
Game Characterizations of Process Equivalences

Xin Chen⋆ and Yuxin Deng⋆⋆

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, China

Abstract. In this paper we propose a hierarchy of games that allows
us to make a systematic comparison of process equivalences by charac-
terizing process equivalences as games. The well-known linear/branching
time hierarchy of process equivalences can be embedded into the game
hierarchy, which not only provides us with a refined analysis of process
equivalences, but also offers a guidance to defining interesting new pro-
cess equivalences.

1 Introduction

A great amount of work in process algebra has centered around process equiva-
lences as a basis for establishing system correctness. Usually both specifications
and implementations are written as process terms in the same algebra, where
a specification describes the expected high-level behaviour of the system under
consideration and an implementation gives the detailed procedure of achieving
the behaviour. An appropriate equivalence is then chosen to verify that the im-
plementation conforms to the specification. In the last three decades, a lot of
process equivalences have been developed to capture various aspects of system
behaviour. They usually fit in the linear/branching time hierarchy [10]; see Fig-
ure 1 for some typical process equivalences.

Process equivalences can often be understood from different perspectives such
as logics and games. For example, bisimulation equivalence can be characterized
by Hennessy-Milner logic [1] and the modal mu-calculus [2]. Equivalences which
are weaker than bisimulation equivalence in the linear/branching time hierarchy
can be characterized by some sub-logics of Hennessy-Milner logic [3]. It is also
well-known that bisimulation equivalence can be characterized by bisimulation
games [6] between an attacker and a defender in an elegant way; two processes
are bisimilar if and only if the defender of a bisimulation game played on the
processes has a history free winning strategy. Bisimulation games came from
Ehrenfeucht-Fräıssé games that were originally introduced to determine expres-
sive power of logics [9]. To some extent games can be considered as descriptive
languages like logics. In many cases we can design a game directly from the
semantics of a particular logic such that the game captures the logic. For exam-
ple, the bisimulation game with infinite duration is an Ehrenfeucht-Fräıssé game

⋆ Supported by the National 973 Project (2003CB317005) and the National Natural
Science Foundation of China (60573002).

⋆⋆ Supported by the National Natural Science Foundation of China (60703033).

trace equivalence

completed trace equivalence

failure equivalence

failure trace equivalence readiness equivalence

ready trace equivalence

ready simulation equivalence

2-nested simulation equivalence

bisimulation equivalence

possible-futures equivalence

simulation equivalence

Fig. 1. The linear/branching time hierarchy [10]

that captures Hennessy-Milner logic [6], and the fixed point game that allows
infinite fixed point and modal moves captures the modal mu-calculus [8]. Games
indeed offer new sights into old problems, and sometimes let us understand these
problems easier than before.

In this paper we provide a systematic comparison of different process equiv-
alences from a game-theoretic point of view. More precisely, we present a game
hierarchy (cf. Figure 4) which has a more refined structure than the process
equivalence hierarchy in Figure 1. Viewing the hierarchies as partial orders, we
can embed the process equivalence hierarchy into the game hierarchy because
each process equivalence can be characterized by a corresponding class of games.
Moreover, there are games that do not correspond to any existing process equiv-
alences. This kind of games would be useful for guiding us to define interesting
new process equivalences.

To define games, we make use of a game template that is basically an abstract
two-player game leaving concrete moves unspecified. Then we define a few types
of moves. Instantiating the game template by different combinations of moves
generates different games. We compare the games using a preorder which says
that G1 � G2 if player II has a winning strategy in G1 implies she has a winning
strategy in G2. The preorder provides us with a neat means to compare process
equivalences. Suppose G1 and G2 characterize process equivalences ∼1 and ∼2,
respectively. Then we have that G1 � G2 if and only if ∼1 ⊆ ∼2, i.e. ∼2 is a
coarser relation than ∼1.

The rest of the paper is organized as follows. Section 2 briefly recalls the def-
initions of labelled transition systems and bisimulations. In Section 3, we design
several kinds of moves and a game template in order to define games. In Section
4, we present two game hierarchies, with or without considering alternations of
moves, and we combine them into a final hierarchy. In Section 5, we show that
the linear/branching time hierarchy can be embedded into our game hierarchy.
Section 6 concludes and discusses some future work.

2 Preliminaries

We presuppose a countable set of actions Act = {a, b, . . .}.

Definition 1. A labelled transition systems (LTS) is a triple (P , A,→), where

– P is a set of states,
– A ⊆ Act is a set of actions,
– →⊆ P × A × P is a transition relation.

As usual, we write P
a
−→ Q for (P, a, Q) ∈→ and we extend the transition rela-

tion to traces in the standard way, e.g. P0

t
−→ Pn if P0

a1−→ P1

a2−→ P2 . . . Pn−1

an−−→
Pn, where t = a1a2 . . . an. An LTS (P , A,→) is image-finite if for all P ∈ P

the set {P ′ | P
a
−→ P ′, for some a ∈ A} is finite. In this paper we only consider

image-finite LTSs. Instead of drawing LTSs as graphs, we use CCS processes
to represent the LTSs generated by their operational semantics [4]. We say two
processes are isomorphic if their LTSs are isomorphic.

