
Preliminary Report. Final version to appear in:
Proceedings QAPL 2011

c© Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan
This work is licensed under the
Creative Commons Attribution License.

Real-Reward Testing for Probabilistic Processes
(Extended Abstract)

Yuxin Deng1∗ Rob van Glabbeek2 Matthew Hennessy3† Carroll Morgan4‡

1 Shanghai Jiao Tong University and Chinese Academy of Sciences, China
2 National ICT Australia, Australia

3 Trinity College Dublin, Ireland
2,4 University of New South Wales, Australia

We introduce a notion of real-valued reward testing for probabilistic processes by extending the tra-
ditional nonnegative-reward testing with negative rewards. In this richer testing framework, the may
and must preorders turn out to be inverses. We show that for convergent processes with finitely many
states and transitions, but not in the presence of divergence, the real-reward must-testing preorder
coincides with the nonnegative-reward must-testing preorder. To prove this coincidence we charac-
terise the usual resolution-based testing in terms of the weak transitions of processes, without having
to involve policies, adversaries, schedulers, resolutions, or similar structures that are external to the
process under investigation. This requires establishing the continuity of our function for calculating
testing outcomes.

1 Introduction

Extending classical testing semantics [1, 7] to a setting inwhich probability and nondeterminism co-exist
was initiated in [13]. The application of a test to a process yields a set of probabilities for reaching a
success state.Reward testingwas introduced in [8]; here the success states are labelled by nonnegative
real numbers—rewards—to indicate degrees of success, and reaching a success state accumulates the
associated reward. In [12] an infinite set of success actionsis used to report success, and the testing
outcomes are vectors of probabilities of performing these success actions. Compared to [8] this amounts
to distinguishing different qualities of success, rather than different quantities.

In [13] and [12], both tests and testees are nondeterministic probabilistic processes, whereas [8]
allows nonprobabilistic tests only, thereby obtaining a less discriminating form of testing. In [6] we
strengthened reward testing by also allowing probabilistic tests. Taking rewards testing in this form we
showed that for finitary processes, i.e. finite-state and finitely branching processes, all three modes of
testing lead to the same testing preorders. Thus, vector-based testing is no more powerful thanscalar
testing that employs only one success action, and likewise reward testing is no more powerful than the
special case of reward testing in which all rewards are 1.1

∗Deng was supported by the National Natural Science Foundation of China (61033002).
†Supported by SFI project SFI 06 IN.1 1898.
‡Morgan acknowledges the support of ARC Discovery Grant DP0879529.
1In spite of this thereis a difference in power between the notions of testing from [13] and [12], but this is an issue that is

entirely orthogonal to the distinction between scalar testing, reward testing and vector-based testing. In [12] it is the execution
of a successactionthat constitutes success, whereas in [1, 7, 13, 8] it is reaching a successstate(even though typically success
actions are used to identify those states). In [2, Ex 5.3] we showed that state-based testing is (slightly) more powerfulthan
action-based testing. The results presented in [6] about the coincidence of scalar, reward, and vector-based testing preorders
pertain to action-based version of each, but in the conclusion it is observed that the same coincidence could be obtainedfor
their state-based versions. In the current paper we stick tostate-based testing.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Real-Reward Testing for Probabilistic Processes

q
1

τ

a

b

a

b

τ

a

q
2

a

b

1/2 1/2

ω1

ω2

t

Figure 1: Two processes with divergence and a test

In certain situations it is natural to introduce negative rewards. This is the case, for instance, in the
theory of Markov Decision Processes [9]. Intuitively, we could understand negative rewards as costs,
while positive rewards are often viewed as benefits or profits. This leads to the question:if negative
rewards are also allowed, how would the original reward-testing semantics change?We refer to the
more relaxed form of testing, using positive and negative rewards, asreal-reward testingand the original
one (from [8], but with probabilistic tests as in [6]) asnonnegative-reward testing.

The power of real-reward testing is illustrated in Figure 1.The two (nonprobabilistic) processes in the
left- and central diagrams are equivalent under (probabilistic) may- as well as must testing; theτ-loops in
the initial states cause both processes to fail any nontrivial must test. Yet, if a reward of−1 is associated
with performing the actiona, and a reward of 2 with the subsequent performance ofb (implemented by
the test in the right diagram; see Example 3.8 for more details), in the first process the net reward is
either 0 (if the process remains stuck in its initial state) or positive, whereas running the second process
may yield a loss. This example shows that for processes that may exhibit divergence, real-reward testing
is more discriminating than nonnegative-reward testing, or other forms of probabilistic testing. It also
illustrates that the extra power may be relevant in applications.

As remarked, in [6] we established that for finitary processes the nonnegative-reward must-testing
preorder (⊑nrmust) coincides with the probabilistic must-testing preorder (⊑pmust), and likewise for the
may preorders. Here we show that, in contrast to the situation for nonnegative-reward (or scalar) testing,
for real-reward testing the may- and must preorders are the inverse of each other, i.e. for any processes
∆ andΓ,

∆ ⊑rr may Γ iff Γ ⊑rr must∆. (1)

Our main result is that restricted to finitary convergent processes, the real-reward must preorder coincides
with the nonnegative-reward must preorder, i.e. for any finitary convergent processes∆, Γ,

∆ ⊑rr must Γ iff ∆ ⊑nrmustΓ. (2)

Here by convergence we mean that there is no infinite sequenceof internal transitions of the formΛ0
τ−→

Λ1
τ−→ ·· · with distribution Λ0 (and thus its successors) reachable from either∆ or Γ. This rules out

the processes of Figure 1. Although it is easy to see that in (2) the former implies the latter, to prove
the opposite is far from trivial. We employ a novel characterisation of the usual resolution-based testing
approach, without introducing concepts likepolicy [9], adversary[10], scheduler[11] or resolution[6]
that are external to the process under investigation; instead we describe the mechanism for gathering test

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 3

(⊑rr may)
−1 Thm. 3.7

= ⊑rr must
Thm. 5.6

= ⊑nrmust
[6]
= ⊑pmust

[3]
= ⊑FS

The symbol= between two relations means that they coincide for finitary convergent processes.

