@mposition. When it is
admitted, Table 4.1 should be extended with the following three transition rules (their symmetric
rules are omitted).

. o ab 0 a(x:S) o
par PL P’ bn( )\Of_n(Q)- , comP !t P (o3 s
PiQ! P%Q PiQ! P Q%b=xg

a(b:T) o a(x:S) o
close P p 2 ‘ 5

PjQ! (b:T)(P°% Q%b=q)

In the typed setting, we incorporate the standard typing rule

< p e
“PjQ
into Table 4.2. The TLTS shown in Table 4.3 is now extended wih one rule:
]P ! °1P° bn( )\ n(Q) = ;

Par

IPjQ! °1P%Q
After the above modi cations, all de nitions and results in  Section 4.1 are still valid.
To lift the results in Section 4.2, 4.3 and 4.4 to the full -calculus, it su ces to enrich Table 4.4
with the two rules in Table 4.6. As in untyped -calculus, the expansion lawE* is used to reduce
the parallel composition of two terms into the sum of paralld-free terms. In the typed setting we add
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Ipar*  Assume (]P respects i1, (]Q respects ,,and = o, Env( o;P;Q; 1; 2).
fP= Qand "~ RthenPjR= QjR
E* AssumeP i"i i:Pyand Q i i j.Qj whereno ; (resp. ;) binds

a name free inQ (resp. P). Let ]P j Q respect . Then infer:
. P, . P . P ,
PiQ= i (RijQ+  j :(PIQ)+ o [ 57U =V)]Ry

where ; opp j;u;;v; and R are de ned as follows:

1. jisuiw, jisvj(x:T)and (w)<:T;then Rj isP;jQ;fw=xg;

2. jisui(w:S), jisvij(x:T)and S <:T;thenRj is (w : S)(P; j Q;fw=xg);
3. the converse of (1) or (2).

Table 4.6: Two rules for parallel composition

conditions on types in order to check the typability of the resulting processR;; . Rule Ipar* says
that if cannot distinguish P from Q, then it cannot distinguish P j R from Q j R either, provided
that: (i) contains enough fresh channels; (i) R requires no capabilities beyond the knowledge of
. Note that we cannot do without the rst condition, i.e., th e rule cannot be simpli ed as:

Forany ,ifP= Qand "~ RthenPjR= QjR

which is unsound forl (though it is sound for m). The point is that when comparing P j R and
Qj R, the observer may rst increase his knowledge by interactirg with R, then distinguish P from

Q by the new knowledge. For example, let a bT;e:bT;b: T and

p & ax:T):[x6 b Q ¥ a(x:T):0 R OIgf( c :T)ec:
ItiseasytoseethatP | Qand ~ RbutP jRbB Q] R. After the interaction with R,
the environment evolves into ;c: T. Later the new channelc may be used to instantiate x, thus
validating the condition x 6 b and liberating the pre x

The soundness ofE* is easy to show. To prove thatlpar* is sound, we de ne a family of
relationsR = fR g where

R =f((a:P)(PjR;(a:B)QJR)JPI 4 oQ u R
= oEnv( 0;PiQ; 1 2)i ou P respects i;a:
and ou 9Q respects y;a:®; forsome o; ° 1; L0

Then it can be proved that R is a typed bisimulation.
In general, if P I Q then the equality P = Q can be inferred in two steps:

1. By E*, Ipar* and Twea* we inferP = P%and Q = Q% where both P% and Q° are
parallel-free terms.

2. After the above preprocessing job, we infeP°= QPby the proof systems and axiomatisations
presented in previous sections.



90 CHAPTER 4. AXIOMATISATIONS FOR TYPED MOBILE PROCESSES

4.6 Summary

In this chapter we have constructed a proof system and an axim system for typed bisimilarity (1 ).
For the variant bisimilarity proposed in [HR04], we have provided a proof system for closed terms,
and an indirect axiomatisation of all terms that depends on the system ofl . Early versions of
the systems are obtained by adding one axionSP. All the systems are proved to be sound and
complete.

As partial meet and join operators do not exist in the original capability types [PS96], we adopt
in this chapter one of their extensions, Hennessy and RathKe types [HR04]. An alternative path to
take is to go in the opposite direction and add some syntacticconstraints to capability types, thus
only certain shapes of types are legal and partial meet and jo operators exist upon the legal types.
For instance, in synchronous localised -calculus there are two forms of legal types:oo 0B and
bo oB whereB is a basic type. It is easy to see that the two operators exist bcause whenever
T <:S holds, then either T SorT bT%S oT%for someT? which means:

1. fT<Ty;ToandT1 6 Tothen Tyu T = T;
2.ifT1;To,<:TandTy 6 Tothen Tyt To=T.

Therefore axiomatisation in synchronous localised -calculus is a special case of the problem ad-
dressed in this chapter.



Chapter 5

Termination of Mobile Processes
by Typability

Many modern programming languages are equipped with some tions of typing to statically detect
programming errors. In mobile process calculi types are shan to be useful for reasoning about the
behaviour of processes. In this chapter we use type-based thed to reason about the terminating
behaviour of mobile processes.

We give four type systems that ensure termination of well-typed -calculus processes. The
systems are obtained by successive re nements of the typed ¢he simply typed -calculus. For
all (but one of) the type systems we also present upper boundso the number of steps well-typed
processes take to terminate. The termination proofs use tdmiques from term rewriting systems.

We show the usefulness of the type systems on some non-triviexamples: the encodings of prim-
itive recursive functions, the protocol for encoding sepaate choice in terms of parallel composition,
a symbol table implemented as a dynamic chain of cells.

5.1 Preliminary Notations

To begin with, we introduce some notations about vectors, patial orders and multisets. We write

0; as the abbreviation of a vectory;n, 1; ;nii wherek 1,n;=1andn; =0forall j 6 i
@ ij k), and O for a vector with all 0 components. The binary operator sum can be de ned
between two vectors. Let' ; e e ne 15 s nai, "2 e hm;;m; 1;  ;mii and k |, First we

extend the length of' , to k by inserting (k ) zeros to the left of m| to get an equivalent vector
' 9. Then we do pointwise addition over two vectors with equal length. We also de ne an order
between two vectors of equal length as followshny;ny, 1;  ;nai h mg;myg 1;  ;mai i 91 Kk
with n; = m; forj>i andn; <mj.

Let U be a set and> a strict partial order on U. Following [Bez03], we write a multisetM over
U inthe form M =[x1;:::;Xn], wherex; 2 U for1l i n (whenn =0 we get the empty multiset
[]); we use M]M 9 for the union of M and M ©, and write >, for the multiset ordering (on
multisets over U) induced by >. A multiset becomes smaller, in the sense of , , by replacing one

91
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. u:]"vV x:v P u:]V. Tw:Vv TP )
T-in - T-out - T-nil —
u(x):P uw:P 0
TP TP a:L " P
T-par 7Q T-sum 7Q Tres—
PjiQ P+Q aP

Tu]"Vox:V. TP 8v2os(P);lv(v) <n
T lu(x):P

T-rep

Table 5.1: The core type system

or more of its elements by any nite nhumber (including zero) of smaller elements. It can indeed be
shown that if > is well-founded then so is> ,, [Bez03].

In this chapter we make no syntactic di erence between chanels and variables, both of them are
names. We shall restrict our attention to the termination pr operty of closed processes, i.e., processes
without free names ofbool or Nat types.

5.2 The Core System: the Simply Typed -calculus with
Levels

Our rst type system for termination is obtained by making mi Id modi cations to the types and

typing rules of the simply typed -calculus (cf. Section 2.2.5). We assign a level, which is aatural

number, to each channel name and incorporate it into the typeof the name. Now the syntax of
channel type takes the new form:

L = 1"V channel types
n = 1;2 levels

For convenience of presentation, in this chapter we only stdy type systemsa la Church, and
each name is assigned a type a priori. Hence we do not annotal®und names with types. We write
X : T to mean that the namex has type T. A judgment = P says that P is a well-typed process, and
© w:V says that w is a well-typed value of type V. Our core type system is displayed in Table 5.1.

The main di erence from the simply typed -calculus lies in the rule T-rep, in which os(P) is a
set collecting all names inP which appear as subjects of those outputs that are not underaath any
replicated input (we say this kind of outputs are active). Speci cally, os(P) is de ned inductively
as follows:

Q.
1L

e

os(0) % os(uw:P) = fug[ os(P)
os(u(x):P) £ ; osPjQ = os(P)[ o(Q)
osu(x):P) £ os(P) osP+Q) %= os(P)[ o(Q)

o
o
e

os( aP) os(P)
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The function Iv(v) calculates the level of channelv from its type. If v:]"V then Iv(v) = n.
The purpose of using levels is to rule out recursive inputs gdfor instance, in the process

ajlabjba (5.1)

where the two replicated processes can call each other thuggducing a divergence. Our type system
requires that in any replication !'a(x):P, the level of a is greater than the level of any name that
appears as subject of an active output ofP. In other words, a process spawned by the resource
la(x):P can only access other resources with a lower level. Process.1) is therefore illegal because
la:b requireslv(a) > Iv (b) while !'b:a expectslv(b) > Iv (a). For the same reason, for the process
p & a(x):!Ix:c jlcb to be well typed it is necessary that names received along clmmel a have a
higher level than lv(c). Therefore P j abis illegal, since, due to the right component ofP, we have

Iv(c) > Iv (b). As a nal example, consider the process
ajla:(cjba): (5.2)

In this process, there is an output ata underneath the replication at a. The output at a, however, is

not active in the body cj!b:a of the replication because it is located underneath anothereplication.

Therefore this process is typable by our type system. We call this type system and write T ~ P

to mean that P is a well-typed process undefT . The subject reduction theorem of the simply typed
-calculus can be easily adapted tor .

Before proceeding to prove the termination property of welltyped processes, we need some
preliminary notations. If name a appears as the subject of some active output in a subterm oP
and lv(a) = i, then we saya has at least oneoutput (subject) occurrenceat level i. It does not
matter whether a is free or bound in the whole proces$. For example, let

Q désf( d :]1*Nat)(a(x):b(y):(xy j cd:cdd3)):

It is easy to see thatQ is a well-typed process if the types ofa;b and c are ]®]*Nat;]®Nat and
12]1*Nat, respectively. In this processx and d have one output occurrence at level 1 respectively,
¢ has two output occurrences at level 2,a and b have zero output occurrence at any level. Thus,
the identity of names that appear in output occurrences is na important: what we need is the
number of output occurrences of names belonging to the sameVel, and this for each level. For
every well-typed process, we usen; to stand for the number of output occurrences at leveli; hence
n; is simply calculated by scanning the process expression. Em the weight, wt(P), of a process
P is the vector my;nx 1; ;nii, with k representing the highest level on which the process has
non-zero output occurrence. As to the proces®) de ned above, it has the weight wt(Q) = h2; 2i.
Formally we have the following de nition of wt(P). Itis related to the set os(P) since we only count
the levels of names appearing iros(P).

o
Il
e

wt(0) 0 wtuw:P) L wi(P)+ 0y
wt(lu(x):P) %€ o wt(PjQ) % wi(P)+ wt(Q)
wt(ux):P) € wi(P) wt(P + Q) € maxfwt(P):wt(Q)g
wt(aP) % wi(P)
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The next lemma says that weight is a good measure because it deeases at each reduction
step. This property leads naturally to the termination theorem of well-typed processes, by the
well-foundedness of weight.

Lemma 5.1 SupposeT * P;P ! PO thenwt(P% wt(P):

Proof: By induction on transitions. See Appendix C.1. u

Theorem 5.2 If T ° P, then P terminates.

Proof: By induction on the weight of well typed processes.
Base case: All processes with weighd are terminating because they have no active output.

Inductive step: Suppose all processes with weights less thawvt(P) are terminating. We show
that P is also terminating. Consider the setl = fi j P! Pjg. For eachi 2 | we know that:
() T ° P; by the subjection reduction property of T, (i) wt(P;) wt(P) by Lemma 5.1. So
each suchP; is terminating by induction hypothesis, which ensures that P is terminating.

u

The type system T provides us with a concise way of handling nested inputs. Foexample, let
a:]']*Nat;b:]°Nat;c: ]*Nat, then process (1.1) is well-typed and therefore terminatirg. Similarly,
process (5.2) is well-typed if the types ofa; b and c are ]?Nat;]°Nat and ]*Nat, respectively.

Lemma 5.1 implies that the weight of a process gives us a boundn the time that the process
takes to terminate. First we de ne the size of a process as th&hole number of literals in the process
expression.

Proposition 5.3  Let n and k be the size and the highest level in a well-typed proceRs respectively.
Then P terminates in polynomial time O(nk).

: P . .
Proof: Let wt(P) be hny;:::; nqi, thus :‘:1 nj <n. The worst case is that when an active output
of level i is consumed, all (less thamn) new active outputs appear at leveli 1. Hence one output
occurrence of level gives rise to at mostf (i) steps of reduction, where

( 1 ifi=1
if i =
f(i)= . .
1+n f(i 1) if i> 1.
In other words,
X1 [
fiy=  n="_1
n 1

i=0
Since the weight of P is ny;:::; nqi, the length of any reduction sequence fromP is bounded by
,oni f(i). As
X X Xk k
ot o f=C ) f<n fg= M

i=1 i=1 i=1

we know that P terminates in time O(n*). u
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As a consequence of Proposition 5.3 we are not able to encodeet simply typed -calculus into
the -calculus with type system T, according to the known result that computing the normal form
of a non-trivial -term cannot be nished in elementary time [Sta79, Loa98]. However, we shall
see in the next section an extension off that makes it possible to encode all primitive recursive
functions (some of which are not representable in the simplytyped -calculus).

5.3 Allowing Limited Forms of Recursive Inputs

The previous type system allows nesting of inputs but forbids all forms of recursive inputs (i.e.
replications 'a(x):P with the body P having active outputs at channel a). In this and the following
sections we study how to relax this restriction.

5.3.1 The Type System

Let us consider a simple example. Proced3 below has a recursive input: underneath the replication
at a there are two outputs at a itself. However, the values emitted ata are \smaller" than the value

received. This, and the fact that the \smaller than" relatio n on natural numbers is well-founded,
ensures the termination ofP. In other words, the termination of P is ensured by the relation among
the subjects and objects of the pre xes { rather the subjectsalone as it was in the previous system.

© anoijla(n): if n> Othen (am 1ij am 1i)

! amij aijla(n): if n> O0then (am 1lij am 1i)

For simplicity, the only well-founded values that we consider are naturals. But the arguments below
apply to any data type on whose values a well-founded relatio can be de ned.

We use function out(P) to extract all active outputs in P. The de nition is similar to that
of os(P) in Section 5.2. The main di erence is that each element ofout(P) is a complete output
pre X, including both subject and object names. For example we have out('a(x):P) = ; and
out(aw:P) = fawg [ out(P).

In the typing rule, in any replication ! a(x):P we compare the active outputs inP with the input
a(x) using the relation / below. We have that bw / a(x) holds in two cases: (1)b has a lower level
than a; (2) band a have the same level, but the objectw of b is provably smaller than the object x
of a. For this, we assume a mechanism for evaluating (possibly agg) integer expressions that allows
us to derive assertions such ag i<x if i> 0. We adopt an eager reduction strategy, thereby the
expression in an output is evaluated before the output res.

Deniton 54 Letu:]"Sandv:]™T. We write vw /u (x) if one of the two cases holds: (i)
m<n; (i) m=n; S=T=Natandw <x.

By substituting the following rule for T-rep in Table 5.1, we get the extended type systendr °.
The second condition in the de nition of / allows us to include some recursive inputs and gives us
the di erence from T.

