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Abstract

We study a process calculus which combines both nondeterministic and probabilis-
tic behavior in the style of Segala and Lynch’s probabilistic automata. We consider
various strong and weak behavioral equivalences, and we provide complete axiom-
atizations for finite-state processes, restricted to guarded recursion in case of the
weak equivalences. We conjecture that in the general case of unguarded recursion
the “natural” weak equivalences are undecidable.

This is the first work, to our knowledge, that provides a complete axiomatization
for weak equivalences in the presence of recursion and both nondeterministic and
probabilistic choice.
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1 Introduction

The last decade has witnessed increasing interest in the area of formal methods
for the specification and analysis of probabilistic systems [22,5,3,20,26,7]. In
28] van Glabbeek et al. classified probabilistic models into reactive, generative
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Fig. 1. Probabilistic models

and stratified. In reactive models, each labeled transition is associated with a
probability, and for each state the sum of the probabilities with the same label
is 1. Generative models differ from reactive ones in that for each state the
sum of the probabilities of all the outgoing transitions is 1. Stratified models
have more structure and for each state either there is exactly one outgoing
labeled transition or there are only unlabeled transitions and the sum of their
probabilities is 1.

In [22] Segala pointed out that neither reactive nor generative nor stratified
models capture real nondeterminism, an essential notion for modeling schedul-
ing freedom, implementation freedom, the external environment and incom-
plete information. He then introduced a model, the probabilistic automata
(PA), where both probability and nondeterminism are taken into account.
Probabilistic choice is expressed by the notion of transition, which, in PA,
leads to a probabilistic distribution over pairs (action, state) and deadlock.
Nondeterministic choice, on the other hand, is expressed by the possibility of
choosing different transitions. Segala proposed also a simplified version of PA
called simple probabilistic automata (SPA), which are like ordinary automata
except that a labeled transition leads to a probabilistic distribution over a set
of states instead of a single state.

Figure 1 exemplifies the probabilistic models discussed above. In models where
both probability and nondeterminism are present, like those of diagrams (4)
and (5), a transition is usually represented as a bundle of arrows linked by
a small arc. [24] provides a detailed comparison between the various models,
and argues that PA subsume all other models above except for the stratified
ones.

In this paper we are interested in investigating axiom systems for a process
calculus based on PA, in the sense that the operational semantics of each



expression of the language is a probabilistic automaton®. Axiom systems are
important both at the theoretical level, as they help to gain insight into the
calculus and establish its foundations, and at the practical level, as tools for
systems specification and verification. Our calculus is basically a probabilistic
version of the core CCS used by Milner to express finite-state behaviors [13,15].

We shall consider four types of behavioral equivalences: two strong bisimu-
lation equivalences, a weak equivalence sensitive to divergence, and observa-
tional equivalence. For recursion-free expressions we provide complete axiom-
atizations of all the four equivalences. For the strong equivalences we also give
complete axiomatizations for all expressions, while for the weak equivalences
we achieve this result only for guarded expressions.

The reason why we are interested in studying a model which expresses both
nondeterministic and probabilistic behavior, and an equivalence sensitive to
divergence, is that one of the long-term goals of this line of research is to
develop a theory which will allow us to reason about probabilistic algorithms
used in distributed computing. In that domain it is important to ensure that
an algorithm will work under any scheduler, and under other unknown or un-
controllable factors. The nondeterministic component of the calculus enables
one to deal with these conditions in a uniform and elegant way. Furthermore,
in many distributed computing applications it is important to ensure livelock-
freedom (progress), and therefore we will need a semantics which does not
simply ignore divergences.

We are interested, in particular, in developing a fully distributed implemen-
tation of the (synchronous) m-calculus (7) [16,21] using a probabilistic asyn-
chronous m-calculus (7,,) [12] as an intermediate language. The reason why
we need a probabilistic calculus is that it has been shown impossible to im-
plement certain mechanisms of the m-calculus without using randomization
[18]. We need also the nondeterministic dimension for the usual reasons: the
implementation should be portable and in particular make no assumption
about the scheduler. Some preliminary initial results of this project appeared
in [19], where preliminary results on implementation were reported. We are
now investigating a more realistic and efficient implementation.

We consider it important that an implementation does not introduce livelocks
(or other kinds of unintended outcomes), thus the translation from 7 to mp,
should preserve livelock-freedom (see [19] for a discussion on the subject),
and hence the semantics should be sensitive to divergence. For this reason,
the second author chose (a probabilistic version of) testing semantics in [19].
However, it turned out that probabilistic testing semantics, at least the version

I Except for the case of deadlock, which is treated slightly differently: following the
tradition of process calculi, in our case deadlock is a state, while in PA it is one of
the possible components of a transition.



invented in [19], was rather difficult to use. The correctness proofs were ad-
hoc, by hand, and rather complicated. For the realistic (and necessarily more
sophisticated) implementation, we need proof methods feasible and (at least
in part) automatic. For this reason, we are investigating here a divergence-
sensitive bisimulation-like semantics. In the future, we plan to extend the
results of this paper to mp,.

Related work

In [13] and [15] Milner gave complete axiomatizations for strong bisimula-
tion and observational equivalence, respectively, for a core CCS [14]. These
two papers serve as our starting point: in several completeness proofs that
involve recursion we adopt Milner’s equational characterization theorem and
unique solution theorem. In Section 5.1 and Section 6.2 we extend [13] and [15]
(for guarded expressions), respectively, to the setting of probabilistic process
algebra.

In [25] Stark and Smolka gave a probabilistic version of the results of [13]. So,
our paper extends [25] in that we consider also nondeterminism. Note that,
when nondeterministic choice is added, Stark and Smolka’s technique of prov-
ing soundness of axioms can no longer be used. (See the discussion at the
beginning of Appendix A.) The same remark applies also to [1] which follows
the approach of [25] but uses some axioms from iteration algebra to charac-
terize recursion. In contrast, our probabilistic version of “bisimulation up to”
technique works well when combined with the usual transition induction.

In [17] Mislove et al presented a domain model for a process algebra with both
probabilistic and nondeterministic choice. Their model is fully abstract with
respect to a strong bisimilarity, for which they provided a complete axioma-
tization. However, weak behavioural equivalences are not considered in that

paper.

In [6] Bandini and Segala axiomatized both strong and weak behavioral equiv-
alences for process calculi corresponding to SPA and to an alternating model
version of SPA. As their process calculus with non-alternating semantics cor-
responds to SPA| our results in Section 7 can be regarded as an extension of
that work to PA.

For probabilistic process algebra of based on ACP, several complete axiom
systems have appeared in the literature. However, in each of the systems ei-
ther weak bisimulation is not investigated [4,2] or nondeterministic choice is
prohibited [4,3].



Contribution of this work

The original contributions of this paper are:

e A complete axiomatization of a calculus which contains both nondetermin-
istic and probabilistic choice, and recursion. We axiomatize both strong and
weak behavioral equivalences. This is the first time, as far as we know, that
a complete axiomatization of weak behavioral equivalences is presented for
a language of this kind.

e The development and the axiomatization of a (probabilistic) weak behav-
ioral equivalence sensitive to divergence.

Plan of the paper

In the next section we briefly recall some basic concepts and definitions about
probability distributions. In Section 3 we introduce the calculus, with its syn-
tax and operational semantics. In Section 4 we define the four behavioral
equivalences we are interested in, and we extend the “bisimulation up to”
technique of [14] to the probabilistic case. This technique is used extensively
for the proofs of soundness of some axioms, especially in the case of the weak
equivalences. In Sections 5 and 6 we give complete axiomatizations for the
strong equivalences and for the weak equivalences respectively, restricted to
guarded expressions in the second case. Section 7 gives complete axiomatiza-
tions for the four equivalences in the case of the finite fragment of the language.
The interest of this section is that we use different and much simpler proof
techniques than those in Sections 5 and 6. Finally, Section 8 concludes and
illustrates our research plans.

2 Preliminaries

Let S be a set. A function n : S — [0,1] is called a discrete probability
distribution, or distribution for short, on S if the support of n, defined as
spt(n) = {x € S| n(xz) > 0}, is finite or countably infinite and " g n(z) = 1.
If n is a distribution with finite support and V' C spt(n) we use the set {(s; :
n(s;))}s,ev to enumerate the probability associated with each element of V.



To manipulate the set we introduce the operator W defined as follows.

