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Abstract. We consider two characterisations of the may and must testing preorders for a probabilistic
extension of the finite π-calculus: one based on notions of probabilistic weak simulations, and the other on a
probabilistic extension of a fragment of Milner-Parrow-Walker modal logic for the π-calculus. We base our
notions of simulations on similar concepts used in previous work for probabilistic CSP. However, unlike the
case with CSP (or other non-value-passing calculi), there are several possible definitions of simulation for the
probabilistic π-calculus, which arise from different ways of scoping the name quantification. We show that in
order to capture the testing preorders, one needs to use the “earliest” simulation relation (in analogy to the
notion of early (bi)simulation in the non-probabilistic case). The key ideas in both characterisations are the
notion of a “characteristic formula” of a probabilistic process, and the notion of a “characteristic test” for a
formula. As in an earlier work on testing equivalence for the π-calculus by Boreale and De Nicola, we extend
the language of the π-calculus with a mismatch operator, without which the formulation of a characteristic
test will not be possible.
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1. Introduction

We consider an extension of a finite version (without replication or recursion) of the π-calculus [17], a typical
name-passing process calculus, with a probabilistic choice operator, alongside the non-deterministic choice
operator of the π-calculus. Such an extension has been shown to be useful in modelling protocols and their
properties, see, e.g., [19, 3]. The combination of both probabilistic and non-deterministic choice has long
been a subject of study in process theories, see, e.g., [11, 28, 25, 24, 4, 20, 7, 1]. In this paper, we consider
a natural notion of preorders for the probabilistic π-calculus, based on the notion of testing [5, 13]. In this
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testing theory, one defines a notion of test, what it means to apply a test to a process, the outcome of a test,
and how the outcomes of tests can be compared. In general, the outcome of a test can be any non-empty set,
endowed with a (partial) order; in the case of the original theory, this is simply a two-element lattice, with the
top element representing success and the bottom element representing failure. In the probabilistic case, the
set of outcomes is the unit interval [0,1], denoting probabilities of success, with the standard mathematical
ordering ≤. In the presence of non-determinism, it is natural to consider a set of such probabilities as the
result of applying a test to a process. Two standard approaches for comparing results of a test are the
so-called Hoare preorder, written vHo, and the Smyth preorder, vSm [12]:

• O1 vHo O2 if for every o1 ∈ O1 there exists o2 ∈ O2 such that o1 ≤ o2.

• O1 vSm O2 if for every o2 ∈ O2 there exists o1 ∈ O1 such that o1 ≤ o2.

Correspondingly, these give rise to two semantic preorders for processes:

• may-testing: P vpmay Q iff for every test T , Apply(T, P ) vHo Apply(T,Q)

• must-testing: P vpmust Q iff for every test T , Apply(T, P ) vSm Apply(T,Q),

where Apply(T, P ) refers to the result of applying the test T to process P .
We derive two characterisations of both may-testing and must-testing: one based on a notion of proba-

bilistic weak (failure) simulation [25], and the other based on a modal logic obtained by extending Milner-
Parrow-Walker (MPW) modal logic for the (non-probabilistic) π-calculus [18]. These characterisations are in
part motivated by our desire to derive more operational notions of preorders that are amenable to automa-
tion. Both the testing preorders and the logic-based preorders involve quantification over test processess and
logical formulas, respectively, and are thus unsuitable for mechanisation. The simulation preorders, on the
other hand, avoid this quantification over tests or formulas, making them more suitable for mechanisation.

The probabilistic π-calculus that we consider here is a variant of the probabilistic π-calculus considered in
[3], but extended with the mismatch operator. As has already been observed in the testing semantics for the
non-probabilistic π-calculus [2], the omission of mismatch would result in a strictly less discriminating test.
This is essentially due to the possibility of two kinds of output transitions in the π-calculus, a bound-output
action, which outputs a new name, e.g., x̄(w).0, and a free-output action, e.g., x̄y.0. Without the mismatch
operator, the two processes are related via may-testing, because the test cannot distinguish between output
of a fresh name and output of an arbitrary name (see [2]).