“u:]"Voox:V S P 8vw 2 out(PY;vw/u (x)

T-rep “Tu(x):P
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The termination property of TO can also be proved with a schema similar to the proof in last
section. However, the details are more complex because weeatkto be clear about how the rst-
order values in which we are interested evolve with the redution steps. So we use a measure which
records, for each output pre x, the value of the object and the level information of the subject.
More precisely, the measure is @ompound vector which consists of two parts: theNat-multiset and
the weight, corresponding to each aspect of information thawe wish to record.

To a given processP and level i, with 0 <i k and k is the highest level in P, we assign a
unigue Nat-multiset M p;; =[ng; ;m], with ny; 2 N[flg forallj 1. (Here we considerl as
the upper bound of the in nite set N.) Intuitively, this multiset is obtained as follows. For each
active output bwin P with Iv(b) = i, there are three possibilities. Ifw is a constant value v 2 N),
then w is recorded inM p,;. If w contains variables of type Nat, then a 1 is recorded inM p; .
Otherwise, w is not of type Nat and thus contributes nothing to the Nat-multiset. For insta nce,
supposea : [3Nat;b: ]2Nat;c : ]*Nat and P €' anli j antij brei jla(n):bm + 1ij b(n):ci, then
T2 P and there are three Nat-multisets: M p.3 = [1;1]; M p.2 =[2] and M p.; =[1 ]. Formally,
we de ne M p;; as follows:

Q

115}
e
I

llo
[}

M 0;i [] M aP;i M Pii
def def
Muayrei = [1 Mpigi = MpilM g
M a(x):P;i d:ef M P;i M P+ Q;i d:ef M P;i ]M Qi
3 Mopi] [w] if a:]'Natandw 2 N
Mavpi = _ Mpi][L] ifa:]'Natandfn(w)6 ;

2
M p; otherwise

where fvn(w) is the set of variables of type Nat. We de ne an operator & to combine a set of
Nat-multisets fM q;j j O < i kg with the weight of Q (as de ned in the previous section),
wt(Q) = y;  ;nii, so as to get acompound vectortqg = (M qx;nk); (M q.1;n1)i. For the
above examplewt(P) = h2;1;1i, sotp = fM p; jO<i kg & wt(P)= h[1;1];2);([2]; 1); ([1 ];1).
The order and the operator + can be extended to compound vectors.

De nition 5.5  Supposetp = h(sk); ;(s1)i and tg = NsP); ;(s9)i, wheres; = M p;;n; and
2= Mqi;nlfor 0<i ki

1.si sPif Mpi <mu Mqgi _(Mpi=Mgi”n<n)
2.si:s?ifMp;i:M°Q;i"ni:ni°
3.5+ =Mpi M Jiini+n?
4.tp toif 9i kisj=¢8forj>i ands s
5. tp=tgifsi=sPforalli k

6. tp +tg = N(sk+ S0);  ;(s1+ SY)i

Using compound vectors as the measure, we can build, with siitar proof schemas, the counter-
parts of Lemma 5.1 and Theorem 5.2.
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Lemma 56 If T PandP ! PO%thentpo tp.

Proof: See Appendix C.2. u

Theorem 5.7 If T9" P then P terminates.

Proof: Followed from Lemma 5.6. u

Note that the measure used here is much more powerful than thiain Section 5.2. With weights,
we can only prove the termination of processes which alwayserminate in polynomial time. By
using compound vectors, however, as we shall see in Section3®2, we are able to capture the
termination property of some processes which terminate inime O(f (n)), where f (n) a is primitive
recursive function. For example, we can write a process to emode therepeated exponentiation where
E@©)=1, E(n+1)=2EM, Once received a numbem, the process does internal computation in
time O(E(n)) before sending out its result.

5.3.2 Example: Primitive Recursive Functions

For simplicity of presentation, we have concentrated mainy on monadic communication. However,
it is easy to extend our calculus and type systems to allow pgladic communications and an if-then-
else construct® (see Appendix C.3), which are needed in this example. The adintage of T ° over
T lies in the fact that primitive recursive functions can now be captured.

De nition 5.8  (Primitive recursive functions)[Bec80] The class of primitive recursive functions
consists of those functions that can be obtained by repeategbplication of composition and primitive
recursion starting with (1) the successor function,f (x) = x+1, (2) the zero function, f (x) =0, (3)
the generalized identity functionsfi(”)(xl; iXn) = Xj, with the generating rules for composition
and primitive recursion being

1. Composition f(x1; ;Xn)= g(ei(X1; ;Xn); ;em(X1; ;Xn))
2. Primitive recursion
f(0;x2;  iXn) = €(X2;  ;Xn)

f(xe+1;%X2;  ;Xn)= g(X1;T(X1; ;1 Xn); X2,  ;Xn)

Proposition 5.9  All primitive recursive functions can be represented as teminating processes in
the -calculus.

Proof: A function f () can be represented as a proce$s, which has replicated input like !a(®; y):R,
where namea is called port of F, with type T, = ]™(Mat;]"Nat) where m > n . After receiving
via a some argumentse and a return channely, processR does some computation, and nally the
result is delivered aty. For the three basic functions, the results are returned imnediately. This

1For convenience of presention, in the rest of the thesis we sh all use an if-then-else construct in place of the
nondeterministic choice construct, instead of considerin g the two constructs simultaneously.
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style of encoding follows from Milner's encoding of -terms into -processes [Mil92]. In the similar
way can the correctness of the following ve encodings be véed.

The encoding of the three basic functions is straightforwad.
def,

(1) The zero function Fa ='a(x;y):yhoi:
(2) The successor function Fa o a(x;y):yhx + 1i
(3) The identity functions F&M) € a0e; y) oy

By assigning to a the type T».1, the three processes de ned above are typable in our core typ
systemT, thus typable in TC

(4) Composition

Suppose thatE;,, is de ned for & with the type of & being Tm,.;n; foralll i m, and G¢ is
de ned for g with the type of c¢ being Tmono. By induction hypothesis, they are well typed in T°.
Then we can de ne F, for f as:

Fa % ta(ey):( 689(E1a, jashebiij | Ema, j amhe by

jbi(z1):  bn(zm):che;yij Ge)

Let m%= maxfm; ;mpy;mY%+1 and give namea the type Tropno. It can be easily checked that
processF, is typable in TC.

(5) Primitive recursion

Suppose thatEy, is de ned for e with the type of b being Tm,.n,, and Gao is de ned for g with
the type of a® being Trm,.n,. By induction hypothesis they are well typed in T% We de ne F, as
follows.

Fa ' la(ey):if x;=0then (b)(EpjbiXs, iXniyi)

else (b9(am; 1;X2; ;Xn:DA
j2):(a%(Gaojadxy  1,Z;X2;  Xn;VYi))

Let m = maxfmgy;mg+ 1 and give type Tnn, to a. It is easy to see thatF, is well typed in T°,
u

For the processF in (1.2), which represents the factorial function, it is typ able if we give name
a the type ]?(Nat;]*Nat). By contrast, the encoding of functions that are not primit ive recursive
may not be typable. An example is Ackermann's function.

5.4 Asynchronous Names

In this section we start a new direction for extending our coe type system of Section 5.2: we prove
termination by exploiting the structure of processes instad of the well-foundedness of rst-order
values. The goal of the new type systems (in this and in the neixsection) is to gain more exibility

in handling nested inputs. In the previous type systems, we equired that in a replicated process
la(x):P, the highest level should be given taa. This condition appears rigid when we meet a process
like la:ba because we do not take advantage of the level di. This is the motivation for relaxing
the requirement. The basic idea is to take into account the sm of the levels of two input subjects
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a; b, and compare it with the level of the output subject a. However, this incurs another problem.
Observe the following reduction:

P = ajbjlaba
! bj bajlaiba
! ajlacba

The weight of P does not decrease after the rst step of reduction (we consum a copy ofa but
liberate another one). Only after the second reduction doeshe weight decrease. Further,P might
run in parallel with another process, sayQ, that interferes with P and prevents the second reduction
from happening. This example illustrates two new problems hat we have to consider: the weight
of a process may not decrease at every step; because of inemdnces and interleaving among the
activities of concurrent processes, consecutive reductics may not yield \atomic blocks" after which
the weight decreases.

In the new type system we allow the measure of a process to dexase after a nite number
of steps, rather than at every step, and up to some commutatiities of reductions and process
manipulations. This di erence has a strong consequence inhe proofs. For technical reasons related
to the proofs, we require certain names to be asynchronous.

5.4.1 Proving Termination with Asynchronous Names

A name a is asynchronousif all outputs with subject a are followed by 0. That is, if av:P appearsin
a process thenP = 0. A convenient way of distinguishing between synchronous ath asynchronous
names is using Milner's sorts (cf. Section 2.2.3). Thus we asme two sorts of names, ; and s,
for asynchronous and synchronous names respectively, witthe requirement that all names in ,
are syntactically used as asynchronous names. We assume thall processes are well-sorted in this
sense and will not include the requirements related to sortsn our type systems. (We stick to using
both asynchronous and synchronous names instead of workingn asynchronous -calculus, because
synchronous -calculus is sometimes useful { see for instance the exampie Section 5.5.2 { and it is
more expressive [Pal03]. However, all the results in this paer are valid for asynchronous -calculus
as well.)

We make another syntactic modi cation to the calculus (with an if-then-else construct in place
of the nondeterministic choice in Table 2.4) by adding a consuct to represent a sequence of inputs
underneath a replication:

ui(x1):  un(Xn) n land8i<nyui: 4
P = P

This addition is not necessary { it only simpli es the presentation. It is partly justi ed by the
usefulness of input sequences in applications. (It also stngly reminds us of the input pattern
construct of the Join-calculus [Fou98]). We call an input pattern. Note that all but the last input
subject in  are required to be asynchronous. As far as termination is carerned, we believe that
the constraint { and therefore the distinction between asynchronous and synchronous names { can
be lifted. However, we do not know how to prove Theorem 5.10 whout it.
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The usual form of replication !u(x):P is how considered as a special case where the input pattern
has length 1, i.e., it is composed of just one input pre x. We etend the de nition of weight to input
patterns by taking account of the levels of input subjects: wt(u;(X1):  Un(Xn)) = Ok, +  + O,
wherelv(u;) = kj. The typing rule T-rep in Table 5.1 is replaced by the following one.

Powt () wt(P)
P

T-rep

Intuitively, this rule means that we consume more than what we produce. That is, to produce
a new process®, we have to consume all the pre xes fromu(X1) to un(Xn) on the left of P, which
leads to the consumption of corresponding outputs atu;; ;un. Since the sum of weights of all
the outputs is larger than the weight of P, the whole process has a tendency to decrease its weight.
Although the idea behind this type system (T % is simple, the proof of termination is non-trivial
because we need to nd out whether and when a whole input patten is consumed and thus the
measure decreases. The rest of the subsection is devoted tooping the following theorem.

Theorem 5.10 If T% P then P terminates.

Below we brie y explain the structure of the proof and proceed in four steps. Firstly, we decorate
processes and transition rules with tags, which indicate tle origin of each reduction: whether it is
caused by calling a replicated input, a non-replicated inpt or it comes from an if-then-else structure.
This information helps us to locate some points, calledandmarks, in a reduction path. If a process
performs a sequence of reductions that are locally orderedHat is, all and only the input pre xes
of a given input pattern are consumed), then the process goeom a landmark to the next one
and decreases its weight (Lemma 5.12). (This is not su cient to guarantee termination, since
in general the reductions of several input patterns may inteleave and some input patterns may
be consumed only partially.) Secondly, by taking advantageof the constraint about asynchronous
names, we show a limited form of commutativity of reductions(Lemma 5.13). Thirdly, by commuting
consecutive reductions, we adjust a reduction path and estalish on it some locally ordered sequences
separated by landmarks. Moreover, when an input pattern is ot completely consumed, we perform
some manipulations on the derivatives of processes and emsome inert subprocesses. Combining
all of these with the result of Step 1, we are able to prove the érmination property of tagged
processes Lemma (5.14). Finally, the termination of untaged processes follows from the operational
correspondence between tagged and untagged processes (lrean5.11), which concludes our proof
of Theorem 5.10.

We begin with introducing the concepts of atomic tag, tag and tagged process Atomic tags
are names from a separate in nite setN °, which is disjoint from the set N used for constructing
untagged processes. We use the function : N°7! N to associate every atomic tag with a natural
number. Note that we require N °to be an in nite set so that it can always supply fresh atomic tags
as we need. We let;1%1;;  range over atomic tags and stand for a special atomic tag by setting

()=0. Atagis a pair (I;n) wherel is an atomic tag and n is an integer with n (. We let
t;t%  range over tags and write as the abbreviation of the special tag (; 0). The only di erence
between tagged processes and untagged ones is that the formgives tags for all non-replicated
inputs.

P = jut(x):P
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if-t if-f

if true then P else Q! ’ P if false then P else Q! ’ Q
( a)uw 0 Ftw 0 _ .
coml P! P. Qt. Q 0al\ n(Q)=; in :
PiQ! (eP°Q9 ut(x):P ¥ Pfw=xg
rep = Uui(X1): wup(Xp) Ilfresh (I)=n

(I 1) .
P P P (x2) U™ (xn):P)fw=xeg

Table 5.2: Transition rules for tagged processes

Note that we do not give tags to input patterns. A tagged processP is regular if the only tag that
appears inP is the special tag . On the contrary, if there is atag t with t 6 in P, then P is
irregular. We reserve the tag ° for the transition rules if-t and if-f (see Table 5.2). Unlike , °only
appears in transitions, not in tagged processes. We de ne tb operatorerase( ) to erase all tags in
a tagged process so as to get an untagged process. LRetbe a tagged process. We de navt(P) as
wt(erase(P)), and we write T P if T erase(P). The transition rules for tagged processes are
the same as in Table 2.3 except for rule®, com], rep, if-t and if-f, which are displayed in Table 5.2. In
the rule rep, a fresh atomic tagl is introduced to witness the invocation of the replicated irput ! :P .
The result of invoking ! :P is the generation of a new processq‘z'; 2 (X2): uln )(xn):P)fW:xlg.
The condition (l) = n relates| to by requiring the number of input pre xesin  to be (I). So
if an input pre x has tag (I; (1)) then it originates from the last input pre x in

Note that substitutions of names do not a ect tags. More predsely, we have that @' (x):P)
fc=lg = (af c=ly)'(x):Pfc=ly. From the transition rules it can be seen that tags are never sed as
values to be transmitted between processes and that there iso substitution for tags.

Tags give us information about the transitions of tagged praesses. For example, iP is regular
andP !' PO then at least we know the following information:

if t = Cthen an if-then-else structure in P disappears whenP evolves into P,

if t = then the reduction results from an internal communication between an active output
and a non-replicated input;

if t = (I;1) then the reduction results from an internal communication between an active
output and a replicated input of the form 'uy(x1): U y(x (y):Q; moreover, if (I) > 1 then
POhas a subprocessiy’ 2 (x): :u('(;l)(')) x 1):Q.

We de ne the operator () , which is complementary to erase( ), to translate untagged processes
into regular processes by giving all non-replicated inputsthe special tag .

o

15
e
o

Il
e

0 0 (u(x):P) u (x):P
(uw:P) £ uwp (aP) % ap
PiQ) ¥ PjQ (t:P) 1P

def

(if wthen P else Q) = if wthen P else Q
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Note that erase(P ) = P holds but (erase(P)) = P may not be valid. For example a:bcj a iy
lazbe j B52:c PO and thus (erase(P%) =!aibcj b:c6 P°% However, there exists operational
correspondence between tagged and untagged processes sit@gs do not have semantic meaning
and the purpose of using tags is to identify every newly creatd process from some replicated process.
This is precisely what the next lemma shows.

Lemma 5.11 Let P be a tagged process an@ an untagged one.
1. If P 1" POthenerase(P)! erase(PY.
2.1fQ! QCanderase(P)= Q,thenP !' P%and erase(P% = Q° for somet.