{(siipi)hierW{(s:p)} =
{(si :pi)bieny U {s;: (p; +p)} if s =s; for some j € [
{(si:pi) bier U{(s:p)} otherwise.

{(si i pi) Yier WAt pj)tjern =
({(si i pi) bier W{(t :p1)}) WAt pj)bieam

Given some distributions 7y, ..., 7, on S and some real numbers ry, ..., 7, € [0, 1]
such that > ,c; , 7 = 1, we define the convex combination rimy + ... + rpn,
of m, ..., nn to be the distribution 1 such that n(s) = >;c1 , 7imi(s), for each
seS.

3 Probabilistic process calculus

We use a countable set of variables, Var = {X,Y, ...}, and a countable set of
atomic actions, Act = {a,b,...}. Given a special action 7, we let u, v, ... range
over the set Act, = Act U {7}, and let «, 3, ... range over the set Var U Act,.
The class of expressions & is defined by the following syntax:

i€l.n i€l.m

X | pxE

Here @;c;. ., pivi.E; stands for a probabilistic choice operator, where the p;’s
represent positive probabilities, i.e., they satisfy p; € (0,1] and >,y ,, pi = 1.
When n = 0 we abbreviate the probabilistic choice as 0; when n = 1 we
abbreviate it as u;.F;. Sometimes we are interested in certain branches of
the probabilistic choice; in this case we write @,c; , pivi.E; as pyuy. By @ - - D
Prtin-Ey or (Bic1. (n—1) Pitti-E;) © pptiy. B, where @;e;. 1) piti- E; abbreviates
(with a slight abuse of notation) pju;.E1 @ -+ @® py_1ty_1.E,_1. The second
construction Y ;cq ,, F; stands for nondeterministic choice, and occasionally
we may write it as F; + ...+ E,,. The notation uy stands for a recursion which
binds the variable X. We shall use fv(E) for the set of free variables (i.e., not
bound by any px) in E. As usual we identify expressions which differ only
by a change of bound variables. We shall write E{F1, ..., F5,/Xy, ..., X} or
E{F/X} for the result of simultaneously substituting F; for each occurrence
of X; in E (1 <i < n), renaming bound variables if necessary.

Definition 1 The variable X is weakly guarded (resp. guarded) in E if every



Table 1
Strong transitions

var X — 9(X) psum @z‘eL.nPi“i-Ei - L*Jiel..n{(uiaEi pi)}
E{uxE/X} —n Ej—n 4
nsum for some j € 1.m
MXE — 1 Ziel..m E; — n

free occurrence of X in E occurs within some subexpression u.F (resp. a.F ),
otherwise X is weakly unguarded (resp. unguarded) in FE.

The operational semantics of an expression F is defined as a probabilistic au-
tomaton whose states are the expressions reachable from F and the transition
relation is defined by the axioms and inference rules in Table 1, where £ — n
describes a transition that leaves from E and leads to a distribution n over
(Var U Act,) x €. We shall use ¥(X) for the special distribution {(X,0: 1)}.
It is evident that £ — 9(X) iff X is weakly unguarded in E.

The behavior of each expression can be visualized by a transition graph. For
instance, the expression (3a@® 3b) + (a® 3¢) + (50 @ ¢) exhibits the behavior
drawn in diagram (5) of Figure 1.

As in [6], we define the notion of combined transition as follows: E —, n if
there exists a collection {n;,7;}ic1., of distributions and probabilities such
that >y i =1, n=rm+ ... +r,n, and £ — 0, for each ¢ € 1..n.

We now introduce the notion of weak transitions, which generalizes the notion
of finitary weak transitions in SPA [26] to the setting of PA. First we discuss the
intuition behind it. Given an expression F, if we unfold its transition graph,
we get a finitely branching tree. By cutting away all but one alternative in
case of several nondeterministic candidates, we are left with a subtree with
only probabilistic branches. A weak transition of F is a finite subtree of this
kind, called weak transition tree, such that in any path from the root to a leaf
there is at most one visible action. For example, let E be the expression

. 1 1
EY nx(z0® 57.X) (1)

It is represented by the transition graph displayed in Diagram (1) of Figure 2.
After one unfolding, we get Diagram (2) which represents the weak transition

E = {(a,0: Z), (1, E : i)} (2)

Formally, weak transitions are defined by the rules in Table 2. Rule weal says
that a weak transition tree starts from a bundle of labelled arrows derived
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Fig. 2. A weak transition

Table 2
Weak transitions

E—n
weal ——
E=n

E={(u,Ei:p)tiw{(uw,F:p} F={(rF:q)}
E = {(ui, E; - pi) }i W{(u, Fj : pgj) };

wea?2

E={(u, B p)}i 8 {(1, Fip)} F={(v;,Fj:qj)};
E = {(us, E; : pi) }i W {(vj, Fj : pgj)}j

wea3

E = 9(X)

wea4d

from a strong transition. The meaning of Rule wea2 is as follows. Given two
expressions F, I’ and their weak transition trees tr(E), tr(F), if F'is a leaf of
tr(F) and there is no visible action in ¢r(F'), then we can extend tr(E) with
tr(F) at node F. If Fj is a leaf of ¢r(F) then the probability of reaching Fj
from E is pg;, where p and ¢; are the probabilities of reaching F' from E, and
F; from F, respectively. Rule wea3 is similar to Rule wea2, with the difference
that we can have visible actions in tr(F'), but not in the path from F to F.
Rule wea4 allows to construct weak transitions to unguarded variables. Note
that if £ = 9J(X) then X is unguarded in E.

As an example of applying these transition rules, we consider the expression
E in (1). Using rules rec and weal, we can infer the following transitions.

1a® 7B = {(a,0: 1), (r, E: }))
E—{(a,0:3),(r,E:3)}
E:3)}

2)
E = {(a,0:3), (7,
Note that {(a,0: 3),(1,E: 3)} ={(a,0: )} w{(r,E : 5)}, so we can appeal

= | N[



to wea3 and do the following inference.

E={(a0:5)}w{(r,E:3)} FE={(a,0:3
E={(a,0:3)}w{(a,0:9),(r,E: 1)}

Since {(a,0 : 3)} W {(a,0 :
established (2).

), (1, E i)} = {(a,0 : %),(T,E : i)}, we have

PN

For any expression E, we use §(F) for the unique distribution {(7, E : 1)},
called the wirtual distribution of E. For any expression E, we introduce a
special weak transition, called virtual transition, denoted by E = §(E). We
also define a weak combined transition: E =, n if there exists a collection
{ni,7i}tie1r.n of distributions and probabilities such that > ,c; .7 = 1, n =
i+ ... + 1, and for each i € 1..n, either E = n; or E = n;. We write
E =, n if every component is a “normal” (i.e., non-virtual) weak transition,
namely, £/ = n; for all 1 < n.

4 Behavioral equivalences

In this section we define the behavioral equivalences that we mentioned in the
introduction, namely, strong bisimulation, strong probabilistic bisimulation,
divergence-sensitive equivalence and observational equivalence. We also intro-
duce a probabilistic version of “bisimulation up to” technique to show some
interesting properties of the behavioral equivalences.

To define behavioral equivalences in probabilistic process algebra, it is cus-
tomary to consider equivalence of distributions with respect to equivalence
relations on processes.

4.1  FEquivalence of distributions

If n is a distribution on S x T, s € S and V C T, we write 7(s,V) for
>iev 1(s, t). We lift an equivalence relation on £ to a relation between distri-
butions over (Var U Act,) x £ in the following way.

Definition 2 Given two distributions n, and ne over (Var U Act;) x £, we
say that they are equivalent w.r.t. an equivalence relation R on &, written

T =r N2, if

YV e E/R,Va € Var U Act, : m(a, V) = ma(a, V).



4.2 Behavioral equivalences

Strong bisimulation is defined by requiring equivalence of distributions at every
step. Because of the way equivalence of distributions is defined, we need to
restrict to bisimulations which are equivalence relations.

Definition 3 An equivalence relation R C € x £ is a strong bisimulation if
E R F implies:

o whenever B2 — ny, there exists ny such that F' — ny and ny =x ns.

Two expressions E, F' are strong bisimilar, written E ~ F, if there exists a
strong bisimulation R s.t. B 'R F.

If we allow a strong transition to be matched by a strong combined transition,
then we get a relation slightly weaker than strong bisimulation.

Definition 4 An equivalence relation R C £ x £ is a strong probabilistic
bisimulation if E R F implies:

o whenever B2 — ny, there exists ny such that F' —. 1y and ny =r ns.