Definition 2. A binary relation R is a bisimulation if for all (P, Q) ∈ R and
a ∈ Act,

(1) whenever P
a
−→ P ′, there exists Q

a
−→ Q′ such that (P ′, Q′) ∈ R, and

(2) whenever Q
a
−→ Q′, there exists P

a
−→ P ′ such that (P ′, Q′) ∈ R.

We define the union of all bisimulations as bisimilarity, written ∼.

Bisimilarity can be approximated by a sequence of inductively defined rela-
tions. The following definition is taken from [4], except that ∼k is replaced by
∼r

k. The meaning of the superscript r will be clear in Section 5.

Definition 3. Let P be the set of all processes, we define

– ∼r
0= P × P,

– P ∼r
n+1 Q, for n ≥ 0, if for all t ∈ Act∗,

(1) whenever P
t
−→ P ′, there exists Q

t
−→ Q′ such that P ′ ∼r

n Q′,

(2) whenever Q
t
−→ Q′, there exists P

t
−→ P ′ such that P ′ ∼r

n Q′.

The definition of ∼a
k for k ≥ 0 is similar to the previous one, except that

we replace
t
−→ with

a
−→ where a ∈ Act. For image-finite LTSs, it holds that

∼ =
⋂

n≥0
∼r

n =
⋂

n≥0
∼a

n.

3 Game Template

We briefly review the bisimulation games [8]. A bisimulation game Gk(P, Q)
starting from the pair of processes (P, Q) is a round-based game with two players.
Player I, viewed as an attacker, attempts to show that the initial states are
different whereas player II, viewed as a defender, wishes to establish that they are
equivalent. A configuration is a pair of processes of the form (Pi, Qi) examined
in the i-th round, and (P, Q) is the configuration for the first round. Suppose we
are in the i-th round. The next configuration (Pi+1, Qi+1) is determined by one
of the following two moves:

〈a〉: Player I chooses a transition Pi
a

−→ Pi+1 and then player II chooses a tran-

sition with the same label Qi
a

−→ Qi+1.

[a]: Player I chooses a transition Qi
a

−→ Qi+1 and then player II chooses a

transition with the same label Pi
a

−→ Pi+1.

Player I wins if she can choose a transition and player II is unable to match it
within k rounds. Otherwise, Player II wins. If k = ∞ then there is no limitation
on the number of rounds.

Below we define four other moves that will give rise to various games later
on.

Definition 4 (Moves). Suppose the current configuration is (P, Q), we define
the following kinds (or sets, more precisely) of moves.

〈t〉: Player I performs a nonempty action sequence t = a1 · · ·al ∈ Act∗ from P ,

P
a1−→ P1

a2−→ · · ·
al−→ Pl and then player II performs the same action sequence

from Q, Q
a1−→ Q1

a2−→ · · ·
al−→ Ql. Player I selects some 1 ≤ j ≤ l and sets

the configuration for the next round to be (Pj , Qj).
[t]: Player I performs a nonempty action sequence t = a1 · · · al ∈ Act∗ from

Q, Q
a1−→ Q1

a2−→ · · ·
al−→ Ql and then player II performs the same action

sequence from P , P
a1−→ P1

a2−→ · · ·
al−→ Pl. Player I selects some 1 ≤ j ≤ l

and sets the configuration for the next round to be (Pj , Qj).
r-〈t〉: Player I performs a nonempty action sequence t = a1 · · ·al ∈ Act∗ from P ,

P
a1−→ P1

a2−→ · · ·
al−→ Pl and then player II performs the same action sequence

from Q, Q
a1−→ Q1

a2−→ · · ·
al−→ Ql. The configuration for the next round is

(Pl, Ql).
r-[t]: Player I performs a nonempty action sequence t = a1 · · · al ∈ Act∗ from

Q, Q
a1−→ Q1

a2−→ · · ·
al−→ Ql and then player II performs the same action

sequence from P , P
a1−→ P1

a2−→ · · ·
al−→ Pl. The configuration for the next

round is (Pl, Ql).

For the sake of convenience, we define some unions of the moves above:

– t := 〈t〉 ∪ [t].
– r := r-〈t〉 ∪ r-[t].
– a := 〈a〉 ∪ [a].
– M is the set of all moves.

Clearly, 〈a〉 moves are special r-〈t〉 moves and r-〈t〉 moves are special 〈t〉 moves.
We have similar observation for box modalities.

– 〈a〉 (r-〈t〉 (〈t〉.
– [a] (r-[t] ([t].

We now introduce the concept of alternation for games; it has an intimate
relation with quantifier alternation in logics.

Definition 5 (Alternation). An alternation consists of two successive moves
such that one of them is in 〈t〉 and the other is in [t]. The number of alternations
in a game is the number of occurrences of such successive moves in the game.

Note that bisimulation games have no restriction on their alternation num-
bers.

Definition 6 (Extra conditions). Given a round-based game and a set α

which is the set of moves player I can make in the game, an extra condition
can be one of the following, for some m ⊆ M,

m: The game is extended with one more round, where player I can only make a
move in m. Moreover, player I can make a move in m − α in each round,
but the game has to be finished regardless of the remaining rounds, which
implies that if player I fails to make player II stuck by this move, she loses.