The technical framework used to prove the main results in this paper is based on previous works on
probabilistic CSP (pCSP) [9, 7], an extension of Hoare’s CSP [15] with a probabilistic choice operator. This
allows us to adapt some proofs and results from [9, 7] that are not calculus-specific. The name-passing feature
of the π-calculus, however, gives rise to several difficulties not found in the non-name-passing calculi such as
pCSP, and it consequently requires new techniques to deal with. For instance, there is not a canonical notion
of (weak) simulation in the π-calculus, unlike the case with pCSP. Different variants arise from different ways
of scoping the name quantification in the simulation clause dealing with input transitions, e.g., the “early”
vs. the “late” variants of (bi)simulation [17]. In the case of weak simulation, one also gets a “delay” variant
of (bi)simulation [10, 21, 27]. As we show in Section 4, the right notion of simulation is the early variant, as
all other weak simulation relations are strictly more discriminating than the early one. Another difficulty is
in proving congruence properties, a prerequisite for the soundness of the (failure) simulation preorders. The
possibility of performing a ‘close’ communication in the π-calculus requires a combination of closure under
parallel composition and name restriction (see Section 5). We use the so-called “up-to” techniques [22] for
non-probabilistic calculi to prove these congruences.

We show that vpmay coincides with a simulation preorder vS and a preorder vL induced by a modal
logic L extending the MPW logic. Dually, the must-testing preorder is shown to coincide with a failure
simulation preorder, vFS , and a preorder vF induced by a modal logic F extending L. For technical reasons
in proving the completeness result of (failure) simulation, we make use of testing preorders involving vector-
based testing (vΩ

pmay and vΩ
pmust below). The precise relations among these preorders are as follows (where

we annotate the inclusions/equalities for ease of reference):

vS ⊆1 vpmay =3 vΩ
pmay ⊆5 vL ⊆7 vS

vFS ⊆2 vpmust =4 vΩ
pmust ⊆6 vF ⊆8 vFS
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The (annotated) inclusions and equalities correspond to the following theorems: Theorem 3.3 (3 and 4),
Theorem 5.23 (1 and 2), Theorem 6.7 (7 and 8), and Theorem 7.5 (5 and 6). The proofs of these inclusions
are subjects of Section 5, Section 6 and Section 7. Let us highlight the characterisations of may-testing
preorder. As with the case with pCSP [7], the key idea to the proof of the inclusion vL ⊆ vS is to show
that for each process P , there exists a characteristic formula ϕP such that if Q |= ϕP then P vS Q. The
inclusion vΩ

pmay ⊆ vL is proved by showing that for each formula ϕ, there exists a characteristic test Tϕ
such that for all process P , P |= ϕ iff P passes the test Tϕ with some threshold testing outcome.

2. Processes and probabilistic distributions

We consider an extension of the (finite) π-calculus with a probabilistic choice operator, p⊕ , where p ∈ (0, 1].
We shall be using the late version of the operational semantics, formulated in the reactive style (in the sense
of [26]) following previous work [9, 7]. The use of the late semantics allows for a straightforward definition of
characteristic formulas (see Section 6), which are used in the completeness proof. So our testing equivalence
is essentially a “late” testing equivalence. However, as has been shown in [16, 2], late and early testing
equivalences coincide for value-passing/name-passing calculi.

We assume a countably infinite set of names, ranged over by a, b, x, y etc. Given a name a, its co-name is
ā. We use µ to denote a name or a co-name. Process expressions are generated by the following two-sorted
grammar:

P ::= s | P p⊕P
s ::= 0 | a(x).P | āx.P | [x = y]s | [x 6= y]s | s+ s | s|s | νx.s

We let P,Q, ... range over process terms defined by this grammar, and s, t range over the subset Sp comprising
only the state-based process terms, i.e. the sub-sort s.

The input prefix a(x) and restriction νx are name-binding contructs; x in this case is a bound name. We
denote with fn(P ) the set of free names in P and bn(P ) the set of bound names. The set of names in P (free
or bound) is denoted by n(P ). We shall assume that bound names are different from each other and different
from any free names. Processes are considered equivalent modulo renaming of bound names. Processes are
ranged over by P ,Q,R, etc. We shall refer to our probabilistic extension of the π-calculus as πp.

We shall sometimes use an n-ary version of the binary operators. For example, we use
⊕

i∈I piPi, where∑
i∈I pi = 1, to denote a process obtained by several applications of the probabilistic choice operator.

Similarly,
∑
i∈I Pi denotes several applications of the non-deterministic choice operator +. We shall use the

τ -prefix, as in τ.P , as an abbreviation of νx(x(y).0 | x̄x.P ), where x, y 6∈ fn(P ).
In this paper, we take the viewpoint that a probabilistic process represents an unstable state that may

probabilistically evolve into some stable states. Formally, we describe unstable states as distributions and
stable states as state-based processes. Note that in a state-based process, probabilistic choice can only appear
under input/output prefixes. The operational semantics of πp will be defined only for state-based processes.