We write E ~. F, if there exists a strong probabilistic bisimulation R s.t.
EREF.

We now consider the case of the weak bisimulation. The definition of weak
bisimulation for PA is not at all straightforward. In fact, the “natural” weak
version of Definition 3 would be the following one.

Definition (Tentative). An equivalence relation R C € x £ is a weak bisim-

ulation if £ R F implies:

o whenever E — 0y, then there exists 1y such that either F = ny or F' = 1y,
and n, =g Ns.

E and F are weak bisimilar, written E < F, whenever there exists a weak

bistmulation R s.t. E R F.

Unfortunately the above definition is incorrect because it defines a relation
which is not transitive. That is, there exist E, F' and G with £ < F and
F =< G but F % G. For example, consider the following expressions and

10



relations:

EYra+ (37.(a+a) ® La)

o sT.(a+a)® iTa

def
G = 1a

R, € {(E,F),(F,E),(E,E),(F,F),(a+a,a+a),(a+a,a),

(a,a+a),(a,a),(0,0)}
R, € {(F,G),(G,F),(F,F),(G,G),(a+aa+a),(a+a,a),
(a,a+ a),(a,a),(0,0)}

It can be checked that R; and R, are weak bisimulations according to the
tentative definition. However we have E % G. To see this, consider the tran-
sition £ — 7, where n = {(1,a + a : 3),(a,0 : 3)}. There are only three
possible weak transitions from G : G = §(G), G = n; and G = 1, where
m = {(r,a : 1)} and 1y = {(a,0 : 1)}. Now, among the three distributions
n1,me and 0(G), none is equivalent to 1. Therefore, £ and G are not bisimilar.
Nevertheless, if we consider the weak combined transition: G =. 1’ where
n = $m + im2, we observe that n = 17'.

The above example suggests that for a “good” definition of weak bisimulation
it is necessary to use combined transitions. So we cannot give a weak variant

of Definition 3, but only of Definition 4, called weak probabilistic bisimulation.

Definition 5 An equivalence relation R C £ x £ is a weak probabilistic
bisimulation if E R F implies:

o whenever E — 0y, there exists ny such that F =, 1y and 11 =g 1s.

We write E ~ F' whenever there exists a weak probabilistic bisimulation R s.t.

EREF.

As usual, observational equivalence is defined in terms of weak probabilistic
bisimulation.

Definition 6 Two expressions E, F are observationally equivalent, written
E~F, if

(1) whenever E— 1y, there exists 1y such that F =, 1y and ny =~ 1.
(2) whenever F' — 1o, there exists my such that E =.n; and ny =~ 1.

11



Often observational equivalence is criticised for being insensitive to divergence.
We therefore introduce a variant which does not have this shortcoming.

Definition 7 An equivalence relation R C £ x £ is a divergence-sensitive
equivalence if E R F' implies:

o whenever B2 — ny, there exists ny such that F' =. 1y and ny =r ns.

We write E = F' whenever there exists a divergence-sensitive equivalence R

s.t. E'R F.

It is easy to see that = lies between ~, and ~. For example, we have that
px(7.X +a) and T.a are related by ~ but not by = (this shows also that = is
sensitive to divergence), while 7.a and 7.a + a are related by = but not by ~..

One can check that all the relations defined above (except for <) are indeed
equivalence relations and we have the inclusion ordering: ~ C ~, C = C ~
C ~.

4.8 Probabilistic “bistmulation up to” technique

In the classical process algebra, the conventional approach to show F ~ F'. for
some expressions F, F', is to construct a binary relation R which includes the
pair (E, F'), and then to check that R is a bisimulation. This approach can
still be used in probabilistic process algebra, but things are more complicated
because of the extra requirement that R must be an equivalence relation. For
example we cannot use some standard set-theoretic operators to construct R,
because, even if R and R, are equivalences, R1Ry and R; U R, may not be
equivalences.

To avoid the restrictive condition, and at the same time to reduce the size of
the relation R, we introduce the probabilistic version of “bisimulation up to”
technique, whose usefulness will be exhibited in the next subsection.

In the following definitions, for a binary relation R we denote the relation
(R U ~)* by R.. Similarly for other relations such as R~ and R~.

Definition 8 A binary relation R is a strong bisimulation up to ~ if E R F
implies:

(1) whenever E — ny, there exists ny such that F' — ny and ny =g 1.
(2) whenever F' — ny, there exists my such that E — ny and n; =g 1.

A strong bisimulation up to ~ is not necessarily an equivalence relation. It is

12



just an ordinary binary relation included in ~, as shown by the next proposi-
tion.

Proposition 9 If R is a strong bisimulation up to ~, then R C ~.

One can also define a strong probabilistic bisimulation up to ~,. relation and
show that it is included in ~.. For weak probabilistic bisimulation, the “up
to” relation can be defined as well, but we need to be careful.

Definition 10 A binary relation R is a weak probabilistic bisimulation up
to~ if E R F implies:

(1) whenever E = 0y, there exists 0y such that F =, ny and n1 =g 1.
(2) whenever F = 1, there exists m1 such that E =0y and n, =g 1.

In the above definition, we are not able to replace the first double arrow in
each clause by a simple arrow. Otherwise, the resulting relation is not included
in ~.

Proposition 11 If R is a weak probabilistic bisimulation up to =, then R C

~
~.

Definition 12 A binary relation R is an observational equivalence up to ~
if ER F implies:

(1) whenever E = n, there exists ny such that F =, ny and 11 =g, 1.
(2) whenever F = ny, there exists my such that E =.m and n1 =g, 1.

As expected, observational equivalence up to ~ is useful because of the fol-
lowing property.

Proposition 13 If R is an observational equivalence up to ~, then R C ~.

4.4 Some properties of behavioral equivalences

The “bisimulation up to” technique works well with Milner’s transition induc-
tion technique [14], and by combining them we obtain the following results for
the calculus introduced in Section 3.

Proposition 14 (Properties of ~ and ~.) (1) ~ is a congruence relation.
(2) 1ixE ~ E{ux B/X}.

(3) ux(E+X) ~ uxE.

(4) If E ~ F{E/X} and X weakly guarded in F, then E ~ uxF.

Properties 1-4 are also valid for ~..

13



Table 3
The axiom system A,

S1 E+0=FE
S2 E+E=F

S3 Y icrEi=2icr Eyi) pis any permutation on [

S4  Dicrpivi-Ei = @Dicr Pp(i)Up(i)- Epiy p is any permutation on I
S5 (B piui-Ei) & pu.E & qu.E = (B, pivi-Ei) & (p+ qJu.E

R1 puxE=E{uxE/X}

R2 If E=F{F/X}, X weakly guarded in F, then E = uxF

R3 ux(E+X)=pxFE

Proposition 15 (Properties of ~ and =) (1) =~ is a congruence relation.
(2) If rE~1E+F and 7.F ~7.F + E then 7.E ~ 1.F.
(3) If E~ F{E/X} and X is guarded in F then E ~ uxF.

Properties 1-3 hold for = as well.

Each property above is shown by exhibiting an equivalence up to the corre-
sponding bisimulation relation. For instance, in Clause 3 of Proposition 15 we
prove that the relation R = {(G{E/X},G{uxF/X}) | for any G € £} is an
observational equivalence up to ~ by transition induction (see Appendix A for
more details). We find it necessary to use the “bisimulation up to” technique
particularly in the cases of Properties 1 and 3 of Proposition 15, since we are
not able to directly construct an equivalence relation and prove that it is an
observational equivalence. In all other cases the “up to” technique is optional.

5 Axiomatizations for all expressions

In this section we provide sound and complete axiomatizations for two strong
behavioral equivalences: ~ and ~.. The class of expressions to be considered

is €.

5.1 Axiomatizing strong bisimulation

First we present the axiom system 4,, which includes all axioms and rules
displayed in Table 3. We assume the usual rules for equality (reflexivity, sym-
metry, transitivity and substitutivity), and the alpha-conversion of bound vari-
ables.

14



The notation A, - F = F (and A, E = F for a finite sequence of equations)
means that the equation E = F is derivable by applying the axioms and rules
from A,. The following theorem shows that A, is sound with respect to ~.

Theorem 16 (Soundness of A,) If A, - E = FE' then E ~ E'.