Figure 2: The relationship of different testing preorders.

results in terms of theweakτ-movesor derivations[3] the investigated process can make, and hence
speak ofderivation-based testing.

This allows us to exploit the failure simulation preorder⊑FS that in [3] was proven to coincide with
the probabilistic must testing preorder⊑pmustbased on resolutions, at least for finitary processes. Using
the derivational characterisation we can show that, for finitary convergent processes,⊑FS is contained in
⊑rr must. Convergence is essential here, even though it is not neededto establish that⊑FS is contained in
⊑nrmust. Combining this with the results from [6] and [3] mentioned above leads to our required result
that⊑nrmust is included in⊑rr must, as far as finitary convergent processes are concerned. Consequently,
in this case, all the relations of Figure 2 collapse into one.

The rest of this paper is organised as follows. We start by recalling notation for probabilistic labelled
transition systems. In Section 3 we review the resolution-based testing approach and show that the real-
reward may preorder is simply the inverse of the real-rewardmust preorder. Moreover, using the example
of Figure 1, we show that in the presence of divergence the inclusion of⊑nrmust in ⊑rr must is proper. In
Section 4 we present the derivation-based testing approachand also show that the two approaches agree.
Then in Section 5 we show for finitary convergent processes that real-reward must testing coincides with
nonnegative-reward must testing. We conclude in Section 6.

Due to lack of space, we omit all proofs: they are reported in [4]. Besides the related work already
mentioned above, many other studies on probabilistic testing and simulation semantics have appeared in
the literature. They are reviewed in [5, 2].

2 Probabilistic Processes

A (discrete) probabilitysubdistributionover a setS is a function∆ : S→ [0,1] with ∑s∈S∆(s) ≤ 1; the
supportof such a∆ is ⌈∆⌉ := {s∈S | ∆(s) > 0}, and itsmass|∆| is ∑s∈⌈∆⌉∆(s). A subdistribution is a
(total, or full) distribution if |∆|= 1. The point distributions assigns probability 1 tosand 0 to all other
elements ofS, so that⌈s⌉ = {s}. With Dsub(S) we denote the set of subdistributions overS, and with
D(S) its subset of full distributions.

Let {∆k | k∈ K} be a set of subdistributions, possibly infinite. Then∑k∈K ∆k is the real-valued func-
tion in S→ R defined by(∑k∈K ∆k)(s) := ∑k∈K ∆k(s). This is a partial operation on subdistributions
because for some states the sum of∆k(s) might exceed 1. If the index set is finite, say{1..n}, we often
write ∆1+ . . .+∆n. For p a real number from[0,1] we usep·∆ to denote the subdistribution given by
(p·∆)(s) := p·∆(s). Finally we useε to denote the everywhere-zero subdistribution that thus has empty
support. These operations on subdistributions do not readily adapt themselves to distributions; yet if
∑k∈K pk=1 for somepk ≥ 0, and the∆k are distributions, then so is∑k∈K pk ·∆k.

The expected value∑s∈S∆(s)· f (s) over a subdistribution∆ of a bounded nonnegative functionf
to the reals or tuples of them is written Exp∆(f), and the image of a subdistribution∆ through a func-
tion f : S→ T, for some setT, is written Imgf (∆) — the latter is the subdistribution overT given by
Imgf (∆)(t) := ∑ f (s)=t ∆(s) for eacht ∈ T.

4 Real-Reward Testing for Probabilistic Processes

Definition 2.1 A probabilistic labelled transition system(pLTS) is a triple〈S,Act,→〉, where
(i) S is a set of states,
(ii) Act is a set of visible actions,

(iii) relation → is a subset ofS×Actτ ×D(S).
HereActτ denotesAct∪{τ}, whereτ 6∈ Act is the invisible- or internal action.

A (nonprobabilistic) labelled transition system (LTS) maybe viewed as a degenerate pLTS — one in
which only point distributions are used. In this paper a(probabilistic) processwill simply be a distri-
bution over the state set of a pLTS. As with LTSs, we writes α−→ ∆ for (s,α ,∆)∈→, as well ass α−→
for ∃∆ : s α−→ ∆ ands→ for ∃α : s α−→, with s 6α−→ ands 6→ representing their negations. A pLTS is
deterministicif for any states and labelα there is at most one distribution∆ with s α−→ ∆. It is finitely
branchingif the set{∆ | s α−→ ∆, α ∈L} is finite for all statess; if moreoverS is finite, then the pLTS
is finitary. A subdistribution∆ over the state setSof an arbitrary pLTS isfinitary if restricting S to the
states reachable from∆ yields a finitary sub-pLTS.

3 Testing probabilistic processes

A testis a distribution over the state set of a pLTS havingActτ ∪Ω as its set of transition labels, whereΩ
is a set of freshsuccessactions, not already inActτ , introduced specifically to report testing outcomes.2

For simplicity we may assume a fixed pLTS of processes—our results apply to any choice of such a
pLTS—and a fixed pLTS of tests. Since the power of testing depends on the expressivity of the pLTS of
tests—in particular certain types of tests are necessary for our results—let us just postulate that this pLTS
is sufficiently expressive for our purposes — for example that it can be used to interpret all processes
from the languagepCSP, as in our previous papers [5, 2, 3].