Probabilistic distributions are ranged over by ∆. A discrete probabilistic distribution over a set S is a
mapping ∆ : S → [0, 1] with

∑
s∈S ∆(s) = 1. The support of a distribution ∆, denoted by d∆e, is the

set {s | ∆(s) > 0}. From now on, we shall restrict to only probabilistic distributions with finite support,
and we let D(S) denote the collection of such distributions over S. If s is a state-based process, then
δ[s] denote the point distribution that maps s to 1. For a finite index set I, given pi and distribution
∆i, for each i ∈ I, such that

∑
i∈I pi = 1, we define another probability distribution

∑
i∈I pi · ∆i as

(
∑
i∈I pi · ∆i)(s) =

∑
i∈I pi · ∆i(s), where · here denotes multiplication. We shall sometimes write this

distribution as a summation p1 ·∆1 + p2 ·∆2 + . . .+ pn ·∆n when the index set I is {1, . . . , n}.
A probabilistic labelled transition system (pLTS) is a triple 〈S,L,→〉, where S is a set of states, L is a

set of labels, and the transition relation → is a subset of S × L × D(S). We usually write s
α
−−→ ∆ for

(s, α,∆) ∈→.
Probabilistic processes are interpreted as distributions over state-based processes as follows.

[[s]] ::= δ[s] for s ∈ Sp
[[P p⊕Q]] ::= p · [[P ]] + (1− p) · [[Q]]

Note that for each process term P the distribution [[P ]] is finite, that is it has finite support.
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α.P
α
−−→ [[P ]]

Act
s

α
−−→ ∆

s+ t
α
−−→ ∆

Sum

s
α
−−→ ∆

[x = x]s
α
−−→ ∆

Match
s

α
−−→ ∆

[x 6= y]s
α
−−→ ∆

Mismatch, x 6= y

s
α
−−→ ∆

s | t
α
−−→ ∆ | δ[t]

Par, bn(α) ∩ fn(t) = ∅

s
a(x)
−−→ ∆1 t

āy
−−→ ∆2

s | t
τ
−−→ ∆1[y/x] | ∆2

Com
s
a(w)
−−→ ∆1 t

ā(w)
−−→ ∆1

s | t
τ
−−→ νw.(∆1 | ∆2)

Close

s
α
−−→ ∆

νx.s
α
−−→ νx.∆

Res, x 6∈ n(α)
s

x̄z
−−→ ∆

νz.s
x̄(y)
−−→ ∆[y/z]

Open, y 6= x, y 6∈ fn(νz.s)

Fig. 1. The late operational semantics of πp.

A transition judgment can take one of the following forms:

s
a(x)
−−→ ∆ s

τ
−−→ ∆ s

āx
−−→ ∆ s

ā(x)
−−→ ∆

The action a(x) is called a bound-input action; τ is the silent action; āx is a free-output action and ā(x)
is a bound-output action. In actions a(x) and ā(x), x is a bound name. Actions are ranged over by α.
Given an action α, we denote with fn(α) the set of free names in α, i.e., those names in α which are not
bound names. The set of bound names in α is denoted by bn(α), and the set of all names (free and bound)
in α is denoted by n(α). The free names of a distribution is the union of free names of its support, i.e.,
fn(∆) =

⋃
{fn(s) | s ∈ d∆e}.

A substitution is a mapping from names to names; substitutions are ranged over by ρ, σ and θ. A
substitution θ is a renaming substitution if θ is an injective map, i.e., θ(x) = θ(y) implies x = y. A substitution
is extended to a mapping between processes in the standard way, avoiding capture of free variables. We use
the notation s[y/x] to denote the result of substituting free occurrences of x in s with y. Substitution is
lifted to a mapping between distributions as follows:

∆[y/x](s) =
∑
{∆(s′) | s′[y/x] = s}.

It can be verified that [[P [y/x]]] = [[P ]][y/x] for every process P.
The operational semantics of state-based processes is given in terms of a pLTS where the set of states is

Sp and the transition relation is generated by the rules in Figure 1. The rules for parallel composition and
restriction use an obvious notation for distributing an operator over distributions, for example:

(∆1 | ∆2)(s) =

{
∆1(s1) ·∆2(s2) if s = s1|s2

0 otherwise

(νx.∆)(s) =

{
∆(s′) if s = νx.s′

0 otherwise.

The symmetric counterparts of Sum, Par, Com and Close are omitted.