Proof. The soundness of the recursion axioms R1-3 is shown in Proposi-
tion 14; the soundness of S1-4 is obvious, and S5 is a consequence of Defini-
tion 2. O

For the completeness proof, the basic points are: (1) if two expressions are
bisimilar then we can construct an equation set in a certain format (stan-
dard format) that they both satisfy; (2) if two expressions satisfy the same
standard equation set, then they can be proved equal by A,. This schema is
inspired by [13,25], but in our case the definition of standard format and the
proof itself are more complicated due to the presence of both probabilistic and
nondeterministic dimensions.

Definition 17 Let X ={Xy, ... X0} and W = {Wy, Wa, ..} be disjoint sets
of variables. Let H= {Hl, e mi be expressions with free variables in XUW
In the equation set S : X = H, we call X formal variables and W free
variables. We say S is standard if each H; takes the form 3=; Ey )+ 3 Why
where By 5y = @ Dfeije)Usiigk)-Xgtigk)- We call S Weakly guarded if there
is no H; s.t. Hi — 9¥(X;). We say that E provably satisfies S if there are
e:cpresszons E = {Ey, ..., By}, with By = E and fv(E) C W, such that A, +
H{E/X}

We first recall the theorem of unique solution of equations, which originally
appeared in [13]. Adding probabilistic choice does not affect the validity of
this theorem.

Theorem 18 (Unique solution of equations I) If S is a weakly guarded
equation set with free variables in W, then there is an expression E which
provably satisfies S. Moreover, if F' provably satisfies S and has free variables
in W, then A, - E=F.

Proof. Exactly the same as in [13]. O

Below we give an extension of Milner’s equational characterization theorem
by accommodating probabilistic choice.

Theorem 19 (Equational characterization I) For any expression E, with
free variables in W, there exist some expressions E = {FEi,..., E,}, with
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E,=F and fU(E) C W, satisfying m equations

A FEi= > Eripn+ >, Wy (i <m)

jel.n(é) jel.1(i)
where Eyi.j) = @hkex..ofig) Pri.d 0 Usiw) Lotk
Proof. By induction on the structure of E, similar to the proof in [13]. O

The following completeness proof is closely analogous to that of [25]. It is com-
plicated somewhat by the presence of nondeterministic choice. For example,
to construct the formal equations, we need to consider a more refined relation
L;jyj underneath the relation K;; while in [13,25] it is sufficient to just use
Kii’-

Theorem 20 (Completeness of A,) If E~ E' then A, - E=FE'.

Proof. Let E and E’ have free variables in W. By Theorem 19 there are
provable equations such that £ = F;, E' = F and

A FEi= > Erapn+ Y, Waay (i <m)
jel.n(i) GEL.I()
Ar l_ EZI/ - Z E}/(i/,j’) + Z Wh/(i’,j’) ('l/ S ml)
j'E€L.n/ (i) JIELV ()
with
Etag = @ P, k) Ui (i k) - Egi, )
k€l..0(i,5)
! — / ! !
Efl(’i/,j/) prm— @ pfl(il,j/7kl)ufl(i/,j/,k/)'Eg/(i/,j/,k/)'
k'el..o'(¥,5")

Let I = {(i,i') | E; ~ E}}. By hypothesis we have E; ~ Ei, so (1,1) € I.
Moreover, for each (i,i") € I, the following holds, by the definition of strong
bisimilarity:

(1) There exists a total surjective relation K;; between {1,...,n(i)} and
{1,...,n/(7')}, given by

Ky = {<]7]/> | <f(laj)7f,(llajl)> S ]}

Furthermore, for each (j, j') € K;; there exists a total surjective relation
L;jyjr between {1,...,0(, )} and {1,...,0'(7, j') }, given by

Liji’j' = {<k7 k,> | Uf(i,5,k) = u;”(i’,j’,k’) and <g(27j7 k)vg/(ilajlv kl)) € I}

(2) & Xjera6) Whiig) = Zierww) W gr)-

16



Now, let L;;i;(k) denote the image of k € {1,...,0(¢,5)} under L, and
L1 (k') the preimage of k' € {1,...,0'(¢',5')} under Lijy;. We write [k]ji ;i

iji'j’
for the set L-ﬁl (Lm‘ﬂj/(k)) and [k/]iji’j/ for Ll'ji/j/(Lfl (l{}l)) It follows from

iji'j’ igi'j!
the definitions that

[k]z'jz‘;jé-
(2) If i € [Klijiry and g € [K]ijirjr, then upijg) = Ufija0) and Eyg g ~
F

9(4,5,q2)

Define vijr = e, ., Prijg for any @', j" such that (i,') € I and (j,j) €

g1’ g

Kii; define v}, = W)y Pyiir gy for any i, j such that (i,7’) € I and
(7,7"Y € K. Tt is easy to see that whenever (i,¢) € I, (j,j') € K and
<]€, k,> € Liji’j’ then Vijk = Vz(’j’k"

We now consider the formal equations, one for each (i,7') € I:

Xie= > Hipray+ X Waa

(4,d"YEK JEL.1(2)

where

(pf(i,j,k)p/f/(i/,j/,k’) )

Ui,k X gi,j.k).g' (1 5 K")
Vijk

Hyti gy =

(kK" YEL, ;30 50
These equations are provably satisfied when each Xj;; is instantiated to FEj,
since Ky and L;j; are total and the right-hand side differs at most by re-
peated summands from that of the already proved equation for E;. Note that
each probabilistic branch py; j )t s jk)-Eg,jk) in £; becomes the probabilistic
summation of several branches like

@ (pf(i,j7k>P}'(i',jcq’))
Vijk

Ufi,g.k) - Eog(i.g )
q'ER' ;5 50

n Hf(@j)j’(i’,j’){Ei/Xii’}ia where <Z,Z,> € [, <],j/> € Kii’ and <]€,]€,> € Liji/j’-
But they are provably equal because

/
PraamPerr i)\ — Pilingk) /
que[kqiji’j/( Vijk ) T Uik ) que[k/]iji/j’ pf'(i/,j’7q/)
Py (i,g,k)

= Tuge Vil = Pfigk)

and then the axiom S5 can be used. Symmetrically, the equations are provably
satisfied when each X, is instantiated to E; this depends on the surjectivity
of Kn’/ and Jiji/j’-
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Finally, we note that each X, is weakly guarded in the right-hand sides of
the formal equations. It follows from Theorem 18 that - E; = E!, for each
(i,i') € I, and hence - E = E'. O

5.2 Axiomatizing strong probabilistic bisimulation

The difference between ~ and ~, is characterized by the following axiom:

C Y DB =) DpijwsEi+ B Dripijui Ei

i€l.n g i€l.n g i€l.n g

where > ,c; .7 = 1. It is easy to show that the expressions on the left and
right sides are strong probabilistic bisimilar. We denote A, U {C} by A,..

Theorem 21 (Soundness and completeness of A,.) £ ~, E' iff A, I
E=F.

Proof. The soundness part follows immediately by the definition of —
Below we focus on the completeness part.

Let E and E’ have free variables in W. By Theorem 19 there are provable
equations such that £ = F;, E' = F and

AT‘C l_ EZ,’ - A;/ (Z/ S m,)

where A; = 3 c1 i) Erag) + 2jer.a6) Wa,j) and

Etig = @ PF(i,.k) Ui (i) - Eg i, .

kel..o(i,j)
Similarly for the form of A,.

Next we shall use axiom C to saturate the right hand side of each equation
with some summands so as to transform each A; (resp. Al,) into a provably
equal expression B; (resp. B},) which satisfies the following property:

(*) For any Cy,C5 € BU B’ with Oy ~, Cs, if Cy — ny then there exists some
ne 8.t. Cy — My and 1y =<, 1.