As expressed in Lemma 5.12 and 5.13, (well-typed) tagged poesses have some interesting
properties such as decrement of weight after some speci c sps of reduction and commutativity
of reductions.

Lemma 5.12 1.IfP! POthenwt(P) wt(P9.

2. 1P 1° POthenwt(P) wt(P9

GI;Z) ('I;n)

i b P, 1Y Poandn= (I)> 0thenwt(P) wt(PY).

3. 1P
Proof: See Appendix C.4. u

Generally speaking, commutativity of reductions does not told in the -calculus. For instance,

12 b 1o

the processP = a:bj aj b has reduction path P but not , where ! © means that

an internal communication happens on channelc. As we shall see in the next two lemmas, this
property does hold in the presence of certain constraints. \& write P :f R for P 1" " R,
where€=t; t,.

Li) t

Lemma 5.13 1. If P is regular and P =J R YRt RO t2F ; Yandi< (I), then there
exists R? such thatR | R? ) Ro
0.; G
2. 1fPisregularandP =f RYV R, "' RO 1612 j< (19 andi (1), then there exists
i 0.;
someR? such thatR ) RY ¢ Ro,
Proof: See Appendix C.4. u

In the following lemma, we make full use of commutativity and reorganize a reduction path in a
way easy of pinpointing landmarks, which witness the decrerant of the measure that we choose for
the beginning process of the path.

Lemma 5.14 All the regular tagged processes terminate.

Proof: We sketch the idea of the proof; more details are given in Appedix C.4.
Let P be aregular tagged process. We show tha® terminates by induction on its weight wt(P).
Base case: All processes with weigh® must be terminating because they have no active outputs.
Inductive step: SupposeP is non-terminating and thus has an in nite reduction sequernce

P P! Pyt it op i
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Now the tag t; takes one of the three forms: % or (I;i). By doing case analysis we can prove that
in every case there always exists som@ such that: (i) Q is also non-terminating; (i) Q is regular;
(i) wt(P) wt(Q). When Q is found, we get a contradiction since by induction hypothess all
processes with weights less thamvt(P) are terminating. So the supposition is false andP should
be terminating.

In seeking for this Q, we carefully manipulate the reduction path of P by commuting reductions
(Lemmas 5.13) in order to put all tags belonging to the same iput pattern in contiguous positions.
Then we can use Lemma 5.12 to prove (iii). If an input pattern cannot be completed, which means
that its continuation does not contribute to the subsequent reductions of P, we can substitute 0
for the continuation. For example, supposeP def az(a; j'la;:a2:R1) j R2 and there is a reduction
sequence like:

p i p itz p, it

with Pq az(a(zl; 2):Rl jlai:az:R1) j Ra. Sincea(zl;z):Rl is never consumed in the reduction sequence,

it contributes nothing to the subsequent reductions starting from P;. So we can safely takeQ to be
a2(0jlaj:a2:R1) ] R2, and the same transition sequence can still be made, witld in place of the

top level a(z'

2R, in all derivatives.

Consequently, for each new atomic tad with (l) > O created by the derivatives ofP, either we
have found the complete input pattern corresponding tol, or the input pattern cannot be completed
but no | appears in the in nite reduction path starting from Q. As a result, no new tag appears in

Q, i.e. (i) is satis ed. u
Now we are ready to prove Theorem 5.10 by applying the last lemma.

Proof of Theorem 5.10:
By Lemma 5.11 it is easy to prove the following claim:

Let P be a untagged process an® be a tagged process such thagrase(Q) = P, then
P is non-terminating i Q is non-terminating.

Since erase(P ) = P, it follows that P is non-terminating i P is non-terminating. By the
de nition of the translation ( ) we know that P is regular. Therefore Lemma 5.14 applies and®
must be terminating, which in turn implies the termination o f P. u

Proposition 5.15 For a process P well-typed under T let n and k be its size and the highest
level, respectively. ThenP terminates in polynomial time O(nk*).

Proof: Let wt(P) be my;::;;nii. From the proof Lemma 5.14 we know that: (i) commutation
of reductions does not change the length of a reduction sequee; (ii) the measure diminishes from
one landmark to the next one; (iii) the distance between two reighboring landmarks is less thann.

In addition, by similar arguments as in the proof of Proposition 5.3 it can be shown that in each
”(”kill) landmarks. Therefore the whole length of

locally ordered reduction path there are at most—
n?(n* 1) u

each reduction path is bounded by—-—
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[, aidi:Pi]d='Ef s ( shtruei
j L, e ahdi;s;eie(x): if x then [P;] else 0)
mb(2):Q] %
t ( thruei
i T 9(9
j 'g:b(z;s;9):t(x): if x then
( s(y): if ythen
(thfalseij stfalseij ehtrueij [Qi])
else
(thrueij shfalseij etfalseij g))
else

thifalseij bhe;s;d))

wheret; s and e are fresh and [L; P; meansP1j | Py.

Table 5.3: The protocol of encoding separate choice

5.4.2 Example: the Protocol of Encoding Separate Choice

Consider the following protocol which is used for encoding eparate choice (the summands of the
choice are either all inputs or all outputs) by parallel composition [Nes00], [SWO01, Section 5.5.4].
One of the main contributions in [Nes00] is the proof that theprotocol does not introduce divergence.
Here we prove it using typability.

The protocol uses two lockss and t. When one input branch meets a matching output branch,
it receives a datum together with lock s and acknowledge channek. Then the receiver testst and
s sequentially. If t signals failure, because another input branch has been ches, the receiver is
obliged to resend the value just received. Otherwise, it cotinues to test s. When s also signals
success, the receiver enables the acknowledge channel artithe sender proceed. At the same time,
both t and s are set tofalse to prevent other branches from proceeding. If the test ofs is negative,
because the current output branch has committed to another nput branch, the receiver should
restart from the beginning and try to catch other send-requests. This backtracking is implemented
by recursively triggering a new copy of the input branch.

Usually when a protocol employs a mechanism of backtrackingt has a high probability to give
rise to divergence. The protocol in this example is an excepdn. However, to gure out this fact
is non-trivial, one needs to do careful reasoning so as to ahae the possible reduction paths in
all di erent cases. With the aid of type system T % we reduce the task to a routine type-checking
problem. We show that the protocol does not add any in nite loop by proving that the typability of
[Pi] and [Q;] implies that of [ ja;di:P;] and [ ik (z):Qi]. Then we conclude by Theorem 5.10. Here
we take thei-th branch of input guarded choice as an example and assume & b does not appear
in Q;. Suppose that R;] is typable by T %and the highest level of names inQ; is n with n> 1. Let
us give type]*bool to t, type ]"*! Nat to g and type ]%(T;;]*bool ;]*bool) to bh whereT, is the type
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of the datum z. Take g:h(z;s; e as the input pattern, noted as , and abbreviate its continuation
asP. Then!:P is well typed under T ®°becausewt( )= hl; ;1;0i andwt(P)= h; ;0;3i (the
dots stand for a 0-sequence of lengthn(  2)), thus wt( ) wt(P).

5.5 Partial Orders

The purpose of our nal type system is to type processes everf ithey contain replications whose
input and output parts have the same weight. Of course not allsuch processes can be accepted.
For instance, 'a:b(aj b) should not be accepted, since it does not terminate when runing together
with aj b. However, we might want to accept

g(a; b:a:(gha; b j b) (5.3)

where a and b have the same type. Processes like (5.3) are useful. For irmice they often appear in
systems composed of several \similar" processes (an exangpis the chain of cells in Section 5.5.2).
In (5.3) the input pattern g(a;b):a and the continuation gha;bi j b have the same weight, which
makes rule T-rep of T ®inapplicable. In the new system, termination is proved by incorporating
partial orders into certain channel types. For instance, (53) will be accepted if the partial order
extracted from the type of g shows that b is belowa (both b and a being names that are received

along g).

5.5.1 The Type System

We present the new type systemT %% The general structure of the associated termination proof
goes along the same line as the proof in Section 5.4.1. But nowe need a measure which combines
lexicographic and multiset orderings.

To begin with, we introduce some preliminary notations. Let A be a set andR A A be
a partial order on elements of A. The set of names appearing in elements oR is n(R) = fa |
aRb_ bRa for somehg. Let g be a tuple of namesx;; ;Xn, we write the length n of the tuple as
j ®j. In the following, we de ne some operators for partial ordeis. They will be used for simplifying
the presentation of our typing rules in Table 5.4.

Denition 5.16 Let R N N and S Nat Nat be two partial orders ande is a tuple of
names in N. We de ne two operators = and to transform one partial order into the other.

8
3 if n(R)\ =
1. R:m":"f3 f@i;j)ixiRx;g if n(R) =

unde ned otherwise
2.5 ¥ f(x;;x)jiSjgif maxfn(S)g | ®j

As shown by the following lemma, the two operators are complmentary to each other to some
extent.

Lemma 5.17 1. (R=®) =R if n(R) =»
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2. (S B==S if maxfn(S)g j ®j
Proof: By the de nition of =and directly. u

Remark: In this paper we use partial order in a very narrow sense. We rguire each partial
order on names to satisfy the following two conditions: (i) mathematically it is a strict partial order
(irre exive, antisymmetric and transitive); (ii) all name s in n(R) are of the same type (this type is
written Tr).

Let R be a partial order. We extract the sub-partial order de ned on n(R)ne by R+,= f(a;b) j
a;b 62 and aRc;R R c,bforsomee randn 0g. Given two partial orders R1, R, with
Tr, = Tr,, We letR1+ Ry beR1[R 7 if such a union is a partial order. Otherwise, it is unde ned.

The operator os( ) of Section 5.2 is now re ned to bemosg ( ), which de nes a multiset recording
all subject occurrences of names in active outputs and withype Tg .

o
o
e

mosg (0)

—
[—

o
o
e

mosg ('u(e):P)

[]

mosr (U(®):P) %" mosg (P)
mosg (aP) %' mosg (P)
P ifu:T
moss (ne:P) &' [u]] mosg(P) ifu R
mosg (P) otherwise

o
llo
o,

mosg (P j Q)
mosg ( if bthen P else Q)

mosr (P)] mosr (Q)
mosr (P)] mosr (Q)

o
llo
o,

The operator mosg () can be extended to input patterns by de ning: mosg ( ) def mMosg (U171 j
junky) if = ui(R1):  un(®n).
Let R be a partial order and Ry, be the induced multiset ordering on multisets overn(R).
The binary relation de ned below will act as the second compment of our measure, which is a
lexicographic ordering with weight of processes as its rstcomponent.

De nition 5.18 Let R be a partial order on names,Q be a processP be either an input pattern or
a process. It holds thatP R Q if the following three conditions are satis ed, for some mutisets on
namesM ;M and M : (i) mosg (P)= M]M g; (i) mosg (Q)= M]M ; (i) M1 Rpy M.

Essentially the relation R is an extension of the multiset orderingR my - One can easily prove that
R is also well-founded: ifR is nite, then there exists no in nite sequence like Py R P R P, R
Now we are well-prepared to present our types and type system Here we consider polyadic
-calculus and rede ne channel type as follows.

L:=12¢ where 8i;j 2n(S); Vi=V,

whereS Nat Nat is a partial order on the indexes of® (that is, if j ¢ j= m then S is a partial
order on the setf1;:::;;mg). The condition in the de nition says that if i and j are two indexes
related by S, then the i-th and j -th components of ¢ have the same type.

If aP is a subprocess of), we say that the restriction a is unguardedif aP is not underneath
any input or output pre x. More precisely, we de ne a set ur (P) to collect all unguarded restrictions
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in P.
ur (0) i ur (u(e):P) i
ur(lu(e):P) % ; ur(ue:P) %
ur(aP) %' fag[ ur(P) ur(PjQ) % ur(P)[ ur(Q)

ur(if bthen P else Q) % ur(P)[ ur(Q)

If we pull all unguarded restrictions of Q to the outmost positions, the resulting process aQ®
has the same behavior ag). In literature this property is often characterized by a sequence of
structural rules describing scope extension, see for exarfg[Par01]. Since we assume that bound
names are di erent from free names, the side conditions of tbhse rules are met automatically. We
use this property implicitly and often write Q as aQ® without unguarded restrictions in Q°.

Besides the two sorts 5 and s introduced in the beginning of Section 5.4.1, now we need attloer
sort . It requires that

if :P is a process withsubj( ): ; thenur(P)= ;.

In other words, if a name of sort , appears in the subject position of a pre x (either input or output),
then the continuation process has no unguarded restriction. This technical condition facilitates the
presentation of De nition 5.19.

Suppose = aj(®1): :a,(®,) and eacha has type]rS"ii ¥. We extract a partial order from
bydening R =S; B[ [S n =By Itiswell de ned because all the bound names are assumed
to be di erent from each other. For example, if = a;(X11;X12;X13):82(X21; X22; X23), S1 = f(1;2)g
and S; = f(2;1)g, then we haveR = f(X11;X12); (X22; X21)Q.

De nition 5.19 Let = ui(®1): :un(®y). The relation : P holds if one of the following two
cases holds: ()wt( ) wt(P); (i) wt( )= wt(P), R P andu,: .

The second condition indicates the improvement ofT °®over T % We allow the input pattern to
have the same weight as that of the continuation, as long as tere is some partial order to re ect a
tendency of decrement.

The typing rules of T %Care presented in Table 5.4. Now the judgmentR ° P means that P is
a well-typed process and the free names i respect the (possibly empty) partial order R. In the
premise of rule T-in, if there exists some non-empty partial order relation ong, then it is exactly
captured by R, the partial order built upon free names of P. In rule T-out for R + S e to be well
de ned, the partial order on & should not con ict with the partial order exhibited by P. Similarly
in rules T-par and T-if the partial orders contributed by P and Q should be compatible and thus
can be combined together. As we only consider the partial ordr on free names ofaP , in rule T-res
all pairs concerning a are deleted fromR while the relative partial order relation on other names
are kept intact. In rule T-rep the appearance of the replication operator does not a ect tte existing
partial order, but it requires the validity of the condition : P, which plays an important role in
Lemma 5.21 and gives us the possibility of doing terminationproof.

In De nition 5.19 the constraint imposed on uj is used to prohibit potential extension of partial
orders caused by the restriction operator. Let us considerwo examples, concerning two di erent
occurrences of restricted names.
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u:]2¢ #:¢ R P S=R=g

T-in - T-nil —
R+ u(®):P ;
u:]i¢ w:¢ R P Ri"P Ry°
T-out IS - T-par — — .Q
R+S w uwP Ri+R, PjQ
b:bool R;:" P R’ a:L R P
T-if - ! 2 Q Tres———
Ri1+ R, if bthen P else Q R+, aP
Tore P . P
P R I:P

Table 5.4: Typing rules of T 99°

(i) Underneath an input pattern

P % 1g(ab:a:c(ghb;dj b)jgre;bij ajgha;bi
! lg(a;b:a: c(ghb;dj bja:c(ghb;dj bjajgm;hb
! 'g(a;b):a: c(ghb;dj b) j c(ghb;dj b)j gha;bi
d(‘g(a;b:a: c(ghb;aj b) jgho;dj bj gha; ki)

= dpo

Q.

(ii) Outside an input pattern

Q def lg(a;b:a:(gha;bij b) jgha;bij a: cghb;d
! lg(a;b:a:(gha;bij b)ja:(gha;bij b)ja: cghb;d
! lg(a; b):a:(gha;bij b) j ghe;bij bj cghb;d
d(‘g(a;b):a:(gha;bij b) jgha;bij bj ghb; d)
d=ef dQO

Let the type of name g be ]7 ;.5 (1'V;]'V). AssumeR = f(a;bg and R%= f(a;b);(b;dg. If
the condition a, :  in De nition 5.19 was lifted, then both P and Q would be well typed: in the
rst example, it could be derived that R~ P and R°" P% in the second example,R ° Q and
R%" QO In both cases the new namal extends the partial order R to be R°.