Although we use successactions, they are used merely to mark certain states as success states,
namely the sources of transitions labelled by success actions. For this reason we systematically ignore
the distributions that can be reached after a success action. We impose two requirements on all states in
a pLTS of tests, namely

(A) if t ω1−→ andt ω2−→ with ω1,ω2 ∈ Ω thenω1 = ω2.
(B) if t ω−→ with ω ∈ Ω andt α−→ ∆ with α ∈ Actτ thenu ω−→ for all u∈ ⌈∆⌉.
The first condition says that a success state can have one success identity only, whereas the second
condition is slight weakening of the requirement from [8] that success states must be end states; it allows
further progress from anω-success state, for someω ∈ Ω, butω must remain enabled.3

To apply testΘ to process∆ we form a parallel compositionΘ‖∆ in which all visible actions of∆
must synchronise withΘ. The synchronisations are immediately renamed intoτ . The resulting composi-
tion is a process whose only possible actions are the elements ofΩτ :=Ω∪{τ}. Formally, if〈P,Act,→P〉
and〈T,Act∪Ω,→T〉 are the pLTSs of processes and tests, then the pLTS of applications of tests to pro-
cesses is〈C,Ω,→〉, with C = {t‖p | t∈T∧ p∈P} and→ the transition relation generated by the rules in
Fig. 3. Here ifΘ ∈D(T) and∆∈D(P), thenΘ‖∆ is the distribution given by(Θ‖∆)(t‖p) := Θ(t) ·∆(p).
The resulting pLTS also satisfies (A), (B) above; this would not be the case if we had strengthened (B)
to require that success states must be end states.

We will define the resultA (Θ,∆) of applying the testΘ to the process∆ to be a set of testing
outcomes, exactly one of which results from each resolutionof the choices inΘ‖∆. Eachtesting outcome

2For vector-basedtesting we normally takeΩ to be countably infinite [12]. This way we have an unbounded supply of
success actions for building tests, of course without obligation to use them all.Scalartesting is obtained by taking|Ω|= 1.

3Justification for imposing such restrictions can be found inAppendix A of [6].

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 5

t α−→T Θ α 6∈Act

t‖p α−→ Θ‖p

p α−→P ∆ α 6∈Act

t‖p α−→ t‖∆
t a−→T Θ p a−→P ∆ a∈Act

t‖p τ−→ Θ‖∆

Figure 3: Synchronous parallel composition between tests and processes

is anΩ-tuple of real numbers in the interval [0,1], i.e. a functiono : Ω → [0,1], and itsω-component
o(ω), for ω ∈ Ω, gives the probability that the resolution in question willreach anω-success state, one
in which the success actionω is possible.

Due to the presence of nondeterminism in pLTSs, we need a mechanism to reduce a nondeterministic
structure into a set of deterministic structures, each of which determines a single possible outcome. Here
we adapt the notion ofresolution, defined in [6] for probabilistic automata, to pLTSs.

Definition 3.1 [Resolution]A resolutionof a subdistribution∆∈Dsub(S) in a pLTS〈S,Ω,→〉 is a triple
〈R,Λ,→R〉 where〈R,Ω,→R〉 is a deterministic pLTS andΛ∈Dsub(R), such that there exists aresolving
function f : R→ Ssatisfying

(i) Img f (Λ) = ∆
(ii) if r α−→R Λ′ for α ∈ Ωτ then f (r) α−→ Imgf (Λ′)

(iii) if f (r) α−→ for α ∈ Ωτ thenr α−→R .

The reader is referred to Section 2 of [6] for a detailed discussion of the concept of resolution, and the
manner in which a resolution represents a run of a process; inparticular in a resolution states inS are
allowed to be resolved into distributions, and computationsteps can beprobabilistically interpolated.
Our resolutions match the results of applying a scheduler asdefined in [11].

We now explain how to associate an outcome with a particular resolution, which in turn will associate
a set of outcomes with a subdistribution in a pLTS. Given a deterministic pLTS〈R,Ω,→R〉 consider the
functionalR : (R→ [0,1]Ω)→ (R→ [0,1]Ω) defined by

R(f)(r)(ω) :=











1 if r ω−→

0 if r 6ω−→ andr 6τ−→

Exp∆(f)(ω) if r 6ω−→ andr τ−→ ∆.

(3)

We view the unit interval[0,1] ordered in the standard manner as a complete lattice; this induces the
structure of a complete lattice on the product[0,1]Ω and in turn on the set of functionsR→ [0,1]Ω. The
functionalR is easily seen to be monotonic and therefore has a least fixed point, which we denote by
V〈R,Ω,→R〉; this is abbreviated toV when the deterministic pLTS in question is understood.