Initially we set B=Aand B = A'.Let S = {(C1,Cy) | Cy ~. Cy and C,Cy €

AUA }. Clearly the set S is finite because there are finitely many expressions
in AU A’. Without loss of generality, we take a pair (C1, Cy) from S such that
C, =4, € Aand Oy, = A; € A (we do similar manipulations for the other
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three cases, namely (i) Cy, Cy € A; (i) Cy,Cy € A’; (iili) Cy € A and Cy € A').
If Al, — ' then for some 1 we have A; —.nand n =, 7, by the definition of
~e. If A; — n (obviously we are in this case if n = ¥(X)) we do nothing but
go on to pick another pair from S to do the analysis. Otherwise 7 is a convex
combination 7 = rin; + ... + r,n, and A; — n; for each j < n. Hence, each n;
must be in the form {(wsq ), Egijk) : Pra,jk)) e and Egq jy is a summand of
A; (so it is also a summand of B;). By axiom C we have

Are b Bi=Bi+ @ @D ripsa.intsin-Eyjr-

j€l.n k

Now we update B; to be to the expression on the right hand side of last
equation. To this point we have finished the analysis to the pair (C4, Cy). We
need to pick a different pair from S to iterate the above procedure. When all
the pairs in S are exhausted, we end up with B and B’ for which it is easy to
verify that they satisfy property (*). Observe that only axiom C is involved
when updating B;, so we have the following results:

A,.+ E, = B, (i <m)
From now on, by using the above equations as our starting point, the subse-
quent arguments are like those for Theorem 20, so we omit them. 0O

6 Axiomatizations for guarded expressions

Now we proceed with the axiomatizations of the two weak behavioral equiv-
alences: = and ~. We are not able to give a complete axiomatization for the
whole set of expressions (and we conjecture that it is not possible, see Sec-
tion 8), so we restrict to the subset of £ consisting of guarded expressions only.
An expression is guarded if for each of its subexpression of the form ux F', the
variable X is guarded in F (cf: Definition 1).

6.1 Axiomatizing divergence-sensitive equivalence

We first study the axiom system for =. As a starting point, let us consider
the system A,.. Clearly, S1-5 are still valid for =, as well as R1. R3 turns
out to be not needed in the restricted language we are considering. As for R2,
we replace it with its (strongly) guarded version, which we shall denote as
R2' (see Table 4). As in the standard process algebra, we need some 7-laws
to abstract from invisible steps. For = we use the probabilistic 7-laws T1-
3 shown in Table 4. Note that T3 is the probabilistic extension of Milner’s
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Table 4
Some laws for the axiom system Agq

R2' If E=F{E/X}, X guarded in F, then E = uxF

Tl @, pir.(Ei+X)=X+P,pit.(E; + X)

T2 (D, piuwi-Ei) ® pr.(F + €D, ¢;8;.F;) + (D, piwi-Ei) © (B; pg; 8;-F})
= (B, piui-Ei) © pr.(F + D ;8- F;)

T3 (D, piui-Ei) ® pu.(F + D, ¢;7.F;) + (D, piwi-Ei) © (D, pgju.Fy)
= (D, piui-Ei) & pu.(F + D, ¢;7.F)

third 7-law ([15] page 231), and T1 and T2 together are equivalent, in the
nonprobabilistic case, to Milner’s second 7-law. However, Milner’s first 7-law
cannot be derived from T1-3, and it is actually unsound for =. Below we let

A, ={R2', T1-3} UA,.\{R2-3}.
Theorem 22 (Soundness of A,) If Ajs E = FE' then E = E'.

Proof. The rule R2’ is shown to be sound in Proposition 15. The soundness
of T1-3, and therefore of A4, is evident. O

For the completeness proof, it is convenient to use the following saturation
property, which relates operational semantics to term transformation, and
which can be proved by transition induction, using the probabilistic 7-laws
and the axiom C.

Lemma 23 (Saturation) (1) If E =. n with n = {(u;, E; : p;)}i, then
Aga b E=E+ @, piu;. E;
(2) If E = 9(X) then Ay E = E+X.

To show the completeness of A4, we need some notations. Let V' be a set, we
write (V') for the set of all probability distributions over V. Given a standard
equation set S : X = H which has free variables W we define the relations
—eC X X P(( VarUActT) ><X) by X; —g niff H; — n. From —g we can define
the weak transition =g in the same way as in Section 3. We write X; ~~¢ X},
it X; =g n, with n = {(u;, X, : pj)}jes, k € J and u, = 7. We shall call S
guarded if there is no X; s.t. X; ~~¢ X;. We call S saturated if for all X € )7,
X =g n implies X —g 1. The variable W is guarded in S if it is not the case
that X1 —S Q9(W) or X1 eS8 ’19(W)

For guarded expressions, the equational characterization theorem and the
unique solution theorem given in last section can now be refined, as done

n [15].

Theorem 24 (Equational characterization II) Fach guarded expression
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E with free variables mj[? provably satisfies a standard guarded equation set
S with free variables in W. Moreover, if W is guarded in E then W is guarded
mn S.

Proof. By induction on the structure of F. Consider the case that £ =
@icr pivi.E;. For each i € I, let X; be the distinguished variable of the equation
set S; for F;. We can define S as {X = @, piui- Xi} UUier Si, with the new
variable X distinguished. All other cases are the same as in [15]. O

Lemma 25 Assume E provably satisfies the standard guarded equation set
S. Then there is a saturated, standard, and guarded equation set S’ provably
satisfied by E.

Proof. By using Lemma 23, we show that if X; = n then Ay - E; =
EZ- + @, pju;.E; when n = {(u;, X : p;)};, and Agq = E; = E; + X when

= ¥(X). Note that the equation set S is guarded, so there are only finite
number of different distributions 7 such that X; = n. By repeating this step
for all weak transitions of E;, at last we get Ayq - E; = H; {E/X}. Hence, we

can take S’ to be the equation set X=H. O

Theorem 26 (Unique solution of equations II) If S is a guarded equa-
tion set with free variables in W, then there is an expression E which provably
satisfies S. Moreover, if F provably satisfies S and has free variables in W,
then Agq - E = F.

Proof. Nearly the same as the proof of Theorem 18, just replacing the re-
cursion rule R2 with R2'. O

The completeness result can be proved in a similar way as Theorem 20. The
main difference is that here the key role is played by equation sets which
are not only in standard format, but also saturated. The transformation of a
standard equation set into a saturated one is obtained by using Lemma 23.

Theorem 27 (Completeness of A) If E and E' are guarded expressions
and E = E' then Agg - E = FE'.

Proof. By Theorem 24 there are provable equations such that £ = FEj,
E' = F} and

Arc l_ E;/ = A;/ (ZI S m/)
For any C' € AUA , we assume by Lemma 25 that C' is saturated. Therefore,
it is easy to show that C' =, n implies C' —. n. Let C" € AU A’. We note
the interesting property that if C' = C” and C — 7 then there exists 1’ s.t.

C" —.n' and n =~ 7. Thanks to this property the remaining arguments are
quite similar to that in Theorem 21, thus are omitted. O
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Table 5
Two 7-laws for the axiom system A,

T4 wr.E=uF
TS IfrE=7FE+FandrF=7F+F then 7. =71.F.

6.2 Axiomatizing observational equivalence

In this section we focus on the axiomatization of ~. In order to obtain com-
pleteness, we can follow the same schema as for Theorem 20, with the addi-
tional machinery required for dealing with observational equivalence, like in
[15]. The crucial point of the proof is to show that, if £ ~ F, then we can
construct an equation set in standard format which is satisfied by E and F.
The construction of the equation is more complicated than in [15] because
of the subtlety introduced by the probabilistic dimension (cf: Theorem 31).
Indeed, it turns out that the simple probabilistic extension of Milner’s three
7-laws would not be sufficient, and we need an additional rule for the com-
pleteness proof to go through. We shall further comment on this rule at the
end of Section 7.

The probabilistic extension of Milner’s 7-laws are axioms T1-4, where T1-3
are those introduced in previous section, and T4, defined in Table 5, takes the
same form as Milner’s first 7-law [15]. In the same table T5 is the additional
rule mentioned above. We let A,, = A,4U{T4-5}.

Theorem 28 (Soundness of A,,) If A, E=F then E~ F.

Proof. Rule T5 is proved to be sound in Proposition 15. The soundness of

T4, and therefore of A, is straightforward. 0O

The rest of the section is devoted to the completeness proof of A,,. First we
need two basic properties of weak combined transitions.

Lemma 29 (1) If E =.n then 7.E =.n;
(2) I E 5, 0(X) then E = 9(X).

Proof. The first clause is easy to show. Let us consider the second one. If
Y(X) is a convex combination of 7y, ..,n, and E = n; for all i € 1..n, then
each 7; must assign probability 1 to (X,0), thus n, = 9(X). O

Lemma 30 If E =, n with n = {(u;, E; : pi)}i then Ay b 7.E = 7.E +
@®; pivi- E;.

Proof. It follows from Lemma 29 and Lemma 23. O
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The following theorem plays a crucial role in proving the completeness of A,,.

Theorem 31 Let E provably satisfy S and F' provably satisfy T, where both
S and T are standard, guarded equation sets, and let E ~ F. Then there is a
standard, quarded equation set U satisfied by both E and F.