However, the process$ does not terminate because it can make cyclic reduction andhe two steps
from P to P °form a cycle. Therefore the structure in (i) is dangerous andshould be disallowed.
The processQ always terminates in at most 6 steps, but ruling out the structure in (ii) simpli es
our proof of Lemma 5.22.

For this type system, we have the following subject reduction property.

Theorem 5.20 (Subject reduction) SupposeR™~ P andP ! P°C
1. If = due to a communication thenR > P°

2. If due to a conditional thenR?" PO9with R = R%+ R%®for some R° and R
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3. If = aw then there existsn; S and ¥ such that

(@ a:]3¢ andw : ¢
(b) if S wis a partial order thenR+ S w " P

4. 1f = ( ®)aw then there existsn; S;R%and ¥ such that
(@ a:]3¢ andw : ¢
(b) RO PO
() R=(R%+ S w)+q

Proof: See Appendix C.5. Most e orts are made to check the consistery of partial orders in the
type environments. u

The following lemma is the counterpart of Lemma 5.12.

Lemma 5.21 Suppose thatur(P)=;, R P, P iy Py fi2 Pn 1 ") poandn = (h>o.
Then one of the following two cases holds.

1. wt(P)  wt(P9;
2.PRP%andur(P9=;.
Proof: See Appendix C.5. u

With the last lemma we are able to prove Lemma 5.22, whose rolen T °%s the same as that of
Lemma 5.14 inT %

Lemma 5.22 All the regular tagged processes (well-typed undér %% terminate.

Proof: Compared with the proof of Lemma 5.14, the main dierence is hat when we have
completed some input patterns and get a reduction sequencéke

oS Pt P 1T R LS P

it may be possible that 8] < i;wt (P;) = wt(Pj+1). Let R~ Pg, we can show by contradiction
that the sequence of processes of equal weight is nite, by # well-foundedness ofR . See
Appendix C.5 for more details. u

Finally we have the following termination theorem for T °°due to the operational correspondence
between tagged and untagged process and Lemma 5.22.

Theorem 5.23 If R™ P then P terminates. Moreover, letn and k be its size and the highest level,
then P terminates in time O(nk*3).

Proof: The proof of termination is straightforward. Let us look at t he time complexity. Clearly the
sizes of the two sets1(R) and mosg (P) are less thann. If there is a sequencég RP, R RP,,

then it can be shown that m < n 2. By similar arguments as in the proof of Proposition 5.15 it an
n(nk

20”1 Jandmarks and the

distance between two neighbouring landmarks is less tham®. Therefore the whole length of each

n*(nk 1)
— T u

be shown that in each locally ordered reduction path there ae at most

reduction path is bounded by
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(French, f)
(Italian, i)

Figure 5.1: An example of symbol table

o
o
e

G Ig(a; b; n;9):a(t; x):
if t= sthen
xmi:gha; b; n; d
else if b= nil then
xm + 1i: c(ghc;nil;n +1;tij gha;c;n;si)
else bh;xi:gha;b;n;s

STo % g(Gjgha;nil; 1;s0i)
STm % STojahtixiij | altm:Xmi

Table 5.5: The implementation of a symbol table

5.5.2 Example: Symbol Table

This example comes from [Jon93, San99]. It is about the implaentation of a symbol table as a
chain of cells. In Table 5.5G is a generator for cells;STy is the initial state of the symbol table
with only one cell; STy, is the system in which the symbol table hasm pending requests.

Every cell of the chain stores a pair @;s), where s is a string and n is a key identifying the
position of the cell in the chain. A cell is equipped with two channels so as to be connected to
its left and right neighbours. The rst cell has a public left channela to communicate with the
environment and the last cell has a right channelnil to mark the end of the chain. Once received a
query for string t, the table lets the request ripple down the chain until either t is found in a cell, or
the end of the chain is reached, which means that is a new string and thus a new cell is created to
store t. In both cases, the key associated td is returned as a result. See Figure 5.1 for a concrete
example, where three cells and two requests are shown; thest cell stores the string \Chinese" and
its key \1", while the rst request queries the string \Frenc h" and an answer will be delivered at
channelf . There is parallelism in the system: many requests can be rjgling down the chain at the
same time.

As to termination, the example is interesting for at least two reasons. (1) The chain exhibits a
syntactically challenging form. The replicated processG has a sophisticated structure of recursive
inputs: the input pattern has inputs at g and a, while the continuation has a few outputs at g and
one output at b, which has the same type as. (2) Semantically, the chain is a dynamic structure,
which can grow to nite but unbounded length, depending on the number of requests it serves.
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Moreover, the chain has a high parallelism involving indepeadent threads of activities. The number
of steps that the symbol table takes to serve a request depemsdon the length of the chain, on the
number of internal threads in the chain, and on the value of the request.

SupposeT &' 12(String;]1*Nat), S %' £ (1;2)g and let the type of g be]%(T; T;Nat; String), where
String is the type for strings. We considernil as a constant name of the language studied in this
section and take it for the bottom element of any partial order R N N with T = T. For any

m 2 N, processSTy, is well typed under T °®and thus terminating.

5.6 Summary

In this chapter we have proposed a core type system and threextensions of it to ensure termina-
tion of processes in the -calculus. Based on the type systems we are able to prove thetmination
property of some challenging applications: the encodingsfagrimitive recursive functions, the pro-
tocol for encoding separate choice in terms of parallel congsition, a symbol table implemented as
a dynamic chain of cells. For all (but one of) the type systemswe also present upper bounds to the
number of steps well-typed processes take to terminate.

We believe that the idea of using levels can be applied to othename-passing calculi. For
instance, in Appendix C.6, we have checked that in the Join-alculus [Fou98] the type system
presented in Section 5.4 can be simplied. Intuitively, this is because the Join-calculus can be
encoded into a sublanguage of the asynchronous-calculus with each input channel being unique,
thus our assumption about asynchronous names in Section 5.4 automatically met and recursive
inputs are easier to be handled.

In Section 1.5 we have already discussed related work on terimation, notably [San05] and
[YBHO4]. Our systems are incomparable with those in [San05&nd [YBHO4]. Roughly, in [San05]
and [YBHO4] processes are mainly \functional" and indeed irlude the standard encodings of the

-calculus into the -calculus. These processes are not typable in our type systes. In this chapter
the processes are mainly \imperative". For instance, the eamples in sections 5.4.2 and 5.5.2 are not
typable in [San05] and [YBHO4]. One way of interpreting the results of this chapter is to consider
combinatory approach (on which our termination proofs are kased) as a complementary technique
to logical relations (on which [San05] and [YBHO04] are basedfor showing termination of processes.
It would be interesting to see whether the two approaches care successfully combined.
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Chapter 6

Conclusions and Future Work

In this thesis we have investigated various issues on probadlistic processes and typed mobile pro-
cesses. The major contributions are, brie y, the following

1. A complete axiomatisation of a calculus which contains bth nondeterministic and probabilistic
choice, and recursion. We have axiomatized both strong and eak behavioural equivalences.
It is the rst time, as far as we know, that a complete axiomatisation of weak behavioural
equivalences is presented for a language of this kind.

2. A complete axiomatisation of typed bisimilarity in the -calculus with capability types. An
indirect axiomatisation of a variant typed bisimilarity gi ven in [HR04]. To our knowledge, this
is the rst attempt towards an algebraic theory of typed mobi le processes.

3. A core type system and three re nements of it for guaranteéng termination property of well-
typed processes in the -calculus. In the termination proofs we have exploited two &rm
rewriting techniques: lexicographic and multiset orderings. In contrast, the conventional
proof techniques for concurrency, such as coinduction andtsictural induction, do not play
an important role here.

In summary, we have developed algebraic techniques for reasing about the behaviour of prob-
abilistic processes and typed mobile processes. We have alstudied a type-based technique for
verifying the termination property of mobile processes. Trese results lay out the foundations for
further study of more advanced models which may combine proability with typed mobility. They
also highlight the robustness of the algebraic and typed-bsed techniques for behavioural reasoning.

In the rest of this chapter we discuss possible future work,ricluding several problems that have
been left open.

Generalisation of the results

Due to the diculty discussed at the end of Section 4.4.1 we aw only able to give an indirect
axiomatisation of the bisimilarity proposed by Hennessy aml Rathke [HRO4]. We are not clear
whether it is possible to directly axiomatize the equivalerce in the language considered in Chapter 4.

113
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We do not know at present how to adapt our results to the language in [BS98] either. We recall
that the main di erences are: (i) no distinction between channels and variables, (i) no matching
construct, (iii) the use of Pierce and Sangiorgi's types. Beause of (i), some care is needed in a
proof system, for instance in de ning the appropriate rulesfor manipulating names that will later
be bound in an input. Because of (ii), the expansion law cannbbe used without appropriate
modi cation. Another issue is axiomatisations of typed weak bisimilarities. In this case, however,
types may not be so central, and the addition of the usual tau &ws [Mil89a] might be su cient.

For Hennessy and Rathke's bisimilarity, as well as the typedbisimilarity de ned in [SWO01], there
are results that relate them to contextual equivalences sut as barbed equivalence. It would be
interesting to see what kind of contextual equivalence (if ay) corresponds to our typed bisimilarity
(De nition 4.9).

Our type system in Chapter 4 allows matching names to have arlrary types. It is not clear
how to restrict our use of matching. Limiting matching to nam es of compatible types might pose a
problem for subject reduction. On the other hand, allowing matching only on names with types of the
form bT, as in [PS96], would seem di cult, for matching plays an important role in axiomatisations.
For example, one would not be able to rewritex j y asx:y+ y:x+[x = y] under the type environment

= x:iT;y:oT. In[HRO4], a particular typing rule for matching is presented, which allows meet
of types on successful matches. It might be interesting to kow whether the presence of this typing
rule would a ect the validity of our proof systems.

Type inference

In Chapter 5 for the sake of simplicity we have given our type gstems in the Church version. It
is not di cult to transform them into the Curry version. For t he Curry version of T and T9, it is
possible to check automatically whether a program is wellyped by using type inference, following
for instance Vasconcelos and Honda's type inference algdim for polyadic -calculus [VH93]. Here
one needs an extra constraint, which is a partial order betwen levels of names. By inspecting the
structure of a process, this task can be done in linear time w.t. the size of the process. ForT %
and T %9 however, type inference is not straightforward. In the future we would like to investigate
e cient type inference algorithms for them.

Parallel composition

Parallel composition plays an important role for modelling distributed concurrent systems, as it
allows to specify the structural properties of systems compsed of several interacting parts. However,
having both recursion and parallel composition in a processalculus complicates the matters to
establish a complete axiomatisation, mostly because thisan give rise to in nite-state systems even
with the guardedness condition. For example, letE be the expression x (a:(X j b)), then we can
easily see that there is an in nite transition graph startin g from E, though it is guarded in the sense
of De nition 3.2. Milner points out in [Mil89b] that in order to have a complete axiomatisation
for CCS with both recursion and parallel composition, a su cient condition is that the parallel
composition does not occur in the body of any recursive expssion.
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In [DPPO5] we relax this restriction by requiring, instead, that free variables do not appear in
the scope of parallel compositiof. In addition, due to the di culty of de ning parallel compos ition
on probabilistic automata as discussed in [Seg95], we have ned the probabilistic process calculus
given in Chapter 3. We restrict ourselves to simple probabiistic automata in [DPP05], and we have
given complete axiomatisations for strong bisimilarity and observational equivalence. To obtain the
completeness of the axiomatisations, we have developed agirabilistic version of the expansion law
to eliminate all occurrences of parallel composition. In oder to do that, we heavily rely on the
condition that only closed terms are put in parallel. We are now considering how to adapt these
results to axiomatize probabilistic branching bisimilarity.

Metric semantics of probabilistic processes

Usually probabilistic bisimulation is adapted from the classical notion of bisimulation by treating
probabilities as labels (see for example [LS91, Seg95, PL&ODPO5]), but this does not provide a
robust relation, since quantities are matched only when thg are identical. Processes that di er for

a very small probability, for instance, would be consideredust as di erent as processes that perform
completely di erent actions. This is particularly relevant to security systems where speci cations
can be given as perfect, but impractical processes and othgpractical processes are considered safe
if they only di er from the speci cation with a negligible pr obability.

To nd a more exible way to di erentiate processes, researders in this area have borrowed
from pure mathematics the notion of metric [DJGP02, DJGP04, vBW04, vBWO01]. A metric is
de ned as a function that associates a distance with a pair ofprocesses. In [DCPPO05] we have
de ned a notion of metric called state-metric. It turns out that in a probabilistic transition system
each state-metric corresponds to a probabilistic bisimulion and that the greatest state-metric
corresponds to probabilistic bisimilarity. Furthermore, the greatest state-metric can be characterised
as the greatest xed point of a monotonous function on statemetrics, which is closely analogous
to Milner's characterisation of bisimilarity as the greatest xed point of a monotonous function on
bisimulations [Mil89a]. We would like to investigate whether it is possible to apply state-metrics to
some fully- edged probabilistic process calculus.

Implementation of the -calculus

We consider it an interesting problem to develop a fully distibuted implementation of the (syn-
chronous) -calculus () [Mil99] using a probabilistic asynchronous -calculus ( ,a) [HPO4] as an
intermediate language. The reason of requiring a probabititic calculus is that it has been shown
impossible to implement certain mechanisms of the -calculus without using randomization [Pal03].
Some results in this research direction are obtained in [PH@], but the part on implementation is
very preliminary. A more realistic and e cient implementat ion remains to be worked out.

We believe it important that an implementation does not intr oduce livelocks (or other kinds of
unintended outcomes), hence the translation from to pa should preserve livelock-freedom, and

1A similar restriction is adopted, independently, in [BB05]  for axiomatizing observational equivalence in a generic
nonprobabilistic process algebra.
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the semantics should be sensitive to divergency. For this @son, a probabilistic testing semantics is
introduced in [PHO4]. However, it turns out that probabilis tic testing semantics is rather di cult
to use. The correctness proofs are ad-hoc, by hand, and ratheomplicated. For the realistic (and
necessarily more sophisticated) implementation, we needefisible and (at least in part) automatic
proof methods. So it is appealing to investigate a divergengsensitive bisimulation-like semantics.
In the future, we plan to extend our results on divergency-sasitive equivalence obtained in Chapter 3
to the probabilistic asynchronous -calculus.

Speci cation and veri cation of modern distributed system S

Unlike other probabilistic process algebras, pa has the advantage of being able to describe mobile
systems. To equip pa With capability types might make it a good candidate language for specifying
randomized, distributed, and mobile computational systens. Thus, as a natural development of our
work, it is interesting to build an algebraic theory for this language by combining our results on
probabilistic and mobile processes. A possible way to proeal is to rst extend the results on nite
processes in Chapter 3 to the setting of pa, then take type information into account as we have
done in Chapter 4. As far as nite processes are concerned, i does not seem to be a di cult
task. By contrast, we do not know how to extend our results in Chapter 5 so that probabilistic
termination can be ensured by typability. We are not aware of any work on this problem.

Once an algebraic theory for typed pa is built, one might be able to exploit it to develop
some automated veri cation tools, which would pave the way br verifying some useful randomized
distributed algorithms and protocols. Therefore, another possible research direction is to develop
automated tools that can check probabilistic and/or typed bisimulations, for which the results on
axiomatisations in this thesis would be useful.



Appendix A

Proofs from Chapter 3

A.1 Proof of Lemma 3.14

We begin with several derived rules.