Now we defineA (Θ,∆) to be the set of vectors

A (Θ,∆) := {ExpΛ(V〈R,Ω,→R〉) | 〈R,Λ,→R〉 is a resolution ofΘ‖∆} . (4)

Example 3.2 Consider the processq1 depicted in Figure 4(a). Here states are represented by filled nodes
• and distributions by open nodes◦. We leave out point-distributions — diverting an incoming edge to the
unique state in its support. When we apply the testt depicted in Figure 4(b) to it we get the processt‖q1

depicted in Figure 4(c). This process is already deterministic, hence has essentially only one resolution:
itself. Moreover the outcome Expt‖q1

(V) =V(t‖q1) associated with it is the least solution of the equation

V(t‖q1) =
1
2 ·V(t‖q1)+

1
2
−→ω where−→ω : Ω → [0,1] is theΩ-tuple with−→ω (ω) = 1 and−→ω (ω ′) = 0 for all

ω ′ 6= ω . In fact this equation has a unique solution in[0,1]Ω, namely−→ω . ThusA (t,q1) = {−→ω }. 2

6 Real-Reward Testing for Probabilistic Processes

τ

1/2

τ

ω

τ

(c)

s
s

s

s

2

3

4

1

a

ω

τ

1/2

a

τ

q
1 t

(a) (b)

1/2 1/2

||t q
1

Figure 4: Testing the processq1

1/2

τ τ

1/2 1/2

τ

ω

(a)

τ

s1

4

ω

τ

1/2

2
s

ω

(b) (c)

:=s ||t

s5
s6

q
2q

1/2

1/2

2

τ

τ τ

1/2

a
a

t

a

0

1/2

s 3
s

Figure 5: Testing the processq2

Example 3.3 Consider the processq2 and the application of the testt to it, as outlined in Figure 5. For
eachk ≥ 1 the processt‖q2 has a resolution〈Rk,Λ,→Rk〉 such that ExpΛ(V) = (1− 1

2k)
−→ω ; intuitively it

goes around the loop(k−1) times before at last taking the right handτ action. ThusA (t,q2) contains
(1− 1

2k)
−→ω for everyk ≥ 1. But it also contains−→ω , because of the resolution which takes the left hand

τ-move every time. ThusA (t,q2) includes the set

{(1−1
2)
−→ω , (1− 1

22)
−→ω , . . . ,(1− 1

2k)
−→ω , . . . ,

−→ω }

As resolutions allow any interpolation between the twoτ-transitions from states1, A (t,q2) is actually
the convex closure of the above set. 2

There are two standard methods for comparing two sets of ordered outcomes:

O1 ≤Ho O2 if for every o1 ∈ O1 there exists someo2 ∈ O2 such thato1 ≤ o2

O1 ≤Sm O2 if for every o2 ∈ O2 there exists someo1 ∈ O1 such thato1 ≤ o2

This gives us our definition of the probabilistic may- and must-testing preorders; they are decorated with
·Ω for the repertoireΩ of testing actions they employ.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 7

Definition 3.4 [Probabilistic testing preorders]

(i) ∆ ⊑Ω
pmayΓ if for every Ω-testΘ, A (Θ,∆)≤Ho A (Θ,Γ).

(ii) ∆ ⊑Ω
pmustΓ if for every Ω-testΘ, A (Θ,∆)≤Sm A (Θ,Γ).

These preorders are abbreviated to∆ ⊑pmayΓ and∆ ⊑pmustΓ when|Ω|= 1.

In [6] we established that for finitary processes⊑Ω
pmay coincides with⊑pmay and⊑Ω

pmust with ⊑pmust

for any choice ofΩ. We also defined the reward testing preorders in terms of the mechanism set up so
far. The idea is to associate with each success actionω ∈ Ω a reward, which is a nonnegative number in
the unit interval[0,1]; and then a run of a probabilistic process in parallel with a test yields an expected
reward accumulated by those states which can enable successactions. A reward tupleh∈ [0,1]Ω is used
to assign rewardh(ω) to success actionω , for eachω ∈ Ω. Due to the presence of nondeterminism,
the application of a testΘ to a process∆ produces a set of expected rewards. Two sets of rewards
can be compared by examining their suprema/infima; this gives us two methods of testing called reward
may/must testing. In [6] all rewards are required to be nonnegative, so we refer to that approach of testing
asnonnegative-reward testing. If we also allow negative rewards, which intuitively can beunderstood as
costs, then we obtain an approach of testing calledreal-reward testing. Technically, we simply let reward
tuplesh range over the set[−1,1]Ω. If o∈ [0,1]Ω, we use the dot-producth ·o = ∑ω∈Ω h(ω) ·o(ω). It
can apply to a setO⊆ [0,1]Ω so thath·O= {h·o | o∈ O}. Let A⊆ [−1,1]. We use the notation

⊔

A for
the supremum of setA, and

d
A for the infimum.

Definition 3.5 [Reward testing preorders]

(i) ∆ ⊑Ω
nrmay Γ if for every Ω-testΘ and nonnegative-reward tupleh∈ [0,1]Ω,

⊔

h·A (Θ,∆)≤
⊔

h·A (Θ,Γ).
(ii) ∆ ⊑Ω

nrmustΓ if for every Ω-testΘ and nonnegative-reward tupleh∈ [0,1]Ω,d
h·A (Θ,∆)≤

d
h·A (Θ,Γ).

(iii) ∆ ⊑Ω
rr may Γ if for every Ω-testΘ and real-reward tupleh∈ [−1,1]Ω,

⊔

h·A (Θ,∆)≤
⊔

h·A (Θ,Γ).
(iv) ∆ ⊑Ω

rr mustΓ if for every Ω-testΘ and real-reward tupleh∈ [−1,1]Ω,d
h·A (Θ,∆)≤

d
h·A (Θ,Γ).

This time we drop the superscriptΩ iff Ω is countably infinite.

It is shown in Corollary 1 of [6] that nonnegative-reward testing is equally powerful as probabilistic
testing.

Theorem 3.6 [6]For any finitary processes∆ andΓ,

(i) ∆ ⊑nrmay Γ if and only if ∆ ⊑pmayΓ.