3. Testing probabilistic processes

As standard in testing theories [5, 13, 2], to define a test, we introduce a distinguished name ω which can
only be used in tests and is not part of the processes being tested. A test is just a probabilistic process with
possible free occurrences of the name ω as channel name in output prefixes, i.e., a test is a process which
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may have subterms of the form ω̄a.P . Note that the object of the action prefix (i.e., the name a) is irrelevant
for the purpose of testing. For simplicity, we shall assume that a is ω, i.e., a successful test will output on
channel ω the same channel name. Note also that it makes no differences whether the name ω appears in
input prefixes instead of output prefixes; the notion of testing preorder will remain the same. Therefore we

shall often simply write ω.P to denote ω̄ω.P , and P
ω
−−→ ∆ to denote P

ω̄ω
−−→ ∆. The definitions of may-

testing preorder, vpmay, and must-testing preorder, vpmust, have already been given in the introduction,
but we left out the definition of the Apply function. This will be given below.

Following [9], to define the Apply function, we first define a results-gathering function V : Sp → P([0, 1]):

V(s) =


{1} if s

ω
−−→⋃

{V(∆) | s
τ
−−→ ∆} if s 6 ω−→ but s

τ
−−→

{0} otherwise.

Here the notation P([0, 1]) stands for the powerset of [0, 1], and we use V(∆) to denote the set of probabilities
{
∑
s∈d∆e∆(s) · ps | ps ∈ V(s)}. The Apply function is defined as follows: given a test T and a process P ,

Apply(T, P ) = V([[ν~x.(T | P )]])

where {~x} is the set of free names in T and P , excluding ω. So the process (or rather, the distribution)
ν~x.(T | P ) can only perform an observable action on ω.

As the definition of testing preorders involves quantification over tests, in general it is difficult to establish
directly that two processes are related by these preorders. However, showing that they are not related by
the preorders is easier, i.e., one needs only to demonstrate a test that distinguishes them.

Example 3.1. Let P = a(x).āc and Q = a(x).[x = b]āc 1
2
⊕ a(x).[x 6= b]āc. We claim that P 6vpmust Q

and P 6vpmay Q. To see why, consider the test T = āb.a(x).ω. Then we have Apply(T, P ) = {1} but
Apply(T,Q) = { 1

2}.

Vector-based testing. Following [7], we introduce another approach of testing called vector-based testing,
which will play an important role in Section 7.

Let Ω be a set of fresh success actions different from any normal channel names. An Ω-test is a πp-process,
but allowing subterms ω.P for any ω ∈ Ω. Applying such a test T to a process P yields a non-empty set of
test outcome-tuples ApplyΩ(T, P ) ⊆ [0, 1]Ω. For each such tuple, its ω-component gives the probability of
successfully performing action ω.

To define a results-gathering function for vector-based testing, we need some auxiliary notations. For any
action α define α! : [0, 1]Ω → [0, 1]Ω by

α!o(ω) =

{
1 if ω = α
o(ω) otherwise

so that if α is a success action in Ω then α! updates the tuple 1 at that point, leaving it unchanged otherwise,
and when α 6∈ Ω the function α! is the identity. For any set O ⊆ [0, 1]Ω, we write α!O for the set {α!o | o ∈ O}.
For any set X define its convex closure l X by

l X := {
∑
i∈I

pi · oi | oi ∈ X for each i ∈ I and
∑
i∈I pi = 1}.

Here, I is assumed to be a finite index set. Finally, zero vector ~0 is given by ~0(ω) = 0 for all ω ∈ Ω. Let SΩ
p

be the set of state-based Ω-tests.

Definition 3.2. The vector-based results-gathering function VΩ : SΩ
p → P([0, 1]Ω) is given by

VΩ(s) :=

{
l
⋃
{α!(VΩ(∆)) | s

α
−−→ ∆} if s→

{~0} otherwise

The notation s→ means that s is not a deadlock state, i.e. there is some α and ∆ such that s
α
−−→ ∆. For

any process P and Ω-test T , we define ApplyΩ(T, P ) as VΩ([[ν~x.(T |P )]]), where {~x} = fn(T, P ) − Ω. The
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vector-based may and must preorders are given by

P vΩ
pmay Q iff for all Ω-test T : ApplyΩ(T, P ) vHo ApplyΩ(T,Q)

P vΩ
pmust Q iff for all Ω-test T : ApplyΩ(T, P ) vSm ApplyΩ(T,Q)

where vHo and vSm are the Hoare and Smyth preorders on P([0, 1]Ω) generated from ≤ index-wise on
[0, 1]Ω.

Notice a subtle difference between the definition of VΩ above and the definition of V given earlier. In VΩ,
we use action-based testing, i.e., the actual execution of ω constitutes a success. This is in contrast to the
state-based testing in V, where a success is defined for a state where a success action ω is possible, without
having to actually perform the action ω. In the case where there is no divergence, as in our case, these two
notions of testing coincide; see [7] for more details.