Lemma A.1 The following rules are derivable:

E) fCE:p)gilf GF:pg F) <f(GFj 1 q)g
E) <fCiEitpdailf (GFj 1pqg)g;

E) cfCi;Eitplailf (CF :p)g F) cf(hj;Fg)g
E) «fCi;Eiip)ailf (hj;Fj 1 pg)g;

E) ¢cf(GEi:p)g 8iEi) ¢ #(X)
E) c#(X)

wea?2'

wea3'

wea4'

Proof: By induction on inference. We also need to prove some other dived rules at rst. For
example, Before inferringwea2'we need to show its simpler version:

E)f Ci;Ei:p)ailf GF:pg F) <f(;Fj:g)g

wea2" - -
E) cfCiiEitp)a1f (5F; 1pg)g
The whole proof is tedious and non-instructive so it is omitted here. u
Lemma A.2 Let R be a weak probabilistic bisimulation. IfE R F then wheneverE ) | there

exists ©such thatF ) . °and R °

Proof: By transition induction, on the depth of the inference by which the transition E ) is
inferred. We argue by cases on the last rule used.

weal This is the induction basis. The result follows from the de nition of weak probabilistic
bisimulation.

wea2 Let = f(i;Ei @ p)gi2i 1T (GEj 1 pg)gi29, 1= fCiEi @ p)giai 1T (GEC: p)g,
2=f(;Ej :qg)g21,E) 1andE®) ,. By induction hypothesis, there exists ¢ such
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that F) . 2and ;1 r §. Let 1(;[E9r) = r for the equivalence classE%r 2 E=R
with EC as its representative. It is clear thatr p. Since ; r ¢, we have { in the form
fC;Fi:g)di21, 1f (hi;Fi : g)gi21, such that

1. |]_\ lo=1;

2. foralli21,, Ff R E®

3. foralli21,, either h; 6 ~ or (Fi;E9 62R

=]

4, i21, G =T,

From condition 2 and induction hypothesis, we know that for eachi 2 1, there exists o s.t.

Fi) ¢ 20, 2 r 2 and o intheform f(;Fj :qj)g2s . By repeated use of rulewea2'we
caninferF) . 9 where

9= fCiFyj 160 )Gi21,520, 1F (hi;Fi 1 G)gi21,:

Now let = -2 9+ B 9 Bylemma 3.5 we know thatF ) . ° We can verify that g ©

as follows. For anyN 2 E=R and h 2 L, there are three possibilities:

1. h6 ": Then (h;N)= 1(h;N)= 9(h;N)= 9(h;N). Hence

UiNy= L o)+ Bginy = TR iy + B neny = (e
2. h="and E?62N: Then we have
AnN) = 52 2(hN)+ B 2(hiN)

= R AN EC o, a 2N+ YND)
= ’r—"i’(h:N>+?(Pi2|1q 2(GN)+ Y(h;N))
= TP OhN)+ B(r o(;N )+ 9(h;N))

d(MN)+ p2(5N)
1(hN)+ p 2(;N)
(h;N)

3. h="and N =[E%: Then we have

AN) = =2 2(hiN)+ B 3(hiN)

r

P
R a(N)+ RO 5 6 2i(GN)

r

=

P
= r_pr"'rE( i2|1q 2(;N))
(r p+ 2(r2(iN))

(r p+p2:N)
( 2(hiN) p+p2(:N)
(h;N)

wea3 Similar to the last case.
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wead4 Then = #(X). Let 1 = f(;E; : p)g, Ei ) #(X) for eachi and E ) ;1. By
induction hypothesis there exists { suchthatF) . and ; r 9. Itisclearthat ¢ must
be in the form f( ;F; : g)g; and by induction hypothesis F; ) . #(X) for eachj. Therefore
by rule wea4'we infer F ) . #(X). By taking %as#(X), the desired result follows.

Now Lemma 3.14 follows immediately from Lemma A.2, 3.5 and 3.

A.2 Proof of Proposition 3.34

In [SS00] Stark and Smolka used a special functiofi that associates a probability to a nonprob-
abilistic transition so as to form a probabilistic transiti on. For example, let E %a %b, then
f(E1? 0)= % andf (E ! b 0) = % The function f can be characterised a$ = sup; ,f; for some
functions f o; f1; ::: that take nonprobabilistic transitions to probabilities a nd respect some ordering.
Therefore in the soundness proofs of some axioms, to show thd (E !* E® = f(F !* F9,
it suces to prove by induction on i that: (1) fi(E !* E9 f(F !'® FOQforali 0; (2
fi(F 1 F9 f(E!* E9foralli 0. Inthe presence of nondeterministic choice, however,
this techniqgue becomes unusable because now the probabjlitvith which an expression performs

an action and evolves into another expression is not determistic any more. For example, let

E ©( la 2p+(ia Llc), then what is the value of f (E !® 0)? Should it be 1, 1, or some

value between them? Now the meaning of the functionf is unclear because it depends on how
the nondeterminism is resolved. Nevertheless our \bisimwdtion up to" techniques work well with
Milner's transition induction technique, as can be seen in he proof of Proposition 3.34.

Lemma A.3 1.IFE!'f (Ci;Ei:p)g thenEfG=Xg!f (Ci;EifG=Xg:p)yg;
2. 1fFE)f (Ci;Ei :p)g thenEfG=Xg)f (i;EifG=Xg:pi)ai;
. IfE) ¢f(Ci;Ei :pi)g thenEfG=Xg) f(i;Eif G=Xg: pi)gi;
4. If E) <f(Ci;Ei :p)agi then EfG=Xg) f(i;EifG=Xg: pi)g.

Proof:  Straightforward by induction on inference. u

Lemma A.4 1L.IfE! #X)andG! then Ef G=Xg!

2. IfE) #(X)andG! then EfG=Xg)

Proof:  Straightforward by examining the structure of E. u

Lemma A5 If EfG=Xg! then one of the following two cases holds.
1.E! #X)andG! ;

2. =f(i;EifG=Xg:p)g andE !'f (i;Ei :pi)gi.
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Proof: By induction on the depth of the inference of Ef G=Xg! . u

Proposition A6 If E F thenEfG=Xg FfG=Xgforany G2E.

Proof:  Consider the relation R = f(EfG=Xg;FfG=Xg) j E;F 2 EandE Fg. Since is
an equivalence relation, it follows that R is also an equivalence relation. So if we can show the
assertion:

\If EfG=Xg! j then there exists , s.t. FfG=Xg) ¢ 2and 1 r 2"
then it follows from De nition 3.13 that R is a weak probabilistic bisimulation.

We now prove the above assertion. From Lemma A.5 we know thattere are two possibilities:

1.E! #X)and G! 3. Thus F) ¢ #(X) becauseE F. From Lemma 3.51 we know that
F ) #(X). By Lemma A4 it follows that FfG=Xg) 1. We can simply take ; as ; and
nish this case.

2. 1= fCi;EifG=Xg:p)gand E! 1 =f(Ci;E| : p)gi. SinceE F there exists »
f(hj;F :g)g st. F) ¢ 2and ; 2. By Lemma A.3 we can deriveFfG=Xg) 2 =
f(h;;FjfG=Xg: q)gj. Observe that for any E4F°2 f Eig [f Fjg it holds that E® FOi
E%¥G=Xg R F¥G=Xg. Hence it follows from ; >that 1 g > and we complete the
proof of this case.

Proposition A.7 If E' F then EfG=Xg' FfG=Xgforany G 2E.

Proof:  Due to symmetry, it suces to verify that if EfG=Xg ! 1 then there exists , s.t.
FfG=Xg) ¢ 2and ; 2. From Lemma A.5 we know that there are two possibilities:

1.E! #X)and G! 1. Thus F) ¢ #(X) becauseE ' F. From Lemma 3.51 we know that
F ) #(X). By Lemma A.4 it follows that FfG=Xg) 1. We we can simply take 1 as »
and nish this case.

2. 1= f(Ci;EifG=Xg:p)gand E! 1= f(i;Ei : pi)gi. SinceE ' F there exists , =
f(hj;F :g)g st. F) ¢ 2and ; 2. By Lemma A.3 we can deriveFfG=Xg) ¢ 2 =
f(hj;FfG=Xg: ¢)g. By Proposition A.6 it holds that for any E%F°2 fE;g [f Fjg if
E° FOthen EX¥G=Xg F% G=Xg. Hence it follows from ; > that > and we
complete the proof of this case.

Lemma A.8 1. The following rules are derivable:
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E. Ef E=X
D1 i) for somej 2 1:n D2 X 9)
i21::nEi) XE)
E; Ef E=X
D3 i) for somej 2 1::n D4 X 9) c
i21::nEi) c XE) c
D5 E) cfCi;Eiip)alf GGF:p)g F) f(;Fj:g)g
E) fCisEiip)a It C5F; 1 pg)g;
D6 E) cfCiEiip)alf (GF :pg F) cf(h;Fig)g

E) «fCi;Eitp)ai If (h;Fj 1pg)g;
P
2. f 5.0 Ei) then E; ) for somej 2 1:n, with a shorter inference.

3. If xE) then Ef x E=Xg) , with a shorter inference.

Proof:  Straightforward by induction on inference. u

Proof of Proposition 3.34 Let =f xE=Xgand =f xF=Xg. We show that the relation
R=f(G;G )jE;F;G2EandE"' Fg

is an observational equivalence up td . Because of symmetry we only need to show that iG )
there exists °st. G ) . and g % The proof is carried out by induction on the depth of
the inference of G ) . There are several cases depending on the structure &.

G X:ThenG x E) . By Lemma A.8 we have a shorter inference with the conclusion
E ) . By induction hypothesis there exists st. E ) o and R . SinceE' F we
haveE ' F by Proposition A.7. By Lemma 3.17 there exists °s.t. F ) . %and 0

By rule D4 it holds that x F ) . 2 At last it follows from Lemma 3.8 and the transitivity
of g that g ©

P

G io1.n Git If G )  then by Lemma A8, G; )  for somej 2 1:n with a shorter
inference. By induction hypothesis there exists °s.t. G; ) . and r © By rule D3
itholdsthat G ) . ©

G vyG% If G ) then by Lemma A.8 there is a shorter inference with conclusio
G°fG=Yg G%¥G=Yg ) . By induction hypothesis there exists °s.t. G¥G=Yg ) . ©
and g % Byrule D4 it can be derived that G ) . ©

L

G i»; Bi"i:Gi: In this caseG ! =f(Ci;Gi :pi)Giz2i- When = #(Y) for some variable
Y the argument is simple. So we suppose that is a distribution on L E . By induction on
inference it can be proved that is an extension of , i.e., there is a partition of | into three
disjoint set | 1;1, and |3 such that

1.8 21,[ I3; Gi ) i with a shorter inference than thatof G ) ;

2.8 21y ;= f( ;Eij - Pjj )gj;

3.8 213 = and =f(Cy:;Ej :pj)g;
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. u . u
4. =106 P2 ] i fCHE; teip)g ] i, fCisEi tpips g
For eachi 2 I [ I3, by induction hypothesis there exists ®suchthatG; ) . % i r 0
and

1.8 21y 9=1(;Fi :Gk)ok;
0
I

2.8 213 9= f(hi;Fik : gk )0k-

Let m;n be the sizes ofl, and |3 respectively. Using ruleD5 for m times and rule D6 for n
times, we can deriveG ) . ° where
. | ]
°= f(Ci;Gi :p)Giai, ] fCi Fik “pigk)ok ] f(hic ; Fik - PiGk ) Ok:
i21, 213

It remains to show that R

P . . . .
Letp= " 5, Pi, = f(i;Gi :pi=Pg2i, and = f(i;Gi :pi=pPdi2i,. Itis immediate
that © g % Foralli2 I welet j = fCi;Ej :pj)g and 2= f(Ci;Fik : Ok )0k It
follows from ; r Othat ; g 2 Obviously we can rewrite and °as:

P
P;2|2pi it P;2|3pi [

0_ 00 0 0
Sl e PYUN ¢ PSP ¢

:po+

By Lemma 3.9 we have the desired result that r  ©.

u
A.3 Proof of Lemma 3.36
Lemma A9 Letdx(G)=n>0and =f(i;Gi:pi)di2i. SupposeGFE=Xg! . Foralli2l,
it holds that G; = GXfE=X g and
1. If = thendx (G n;
2.1f 6 thendx(GY) n 1
Proof: By induction on the depth of the inference of GFE=Xg! . Let us examine the structure
of G.
G X orY: Impossible becausely (E) = 0.
L
G i bi"i:Gi: Straightforward by de nition.
P
G i21.n Gi: Then GFE=Xg!  must be derived from a shorter inference with conclusion
GjfE=Xg! for somej 2 1:n. Thus the result follows from induction hypothesis, noting

that dx (G;) dx (G).
G v G% Then GfE=Xg! is derived from the shorter inference of
G¥E=XgfGfE=Xg=Yg G%¥G=YgfE=Xg!

So the result follows from induction hypothesis, by noting that dx (G%¥ G=Yg) = dx (G).
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u

Lemma A.10 Letdx(G)= nand = f(;G;j :pi)di21. SupposeGFE=Xg) . Foralli2l,it
holds that

1.1f n>0and’; = thenG;

GYE=Xganddyx (GY) n;
2.1fn>1and 6 thenG;=GY¥E=Xganddyx(G) n L1

Proof: By induction on the depth of the inference of GFE=Xg ) . There are three cases,
depending on the last rule used in the inference.

weal In this case GFE=Xg! and the result follows from Lemma A.9.

wea2 Then = f(i;Gi :pi)gi2i 1T Co;Hj : pog)gj2s and GFE=Xg) s derived from the
shorter inferencesGfE=Xg)f (i;Gi 1 pi)di21 If Co;Go:po)gandGo)f (;H; :G)gi2s.
By induction hypothesis, for eachi 2 | [f Og, it holds that

1. 1fn>0and’j = thenG; = GYfE=Xganddyx (G®) n;

2. 1fn>1and’; 6 thenG;=GY¥E=Xganddx (G’ n 1.

Particularly for Gg there are two cases:

1. if g = then Go = GJfE=Xgand dyx (G) n > 0. By induction hypothesis on the
transition of GJf E=Xg, we haveH; = HXE=Xgand dx (H?) dx(Gg) n for each
j23;

2.if o8 then Go = GJfE=Xganddx(G}) n 1> 0. By induction hypothesis on
the transition of G§f E=X g, we haveH; = HfE=Xganddx (H?) dx(G§) n 1for
eachj 2 J.

wea3 Then = f(i;Gi : pi)gi2i 1f (hj;Hj 1 g)gi2s and GFE=Xg) s derived from the
shorter inferences ol GfFE=Xg)f (i;Gi : pi)Gi211f (;Go:po)gandGo)f (hj;Hj :qG)gi2s.
By induction hypothesis, for eachi 2 | [f Og, it holds that

1. 1fn>0and’j = thenG; = GfE=Xganddyx (G®) n;

2. 1fn>1and’; 6 thenG;=GY¥E=Xganddx (G’ n 1.

Particularly for Go we haveGo = G8fE=Xgand dx (G8) n > 0. By induction hypothesis
on the transition of G3f E=X g, it follows that for each j 2 J

1. ifh; = thenH; = HfE=Xganddx (H?) dx(G3) n foreachj 2 J;
2.n>1andh; 6 thenH; = HfE=Xganddx (H?) dx(G§) 1 n L1
u
Lemma A.11 Supposedx (G) > 1, = f(';G; :pi)giz1 andGfE=Xg) . Then G; = G¥fE=Xg

for eachi 2 1. Moreover, GFF=Xg) Cand R O where %= f(;GXF=Xg: p)gi2 and
R = f(GfE=Xg;GfF=Xg)] forany G 2 Eg.
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Proof: A direct consequence of Lemma A.10. u

Proof of Lemma 3.36 Let =r; ;+::+r, andGfE=Xg) foreachi n.BylLemmaA.l1,
for eachi n, there exists ?s.t. GfFF=Xg) Pand ; r O Nowlet %=ry ?+ i+ 1y 0

n:

thus GfFF=Xg) . ° Bylemma 3.9 it follows that g °© u

A.4 Proof of Lemma 3.45

Proof:

1. We proceed by transition induction on the inference ofE ) . There are three cases, con-
cerning the last rules used.

weal Then E ! and there are several subcases.