(ii) ∆ ⊑nrmustΓ if and only if ∆ ⊑pmustΓ.

In this paper we focus on the real-reward testing preorders⊑rr may and⊑rr must, by comparing them with
the nonnegative reward testing preorders⊑nrmay and⊑nrmust. Although these two nonnegative-reward
testing preorders are in general incomparable we have:

Theorem 3.7 For any processes∆ andΓ, it holds that∆ ⊑rr may Γ if and only if Γ ⊑rr must ∆.

Our next task is to compare⊑rr must with ⊑nrmust. The former is included in the latter, which directly
follows from Definition 3.5. Surprisingly, it turns out thatfor finitary convergent processes the latter is
also included in the former, thus establishing that the two preorders are in fact the same. The rest of
the paper is devoted to proving this result. However, we firstshow that this result does not extend to
divergent processes.

8 Real-Reward Testing for Probabilistic Processes

Example 3.8 Consider the processesq1 and q2 depicted in Figure 1. Using the characterisations of
⊑pmay and⊑pmust in [3], it is easy to see that these processes cannot be distinguished by probabilistic
may- and must testing, and hence not by nonnegative-reward testing either. However, lett be the test in
the right diagram of Figure 1 that first synchronises on the action a, and then with probability12 reaches
a state in which a reward of−2 is allocated, and with the remaining probability1

2 synchronises with the
actionb and reaches a state that yields a reward of 4. Thus the test employs two success actionsω1 and
ω2, and we use the reward tupleh with h(ω1) = −2 andh(ω2) = 4. Then the resolution ofq1 that does
not involve theτ-loop contributes the value−2 · 1

2 +4 · 1
2 = −1+2= 1 to the seth ·A (t,q1), whereas

the resolution that only involves theτ-loop contributes the value 0. Due to interpolation,h ·A (t,q1) is
in fact the entire interval[0,1]. On the other hand, the resolution corresponding to thea-branch ofq2

contributes the value−1 andh·A (t,q2) = [−1,1]. Thus
d

h·A (t,q1) = 0> −1=
d

h·A (t,q2), and
henceq1 6⊑rr mustq2. 2

4 Derivation-based testing

In this section we give an alternative definition ofA (Θ,∆). Our definition has four ingredients. First of
all, for technical reasons we normalise our pLTS of applications of tests to processes by pruning away
all outgoingτ-transitions from success states. This way anω-success state will only have outgoing
transitions labelledω .

Definition 4.1 [ω-respecting] A pLTS 〈S,Ω,→〉 is said to beω-respectingwhenevers ω−→, for any
ω ∈ Ω, impliess 6τ−→.

It is straightforward to modify the pLTS of applications of tests to processes into one that it isω-
respecting, namely by removing all transitionss τ−→ ∆ for statesswith s ω−→. With [Θ‖∆] we denote the
distributionΘ‖∆ in this pruned pLTS.

Secondly, we recall the definition of weak derivations from [3]. In a pLTS actions are only performed
by states, in that actions are given by relations from statesto distributions. But processes in general
correspond to distributions over states, so in order to define what it means for a process to perform an
action, we need tolift these relations so that they also apply to distributions. Infact we will find it
convenient to lift them to subdistributions.

Definition 4.2 Let (S,L,→) be a pLTS andR ⊆S×Dsub(S) be a relation from states to subdistributions.
ThenR ⊆ Dsub(S)×Dsub(S) is the smallest relation that satisfies:

(i) sR ∆ impliessR ∆, and

(ii) (Linearity) Γi R ∆i for i∈ I implies (∑i∈I pi ·Γi) R (∑i∈I pi ·∆i) for any pi ∈[0,1] (i∈ I) with
∑i∈I pi ≤ 1.

An application of this notion is when the relation isα−→ for α ∈ Actτ ; in that case we also writeα−→
for α−→. Thus, as source of a relationα−→ we now also allow distributions, and even subdistributions. A
subtlety of this approach is that for any actionα , we haveε α−→ ε simply by takingI = /0 or ∑i∈I pi = 0
in Definition 4.2. That turns out to makeε especially useful for modelling the “chaotic” aspects of
divergence in [3], in particular that in the must-case a divergent process can simulate any other.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 9

Definition 4.3 [Weak derivation] Suppose we have subdistributions∆,∆→
k ,∆×

k , for k≥ 0, with the fol-
lowing properties:

∆ = ∆→
0 +∆×

0

∆→
0

τ−→ ∆→
1 +∆×

1...

∆→
k

τ−→ ∆→
k+1+∆×

k+1

Then we call∆′ := ∑∞
k=0∆×

k a weak derivativeof ∆, and write∆ =⇒ ∆′ to mean that∆ can make aweak
derivationto its derivative∆′.

There is always at least one weak derivative of any subdistribution (the subdistribution itself) and there
can be many.

Thirdly, we identify a class of special weak derivatives called extreme derivatives.

Definition 4.4 [Extreme derivatives]A states in a pLTS is calledstableif s 6τ−→, and a subdistribution
∆ is calledstableif every state in its support is stable. We write∆ =⇒≻ ∆′ whenever∆ =⇒ ∆′ and∆′ is
stable, and call∆′ anextremederivative of∆.

Referring to Definition 4.3, we see this means that in the extreme derivation of∆′ from ∆ at every stage a
state must move on if it can, so that every stopping componentcan contain only states whichmuststop:
for s∈ ⌈∆→

k +∆×
k ⌉ we haves∈ ⌈∆×

k ⌉ if and now alsoonly if s 6τ−→. Moreover if the pLTS isω-respecting
then whenevers∈ ⌈∆→

k ⌉, it is not successful, i.e.s 6ω−→ for everyω ∈ Ω.