−m: Similar to the case for m, except that if player I makes a move in m − α

to end the game, the last two moves must be an alternation. Therefore, this
condition could not be applied to a 0-round game.

c0: In the beginning of the game, all deadlock processes reachable from P0 and Q0

are colored C0. In each round, the two processes in the related configuration
should be in the same color (or neither of them is colored), otherwise player
II loses.

We now define a game template which is intuitively an abstract game in the
sense that concrete games can be obtained from it by instantiating its moves.

Definition 7 (Game template). The game template n-Γ α,β
k (P, Q) with n ≥ 0

denotes a k-round game between player I and player II with the starting config-
uration (P, Q) such that the following conditions are satisfied.

1. The number of alternations in the game is at most n; it is omitted when
there is no restriction on the number of alternations.

2. β is an extra condition; it is omitted when there is no extra condition.
3. Player I can only make a move in α ⊆ M in each round if β is neither m

nor −m. Otherwise, player I can also make a move in m−α in each round,
but if she cannot make player II stuck by this move, she loses.

4. The players’ winning conditions are similar to those in bisimulation games.

Notice that k-round bisimulation games can be defined by Γ a
k . Although a

lot of games can be defined by various combinations of n, α and β; this paper
mainly focuses on some typical ones. Given a game Γ

α,β
k (P, Q), we say player

I (resp. player II) wins Γ
α,β
k (P, Q) if player I (resp. player II) has a winning

strategy in it, and we abbreviate the game to Γ
α,β
k if the starting configuration

is insignificant.

4 Game Hierarchy

To facilitate the presentation, we classify our games into two hierarchies with
respect to a preorder relation between games; one hierarchy counts alternations
of moves and the other does not count. We show that all the relations in the
hierarchies are correct. Then we combine the two hierarchies into one, by intro-
ducing some new relations. At last, we prove that no more non-trivial relations
can be added into the final hierarchy. We shall see in Section 5 that the hierar-
chy of process equivalences in Figure 1 can be embedded into this hierarchy of
games.

The preorder relation between games is defined as follows.

Definition 8. Given two games G1 and G2, we write G1 � G2, if for any pro-
cesses P and Q,

player II wins G1(P, Q) =⇒ player II wins G2(P, Q).

Here � is indeed a preorder as this is inherited from logical implication. We
write G1 ≻ G2 if G1 � G2 and G2 � G1.

4.1 Game Hierarchy I

We propose the game hierarchy I in Figure 2. Its correctness is stated by the
next theorem.

Theorem 1. In Figure 2, if G1 → G2 then G1 � G2.

The rest of this subsection is devoted to proving Theorem 1.
Let α, α′ ⊆ M and β be an extra condition. The following statements can be

derived from Definition 7 immediately:

(1) Γ α
0 = Γ α′

0 .

(2) Γ
α,β
0 = Γ

α′,β
0 .

(3) For k ≥ 0, Γ
α,α
k = Γ α

k+1
.

(4) For k ≥ 0, Γ
α,t
k = Γ

α,r
k .

Since t contains r, r contains a, and if two processes P , Q do not have the
same color, they can be distinguished in a round by a move in a, we get the
following statement:

Γ α
∞ = Γ α,c0

∞ = Γ α,−a
∞ = Γ α,a

∞ , for α ∈ {a, r, t}.

Lemma 1. For any processes P and Q, the following statements are equivalent:

(1) P ∼ Q.
(2) player II wins Γ a

∞(P, Q).
(3) player II wins Γ r

∞(P, Q).
(4) player II wins Γ t

∞(P, Q).

Proof. It is trivial that Γ a
∞ � Γ r

∞ � Γ t
∞, so we have (4)⇒(3)⇒(2). Observe that

Γ a
k is exactly the k-round bisimulation game, which means (1)⇔(2) (cf. [6]). We

now show (1)⇒(4). Assume P ∼ Q, we construct a winning strategy for player
II for the game Γ t

∞(P, Q): in any round, suppose the configuration is (Pi, Qi).

If player I performs Pi
a1−→ Pi1

a2−→ · · ·
al−→ Pil, then player II can respond with

Qi
a1−→ Qi1

a2−→ · · ·
al−→ Qil, such that Pij ∼ Qij for all 1 ≤ j ≤ l. Clearly,

whatever configuration for the next round player I selects, she cannot win the
game. ⊓⊔

Lemma 1 yields the immediate corollary that Γ a
∞ = Γ r

∞ = Γ t
∞.

Lemma 2. (1) Γ a
k+1

� Γ
r,a
k � Γ

t,a
k for all k ≥ 1.

(2) Γ r
k � Γ t

k for all k ≥ 1.

Proof. Since a (r (t, both (1) and (2) can be easily derived. ⊓⊔

Lemma 3. Γ r
k � Γ

r,c0

k � Γ
r,−a
k � Γ

r,a
k � Γ r

k+1
for all k ≥ 1.

Proof. It is easy to see that Γ r
k � Γ

r,c0

k � Γ
r,a
k � Γ r

k+1
and Γ r

k � Γ
r,−a
k � Γ

r,a
k �

Γ r
k+1

. We now prove Γ
r,c0

k � Γ
r,−a
k by induction on k. Given two processes P, Q,

suppose player II wins Γ
r,−a
k (P, Q). We show that player II wins Γ

r,c0

k (P, Q) as
well.