L
(&) psum Then E i bi"i:E; and the result is obvious by axiomS2.

(b) nsum Then E P i) Fi and Fj ! for somej 2 |, with a shorter inference.
By inductioB hypothesli:s we inferLAgd T F = F +L i pi"i:Ej, from which we have
Ag E 21 Fi= R+ ypiEi=E+  piE

(c) rec Then E x E9and EXE=Xg! for someE®’ with a shorter inference. By

L
induction hypothesis Agq © E¥E=Xg= EXE=Xg+ ,p ‘Ii:Ei. By axiom R1 we
haveAgs * E = EXE=Xg= E¥E=Xg+ ,pi:-Ei=E+ ,piEi.
weaz Then E ) f (;Ei :p)ailf (GF :pg F)f (5Fj tg)g and f (CijEi:
pi)gi 1T (;F; 1 pg)g . So we can infer as follows.

. IH L . .
Agd E = E + L i bi = p:F L
' E+Lipi‘i:Ei p‘:(F+qu:Fj)

(1P}

L
E+Lipi‘i:Ei E‘:(F+ ;G Fp)+  ipTiE i Pg F;
E+ piE i Pg Fj

wea3 Then E )f (i;Ei :p)gilf (;F :p)g, F)f (hj;F :g)g and f (i E:
pi)ai 1T (hj;F; 1 pg)g;. So we can infer as follows.

. IH L
Agd E = E + L i Pi i :E;j pZF L
'H E+Lipi\i:Ei p:(F+quhj:Fj) .
T2 N N
= BripeE pr(Fr bR+ R pg

E + i pi i :E; i P9 hj F

2. Let =ry 1+ i+rna, i f (CisEj :pj)g andE) 4, for eachi n. We can do the
following inference.
L .
2 P ‘Eij
E+ igun jPiiBi v by i By
E+ i ripy i iEj

—~
=
N

Ag E

Ho 11
m
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3. By induction on the inference E ) #(X). There are two cases, depending on the last rules
used.

weal This case includes several subcases.

{ var Then E X and the result is obvious by axiomS2.

{ nsum Then E P i»; Ei and E; ) #(X) for somej 2 1. By induction rlypothegs
we infer Agq = Ej = E; + X, from which we haveAy ~ E i1 Ei= 5 Ei+
X =E+ X.

{ rec Then E vyE%and EXE=Yg! #(X) for someE%andY 6 X. By induction
hypothesisAgq ~ E¥E=Yg= E¥E=Yg+ X. By axiom R1 we haveAqq ~ E =
EXE=Yg= EXE=Yg+ X = E + X.

wead Then E )f (;E; : p)ag and for eachi it holds that EiL) #(X). By the result
of Clause 1 just proved above, we know thatAgq ~ E = E+ , pi :E;. By induction
hypothesis on eachE; we inferAgq ° E = E+ ;p :(Ei + X). At last it follows from
Tl that Agg E=E+ ,p:(Ei+X)+ X =E+X.

u
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Appendix B

Proofs from Chapter 4

B.1 Some More Derived Rules

Cvn [x=aP= [x=a][x6 a;] [x6 a,]P fa62fhjl i ng
Tv2 P= [x=a]P+[x=a]P+ +[x=a,]P
if fb2 dom( ()j (b < ( x)g=fas; ;ang
Tv3 fP= xtQthenP= 4sQforS<T
vl IfP= y.(x Qthenx(y:Ty):P = x(y:T2):Q
Iv2 IfP= yv.(x,QthenxviP = xv:Q
Proof:  Among all the rules, the proof of Iv2 is the hardest, so we report it below in details and

omit the others.

Let fb2 dom( ¢)j (b < ( xX)g= fai; ;a,g. When n = 0, the result is immediate by
using Tvl . Supposen > 0. Foreachi n, ( &) <: ( X), there are two possibilities: (i) if ( a)6#
then ab:P = 0= &ah:Qby Tout* ; (i) if ( &)#, then we have (X)o <! ( &)o <: ( &)i by
Proposition 4.2. There are two cases, depending on name

v is a channel, sayb. It follows from P =, ( ), Qthat P = . ( 4) Q by Twea* . Using
lout* , we have

aib:P= ahQ (B.1)
Finally,
xb:P = [x = ai]xb:P +  +[x = a,]xb:P by Tv2
= [x = ai]a;b:P + +[x = aplanb:P by Tpre*
= [x=aJaub:Q+  +[x=a3]a,b:Q by (B.1)
= xb:Q by Tpre*, Tv2

v is a variable, sayy. By hypothesis, ]xy:P and ]xy:Q are con gurations, then it holds
that ( y) <: ( X)o. By Proposition 4.1, it is easy to see that uy: ( x), = . Let the set
fb2 dom( ¢)j ( b < (yg=fh; ;bng. We consider the non-trivial case thatm > 0.
For eachi n;j m, by Proposition 4.2 we have

(B)<t ()<t (X<t (@< (a):

127
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So ul: (&)= = uy: ( X)o. Therefore we can rewrite the hypothesiP = . 4,
QasP = yp:( a) Q- Usinglout* , we get the result

abP= ab:Q (B.2)
At last we can do the inference.
xy:P
= [x= ai]xy:P + +[x = an]xy:P by Tv2
= [x=ai]ly = bi]xy:P + +[x = ai]ly = bn]xy:P +
+[x = an]ly = bu]xy:P + +[x = an]ly = bn]xy:P by Tv2

= [x=ai]ly = bh]Jaaby:P + +[x = ai]ly = bn]Jaibn :P+
+[x = an]ly = bi]anbi:P + +[x = an]ly = bn]anbm:P by Tpre*
= [x=ally=bhlaabh:Q+  +[x=a]ly = bnlarbm:Q+
t[x=anlly = bilanbi:Q+  +[x = an]ly = bn]anbm:Q by (B.2)
= xy:Q by Tpre*, Tv2

B.2 Proof of Theorem 4.36

Proof: We sketch the completeness proof of clause (ii), which is caed out by induction on the
depth of P + Q; clause (i) can be shown in a similar way. Assume thaP; Q are in hnf w.r.t. and

= ;B :P. Let ]Q be a con guration respecting . For some complete condition' which are
satis able by some legal substitution on , let P., be the sum of all active summands ; ;:P; of
P suchthatfCl1;Tpre g~ 'i i:Pi= 'a (x:T;):Pi. We write

X xo
P.a = ‘a(x:T):Pi and Q.a = 'a (x:5):Q;

i=1 j=1
The key of the proofisto nd, foreach1 i n, aterm R; satisfying the following two properties.
A 'a(X:T):Pi= 'a(x: (a))R; (B.3)
Ae” Qa = Qu +'a(x: (a&i)R; (B.4)
Let = f®=eg be a substitution which satises' and ' ®:®. FromP | ¢ . Q we derive that
Pa 1° Qa .Given P ¥ 9p, foreachb2fb2 dom( ¢)j o) < o(8)og=

a(XilsJ(i;b ))

fcy;  ;ocg we have a matching transition  ¢]Q-a O?QJ(i;b) such that

Pi fb:)gl ecQJ(i;b) fb:)g

for some functionJ from [1;n] and f¢ j1 i kg to [1;m]. By the de nition of hnf, P; and
Qi (i) are of the form'P 2and 'Q 9§, respectively. Here' is complete ondom(), but not on
dom() [f xg, We can complete it by adding conditions on the top which resgcts fb=xg. Let
"p=[X=b" | gem() nolX & U] Itis easy to see that

(A ]Pio) fo=xgl ¢ (""" ]Qﬂ)(i;b)) fb=xg:
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By Lemma 4.20 we have [p” " IP°1 © .. o [ v” ' 1QJ iy By induction hypothesis

Ae™ "bPi = x:( &), bQuip): (B.5)
Now dene S;; for|l k by

Si1 = Qui(icy)
[X=10]Qycy Sy 1 forl<l k

o
|

Let R; be de ned as Six . Using C9 and Cvn, we decompose binary conditions inR; into unary
conditions.
Ae  Ri= »(ay «Quigco ™ o 1Qitick 0+t  + ' Quicy)

On the other hand by Tv2 and Cvn we have
A" P = ;x:(a)olckpi"' + ' ¢ Pi:

By using (B.5) we haveAe ~ Pi = .( a), Ri, from which we infer that Ae ~ a(x : Tj):P; = a(x:
(a)i):Riand A" 'a (x:Ti):Pi= 'a(x: (a)):Ri bylin* andlIcon. So we get the property in
(B.3).

Finally with axiom SP we can show by induction on 0<|  k that

Ae Qua = Qua +'a(x: (a))Sy: (B.6)

Therefore (B.4) follows because it is the special case of (B) when| = k. u
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Appendix C

Proofs from Chapter 5

C.1 Proofs from Section 5.2

Lemma C.1 For two well-typed processed and PO if w : x (i.e., w and x have the same type)
and P%= Pfw=xg, then wt(P) = wt(P9.

Proof:  Trivial. u
Below we usej wt(P) j to stand for the length of the vector wt(P).
Lemma C.2 SupposeT “ P andP ! PO thenjwt(P%j j wt(P)j.

Proof:  Straightforward by induction on the structure of P. u

Since the length of a vector can be extended by inserting zesoto the left end, we often assume
implicitly, for simplicity of presentation, that several v ectors have already been extended so as to
be of equal length when discussing their relationship.

Lemma C.3 SupposeT * P;P ™ PO |v(a) = i, wt(P) = my;ne 1; ;nii and wt(P9 =
hm;me 15 ;mai. Thenm;  n; for all j satisfyingi  j k.

Proof: By induction on the transition of P " PO
1. P ax):P. ™ Pifw=xg P2 in this case,wt(P) = wt(P1) = wt(P% by lemma C.1.

2.P PijPy;P P Pland P?  P2jP,, then we have

wt(P) = wt(Py)+ wt(P2) = mi;nt ;; nii+mZng ; nii
wt(PY = wt(P)+ wt(Pz) = tmi;mi ;; smii+m2;n2 ;; ;nji
. . . .. . a1 1 = 1 2 1 2 - n. -
By induction hypothesis, 8j;i j k;mj nj,itfollows that mj = mi+n ni+nf=n;:

3.P bP;P, ™ PZP°  bPland b6 a, then wt(Py) = wt(P) = my;ng 1; ;nii,
wt(P)) = wt(P% = hmy;mg 1; ;myi. By induction hypothesis, we know that 8j;i j
kim; nj:

131
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4. P  Py+ PPy P Pland PO PY then

wt(P) = maxfwt(P1);wt(Pz)g= maxfhnl;nl ;; ;nli;m2;n2 ;; ;n?ig
wt(PY = wt(P)=mm{;mi 5 ;mii
By induction hypothesis, 8j;i j k;m! nf,som! n! n;:

J

5 P la(x):P1 ™ PjPifw=xg P° According to T-rep, any name which appears as subject of

active output in P; has a level lower than that ofa. Supposewt(P1) = m%n? ;; ;n%i, then
I <lIv(a) = i. Hencewt(P9 = wt(P)+ wt(Pifw=xg) = wt(P)+ wt(P1) = y; ;nii;n +
n%n 1+ n? ;;  ;ni+ndi. Thereforem; = n; for all j satisfyingl i j k
u
Lemma C.4 SupposeT ~ P;P (!%)alW PO Iv(a) = i, wt(P) = my;ng 1; ;nii and wt(P% =
hmye;me 15 ;mai. Thenm; <nj andm; n; for all j satisfying i <j K.

Proof:  Similar to the proof of Lemma C.3. As an example, let us considr one case. Suppose
P aw:P, Y Py PO, After the transition, process P lost one output occurrence at leveli
previously contributed by name a. Other output occurrences remain unchanged. So it holds tha
mi=n; landm; =n; forall j 6 i. u

Proof of Lemma 5.1
By induction on the transition system. We consider a typical case. SupposeP P1j P2,

P, ™ pep, (P poand PO ( B)(P2j PY: Let Iv(a) = i and

wt(P) = wt(Py)+ wt(P,) = mi;ng ;5 snfi+mZng ; ;ndi

wt(P9) = wt(PP)+ wt(P) = tmi;mi ;5 mii+mmZ;mZ ;  ;mii
It follows from Lemma C.3 that 8j;i j k;m! n'. From Lemma C.4 we infer that m? <n?
and 8j;i < j K; mj2 njz: Combining the two results, we can draw the conclusion thatm; < n;
and 8j;i <j k;mj nj, in other words, wt(P%  wt(P): u

C.2 Proofs from Section 5.3

When P is known or unimportant, we simply write M ; for M p.;. There are two additional special
vectors widely used in this section.

1. Oi0= M «;nk); (M q;nq)i where (1)8f kM =[1;(2) y;  ;nii = 0;.

2. 0°= HM k;nK); (M 1;ny)i where ()M ; =[j]and M, =[] for all | such that| & i; (2)
e, mi = 0.

The proofs of the following lemmas are carried out by inducton on the transiton P | P9
Here we writea : ]': Nat to mean that a:]'T and T 6 Nat for someT.
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Lemma C.5 SupposeT® P and P ™ PO
1) If a:]': Nat, thentpo tp + 0°
2) If a:]'Nat, then tpo tp + 0%,

Proof: Lettp = (M k;nk); (M 1;n1)i andtpo= (M 2;n?); (M $;n?)i. We consider two
typical cases.

1. P a(x):P ™ Pifw=xg PO

(@) If a:]': Nat, then all Nat values and output occurrences inP remain intact after the
transition. So tpo=tp  tp + 07

(b) If a:]'Nat, there are two subcases.

i. If 8bu 2 out(P1);x 62fvn(u) then no new Nat value is created inP;. So we have
tpo=tp tp + 000,

ii. For each active output buwith fvn(u) = fxg, new constant values are generated. Let
ufw=xg = m 2 N. Sinceu is consider asl in M}, and it becomesm in M ,(\’,(b),

we infer that M R,(b) M () by the fact that m < 1 . As wt(P) does not change,

hencetpo tp  tp + 0%,

2. P lax):P1 P PjPifw=xg P

(@) If a:]": Nat, in this case only the rst condition in De nition 5.4 is appl icable, which
ensures that all active outputs in P; have levels lower thani. Sowt(P%  wt(P) + 0
andM;j =M ]_o for all j i. Therefore it holds that tpo  tp + OC.

(b) If a:]'Nat, there are also two subcases.

i. If 8b2 os(P1);lv(b) <i, then we are in the same situation as that of case 2.(a). So
tpo tp +0° tp + 0%0:

ii. If there are outputs at level i in Py, saybu, then rule T-rep requires thatu<x, i.e.,
ufw=xg<w. Itis easy to see thatM p,y=gqi [W]. Itfollowsthat M? M ;] [w].
Although it may occur that n?> nj, the relation tpo  tp + 0% still holds because
the compound vector is constructed in such a way that Nat-mutisets are compared
in a higher priority than output occurrences.

3. The other three cases can be analyzed by using induction Ippthesis.

Lemma C.6 SupposeT?" P and P (!ﬁ)aw PO

1) If a:]': Nat, thentpo tp 0P
2) If a:]'Nat, thentpo tp 0%,

Proof: By induction on transitions. Consider the base case. Suppasthat P aw:P; ™ P; P?
If a:]': Nat, P lost one output occurrence after the transition. There is nochange forNat values
in P. Sowt(P% = wt(P) 0; and M poj = M p; forallj j wt(P)j. In other words, we have
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tro = tp 0% If a: ]'Nat, P lost one output occurrence and a constantw at channel a. So
Mpoi=Mpi [w], wt(PY)= wt(P) 0; and8j 6 i;M poj = M p; , which meanstpo = tp 0%,
For other cases, induction hypothesis is applied. u

Proof of Lemma 5.6
Similar to the proof of Lemma 5.1. We consider the base casehe other cases follow from

induction hypothesis. Let P Py j Po;Pr ™ PP, ¢ Paw Pland P° ( B)(PLjPY).