Proof. Suppose that X = {X1, ..., X}, Y = {Y1,...,Y,} and W = {Wy, Wy, ...}
are disjoint sets of variables. Let

S:X=H

T:Y=1J
with fo(H) C Yg W, fu(J) €Y UW, and that there are expressions E =
{Ey, ... Enyand F = {Fy, .., F,} with By = E, Fy = F, and fo(E)U fo(F) C
W, so that
Ao E=H{E/X}
Ago - F = J{F/Y}.

Consider the least equivalence relation R C (X UY) x (X UY) such that

1) whenever (Z,Z') € R and Z — n, then there exists 7 s.t. Z/ =. 1’ and

( U U n
n=rn;

(2) (X1,Y7) € R and if X; — 7 then there exists ' s.t. Y1 =. ' and n = 7/’

Clearly, R is a weak probabilistic bisimulation on the transition system over

XU Y, determined by —>d§f—>s U —7. Now for two given distributions n =

{(ui;, Xi = pi)tier, 0 = {(vj,Y; : qj)}jes, With n =g 7, we introduce the
following notations:
K,y ={0,7)i€l, jeJ, u;=vjand (X;,Y;) € R}
vi=>Api |7 €1, uy =u;, and (X;, Xy) € R} foriel
v, =>Apy |7 € J, vy =v;, and (Y;,Y;) € R} for j e J

Since n =g 1’ it follows by definition that if (¢, j) € K,
v; = v;. Thus, we can define the expression

., for some 7,7/, then

def big;
Gn,n/ = @ uzZl]

(i’j)EKﬁm/ Vi

which will play the same role as the expression Hy; jy ¢/ ) in the proof of

Theorem 20. On the other hand, if n = 7' = J(X) we simply define the

. def
expression Gy, = X.
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Based on the above R we choose a new set of variables Z such that
7Z={Zy;| X;€ X, Y; €Y and (X,,Y;) € R}.

Furthermore, for each Z;; € Z we construct three auxiliary finite sets of ex-
pressions, denoted by A;;, B;; and Cj;, by the following procedure.

(1) Initially the three sets are empty.

(2) For each n with X; — n, arbitrarily choose one (and only one — the same
principle applies in other cases too) i’ (if it exists) satisfying n =% 1’ and
Y; =. 1/, construct the expression G, ,» and update 4;; to be A;;U{G,, .y };
Similarly for each 7’ with Y; — 7/, arbitrarily choose one 7 (if it exists)
satisfying n =g 1’ and X; =, 7, construct G,,, and update A;; to be
A U {Gnm’}-

(3) For each n with X; — n, arbitrarily choose one 7" (if it exists) satisfying
n =g 1, Y; =1 but not Y; =, 1/, construct the expression G, ,, and
update B;; to be B;; U{G, }.

(4) For each ' with Y; — ', arbitrarily choose one n (if it exists) satisfying
n=r 1, X; =.n but not X; =, n, construct G,y and update Cj; to be
Cij U{Gnw }-

Clearly, the three sets constructed in this way are finite. Now we build a new
equation set
U:Z=1L

where Uy is the distinguished variable and

ij — )
7.(Xcea,us,;uc,; G) otherwise.

We assert that E provably satisfies the equation set U. To see this, we choose
expressions
Gij -
T7.F; otherwise

and verify that Ay, F Gy = Li;{G/Z}.

In the case that B;; UC;; = 0, all those summands of L;;{G/Z} which are not
variables are of the forms:

(1.0) €K, Y (65) €K Vi

By T4 we can transform the second form into the first one. Then by some
arguments similar to those in Theorem 20, together with Lemma 23, we can
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show that N

Ago b Lij{G/ZY = H{E/X} = E;.
On the other hand, if B;; U Ci; # 0, we let Cy; = {D1,...,D,} (Ci; = 0 is a
special case of the following argument) and D = Y, , Dl{é/Z} As in last
case we can show that

Ago - Li;{G)Z} = 7.(H{E/X} + D).

For any [ with 1 <[ < o, let DZ{G/Z} = @B prui.Ey. It is easy to see that
E; =.n with n = {(ug, Ex : px) }x. So by Lemma 30 it holds that

Ago b 7. = 1.E; + DI{G/Z}.
As a result we can infer
Agp 1B =7E+D=1E,+(E;+ D).
by Lemma 23. Similarly,
Agp b 7.(E;+ D) =71.(E;+ D)+ E;.
Consequently it follows from T5 that
Ag b 7.E; =7.(E;+ D) = 7.(H{E/X} + D) = L;{G/ Z}.

In the same way we can show that F' provably satisfies U. At last U is guarded
because S and T are guarded. O

To help understanding the proof of the above theorem, we illustrate the con-
struction of the equation set U by a simple example. Consider the equation
sets S and T as follows.

S: Xi=aXy T: Y= %a.YQ D %a.Y},
X2 = CL.X2 + %G.XQ @D %T.Xl }/2 = a.}/:g + T.}/g
Y; =aY,

Note that if Ey, Fy provably satisfy S, and Fi, Fy, F3 provably satisfy T', then
E1 ~ F1 ~ /Lz<CLZ)

Let R be the equivalence relation that has the only equivalence class { X7, X,
Y1, Y, Y3}, It is easy to check that R is a weak bisimulation on the transition
system over X U Y. Now we take new variables {Z; 11 <i<2,1<35<3}
and form the sets A;;, B;; and C;; for each variable Z;;, as displayed in Table 6,
by using the procedure presented in the above proof. For example, consider
the line for (7, j) = (2, 1).

(1) Initially the sets A9, Bo; and Cy; are empty.
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Table 6
The construction of sets A;;, B;j, Ci;

(4,5) Aij Bi; Cij
(1,1) {3a.Z2 & La.Z53} 0 0
(1,2) {a.Z53} 0 {r.Z13}
(1,3) {a.Zx»} 0 0
(2,1) {3a.Z2 & La.Z53} {Ya.Z00 @ 2a.Zos ® 37.211} 0
(2,2) | {a-Zos, 3a.Zo3 & 37213} 0 {1.Z53}
(2,3) {a.Z2} {La.Z0 @ 37213} 0

(2)

Let’s see how to form the set As;. From X, there are two outgoing
transitions: Xy — 1y, with ny = {a, Xy : 1}, and Xy — 19, with
n2 = {(a, X5 : 3), (7, X1 : 3)}. The first one is matched by the transi-
tion Y; — nf, with 7] = {(a, Y2 : 1), (a, Y5 : 3)}, because ;1 =g n;. The
second one will not contribute anything to the set Ay because there is
no n such that Y7 =. n and 1, =x 7. For the other direction, Y; has
one outgoing transition Y; — 7] which is matched by X, — 1;. So we
construct the expression Gm,nﬁ = %a.ZQQ @ %CL.ZQ:; and add it to the set
Agy, which is updated to be {G,, . }.

Let’s see how to form the set Bs;. We have just used one of the two
transitions of X5 to form As;. The unused one is the only candidate to
contribute to By;. Indeed, there is an 75 such that the transition Xy — 7o
is matched by Y, =, 5 with 9, =g 0, but Y] #. 0. To see this, we
simply take nh = i} + 36(Y1) = {(a, Y2 : 1), (a, Y3 : 1),(7, Y1 : 1)} So
we construct the expression ané = ia.ZQQ @ iCL.ZQ:; @ %T.ZH and add it
to the set Byi, which now becomes {G,, , }-

Let’s see how to form the set C5;. From Y] there is only one outgoing
transition Y; — 7}, but it has been used in forming As;. Indeed, there
is no n such that n =¢ 7}, Xo =, n but X, #. n. Therefore, we have
nothing to add to the set Cy;, which remains to be ().

We construct the equation set U, based on all expressions shown in Table 6.

U: 7= %a.ZQQ @® %a.223
Zho = T.(a.Zoz + T.713)
Z13 = a.Zy
Zoy = T(30. 29 ® 50.Z03 + 0. 225 ® 30.Z3 ® 57.711)
Zyy = T.(a.Zo3 + 50.Zo3 ® 57.213 + T.Zo3)

Zgg = T.(G,.ZQQ + %a.ZQQ D %T.Zlg)
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We can see that F; provably satisfies U by substituting F,, 7.Fy, Ey, 7.F5,
T.Fy, T7.Ey for Zy1, Z1o, Z13, Zo1, Zao, Za3, Tespectively; similarly F} provably
satisfies U by substituting Fy, 7.Fs, F3, 7.F}, 7.F,, 7.F3 for these variables.