Γ
a
0

Γ
a,c0
0

Γ
a
1 Γ

r
1

Γ
a,c0
1

Γ
r,c0
1

Γ
a,−a
1

Γ
r,−a
1

Γ
t,−a
1

Γ
a
2 Γ

r,a
1 Γ

t,a
1

Γ
r
2 Γ

t
2

Γ
a,c0
2

Γ
r,c0
2 Γ

t,c0
2

Γ
a,−a
2

Γ
r,−a
2

Γ
t,−a
2

Γ
a
3 Γ

r,a
2 Γ

t,a
2

Γ
r
3 Γ

t
3

...
...

...

Γ
a
k−1 Γ

r,a

k−2 Γ
t,a

k−2

Γ
r
k−1 Γ

t
k−1

Γ
a,c0
k−1

Γ
r,c0
k−1 Γ

t,c0
k−1

Γ
a,−a

k−1
Γ

r,−a

k−1
Γ

t,−a

k−1

Γ
a
k Γ

r,a

k−1 Γ
t,a

k−1

Γ
r
k Γ

t
k

...
...

...

Γ
a
∞

Fig. 2. Game hierarchy I

– k = 1. From the assumption, player II wins Γ
r,−a
1 (P, Q). The game Γ

r,c0

1 (P, Q)
has just one round and all deadlock processes reachable from P and Q are
colored C0, and the other processes are uncolored. (Clearly both P and Q

are colored C0 or neither of them is colored.) We distinguish four cases.

Case 1: Player I performs P
t
−→ P ′, where t ∈ Act∗ is a nonempty action

sequence and P ′ is colored. Player II can perform Q
t
−→ Q′ such that

Q′ is colored. Otherwise there is some a ∈ Act and player I can make

player II stuck by performing P
ta
−→ P ′′ for some P ′′ in the first round

of Γ
r,−a
1 (P, Q), which contradicts the assumption.

Case 2: Player I performs P
t
−→ P ′, where t ∈ Act∗ is a nonempty action

sequence and P ′ is uncolored C0. Player II can perform Q
t
−→ Q′ such

that Q′ is uncolored C0. Otherwise, in Γ
r,−a
1 (P, Q), player I can make

player II stuck by making a move in [a] in the second round, contradicting
the assumption.

Case 3: Player I performs Q
t
−→ Q′, where t ∈ Act∗ is a nonempty action

sequence and Q′ is colored. This case is similar to Case 1.

Case 4: player I performs Q
t
−→ Q′, where t ∈ Act∗ is a nonempty action

sequence and Q′ is uncolored C0. This case is similar to Case 2.

– k > 1. We know player II wins Γ
r,−a
k (P, Q). In the first round of Γ

r,c0

k (P, Q),
whenever player I performs some action sequence from P (resp. Q) to P ′

(resp. Q′), player II can always perform the same action sequence from Q

(resp. P) to Q′ (resp. P ′) such that both P ′ and Q′ are colored C0, or neither
of them is colored. Otherwise, in Γ

r,−a
k (P, Q), player I can make player II

stuck in the second round. In the second round of Γ
r,c0

k (P, Q), the game
becomes Γ

r,c0

k−1
(P ′, Q′) and by induction player II wins the Γ

r,c0

k−1
(P ′, Q′). ⊓⊔

Similar to Lemmas 2 and 3, all the other relations illustrated in Figure 2 can
be proven, thus Theorem 1 is established.

4.2 Game Hierarchy II

The games in Section 4.1 do not count alternations of moves, which are taken
into account in this section. For simplicity, we are not going to discuss all the
games defined from those in Figure 2 by restricting the number of alternations.
Instead, we focus on the games in which the players can only make moves in
a. To further simplify the exposition, Figure 3 only illustrates a game hierarchy
where the number of alternations n is restricted to 0 and 1. However, in the rest
of the paper the lemmas cover all n ≥ 0. From Definitions 6 and 7, the relations
illustrated in Figure 3 are apparent, so we omit the proof of the theorem below.

Theorem 2. In Figure 3, if G1 → G2 then G1 � G2. ⊓⊔

Γ
a
0

Γ
a,c0
0

Γ
a
1

Γ
a,c0
1

Γ
a,−a
1

Γ
a
2

Γ
a,c0
2

Γ
a,−a
2

Γ
a
3

...

Γ
a
k−1

Γ
a,c0
k−1

Γ
a,−a

k−1

Γ
a
k

...

Γ
a
∞

0-Γ a
2

0-Γ a,c0
2

0-Γ a,−a
2

0-Γ a,a
2 1-Γ a

30-Γ a
3

...
...

...
...

1-Γ a
k−10-Γ a,a

k−2
0-Γ a

k−1

0-Γ a,c0
k−1

0-Γ a,−a

k−1

1-Γ a
k0-Γ a,a

k−10-Γ a
k

...
...

...
...