1. If a:]": Nat, then we have thattps  tp, + OY from Lemma C.5 andtpy tp, O from
Lemma C.6. So it can be derived thattpo = tpo+ tpo  tp, + 00+ tp, 0°=tp, + tp, = tp.

2. If a:]'Nat, then from Lemma C.5 we have the result thattpo  tp, + 050 and from Lemma
C.6 we havetps tp, O0p0. Hence it holds that tpo = tpo+ tpo  tp, + O + tp, Op) =

tp, + tp, = tp. u

C.3 Extending TO°with Polyadicity and Conditional

To allow for polyadic communication and if-then-else constuctor, the extension of typing rules is
straightforward.

Tu:]"® g:¥ P 8vhei2 out(P);vhei/u(®)
T-rep “Tu(e):P
T.f _W:bool " P " Q
if wthen P else Q

The de nition of / should be changed accordingly.

De nition C.7  Supposeu : ["(Ty; ;Tk) andv:]™(S1; ;S). We write vhsi / u () if one of
the two cases holds:

1. m<n
2. both of the following two conditions are met:

(@ m=nandk =1

(b) there exists somei k such that T; = Nat, w; < x; and w, xj for all j 6 i with
Tj = Nat.

In clause 2 we require that at least one argument of rst-orde should decrease its value, while
in monadic case the unique rst-order argument decreases.

Inan input u(®) or an output vhei, the order of arguments in the tuplese and w is not important.
Without loss of generality, we assume that arguments of typeNat are always in the left end. In
other words, we may consider that a tupler is composed of two parts:e = k1;k,, and x; is of type
Nat only if it is an element of k;. That is, all elements of k, are of channel type orbool type.
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Let viw,;  ;wi;wg;  ;wli be an active output appearing in processP. De ne w; below for
everyw;, wherei 2f1; ;ng.
(
W= Wi if w; is a constant, i.e.,fvn (w;) = ;
= 1 otherwise

The de nition of Nat-multiset, for the case of output, needs to be modi ed.

( _
Mpil [Wn; ;wi] if v:]'(Bat;®)
M vwiPi = - - .
M p;i otherwise
wherew = hwp;  ;wp;ws;  ;wdi. The intuition is that during a communication we consume
an output vw and probably get some new outputs at leveli, of the form vhw, m,; ;w;
ml;W%; ;W?i. Asw; m; <w; for somei andw; m; w; for all other j with i;]j n, we

immediately infer that M po;j <mu M p.i. The de nition of compound vector remains unchanged.
For conditionals, we can extend the de nition of weight in this way: wt( if bthen P else Q) =
maxfwt(P); wt(Q)g. According to the new de nition of Nat-multiset, propertie s similar to Lemma
C.5 and C.6 are easy to prove. Lemma 5.6 and Theorem 5.7 stilldid.

C.4 Proofs from Section 5.4

Proof of Lemma 5.12

1. There is a communication performed between a non-replidad input and an output mes-
sage. That is, P ( B(a(x):P; j aw:Q; j Q) for some a;P;1;Q1;Q2;w and 8, and
PO ( ®)(Pifw=xgjQ:]jQz). Therefore we have that

wt(P) = wt(Py)+ wt(aw) + wt(Q1) + wt(Qz)
wt(P1) + wt(Q1) + wt(Qz) = wt(P9

2. To derive this kind of transition, either if-t or if-f is used. Ifif-t is used then we have that
P ( ®((if true then Py else Q1) j Q2) and P ( ®)(P; j Q,) for some®;P;;Q; and
Q2. Depending on the relation betweenwt(P1) and wt(Q1) we have wt(P) wt(P9) if
wt(P1)  wt(Qq) and wt(P) = wt(P9 if wt(P;) wt(Q1). The symmetric case forif-f is
similar.

3. By the transition rule rep, each time a replicated process is invoked a fresh tag is praded. So
there is no replicated process invoked irP; for1 i n 1. Then there are two possibilities:

(&) No replicated process invoked inP either. Therefore all communications take place
between non-replicated inputs and outputs. Reasoning as iclause 1, one can derive that

wt(P)  wt(P1) wt(P9

(b) A replicated process :Q , with = aj(x1): :an(Xn), is invoked in P and a new process

(a(zl;z)(xz): :af]';”)(xn):Q) , for some , is spawned. The subsequent reductions con-

sume the input pre xes from a(2|;2) (x2) to alim) (Xn) and their corresponding outputs.
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Thus we have the relation
wt(P9)+ wt( ) = wt(P)+ wt(Q 9:

Substitution of names does not a ect the weight of a processsowt(Q 9 = wt(Q). The
side condition of rule rep requires that wt( )  wt(Q). Hence we have the conclusion
that wt(P)  wt(P9).

Proof of Lemma 5.13
Letn=(I).

1. SinceP is regular, the transition with tag ( I;i) must originate from a communication between

an active output and a replicated input. So R must be of the form:
(B(ai(x1): @ (xn)PjawjQ) ifi=1
(B(ar(x1):  an(xn)Pj@"(x): @ (x,)P) jawjQ) if1<i<n

with & = a%. To have a subsequent transition with tag , Q must be of the form: ¢ (x):Qj j
cw:Q2 j Q3 _for somec;w; Q1; Q2 and Q3. It is evident that R also have the reduction path
R! R? f") RO The case fort = Ois also straightforward.

. Letm = (19. As in the proof of clause 1 we know that the transitions with non-special

tags come from replicated inputs. Depending on whethet and 1° come from the same input
pattern or not, we have the following two cases:

(@) They are generated by two dierent input patterns, that i s, there exist at least two
replicated inputs in P, say la;(X1):  :an(Xn):P1and Ibi(x1): by (Xm):P2 respectively.
There are four possibilities. Let us consider the typical cae thatj 6 1 and i 6 1. Then
R should be of the form

R ( e)(O!_bl()h)i 1th(Yn)1pzj!al(X1)i ‘an (Xn):P1
PE 0 R m)P) i@ ) @™ (xa):Py) 2
i Pwj Q)
with i 1 = qo Sincej < (19 the consumption of by 1(y;) does not liberate any output,

and an output on a » should be directly available in Q so as to make the subsequent
communication ona » possible, which means that

o alw j Q. ifi<n
a?\N:Q]_j Q, ifi=n
with a , = a° Obviously in both casesR can take another reduction path: R El;i)
0.;
RY ¢ Rofor someRy§.
(b) | and 1° originate from the same input pattern !aj(x1):  :an(Xn):P1, which has been
invoked two times. The arguments are similar to Case (a).
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Proof of Lemma 5.14

We consider the inductive step. SupposeP has an in nite reduction sequenceP Po 't

P 1" P fe . We shall do case analysis to nd some proces® satisfying the three
conditions: (i) Q is also non-terminating; (ii) Q is regular; (i) wt(P)  wt(Q).
At rstitis clear thatif t; =(l;i)andi< (I), then the atomic tag | is generated by invoking

an input pattern, since in P there are only special tags.

Case 1: If t; = © by Lemma 5.12 there are two possibilities. Ifwt(P)  wt(P;) we can set
Q = Py. If wt(P) = wt(P;1), we need to start the search fromt,. Note that any reduction sequence
by consecutively using rulesif-t or if-f is nite since the size of the starting process decreases gie
by step. So we will nd either a tag °that decreases weight or a tag of the form or (I;i), which
directs the analysis to Case 2 or Case 3 accordingly.

Case 2: If t; = , then by Lemma 5.12 we know thatwt(P)  wt(P1). Py is just the processQ we
are nding.

Case 3: If ty =(l;i)and (l) > 0, theni =1 since P is regular. Letn = (l).
If n=1, then by Lemma 5.12 it holds that wt(P) wt(P1). So we can setQ = P;.
If n> 1 and hence a new procesB ©' (al'? (x5): &l (xn):Ro) appears inP;.

1. If R does not participate in any communication among the in nite sequenceP; 12 1

P fe , then replacing R with 0 does not a ect the sequence. More precisely, leP; =
( &Cai(x1):  :an(xn):Roj R ] Ry), for someRy, and Q = ( e)('ar(X1): :@an(Xn):Roj O]
R1). Q can produce the same in nite reduction sequence as that oP; with 0 in place of R at
the top level, but with wt(Q)  wt(P) becauseP consumes an output during the transition
pivp,.

2. If R participates in a communication among the sequence, then thre existsi such that t; =
(I; 2). We need to classify all the reductions betweerP; and P;. There are two subcases to
consider.

(@) Ifall t; for 1<j<i are of the forms or 9 then we use Lemma 5.13 fori( 2) times
and push (; 1) forward until to the proper left of ( I; 2). The resulting sequence is of the
form:

p It on |ts i1 po ) (iDL po |
! ! ! AT R Al

By Lemma 5.12, we have the relations
wt(P)  wt(PJ) wt(P? ;)

(b) If there is a partition of the set fj j 1<j<i gbyl;andl, suchthatalltj 2 C, = ft;ji2
l1g= fti1; ;tikgareofthe forms or %andalltj 2 Co = ft; ji 2 1,9= ftor; ;taeg
are of the form (lj; n;) with  (l;) > O.

i. If 8j 212;n; < (I;), i.e., no input pattern is complete (since for eachj not all tags
from (I;; 1) to (I;; (Ij)) are in the set Cy), then by using Lemma 5.13 for nite many
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times we can push all tags inC; to the left of (I; 1) and preserve their order. The
sequence changes into this form:

p !tm Py !tlz !tlk P i'il) !t21 IzkO i'iz)
Similarly, by using Lemma 5.13, we can push all tags inC, to the right of (1; 2).
p !tn Py !t12 !tlk P il? 1)i|§2) Pio !t21 IZkO

By Lemma 5.12 it follows that

wt(P)  wt(P11) wt(Pk):

ii. If there is a set19 I, such that 8f 2 13;t; = (I;; (1})), i.e., all tags in 12 are

the tags of ending inputs in some input patterns. These pattens can be completed

by tags between (11) and (I; 2). We shall use Lemma 5.13 to sort out all complete

patterns and push them to the left of (I; 1).

A. Starting from (I; 1) we scan the sequence forward to nd the rsttag (I1; (l1))
for some atomic tagl; because we want to make all tags with atomic tagl; be
in consecutive positions by \sequeezing out" other tags to he left of (I1;1) or to
the right of (I1; (I1)). All tags between (I;1) and (I; (I1)) are of one of the
three forms: , Cor (Ij;n;) with n; < (I;). As we did in Case i, it is feasible to
push all and °backward and all (I;; nj) forward so that only tags with atomic
tag I, are left between (1;1) and (I1; (I1)) (these tags are already in ascending
order since they come from the same input pattern, sayas(x1): @ ¢,)(X @)
and the consumption of these input pre xes goes from left to ight). After the
operations, we get a reduction sequence like

p D 0 ill;l)ql;a " (Iy (Il)i Unp)  (2)

1

B. Find the next tag (l2; (l2)) for some atomic tagl, and make all tags with atomic
tag I, in consecutive positions. Now we can treat tags in group '* as a whole
and push them backward just as what we do for tag . We repeat this operation
for other group 'i as long as (j; (I;)) lies between (; 1) and (I; 2). At the end
of this stage, we have a sequence as follows.

p D =51 :52 =5j (k2

[N il ) 1o (1
where=) stands for 2y (i (i),

C. For other tags t; with j 6219 andj 2 I, which do not belong to a complete
group, we push them forward to the right of (I; 2), keeping their order. At this

moment, there are still tags like and ©between (; 1) and (I; 2).
T N (2

wheret 2 ; 9.
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D. Push (I; 1) forward until to the proper left of ( |; 2) so as to yield this sequence:

| [ . .
R I AN - W th (L
wheret 2f ; %. By Lemma 5.12 it follows that
wt(P)  wt(PY) wt(Py ;)

nj)lli

. (s ",
In the above four steps, when we commute reductions I|ké! , the condition

nj < (l;) is always satis ed. This ensures the correct use of Lemma 33.

If n =2, by Lemma 5.12 and the transitivity of , we have thatwt(P) wt(P? and soQ can
be set asPP. If n > 2 we repeat the operations done forl{ 1) on (I;i) with 1 <i< (l). There are
two possibilities for the ultimate result:

1) either (I;i +1) does not appear in the subsequent reductions, then we rdpce the procesR def
(ai('flﬂ) (Xi+1): -al™ )(xn):Ro) with 0 and get a non-terminating processQ such that wt(P)

wt(Q);

2) or we complete the input pattern with atomic tag | and have a sequence like

p !ti ﬁl;l)il;Z) (!I;n) Q !tj

In this case we also havenvt(P) wt(Q) according to previous operations and Lemma 5.12.

Note that there are possibly three kinds of tags lying in the dtimate sequence betweerP and
Q:
1) tags or ©
2) tags belonging to complete input patterns;
3) tags not belonging to complete input patterns, but the cortinuations of these incomplete input
patterns are discarded inQ since we have substituted0 for them.

Therefore each new atomic tad with () > 0 created by the derivatives ofP is usded up when
reachingQ. As P is regular, Q must be regular as well. Hence the induction hypothesis apj#s and
it maintains that Q is terminating. At this point contradiction arises. u

C.5 Proofs from Section 5.5
Lemma C.8 If n(R)\ B=; then (R + RY+g= R + R%+,.

Proof: Let R®= R + RC
(R+ RO+
= f(ajbja;b62e and aR¢R® R%,R% for somee randn Og
= f(a;bja;b62 and aRbg
[f (a;b)ja;b62 and aR%R® R%,R%for somee ®randn Og
= RI[R %,

= R+ R%,
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Let R be a partial order and be a substitution of names. We sayR is well de ned if
R = f(x;y )j (xy) 2 Rg is a partial order. For the multiset M = [x31; ;x,] we write
M =[xi; % ]

Lemma C9 If M1 Rmu M then
1) M, Rﬁml M , with R°= R + S.

2 (M11M ) Rpu (M 2]M ) for any multiset M over n(R).
B)Mi1 R qu M2 whenR is well de ned.

Proof:  We only need the de nition of multiset ordering. (1) Since RCis a superset ofR, it
holds that xRy implies xR%. (2) Trivial. (3) Since R is well de ned, it follows that xRy implies
x Ry . u

Given a multiset M and a partial order R on names, we extract fromM a sub-multiset in the
following way:
M (x) X 2 n(R)

def
Mrl)=" x 62(R)

Note that here we consider a multisetM with elements from setV as a functionM :V 7! N (cf.
[Bez03]). Clearly all elements inM g belong to n(R).

The following lemma provides an alternative characterisaton of the relation R. It shows that
names not inn(R) are invariant with respect to the multiset ordering.

Lemma C.10 SupposeP R Q; M ! = mosg (P) and M 2 = mosg (Q). Then M 4 Ry M 3.

Proof: From P R Q we know that: (i) M 1= M]M (i) M2= M]M ; (i) M1 Rmu M ».
Since all elements inM ; and M , belong to n(R), it is easy to see thatM % = Mg |M ; and
MZ =Mpg]M . FromLemma C.9(2), it follows that M L Rmu M 2. u

Lemma C.11 If the partial order R is nite, then there exists no in nite sequence like

PoRP,RP, R
Proof:  SinceR is nite, it is well-founded, so is the induced multiset ordering Ry . Suppose
there exists such an in nite sequence. LetM ' = mosg (P;). By Lemma C.10, we would have the
sequence

MS Rmi ME Ruu M2 Rl

which contradicts the well-foundedness oR y . u

Lemma C.12 If P R Q then

(1) P ROQ with R°= R+ S

@ PjRRQjR

)P f Q when® is well de ned.