Theorem 32 (Completeness of A,,) If E and F are guarded expressions
and B~ F, then Ajo = E = F.

Proof. A direct consequence by combining Theorem 24, 31 and 26. O

7 Axiomatizations for finite expressions

In this section we consider the recursion-free fragment of £, that is the class &
of all expressions which do not contain constructs of the form pxF'. In other
words all expressions in £ have the form: 3=, @, pijui;. Eyj + > Xy

We define four axiom systems for the four behavioral equivalences studied
in this paper. Basically Ay, A, Az, Ag, are obtained from A,, A,., A4, Ay
respectively, by cutting away all those axioms and rules that involve recursion.

A, ¥ (s1-5) A, ¥ oAu{C)
Ay ¥ A,U{T1-3} Ap ¥ AuU{T4-5)

Theorem 33 (Soundness and completeness) For any E, F € &,

(1) E~Fiff A,b E=F;
(2) E~,F iff A E=F;
(3) E=F iff Ayb E=F;
(4) E~F iff A, - E=F.

The soundness part is obvious. The completeness can be shown by following
the lines of previous sections. However, since there is no recursion here, we
have a much simpler proof which does not use the equational characterization
theorem and the unique solution theorem. Roughly speaking, all the clauses
are proved by induction on the depth of the expressions. We define the depth
of a process, d(F), as follows.

d(0) =0

d(X) =1
A(D, pui ;) = 1+ maz{E;};
d(¥; Ei) = maz{d(E;)};

27



The completeness proof of Ay, is a bit tricky. In the classical process algebra
the proof can be carried out directly by using Hennessy Lemma [14], which
says that if £ ~ [ then either 7F ~ F or E ~ F or F ~ 7.F. In the
probabilistic case, however, Hennessy’s Lemma does not hold. For example,
let
def def 1 1
E=a and F= CL+(§T-G€B§G)-

We can check that: (1) 7.E %2 F, (2) E # F, (3) E # 7.F. In (1) the
distribution {(7, £ : 1)} cannot be simulated by any distribution from F.
In (2) the distribution {(7,a : 3),(a,0 : 1)} cannot be simulated by any
distribution from E. In (3) the distribution {(7, F' : 1)} cannot be simulated
by any distribution from F.

Fortunately, to prove the completeness of Ay,, it is sufficient to use the follow-
ing weaker property.

Lemma 34 (Promotion) For any E,F € &, if E =~ F then Ay, - 7.FE =
T.F.

Proof. By induction on d = d(E) + d(F'). We consider the nontrivial case
that d > 0.

If X is a nondeterministic summand of E, then £ — 9(X). Since £ = F it
holds that F' =, 9(X). By Lemma 29 we have F = 9(X). It follows from
(the recursion-free version of) Lemma 23 that Apq - F = F 4+ X.

Let @;c;piu;.E; be any summand of E. Then we have ' — n, with n =
{(u;, E; : p;) }ier. Since E' =~ F', there exists 7/, with ' = {(v;, Fj : ¢;) } et s.t.
F=S.n andn = 1. Forany k, [ € I withu, = w; and E}, ~ E, it follows from
T4 and induction hypothesis that Ay, = up. By = up.7. B = w.7.E = w. E.
By S5 we can derive that Ay, = @,crpivi. By = @ycp Py, L, where the
process on the right hand side is “compact”, i.e., for any k', ' € I’ if u}, = uy,
and Ej, = Ej then k' = I'. Similarly we can derive Aj, = @;c;qv;.F; =
Djrer ¢v} F}, with the process on the right hand side “compact”. From n =
n' and the soundness of Ay, it is easy to prove that Ag, = @y piruly E,
Djecr q;-/v;-/.F](, since each probabilistic branch of one process is provably equal
to a unique branch of the other process. It follows that A, & @;c; piv;. B =
®D,cs q;v;.Fj. By (a recursion-free version of) Lemma 30 we infer Ay, = 7.F =
T.F + @jecyqjv; F; = 7.F + @i pivi- B

Q

In summary Ay, = 7.F = 7.F + E. Symmetrically A;, - 7.F = 7.F + F.
Therefore, A, - 7.E = 7.F by T5. O

The promotion lemma is inspired by [10], where a similar result is proved for
a language of mobile processes.
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At last, the completeness part of Theorem 33 (4) can be proved as Lemma 34.
Note that for any k,l € I with u, = v and Ej = E;, we derive Ay, - ui. By, =
u;. ) by using T4 and the promotion lemma instead of using induction hy-
pothesis.

It is worth noticing that rule T5 is necessary to prove Lemma 34. Consider
the following two expressions: 7.a and 7.(a+ (37.a® 3a)). It is easy to see that
they are observationally equivalent. However, we cannot prove their equality if
rule T5 is excluded from the system Ay,. In fact, by using only the other rules
and axioms it is impossible to transform 7.(a+ (37.a® 1a)) into an expression
without a probabilistic branch pr.a occurring in any subexpression, for some
p with 0 < p < 1. So this term is not provably equal to 7.a, which has no
probabilistic choice.

8 Concluding remarks and future work

In this work we have proposed a probabilistic process calculus which cor-
responds to Segala and Lynch’s probabilistic automata. We have presented
strong bisimulation, strong probabilistic bisimulation, divergence-sensitive equiv-
alence and observational equivalence. Sound and complete inference systems
for the four behavioral equivalences are summarized in Table 8.

Note that we have axiomatized divergence-sensitive equivalence and observa-
tional equivalence only for guarded expressions. For unguarded expressions
whose transition graphs include 7-loops, we conjecture that the two behav-
ioral equivalences are undecidable and therefore not finitely axiomatizable.
The reason is the following: in order to decide whether two expressions F and
F' are observationally equivalent, one can compute the two sets

Se={n|E=mn} and Sp={n|F=n}

and then compare them to see whether each element of Sg is related to some
element of Sr and vice versa. For guarded expressions E and F', the sets Sg
and Sg are always finite and thus they can be compared in finite time. For
unguarded expressions, these sets may be infinite, and so the above method
does not apply. Furthermore, these sets can be infinite even when we factorize
them with respect to an equivalence relation as required in the definition of
probabilistic bisimulation. For example, consider the expression E' = p X(%a@
s7.X). It can be proved that S is an infinite set {r; | i > 1}, where

1 1

m={(0,0: (1= ), (n B )}

Furthermore, for each 4, j > 1 with i # j we have n; Zz 7, for any equivalence
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Table 7

All the axioms and rules
S1 EF+0=F
S2 E+E=FE
S3 > i1 Bi=2ic; By pis any permutation on [
S84 Dicrpivi-Ei = @jcr Pp(iyUp(i)-Ep)  p is any permutation on [
S5 (D;pwi-Ei) ®pu.E ® qu.E = (B, piwi-E;) ® (p + q)u.E
C Yictn Dipijuis-Eij = D icq  Bipijuij-Eij + ®ic1..n ©j 1ipijui;-Lij
Tl @, pir.(Bi+X)=X+P,pit.(E; + X)
T2 (D, piui-Ei) & p1.(F + D, ¢;8-F;) + (D, piwi-E;) & (D, pa; 8;-F)
= (B, piwi-E;) © pr.(F + DB; 4;8-F;)
T3 (D, piui-Ei) © pu.(F + D, ¢;7.F;) + (B, pivi-Ei) & (D, pgju-F})
= (B, pivi-Ei) © pu.(F + D ¢;7-F})
T4 wur.F=ukF
T5 IfrE=7.FE+Fand 7.F =7.F + E then 7. F =1.F.
R1  uxE=E{pxE/X}
R2 If E=F{E/X}, X weakly guarded in F, then £ = uxF
R2' If E=F{F/X}, X guarded in F, then F = uxF
R3 ux(E+X)=pxE
In C, there is a side condition ) ., . = 1.
Table 8
All the inference systems
strong equivalences | finite expressions all expressions
~ As: S1-5 A, S1-5,R1-3
~e¢ Ase: S1-5,C A, S1-5,R1-3,C
weak equivalences | finite expressions guarded expressions
= Agq: S1-5,C,T1-3 | Ayy: S1-5,C,T1-3,R1,R2’
~ Afo: 81-5,C,T1-5 | Ag4p: S1-5,C,T1-5,R1,R2
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relation R which distinguishes £ from 0. Hence, the set Sg modulo R is
infinite.