Lemma 4.5 [Existence of extreme derivatives]

(i) For every subdistribution∆ there exists some (stable)∆′ such that∆ =⇒≻ ∆′.

(ii) In a deterministic pLTS if∆ =⇒≻ ∆′ and∆ =⇒≻ ∆′′ then∆′ = ∆′′.

Subdistributions are essential here. Consider a statet that has only one transition, a selfτ-loop t τ−→ t.
Then it diverges and it has a unique extreme derivativeε, the empty subdistribution. More gener-
ally, suppose a subdistribution∆ diverges, that is there is an infinite sequence of internal transitions
∆ τ−→ ∆1

τ−→ . . .∆k
τ−→ Then one extreme derivative of∆ is ε , but it may have others.

The final ingredient in the definition of a set of outcomes of anapplication of a test to a process is
the outcome of a particular extreme derivative. Note that all statess∈ ⌈∆⌉ in the support of an extreme
derivative either satisfys ω−→ for a uniqueω ∈ Ω, or haves 6→.

Definition 4.6 [Outcomes]The outcome $∆ ∈ [0,1]Ω of a stable subdistribution∆ is given by $∆(ω) =

∑{∆(s) | s∈ ⌈∆⌉, s ω−→}.

Putting all four ingredients together, we arrive at a definition of A d(Θ,∆):

Definition 4.7 Let ∆ be a process andΘ anΩ-test. ThenA d(Θ,∆) = {$Λ | [Θ‖∆] =⇒≻ Λ}.

The role of pruning in the above definition can be seen via the following example.

Example 4.8 Let p be a process that first does ana-action, to the point distributionq, and then diverges,
via theτ-loop q τ−→ q. Let t be the test used in Examples 3.2 and 3.3. Thent‖p has a unique extreme
derivativeε, whereas[t‖p] has a unique extreme derivative[ω‖q]. Here we give the nameω to the state
reachable fromt with the outgoingω-transition. The outcome inA d(t, p) shows that processp passes
testt with probability 1, which is what we expect for state-based testing. Without pruning we would get
an outcome saying thatp passest with probability 0. 2

10 Real-Reward Testing for Probabilistic Processes

As this example is nonprobabilistic, it also illustrates how pruning enables the standard notion of non-
probabilistic testing to be captured by derivation-based testing.

Example 4.9 (Revisiting Example 3.2.) The pLTS in Figure 4(c) is deterministic and unaffected by
pruning; from part (ii) of Lemma 4.5 it follows thatt‖q1 has a unique extreme derivativeΛ. Moreover
Λ can be calculated to be∑k≥1

1
2k ·s3, which simplifies to the distributions3. Therefore,A d(t,q1) =

{$s3}= {−→ω }. 2

Example 4.10 (Revisiting Example 3.3.) The application of the testt to processesq2 is outlined in
Figure 5(c). Consider any extreme derivative∆′ from s0 = [t‖q2]; note that here again pruning actually
has no effect. Using the notation of Definition 4.3, it is clear that∆×

0 and∆→
0 must beε ands0 respectively.

Similarly, ∆×
1 and ∆→

1 must beε and s1 respectively. Buts1 is a nondeterministic state, having two
possible transitions:

(i) s1
τ−→ Λ0 whereΛ0 has support{s0,s2} and assigns each of them the weight1

2

(ii) s1
τ−→ Λ1 whereΛ1 has the support{s3,s4}, again dividing the mass equally among them.

So there are many possibilities for∆2; from Definition 4.3 one sees that in fact∆2 can be of the form

p·Λ0+(1− p) ·Λ1 (5)

for any choice ofp∈ [0,1].
Let us consider one possibility, an extreme one wherep is chosen to be 0; only the transition (ii) above

is used. Here∆→
2 is the subdistribution1

2s4, and∆→
k = ε wheneverk > 2. A simple calculation shows

that in this case the extreme derivative generated isΛe
1 =

1
2s3+

1
2s6 which implies that12

−→ω ∈ A d(t,q2).
Another possibility for∆2 is Λ0, corresponding top = 1 in (5) above. Continuing this derivation

leads to∆3 being 1
2 ·s1+

1
2 ·s5; thus∆×

3 = 1
2 ·s5 and∆→

3 = 1
2 ·s1. Now in the generation of∆4 from ∆→

3
again we resolve a transition from the nondeterministic state s1, by choosing some arbitraryp∈ [0,1] in
(5). Suppose we choosep=1 every time, completely ignoring transition (ii) above. Then the extreme
derivative generated is

Λe
0 = ∑

k≥1

1
2k ·s5

which simplifies to the distributions5. This in turn means that−→ω ∈ A d(t,q2).
We have seen two possible derivations of extreme derivatives froms0. But there are many others. In

general whenever∆→
k is of the formq·s1 we have to resolve the nondeterminism by choosing ap∈ [0,1]

in (5) above; moreover each such choice is independent. It turns out that every extreme derivative∆′ of
s0 is of the formq ·Λe

0 +(1−q) ·Λe
1 for some choice ofq ∈ [0,1], which implies thatA d(t,q2) is the

convex closure of the set{1
2
−→ω ,

−→ω }. 2

We have now seen two ways of associating sets of outcomes withthe application of a test to a
process. The first, in Section 3, associates with a test and a process a set of deterministic structures called
resolutions, while the second, in this section, uses extreme derivations in which nondeterministic choices
are resolved dynamically as the derivation proceeds. We proceed to show that these two approaches give
rise to the same outcomes. The key result to this end is

Proposition 4.11 Let Λ be a subdistribution in anω-respecting deterministic pLTS〈R,Ω,→R〉. If
Λ =⇒≻ Λ′ then ExpΛ(V〈R,Ω,→R〉) = ExpΛ′(V〈R,Ω,→R〉).