(4) POR QO with mosg (P) = mosg (P9 and mosg (Q) = mosg (Q9.
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Proof:  Straightforward. The rst and third clause of Lemma C.9 are used to prove (1) and (3)
respectively. u

The next two lemmas illustrate the basic properties of the type systemT 900
Lemma C.13 If R® P thenn(R) fn(P).

Proof: By trivial induction on the structure of P. u

LemmaC.14 IfR"” P, e:w, =fw=egandR is welldened,thenR ~ P .

Proof:  The derivation of R ° P forms a tree tr with the conclusion as root. If we replace all
occurrences ofx; with w; we get another treetr . By induction on the depth of tr °it can be shown
that tr°is a valid derivation tree with root R ~ P . u

Proof of Theorem 5.20

By induction on the depth of the derivation P ! P2 Let us consider the last rule used in the
derivation.
1. Rulein In this caseP = a(g):P; and P°= P; , where = fw=eg. From R P we infer

that a:]2%, ®: %, R%" P, S= R%® and R = RO%+,.

(@ If S=; thenn(RY\ &= ;. Obviously R® is well de ned sinceR® = R By Lemma
C.14 we haveR® * P; . ObservethatS w=; and R%.= R% je.,R? = R0= RO+,
+: =R+ S w. Thereforeitholdsthat R+ S w > P%

(b) If S8& ;,thenn(R% e by denition and S ® = R°by Lemma 5.17. By hypothesis
S w is a partial order, so R® is well dened sinceR® = (S g8 =S w. By
Lemma C.14 we haveR® ° P; . The conclusion is straightforward by noting that
R+S w=R%,+R% =: +R? = RO:

2. Rule coml We haveP = Py j Py P; ¢ e Po:P, ¥ POB\ fn(Py) = ; and PO=( B)(P?]
P9). From R P we derive that R; © P;, R, ° P, and R = R; + R,. By induction
hypothesis on the transition of P, we have the following results: (1)a: ]2¥ andw : ¥; (2)
RY™ PP (3) R1=(RY+ S W)+, By inductive assumption on the transition of P, we infer
that R, + S w " PJ. Using T-par it follows that R, + R+ S w ™ PQj P2 Using T-res
we have that (R, + R{+ S w) +4 ( B)(Pj P§). By the condition 8\ fn(P;) = ; and
Lemma C.13,8\ n(R,) = ; holds. By using Lemma C.8 we have that R, + R?+ S ) +g=
R2+(RY+ S w)+g= Ro+ Ry = R. ThereforeR " P?is valid.

3. Rule rep SupposeP =! :P; with = a(e): °© Let = fw=rg. After the transition P
changes intoP°= P j ( ®P;) . rom R “ !:P ; we haveR ~ :P ; according to the typing
rule T-rep. Applying the arguments in Case 1 to :P 1 we have the results: (1)a : ]3¢ and
w:¥9; (2 if S wis apartial orderthen R+ S w " ( %P;) . Using T-par we can infer that
R+S w+R  PY%je,R+S w PO
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4. Rule open Let P = cP;. The transition P (§92% 5o comes fromP; (P2 5o with ¢ 2
fn(w) f 8;ag. From R~ P we have that R?" P; and R = R%+.. By induction hypothesis
on the transition of P; we have the following results: (1)a:]2% andw : ¢; (2) R P%(3)
RO=(R%+ S w)+q. ThereforeR = R%c=((R%+ S w)+g)+.= (R%+ S )+
all conditions required for P are satis ed and thus we complete this case.

f®:cq" Now

5. Rule if-t Let P = if true then P; else P, and P® = P;,. From R >~ P we have that
R1 " P;, R; " P andR = Ry + R,. By setting R%= R; and R%= R, the conclusion is
obvious. The symmetric ruleif-f is similar.

6. Rule parlandres Followed from induction hypothesis. u
Let R P. If P appears underneath an input pre x as in a(e):P, then either all names inn(R)
are shielded by the pre x or none of them is bound. In other wods, 8 cannot include only a portion
of names inn(R). This observation is made explicit by the following lemma, where we write 9!i:::

to mean that there exists auniquei satisfying the succeeding condition. Usually if namea is given
type ]12¥ we say that the partial order of a is S, written as po(a) = S.

Lemma C.15 SupposeRg ™ P andR" :P with = a;(®1): :@a,(®,) andn 1. Then one of
the following two cases holds.

1. R =;
2.9 nR =poa) B

Proof:  We prove a stronger proposition: when the conditions in the &#ove hypothesis are met,
then one of the following two cases holds:

1.8 n;po(a)= ;" n(Ro)\ B =;"R =Ry:
2.9 nmpo(a)=SB;"n(Ro) B"Ro=S B"(8 6i;po(g)=;"n(Ro)\® =;)R = ;.

By induction on the length of . Since :P is well-typed, the sub-processa, (®,):P must be
well-typed as well. Let Ry~ an(B,):P. Then R; = Ro+e,, &, : ]T¥, B, : ¥ and S = Ro=r,. Let
0= a(x1): :@n 1(Rn 1).

1. fRp=; then S = ;, ie., poa,) = ;. We also haveR; = Ry = ;. Now take a(r,):P as
P and %as , we can do similar reasoning to show thatpo(a, 1) = ; and R, = Ry = ;

if R, * an 1(®Bn 1):an(®,):P. Repeat the game until a1, it can be shown at last that 8i
n;po(ai) = ;"R = Ro.

2. If Rg 6 ; there are two possibilities.

(@) n(Ro) Bn. In this case we haveS € ; but Ro+g,= ; and R = S ®y. So it
holds that po(a,) 6 ; and R; = ;. By the arguments of Case 1, it is easy to see that
8 n Lpoa)= ;"R ;=R1=;. Since we assume that bound names are di erent

from each other,n(Ro) \ ® = ; holds.
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(b) Nn(Ro)\ B, = ;. Inthis caseS = ; and R; = Ry. By induction hypothesis on R °
%a, (B, ):P, we have the following results: (1) either8i n 1;po(a) = ;* n(Ro)\ & =

‘AR = Ro(2or9 n 1poa)= S°6 ;» n(Ry) B "Ro=S° g " (8
i;po(g) = ;" n(Ro)\ ® = ;"R = ;). The conclusion follows immediately.

0]

Proof of Lemma 5.21

By the transition rule rep, each time a replicated process is invoked a fresh tag is proded. So
there is no replicated process invoked irP; for1 i n 1. Then there are two possibilities:

1. No replicated process is invoked inP either. Therefore all communications ona;, with 1
i n, take place between non-replicated inputs and outputs. By 8nilar analysis in Lemma
5.12, one can derive that

wt(P)  wt(P1) wt(P9

2. A replicated process tQ , with = a;(®1): :a,(®n), is invoked in P and a new process
(a(zl; 2 (®2): -al" )():en):Q) is spawned. The subsequent reductions consume the input pre
xes from a(zl;z) (®p) to alim) (®n) and their corresponding outputs. Then we have the relation

wt(P9 + wt( ) = wt(P)+ wt(Q 9

Note that substitution of names does not a ect the weight of a process, savt(Q 9 = wt(Q).
According to the side condition of rule T-rep there are two cases:

(@ wt( ) wt(Q). It follows that wt(P) wt(P9).

(b) wt( )= wt(Q), R Qanda, : (. First, observe that P must be of the following form
in order to have the reduction sequence.

P=la;(e): ‘an(en)Qjbiwij | bhenRijR

with a; = by and b+ = a+1 1 i fori  1byletting ; = fwi=rig. Let = n.

According to our bound name convention that bound names are derent from each other,

g\ g =;ifi6j. Iffolowsthat b = & foralli 1. Hence we have the result that
mosg ( )= mosg (1w j | bh&,). We also haveP?in the form:

PO=la;(e:1): :an(®):QjQ jRijR>

Let P; =la;(®1): :an(®h):Q, P2 = bw j j bhe,:R;y and P = Q j R;. From
R P we have the results thatR; * P;, R " P, and Rz~ Rwith R=R;+ R+ Rs.
Let R;1 = [L;pob) w andR22 ° Ri. Then Rz = Ry + Ra. Note that R; ™ :Q is
valid and by Lemma C.15 there are two possibilities:

i. R =;

i. 9 n;R = poa) B
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From the conditon R Q we know that R 6 ;, so the second possibility is true. It
follows that Rp; = po(b) w, = R ;=R bybound name convention. Hence we have
the following inference sequence

R Q

) R Q by Lemma C.12(3)
) Ry Q R =Rxn

) (bw:j jbow) Rz Q by Lemma C.12(4)
) (erj jboen)jR: Rz Q jRy by Lemma C.12(2)
) P, Ry PY by Lemma C.12(4)
) PijP2jRy Ry P1jP2jR, by Lemma C.12(2)
) P R PO by Lemma C.12(1)

Sincea, :  we have thatur(Q) = ;, thus ur(Q ) = ; and no unguarded restriction is liberated

by the reduction sequence. Note thath, and a, are of the same type, hence of the same sort, which
means that ur (R1) = ;. Theorefore P° has no unguarded restrictions either. u

Proof of Lemma 5.22
Suppose that there exists an in nite reduction sequence like

1 0 1o 0 |
Po=) P1! P2=) ' P13 P (C.1)

[N 0
then there must be in nitely many transitions =)J because the transition!  decreases the size of
processes. LePy = aQq, without unguarded restrictions in Qo, i.e., ur(Qo) = ;. SupposeR * Py,
then Qo is also well-typed, sayRo * Qp for someRg. There is a corresponding reduction sequence

starting from Qq:
| 0

QW) Ul Q) Q19 Q
By Lemma 5.21 and transition rulesif-t and if-f we know that no unguarded restriction is created
in the sequence, thusgj i;P; = aQ; and wt(P;) = wt(Q;). From Lemma 5.21 and Subject
Reduction Theorem we have that allQ; are well-typed, noted asR; ~ Q;, and

if Qj =I)n Qj+1 then R;

0
if Qj ! Qj+1 then R;

Rj+1 and Qj R]‘ Qj+1

Rj+1 + R}, for someRY,; .

If follows that 8  i;R = R; + R{°for some R and by Lemma C.12(1) if Q; R; Qj+1 then
Q R Qj+1. Let MJ = mosg (Qj). It can be derived that

if Q =) Qi+ then ML Rpy ML by Lemma C.10.
if Qj ! ’ Qi+ then ML Rz, MLE? by rulesif-t and if-f

where the notaton M R ;, M °meansM R ny M %orM = M ° Since there are in nitely many

.
transitions =)I in (C.1), there are in nitely many Ry in the sequence
M% R mul MlR R;ml MZR Rmul

which contradicts the well-foundedness oR y .
Consequently, by means of commuting reductions used in Lemm5.14, we can always nd aQ
with wt(Pg) wt(Q) in nite number of steps. u
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P = OjxhyijdefDin PP jPO processes
D == TJJ.P |DADP de nitions
J u= xhi j JjJo join-patterns
" P1j P2 T PP Str-join
"0 ) Str-null
Di"Dy" D.;D;,° Str-and
T : Str-nodef
“defDin P D P Str-def
J.P ! J.P P Red

Table C.1: Syntax and semantics of the Join-calculus

C.6 Levels in the Join-calculus

The idea of introducing level information into type system so as to enforce termination is also
applicable in other process calculi. In this section, we inestigate termination of processes in the
Join-calculus [Fou98] by taking advantage of levels as we diin Section 5.2. We recall the syntax
and semantics of the Join-calculus in Table C.1. Detailed dscription about the calculus can be
found in [Fou98].

For ease of understanding, we consider the monadic Join-aallus. The extension to allow
polyadic communication is straightforward. We preserve al notations of [Fou98] for the syntax
and semantics, but add two multisets mdv[J] and mdv[P] which are de ned below.

mdvixhyi] %" [x]
mdv[d jJ9 %€ mdv[I]] mdv[39
mdvidef D in P] %" mdv[P]
mdv[P j Q] %" mdv[P]] mdv[Q]
mav[o] %' []

The reason of using multisets instead of the setiv[J] given in [Fou98] comes from the mechanism
of inter-process synchronisation of the Join-calculus: pern-matching. Consider the following two
processes:

Q.

ef

Q = def xhi.xhiin xhi

Q° =" def xhijxhi.xhiin xhi
Obviously Q@ is terminating while Q is not. Without multiset, we would not be able to distinguish
Q0 from Q and wrongly take both of them as illegal processes. For the fye system, we assume
that the only primitive type is unit and we do not consider polymorphism. Hence the concepts of
type scheme and simple type environment in [Fou98] coincidavith type and typing environment
respectively. Due to these simpli cation our type system beomes less complicated than the original

Q.
=



146 APPENDIX C. PROOFS FROM CHAPTER 5

: o x:I"v Ty:V i TP " Q
T-message Xy T-paf ———pm—F5— P10

1;, 2 D 5 4, 2" P
T-def d$f Dn P T-null 0

gl Xihyii g€ P IV(R) >mu Iv(mdv[P])
T-rule i2l:n \Y4

Xihyii .P 1 #e
i21l:n

_ ) Dy g ) Do, » _
T-and D, "Dy 5 T nodefTo

8P2P; P 8D2D; D . "D O
T-soup D~ P T-multi 5

Figure C.1: Typing rules for the join calculus

one presented in [Fou98]. The syntax of types is the same as dlh of -calculus studied in Section
5.2. Given a set of namesN, the restriction of type environment on N, written #y, is a
new type environment which only binds names belonging toN. Let N = fx;; ;X,Q, we de ne
IV(N) = flv(xy); ;I\gxn)g as the multiset of levels for names inN . The typing rules are reported
in Figure C.1, where ~;,,.,, Pi represents the parallel compositionPy j  j P, and >y is the
multiset ordering between two multisets of natural numbers
The rule T-rule requires the condition Iv(mdv[J]) > Iv(mdv[P]) in order to make J . P

typable. It means that some output channels inJ are replaced by nite number of lower level
channels inP. According to the semantics of the join calculus, the only e ective reduction relation
is

J.PJ ! J. " P:

Since the substitution does not a ect level information, as a whole the chemical sop will loose
some level information after the reduction step. This phenanenon is re ected in the decrement of
our measure, weight, which is now de ned on both processes ansoups.

wt(0) = 0 wt(xhyi) = 0; if lv(x) =i
wt(PjQ) = wt(P)+ wt(Q) wt(def D in P) = wt(P)
wt(J jJ9 = wt(d)+ wt(J9
wt(D P ) = i21n WE(P) ifP=1fP;j1 i ng

As usual, the proofs of weakening and substitution lemmas a quite easy. The proof of subject
reduction theorem is simpler than that in [Fou98] because naype variable is involved. Details are
omitted.

Lemma C.16 If ~ J.P thenwt(J) wt(P).
Proof: By de nitions it holds that Iv(mdv[J]) > nu Iv(mdv[P]) i wt(J) wt(P). u

Theorem C.17 If D ° P is a well-typed chemical soup, there is no in nite reduction sequence
starting from the soup.
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Proof: We need to prove three claims.

1. Clam1l: If D; > Py D3  Pythenwt(D; ™ P1)= wt(Dy ™ Py). Itis trivial by examining
all structural rules.

2. Claim 2: If Dl ) P]_ ! Dg ) P2 then Wt(D]_ ) P]_) Wt(Dz
isJ.P >J ! J.P " P . Following from Lemma C.16, it holds that wt(J )= wt(J)
wt(P) = wt(P ), thus wt(D; ~ P1) wt(Dy " P»).

P,). The only reduction rule

3. Claim3: If D; " P4 ! D, P, thenwt(D; " P1) wt(D, "  P3). This is easy by
using the rst two claims.

The required result follows from Claim 3. u
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