0-Γ a
∞

0-Γ a,c0
∞

0-Γ a,a
∞

1-Γ a
∞

Fig. 3. Game hierarchy II

Γ
a
0

Γ
a,c0
0

Γ
a
1 Γ

r
1

Γ
a,c0
1

Γ
r,c0
1

Γ
a,−a
1

Γ
r,−a
1

Γ
t,−a
1

Γ
a
2 Γ

r,a
1 Γ

t,a
1

Γ
r
2 Γ

t
2

Γ
a,c0
2

Γ
r,c0
2 Γ

t,c0
2

Γ
a,−a
2

Γ
r,−a
2

Γ
t,−a
2

Γ
a
3 Γ

r,a
2 Γ

t,a
2

Γ
r
3 Γ

t
3

...
...

...

Γ
a
k−1 Γ

r,a

k−2 Γ
t,a

k−2

Γ
r
k−1 Γ

t
k−1

Γ
a,c0
k−1

Γ
r,c0
k−1 Γ

t,c0
k−1

Γ
a,−a

k−1
Γ

r,−a

k−1
Γ

t,−a

k−1

Γ
a
k Γ

r,a

k−1 Γ
t,a

k−1

Γ
r
k Γ

t
k

...
...

...

Γ
a
∞

0-Γ a
2

0-Γ a,c0
2

0-Γ a,−a
2

0-Γ a,a
2

1-Γ a
30-Γ a

3

...
...

...
...

1-Γ a
k−10-Γ a,a

k−2
0-Γ a

k−1

0-Γ a,c0
k−1

0-Γ a,−a

k−1

1-Γ a
k0-Γ a,a

k−10-Γ a
k

...
...

...
...

0-Γ a
∞

0-Γ a,c0
∞

0-Γ a,a
∞

1-Γ a
∞

Fig. 4. The whole game hierarchy

4.3 The Whole Game Hierarchy

We now combine game hierarchies I and II into a single hierarchy, as described
in Figure 4. Similar to Figure 3, we have not drawn the games with alternations
exceeding 1, but our lemmas below cover them.

In the combined game hierarchy, we have the new relations, Γ t
n+1 � n-Γ a

∞,

Γ
t,c0

n+1
� n-Γ a,c0

∞ , Γ
t,a
n+1

� n-Γ a,a
∞ for n ≥ 0. We give a proof of Γ t

n+1 � n-Γ a
∞ in

the lemma below; the others can be proven analogously.

Lemma 4. Γ t
n+1 � n-Γ a

∞ for all n ≥ 0.

Proof. We prove the statement by induction on n. Assume player II wins n-
Γ a
∞(P0, Q0) for some processes P0 and Q0.

– n = 0. Suppose player I performs P0

a1−→ P1

a2−→ . . .
al−→ Pl (resp. Q0

a1−→

Q1

a2−→ · · ·
al−→ Ql). Since player II wins 0-Γ a

∞(P0, Q0), she can respond with

Q0

a1−→ Q1

a2−→ . . .
al−→ Ql (resp. P0

a1−→ P1

a2−→ · · ·
al−→ Pl). Hence, player II

wins Γ t
1(P0, Q0).

– n > 0. From the assumption, player II wins n-Γ a
∞(P0, Q0). In the first round

of Γ t
n+1(P0, Q0), if player I performs P0

a1−→ P1

a2−→ . . .
al−→ Pl (resp. Q0

a1−→

Q1

a2−→ · · ·
al−→ Ql), player II can respond with Q0

a1−→ Q1

a2−→ . . .
al−→ Ql

(resp. P0

a1−→ P1

a2−→ · · ·
al−→ Pl), such that for each Pi and Qi, where 1 ≤ i ≤

l, player II wins (n − 1)-Γ a
∞(Pi, Qi). By induction, Γ t

n � (n − 1)-Γ a
∞, player

II wins Γ t
n(Pi, Qi) for any 1 ≤ i ≤ l. Hence, player II wins Γ t

n+1(P0, Q0). ⊓⊔

We are in a position to state the main result of the paper.

Theorem 3. (1) In Figure 4, if G1 → G2 then G1 ≻ G2.
(2) No more relations can be added to the game hierarchy in Figure 4, except for

those derived from the transitivity of ≻. ⊓⊔

The first statement follows from Theorems 1, 2 and Lemma 4 provided we could
show that

(∗) In Figure 4, if G1 → G2 then G2 6� G1.

The rest of this section is devoted to proving (*) and the second statement
of Theorem 3 by providing counterexamples to prove the invalidities of some
relations. For that purpose, it suffices to establish Lemmas 5 to 7 below.

Lemma 5. For all k ≥ 1,

(1) Γ r
1 � Γ a

k .

(2) Γ
t,−a
1 � Γ r

k .

Proof. (1) We define the processes below:

Example 1. A
def
= a.A and Ai

def
=

{

0 if i = 0
a.Ai−1 if i > 0

Consider Γ a
k (A, Ak), in each round player I can only perform action a from

one process, and player II can always respond properly, since both A and
Ak can perform action a for k times. Then player II wins Γ a

k (A, Ak). But
player I wins Γ r

1 (A, Ak), she performs an action sequence t = ak+1 from A

in the first round, player II fails to respond to such sequence from Ak, since
the process can only perform action a for k times.

(2) Consider the following processes.