To obtain it, we need the crucial property that the evaluation functionV applied toω-respecting deter-
ministic pLTSs is continuous (with respect to the standard Euclidean metric).

The next proposition maintains that for each extreme derivative there is a corresponding resolution,
and vice versa.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 11

Proposition 4.12 Let ∆ be a subdistribution over the state set of a pLTS〈S,Ω,→〉.

(i) Suppose∆ =⇒≻ ∆′. Then there is a resolution〈R,Λ,→R〉 of ∆, with resolving functionf , such that
Λ =⇒≻R Λ′ for someΛ′ for which ∆′ = Imgf (Λ′).

(ii) Suppose〈R,Λ,→R〉 is a resolution of a∆ with resolving functionf .
ThenΛ =⇒≻R Λ′ implies∆ =⇒≻ Imgf (Λ′).

The definitions of outcomes, resolutions and the functionalR directly imply that if 〈R,Λ,→R〉 is a
resolution of a subdistribution∆∈Dsub(S) in a pLTS 〈S,Ω,→〉, with resolving functionf , andΛ′ ∈
Dsub(R) is stable, then Imgf (Λ′) is stable and

ExpΛ′(V〈R,Ω,→R〉) = $Λ′ = $(Imgf (Λ
′)).

In combination with Propositions 4.11 and 4.12, this yields:

Corollary 4.13 In anω-respecting pLTS〈S,Ω,→〉, the following statements hold.

(i) If ∆ =⇒≻ ∆′ then there is a resolution〈R,Λ,→R〉 of ∆ such that ExpΛ(V〈R,Ω,→R〉) = $(∆′).

(ii) For any resolution〈R,Λ,→R〉 of ∆, there exists an extreme derivative∆′ such that∆ =⇒≻ ∆′ and
ExpΛ(V〈R,Ω,→R〉) = $(∆′).

Together with an argument that pruning does not affectA (Θ,∆), this proves:

Theorem 4.14 For any testΘ and process∆ we have thatA d(Θ,∆) = A (Θ,∆).

5 Agreement of nonnegative- and real-reward must testing

In this section we prove the agreement of⊑nrmust with ⊑rr must for finitary convergent processes, by
using failure simulation [3] as a stepping stone. We start with defining the weak action relationsα=⇒ for
α ∈ Actτ and the refusal relations6A−→ for A ⊆ Act that are the key ingredients in the definition of the
failure-simulation preorder.

Definition 5.1 Let ∆ and its variants be subdistributions in a pLTS〈S,Act,→〉.

• For a∈ Act write ∆ a
=⇒ ∆′ whenever∆ =⇒ ∆pre a−→ ∆post=⇒ ∆′, for some∆pre and∆post. Extend

this toActτ by allowing as a special case thatτ
=⇒ is simply=⇒, i.e. including identity (rather than

requiring at least oneτ−→).

• For A ⊆ Act ands∈S write s 6A−→ if s 6α−→ for everyα ∈A∪{τ}; write ∆ 6A−→ if s 6A−→ for every
s∈⌈∆⌉.

• More generally write∆ =⇒ 6A−→ if ∆ =⇒ ∆pre for some∆pre such that∆pre 6A−→.

Definition 5.2 [Failure simulation preorder] Define�FS to be the largest relation inS×Dsub(S) such
that if s�FS ∆ then

(i) whenevers α
=⇒ Γ′, for α ∈Actτ , then there is a∆′∈Dsub(S) with ∆ α

=⇒ ∆′ andΓ′
�FS ∆′,

(ii) and whenevers=⇒ 6A−→ then∆ =⇒ 6A−→.

Any relationR ⊆ S×Dsub(S) that satisfies the two clauses above is called afailure simulation. The
failure simulation preorder⊑FS⊆ Dsub(S)×Dsub(S) is defined by letting∆ ⊑FS Γ whenever there is a
∆♮ with ∆ =⇒ ∆♮ andΓ �FS ∆♮.

Note that the simulating process,∆, occurs at the right of�FS, but at the left of⊑FS.

12 Real-Reward Testing for Probabilistic Processes

The failure simulation preorder is preserved under parallel composition with a test, followed by pruning,
and it is sound and complete for probabilistic must testing of finitary processes.

Theorem 5.3 [3]For finitary processes∆ andΓ,

(i) If ∆ ⊑FS Γ then for anyΩ-testΘ it holds that[∆‖Θ]⊑FS [Γ‖Θ].

(ii) ∆ ⊑FS Γ if and only if ∆ ⊑pmustΓ.

Because we prune our pLTSs before extracting values from them, we will be concerned mainly with
ω-respecting structures. Moreover, we require the pLTSs to be convergentin the sense that there is no
wholly divergent states, i.e. withs=⇒ ε.

Lemma 5.4 Let ∆ and Γ be two subdistributions in anω-respecting convergent pLTS〈S,Ω,→〉. If
∆ ⊑FS Γ, then it holds thatV (∆)⊇ V (Γ). HereV (∆) denotes{$∆′ | ∆ =⇒≻ ∆′}.