It should be remarked that the presence of 7-loops in itself does not nec-
essarily cause undecidability. For instance, the notion of weak probabilistic
bisimulation defined in [22,7] is decidable for finite-state PA. The reason is
that in those works weak transitions are defined in terms of schedulers, and
one may get some weak transitions that are not derivable by the (finitary)
inference rules used in this paper. For instance, consider the transition graph
of the above example. The definition of [22,7] allows the underlying proba-
bilistic execution to be infinite as long as that case occurs with probability 0.
Hence, with that definition one has a weak transition that leads to the distri-
bution § = {(a,0: 1)}. Thus, each 7; becomes a convex combination of § and
d(E), i.e. these two distributions are enough to characterize all possible weak
transitions. By exploiting this property, Cattani and Segala gave a decision
algorithm for weak probabilistic bisimulation in [7].

In our work we chose, instead, to generate weak transitions via (finitary)
inference rules, which means that only finite executions can be derived. This
approach, which is also known in literature ([23]), has the advantage of being
more formal, and in the case of guarded recursion it is equivalent to the one
of [22,7]. In the case of unguarded recursion, however, we feel that it would
be more natural to consider also the “limit” weak transitions of [22,7]. The
axiomatization of the corresponding notion of observational equivalence is an
open problem.

In the future it might be interesting to see how to refine our process calculus
to allow for parallel composition. To do that it seems necessary to add some
syntactic constraints, because parallel composition is hard to define for PA,
as discussed in [22]. Having both recursion and parallel composition in a pro-
cess calculus complicates the matters to establish a complete axiomatization,
mostly because this can give rise to infinite-state systems even with the guard-
edness condition. In [9] we focus on SPA and require that free variables do
not appear in the scope of parallel composition in order to achieve complete
axiomatizations in a calculus that includes parallel composition and guarded
recursion. A nice idea of admitting parallelism in generative models is pre-
sented in [8]. We would like to adapt that idea in PA and consider its effect
on axiomatizations. Another interesting research direction is to develop some
automated verification tool by exploiting the axioms and inference rules in
Table 7. One possible approach is to extend pCRL [11,27] to the probabilistic
setting, and use some rewriting rules based on axioms similar to ours in Table
7. Our long term goal, as explained in the introduction, is to develop verifi-
cation techniques for the asynchronous probabilistic m-calculus and to apply
them to the verification of distributed algorithms.
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Appendix
A Proof of Proposition 15(3)

In [25] Stark and Smolka use a special function f that associates a probability
to a nonprobabilistic transition so as to form a probabilistic transition. For
example, let E = 3a ® 2b, then f(E — 0) = 1 and f(E SN 0) = 2. The
function f can be characterized as f = sup,~,f; for some functions fy, fi, ...
that take nonprobabilistic transitions to probabilities and respect some or-
dering. Therefore, in the soundness proofs of some axioms, to show that
f(E -+ E') < p, it suffices to prove by induction on i that f;(E —— E') <p
for all # > 0. In the presence of nondeterministic choice, however, this tech-
nique becomes unusable because now the probability with which an expression
performs an action and evolves into another expression is not deterministic
any more. For example, let £ = (3a & 2b) + (3a @ 3¢), then what is the
value of f(E — 0)? Should it be %, %, or some value in between? Now the
meaning of the function f is unclear because it depends on how the nonde-
terminism is resolved. Nevertheless, our “bisimulation up to” technique works
well with Milner’s transition induction technique, as can be seen in the proof
of Proposition 15(3) below.

Lemma 35 Ifn =g, 12 and Ry C Ry then n1 =g, 2.

Proof. Let V € £/R,. Since R; is contained in Ry, we know that V' is the
disjoint union of all elements in some set {V;};, with V; € £/R; for each i. It
follows from 7, =g, 72 that

Va € Var U Act, - m(a, Vi) = n2(a, V).

Therefore, we have
ma,V) =3 m(e, Vi) = Zime(a, Vi) = na(a, V).

Lemma 36 Letn =rim—+...+1n0, andn' = rin)+...+r.n, with > i, 1 =
1. If n; =g n. for each i < n, thenn=r 1.

Proof. For any V € £/R and a € Var U Act,, we have

7)(04 V) - Z Tini(aav) - Z rinz{(aav) = 77/(047 V)

i€l.n i€l.n
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Therefore, n =g 7’ by definition. O

Lemma 37 Suppose E ~ F. If E =.n then there exists ' s.t. F' =.n' and
n=~1.

Proof. By transition induction. 0O

We use a measure dx (F) to count the depth of guardedness of the free variable
X in expression F.

dx(X) =0
dx(Y) =0
dx(a.E) =dx(E)+1
dx(T.E) = dx(E)
dx (@i pivi-Ei) = min{dx (u;-E;)};
dx (X E;) = min{dx (E:) }s
dx(pyE) = dx(E)

If dx(E) > 0 then X is guarded in FE.

Lemma 38 Letdx(G) =n andn = {(u;, G; : p;) }ier. Suppose G{E/ X} = n.
For allv € I, it holds that

(1) If n > 0 and u; = 7 then G; = Gi{E/X} and dx(G}) > n;
(2) If n > 1 and u; # 7 then G; = GI{E/X} and dx(G}) > n — 1.

Proof. By induction on the depth of the inference of G{E/X} = n. There
are three cases, depending on the last rule used in the inference. A typical
case is for Rule wea3. In this case n = {(u;, G; : p;) bier W{(vj, H; : q;)} ;e and
G{E/X} = n is derived from the shorter inferences of G{E/X} = {(u;, G
pi) Yier W{(7,Go = po)} and Gy = {(v;, H; : q;)}jes. By induction hypothesis,
for each ¢ € 1 U {0}, it holds that

(1) If n > 0 and w; = 7 then G; = Gi{E/X} and dx(G}) > n;
(2) If n > 1 and u; # 7 then G; = Gi{FE/X} and dx(G}) > n — 1.

Particularly for Gy we have Gy = Gy{{E/X} and dx(Gj) > n > 0. By in-
duction hypothesis on the transition of Gy{{E/X}, it follows that for each
jed

(1) ifv; = 7 then H; = H{E/X} and dx(H}) > dx(Gg) > n for each j € J;
(2) n>Tlandv; # 7then H; = H{E/X} and dx(H}) > dx(Gp)—1 > n—1.
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O

Lemma 39 Suppose dx(G) > 1, n = {(u;, G; : p;) }ier and G{E/X} = 1.
Then G; = GI{E/X} for eachi € 1. Moreover, G{F/X} = n' and n =r- 1/,
where ' = {(u;, GS{F/X} : pi) bier and

R={(G{E/X} G{F/X})| for any G € £}.

Proof. A direct consequence of Lemma 38. O

Lemma 40 Let dx(G) > 1. If G{E/X} =.n then G{F/X} =.n such that
n =g+ 0 where R = {(G{E/X},G{F/X})| for any G € £}.

Proof. Let n = rmm + ... + 7, and G{E/X} = n; for each i < n. By
Lemma 39, for each i < n, there exists n} s.t. G{F/X} = n. and n; =g+ 7.
Now let o' = rn) + ... + rpn),, thus G{F/X} =. 7. By lemma 36 it follows
that n =g+ . O

Proof of Proposition 15(3). We show that the relation

R ={(G{E/X},G{uxF/X})| for any G € £}
is an observational equivalence up to ~. That is, we need to show the following
assertions:

(1) if G{E/X} = n then there exists ' s.t. G{uxF/X} =.n' and n =x_ /;
(2) if G{uxF/X} = n then there exists n s.t. G{E/X} =.nand n =x_ 1/;

We concentrate on the first clause as the second one is similar. The proof
is carried out by induction on the depth of the inference of G{E/X} = n.
There are several cases depending on the structure of G. As an example, here
we consider the case that G = X.

We write G(F) for G{E/X} and G*(F) for G(G(FE)). Since E ~ F(FE), we
have £ ~ F?(F) since ~ is an congruence relation by Proposition 15. If
E = n then by Lemma 37 there exists 6; s.t. F?(E) =. 6, and n =4 6,. Since
X is guarded in F, i.e., dx(F) > 0, then it follows that dx(F?(X)) > 1. By
Lemma 40, there exists 0y s.t. F?(uxF) = 05 and 0, =g+ 0. From Proposi-
tion 14 we have ux F ~ F?(uxF), thus uxF ~ F?(uxF). By Lemma 37 there
exists 7' s.t. uxF =.n and 6, =~ 1. From Lemma 35 and the transitivity of
=g it follows that n = n’. O
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