Example 2.

P0

def
= b.0, Q0

def
= c.0,

Pi+1

def
= a.(Pi + d.0) + a.(Qi + e.0),

Qi+1

def
= a.(Pi + e.0) + a.(Qi + d.0).

It is not difficult to prove that player II wins Γ r
k (Pk+1, Qk+1) by induction

on k.
• k = 1. This case is easy.
• k > 1. We distinguish five sub-cases.
Case 1: Player I performs Pk+1

a
−→ (Pk+d.0). Then player II can perform

Qk+1

a
−→ (Qk + d.0). By induction player II wins Γ r

k−1
(Pk, Qk) and

thus she also wins Γ r
k−1

(Pk + d.0, Qk + d.0).

Case 2: Player I performs Pk+1

a
−→ (Qk+e.0). Then player II can perform

Qk+1

a
−→ (Pk + e.0). Similar to the previous case, player II wins

Γ r
k−1

(Qk + e.0, Pk + e.0).

Case 3: Player I performs Qk+1

a
−→ (Qk + d.0). Then player II can per-

form Pk+1

a
−→ (Pk + d.0). The rest is similar to Case 1.

Case 4: Player I performs Qk+1

a
−→ (Pk+e.0). Then player II can perform

Pk+1

a
−→ (Qk + e.0). The rest is similar to Case 2.

Case 5: If player I performs Pk+1

t
−→ P ′ (resp. Qk+1

t
−→ Q′) for some

t ∈ Act∗ and |t| > 1, player II can always respond with Qk+1

t
−→ Q′

(resp. Pk+1

t
−→ P ′) such that P ′ and Q′ are isomorphic.

On the other hand, player I wins Γ
t,−a
1 (Pk+1, Qk+1). A winning strategy is

to perform Pk+1

a
−→ (Pk + d.0)

a
−→ (Pk−1 + d.0)

a
−→ · · ·

a
−→ (b.0 + d.0), where

each process passed in the sequence can perform action d and the last process
can perform action b. But player II fails to perform such an action sequence
from Qk+1 and will become stuck in the second round. ⊓⊔

Similar to Lemma 5, the next two lemmas can be proven by providing ap-
propriate counterexamples. See Appendix A for their detailed proofs.

Lemma 6. For all k ≥ 1,

(1) 0-Γ a,c0

k � Γ t
k.

(2) 0-Γ a,−a
k � Γ

t,c0

k .

(3) 0-Γ a
k+1

� Γ
t,−a
k .

(4) 0-Γ a,c0

k � Γ
a,−a
k . ⊓⊔

Lemma 7. For all n ≥ 0,

(1) Γ
a,c0

n+1
� n-Γ a

∞.

(2) Γ
a,−a
n+1 � n-Γ a,c0

∞ .
(3) (n + 1)-Γ a

n+3 � n-Γ a,a
∞ . ⊓⊔

5 Characterizing Process Equivalences

In this section we revisit some important process equivalences1 in the linear/branching
time hierarchy showed in Figure 1.

Definition 9. Given a game G and a process equivalence ≈, we say ≈ is char-
acterized by G if for any processes P, Q, it holds that P ≈ Q iff player II wins
G(P, Q).

Theorem 4. (1) Trace equivalence is characterized by Γ r
1 .

(2) Completed trace equivalence is characterized by Γ
r,c0

1 .
(3) Failures equivalence is characterized by Γ

r,−a
1 .

(4) Failure trace equivalence is characterized by Γ
t,−a
1 .

(5) Ready trace equivalence is characterized by Γ
t,a
1 .

(6) Readiness equivalence is characterized by Γ
r,a
1 .

(7) Possible-futures equivalence is characterized by Γ r
2 .

Proof. We only prove (5) and the others can be proven analogously. Suppose
P and Q are ready trace equivalent, written P ∼RT Q, we prove that player
II wins Γ

t,a
1 (P, Q). In the first round, if player I performs some trace t from P

or Q, then player II considers t as a ready trace, since she has full knowledge
of player I’s move. Clearly, in the second round player I cannot make player II
stuck. Conversely, suppose player II wins Γ

t,a
1 (P, Q). It is apparent that P , Q

have the same ready traces, and then P ∼RT Q. ⊓⊔

Similar to the approximation of bisimilarity (cf. Definition 3), we can define
similarity ∼S, completed similarity ∼CS , ready similarity ∼RS , 2-nested similar-
ity ∼2S , and their approximants. We write ∼∗

k, where k ≥ 0, for the approximants
of ∼∗.

Lemma 8. For all k ≥ 0,

(1) Γ a
k characterizes ∼a

k.
(2) Γ r

k characterizes ∼r
k.

(3) 0-Γ a
k characterizes ∼S

k .
(4) 0-Γ a,c0

k characterizes ∼CS
k .

(5) 0-Γ a,a
k characterizes ∼RS

k .

1 Due to lack of space we do not list the definitions of those process equivalences; they
can be found in [10].

(6) 1-Γ a
k characterizes ∼2S

k .

Proof. All the statements can be easily proven by induction on k, so we omit
them. ⊓⊔

Since we are dealing with image-finite LTSs, the next theorem follows from
Lemma 8.