This lemma shows that the failure-simulation preorder is a very strong relation in the sense that if∆
is related toΓ by the failure-simulation preorder then the set of outcomesgenerated by∆ includes the
set of outcomes given byΓ. It is mainly due to this strong requirement that we can show that the
failure-simulation preorder is sound for the real-reward must-testing preorder. Convergence is a crucial
condition in this lemma.

Theorem 5.5 For any finitary convergent processes∆ andΓ, if ∆ ⊑FS Γ then we have that∆ ⊑rr mustΓ.

The proof of the above theorem is subtle. The failure-simulation preorder is defined via weak derivations
(cf. Definition 5.2), while the reward must-testing preorder is defined in terms of resolutions (cf. Defini-
tion 3.5). Fortunately, we have shown in Corollary 4.14 thatwe can just as well characterise the reward
must-testing preorder in terms of weak derivations. Based on this observation, the proof can be carried
out by exploiting Theorem 5.3(i) and Lemma 5.4.

This result does not extend to divergent processes. One witness example is given in Figure 1. A
simpler example is as follows. Let∆ be a process that diverges, by performing aτ-loop only, and letΓ
be a process that merely performs a single actiona. It holds that∆ ⊑FS Γ because∆ =⇒ ε and the empty
subdistribution can failure-simulate any processes. However, if we apply the testt from Example 3.2
again, and the reward tupleh with h(ω) =−1, then

d
h·A d(t,∆) =

d
h· {$ε} =

d
{0} = 0d

h·A d(t,Γ) =
d

h· {−→ω } =
d
{−1} = −1

As
d

h ·A d(t,∆) 6≤
d

h ·A d(t,Γ), we see that∆ 6⊑rr must Γ. SinceV ([t‖Γ]) = {−→ω } but−→ω 6∈ V ([t‖∆]),
this also is a counterexample against an extension of Lemma 5.4 with divergence.

Finally, by combining Theorems 3.6(ii) and 5.3(ii), together with Theorem 5.5, we obtain the main
result of the paper which states that, in the absence of divergence, nonnegative-reward must testing is as
discriminating as real-reward must testing.

Theorem 5.6 For any finitary convergent processes∆ and Γ, it holds that∆ ⊑rr must Γ if and only if
∆ ⊑nrmustΓ.

6 Conclusion

We have studied a notion of real-reward testing which extends the traditional nonnegative-reward testing
with negative rewards. It turned out that real-reward may preorder is the inverse of real-reward must

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 13

preorder, and vice versa. More interestingly, for finitary convergent processes, the real-reward must
testing preorder coincides with the nonnegative-reward testing preorder. In order to prove this result,
we have presented two testing approaches and shown their coincidence, which involved proving some
analytic properties such as the continuity of a function forcalculating testing outcomes.

Although for finitary convergent processes real-reward must testing is no more powerful than non-
negative-reward must testing, the same does not hold for maytesting. This is immediate from our result
that (the inverse of) real-reward may testing is as powerfulas real-reward must testing, that is known not
to hold for nonnegative-reward may- and must testing. Thus,real-reward may testing is strictly more
discriminating than nonnegative-reward may testing, evenwithout divergence.

References

[1] R. De Nicola & M. Hennessy (1984):Testing equivalences for processes. Theoretical Computer Science34,
pp. 83–133.

[2] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2008): Characterising testing preorders for finite
probabilistic processes. Logical Methods in Computer Science4(4):4.

[3] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2009): Testing finitary probabilistic processes.
In: Proc.CONCUR’09. LNCS 5710, Springer, pp. 274–288.

[4] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2010): Real Reward Testing for Probabilistic
Processes. Full version of the current paper. Available athttp://basics.sjtu.edu.cn/ ˜ yuxin/
temp/reward.pdf .

[5] Y. Deng, R.J. van Glabbeek, M. Hennessy, C.C. Morgan & C. Zhang (2007):Remarks on Testing Probabilis-
tic Processes. ENTCS172, pp. 359–397.

[6] Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang (2007):Scalar Outcomes Suffice for Finitary Proba-
bilistic Testing. In: Proc.ESOP’07. LNCS 4421, Springer, pp. 363–368.

[7] M. Hennessy (1988):An Algebraic Theory of Processes. MIT Press.

[8] B. Jonsson, C. Ho-Stuart & Wang Yi (1994):Testing and Refinement for Nondeterministic and Probabilistic
Processes. In: Proc.FTRTFT’94. LNCS 863, Springer, pp. 418–430.

[9] M. Puterman (1994):Markov Decision Processes. Wiley.

[10] J.J.M.M. Rutten, M.Kwiatkowska, G. Norman & D. Parker (2004):Mathematical Techniques for Analyzing
Concurrent and Probabilistic Systems,P. Panangaden and F. van Breugel (eds.).CRM Monograph Series23,
American Mathematical Society.

[11] R. Segala (1995):Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis,
MIT.

[12] R. Segala (1996):Testing Probabilistic Automata. In: Proc.CONCUR’96. LNCS 1119, Springer, pp. 299–
314.

[13] Wang Yi & K.G. Larsen (1992):Testing Probabilistic and Nondeterministic Processes. In: Proc.PSTV’92.
IFIP TransactionsC-8, North-Holland, pp. 47–61.

http://basics.sjtu.edu.cn/~yuxin/temp/reward.pdf
http://basics.sjtu.edu.cn/~yuxin/temp/reward.pdf

	Introduction
	Probabilistic Processes
	Testing probabilistic processes
	Derivation-based testing
	Agreement of nonnegative- and real-reward must testing
	Conclusion