Theorem 5. (1) Simulation equivalence is characterized by 0-Γ a
∞.

(2) Completed simulation equivalence is characterized by 0-Γ a,c0

∞ .

(3) Ready simulation equivalence is characterized by 0-Γ a,a
∞ .

(4) 2-nested simulation equivalence is characterized by 1-Γ a
∞. ⊓⊔

Furthermore, new equivalences can be defined using the games in Figure 4.
For example, we can define a new equivalence using game Γ t

2 which is stronger
than possible-futures equivalence and ready trace equivalence, but weaker than
2-nested simulation equivalence. In addition, from the game hierarchy, we learn
the relationship between the approximants of bisimilarity, similarity, completed
similarity etc. For example, possible-futures equivalence is stronger than ∼S

2 ,
but is incomparable with ∼S

3 . Hence, the game hierarchy is interesting in that it
offers an intuitive way of comparing various process equivalences.

6 Concluding Remarks

We have presented a hierarchy of games that allows us to compare process equiv-
alences systematically in a game-theoretic way by characterizing process equiv-
alences as games. The hierarchy not only provides us with a refined analysis
of process equivalences, but also offers a guidance to defining interesting new
process equivalences.

The work closely related to ours is [5] which provides a Stirling class of games
to characterize various process equivalences. The methodology adopted in the
current work is different because we examine in a systematic way the theory
of games that could characterize typical equivalences in the process equivalence
hierarchy.

Paying our attention to the analysis of process equivalences is for the purpose
of studying the complexity of equivalence checking. We know that model checking
can be considered in a game-theoretic way [7], but the complexity depends on
particular models. Similar phenomena exist for equivalence checking. However,
equivalence checking is much harder than model checking, and sometimes it
cannot be done in similar ways. Further investigation in this respect would be
interesting.

Acknowledgement We thank Enshao Shen, Yunfeng Tao and Chaodong He for
interesting discussions. We also thank the anonymous referees for their construc-
tive comments.

References

[1] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, 1985.

[2] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, 27:333–354, 1983.

[3] A. Kucera and J. Esparza. A logical viewpoint on process-algebraic quotients.
In Proceedings of the 8th Annual Conference of the European Association for
Computer Science Logic, volume 1683 of Lecture Notes in Computer Science, pages
499–514. Springer, 1999.

[4] R. Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.
[5] S. K. Shukla, H. B. H. III, and D. J. Rosenkrantz. HORNSAT, model checking,

verification and games (extended abstract). In Proceedings of the 8th International
Conference on Computer Aided Verification, volume 1102 of Lecture Notes in
Computer Science, pages 99–110. Springer, 1996.

[6] C. Stirling. Modal and temporal logics for processes. Notes for Summer School
in Logic Methods in Concurrency, 1993.

[7] C. Stirling. Local model checking games. In Proceedings of the 6th International
Conference on Concurrency Theory, volume 962 of Lecture Notes in Computer
Science, pages 1–11. Springer, 1995.

[8] C. Stirling. Games and modal mu-calculus. In Proceedings of the 2nd International
Workshop on Tools and Algorithms for Construction and Analysis of Systems,
volume 1055 of Lecture Notes in Computer Science, pages 298–312. Springer,
1996.

[9] W. Thomas. On the Ehrenfeucht-Fräıssé game in theoretical computer science.
In Proceedings of the 3rd International Joint Conference CAAP/FASE on Theory
and Practice of Software Development, volume 668 of Lecture Notes in Computer
Science, pages 559–568. Springer, 1993.

[10] R. J. van Glabbeek. The linear time-branching time spectrum (extended abstract).
In Proceedings of the 1st International Conference on Concurrency Theory, vol-
ume 458 of Lecture Notes in Computer Science, pages 278–297. Springer, 1990.

A Proofs from Section 4.3

Proof of Lemma 6.

Proof. (1) We define the following processes:

Example 3.

P1

def
= a.b.0 + a.0, Q1

def
= a.b.0,

Pi+1

def
= a.(Pi + r(Qi) + r(Pi) + Qi),

Qi+1

def
= a.(Pi + r(Qi)) + a.(r(Pi) + Qi).

where r is an injective renaming function that maps actions in Pk, Qk to
some fresh actions.

We prove that player II wins Γ t
k(Pk, Qk).

• k = 1. This case is trivial.

• k > 1. In the first round of Γ t
k(Pk, Qk), we have the following sub-cases:

Case 1: Player I performs Pk
a
−→ (Pk−1 +r(Qk−1)+r(Pk−1)+Qk−1). By

induction, whenever player II responds with Qk
a
−→ (Pk−1 +r(Qk−1))

or Qk
a
−→ (r(Pk−1)+ Qk−1), she can always continue the game for at

least (k − 1) rounds.

Case 2: Player I performs Qk
a
−→ (Pk−1+r(Qk−1)) and player II performs

Pk
a
−→ (Pk−1+r(Qk−1)+r(Pk−1)+Qk−1). The rest is similar to Case

1.
Case 3: Player I performs Qk

a
−→ (r(Pk−1)+Qk−1) and player II performs

Pk
a
−→ (Pk−1+r(Qk−1)+r(Pk−1)+Qk−1). The rest is similar to Case

1.
Case 4: Player I performs Pk

t
−→ P ′ (resp. Qk

t
−→ Q′), where t ∈ Act∗,

player II can respond with Qk
t
−→ Q′ (resp. Pk

t
−→ P ′) such that P ′

and Q′ are isomorphic. By induction hypothesis, whenever player I
chooses some configuration for the next round, player II can always
continue the game for at least (k − 1) rounds.

The fact that player I wins 0-Γ a,c0

k (Pk, Qk) can be proven similarly.

• k = 1. Player I performs P1

a
−→ 0 and 0 is colored C0, but player II fails

to make a proper response.
• k > 1. Player I performs Pk

a
−→ (Pk−1 + r(Qk−1) + r(Pk−1) + Qk−1).

Then player II has two ways to respond.

Case 1: Player II responds with Qk
a
−→ (Pk−1 + r(Qk−1)). Then in the

second round the configuration is (Pk−1 + r(Qk−1) + r(Pk−1) +
Qk−1, Pk−1+r(Qk−1)). If player I performs some action from r(Pk−1),
player II can respond with the same action from r(Qk−1). By induc-
tion, player I wins 0-Γ a,c0

k−1
(Pk−1, Qk−1) by performing some action

from Pk−1 in the first round, and obviously it is also the case for
0-Γ a,c0

k (r(Pk−1), r(Qk−1)). Hence, player I can make player II stuck
in the k-th round and does not need any alternation.

Case 2: Player II responds with Qk
a
−→ (r(Pk−1) + Qk−1). The rest is

similar to Case 1.

(2) Define the following processes:

Example 4.

P1

def
= a.b.0 + a.c.0, Q1

def
= a.(b.0 + c.0),

Pi+1

def
= a.(Pi + r(Qi) + r(Pi) + Qi),

Qi+1

def
= a.(Pi + r(Qi)) + a.(r(Pi) + Qi).

Player II wins Γ
t,c0

k (Pk, Qk), but player I wins 0-Γ a,−a
k (Pk, Qk). The proofs

are similar to part (1).
(3) Define the following processes:

Example 5.

P1

def
= a.(b.0 + c.0) + a.b.0 + a.c.0, Q1

def
= a.b.0 + a.c.0,

Pi+1

def
= a.(Pi + r(Qi) + r(Pi) + Qi),

Qi+1

def
= a.(Pi + r(Qi)) + a.(r(Pi) + Qi).

Player II wins Γ
t,−a
k (Pk, Qk), but player I wins 0-Γ a

k+1
(Pk, Qk). The proofs

are similar to part (1).
(4) We give the following example.

Example 6.

P0

def
= b.0,

Pi+1

def
= a.Pi + Ai+1,

where Ai+1 is defined in Example 1.

The statement that player II wins Γ
a,−a
k (Pk, Ak) can be proven by induction

on k, as we did in the proofs of previous lemmas. We observe that player I
wins 0-Γ a,c0

k (Pk, Ak), since she can perform Pk
a
−→ Pk−1

a
−→ Pk−2 . . . P1

a
−→ P0

in the first k rounds, and player II has to respond with Ak
a
−→ Ak−1

a
−→

Ak−2 . . . A1

a
−→ A0. Since P0 is not a deadlock process, it is not colored C0,

but A0 is colored C0. ⊓⊔

Proof of Lemma 7.

Proof. (1) Consider the following processes:

Example 7.

P0

def
= b.0, Q0

def
= 0,

Pi+1

def
= a.(Pi + Qi),

Qi+1

def
= a.Pi + a.Qi.

Player II wins n-Γ a
k (Pn+1, Qn+1) for all k ≥ 0, since player I needs at least

(n+1) alternations to distinguish Pn+1 and Qn+1 without coloring. It follows
that player I wins n-Γ a

∞(Pn+1, Qn+1). But player I wins Γ
a,c0

n+1(Pn+1, Qn+1)
because she can make player II stuck in the last round.

(2) We define the following processes:

Example 8.

P1

def
= a.(b.0 + c.0) + a.c.0,

Q1

def
= a.(b.0 + c.0),

Pi+1

def
= a.(Pi + Qi),

Pi+1

def
= a.Pi + a.Qi.

Player II wins n-Γ a,c0

∞ (Pn+1, Qn+1), since (n+1) alternations are needed for
player I in the first (n + 2) rounds to distinguish the two processes. Player
I wins Γ

a,−a
n+1 (Pn+1, Qn+1) because she can make (n + 1) alternations in the

(n + 2) rounds of the game.
(3) Consider following processes:

Example 9.

P0

def
= a.(a.b.0 + a.0),

Q0

def
= a.(a.b.0 + a.0) + a.a.0,

Pi+1

def
= a.Qi,

Qi+1

def
= a.Pi + a.Qi.

Player II wins n-Γ a,a
∞ (Pn, Qn), since in the first (n+2) rounds, player I need

(n+1) alternations in order to prevent player II from making two processes in
the configuration for the next round isomorphic, and she also needs one more
round, but no more alternation, to make player II stuck. We also showed a
winning strategy for player I in (n + 1)-Γ a

n+3(Pn, Qn). ⊓⊔