The following theorem can be shown by adapting the proof of Theorem 6.6 in [7], which states a general
property about pLTSs [6].

Theorem 3.3. Let P and Q be any πp-processes.

1. P vΩ
pmay Q iff P vpmay Q

2. P vΩ
pmust Q iff P vpmust Q.

4. Simulation and Failure Simulation

To define (failure) simulation, we need to generalise the transition relations between states and distributions
to those between distributions and distributions. This is defined via a notion of lifting of a relation.

Definition 4.1 (Lifting [8]). Given a relation R ⊆ Sp×D(Sp), define a lifted relation R ⊆ D(Sp)×D(Sp)
as the smallest relation that satisfies

1. sRΘ implies δ[s] R Θ

2. (Linearity) ∆i R Θi for all i ∈ I implies (
∑
i∈I pi ·∆i) R (

∑
i∈I pi ·Θi) for any pi ∈ [0, 1] with

∑
i∈I pi = 1.

The following is a useful properties of the lifting operation.

Proposition 4.2 ([9]). Suppose R ⊆ S×D(S) and
∑
i∈I pi = 1. If (

∑
i∈I pi ·∆i) R Θ then Θ =

∑
i∈I pi ·Θi

for some set of distributions Θi such that ∆i R Θi for all i ∈ I.

For simplicity of presentation, the lifted version of the transition relation
α
−−→ will be denoted by the

same notation as the unlifted version. So we shall write ∆
α
−−→ Θ when ∆ and Θ are related by the lifted

relation from
α
−−→ . Note that in the lifted transition ∆

α
−−→ Θ, all processes in d∆e must be able to

simultaneously make the transition α. For example,

1

2
· δ[āx.s] +

1

2
· δ[āx.t]

āx
−−→ 1

2
· δ[s] +

1

2
· δ[t]

but the distribution 1
2 · δ[āx.s] + 1

2 · δ[b̄x.t] will not be able to make that transition. We need a few more
relations to define (failure) simulation:

• We write s
τ̂
−−→ ∆ to denote either s

τ
−−→ ∆ or ∆ = δ[s]. Its lifted version will be denoted by the same

notation, e.g., ∆1

τ̂
−−→ ∆2. The reflexive-transitive closure of the latter is denoted by

τ̂
=⇒ .

• ∆1
α̂

==⇒ ∆2, for α 6= τ , iff ∆1
τ̂

==⇒ ∆′
α
−−→ ∆′′

τ̂
==⇒ ∆2 for some ∆′ and ∆′′.

• We write s ↓a to denote s
a(x)
−−→, and s ↓ā to denote either s

ā(x)
−−→ or s

āx
−−→; s 6↓µ stands for the negation.

We write s 6↓X when s 6
τ
−−→ and ∀µ ∈ X : s 6↓µ, and ∆ 6↓X when ∀s ∈ d∆e : s 6↓X .

Definition 4.3. A relation R ⊆ Sp ×D(Sp) is said to be a failure simulation if sRΘ implies:
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1. If s
a(x)
−−→ ∆ and x 6∈ fn(s,Θ), then for every name w, there exists Θ1, Θ2 and Θ′ such that

Θ
τ̂

==⇒ Θ1

a(x)
−−→ Θ2, Θ2[w/x]

τ̂
==⇒ Θ′, and (∆[w/x]) R Θ′.

2. If s
α
−−→ ∆, where α is not an input action, and bn(α) 6∈ fn(s,Θ), then there exists Θ′ such that

Θ
α̂

==⇒ Θ′ and ∆ R Θ′

3. If s 6↓X then there exists Θ′ such that Θ
τ̂

==⇒ Θ′ 6↓X .

We denote with /FS the largest failure simulation relation. Similarly, we define simulation and /S by dropping
the third clause above. The simulation preorder vS and failure simulation preorder vFS on process terms
are defined by letting

P vS Q iff there is a distribution Θ with [[Q]]
τ̂

==⇒ Θ and [[P ]] /S Θ.

P vFS Q iff there is a distribution Θ with [[P ]]
τ̂

==⇒ Θ and [[Q]] /FS Θ.

Below is a simple example that illustrates the use of the simulation preorder.

Example 4.4. Let P = a(x).(āc 1
2
⊕ 0) and Q = a(x).[x = b]āc 1

2
⊕ a(x).[x 6= b]āc. We claim that P vS Q.

To prove this, it is enough to show that there is a simulation relation R such that [[P ]] R [[Q]]. Let R be the
smallest set containing the following pairs:

P R [[Q]], āc R δ[[b = b]āc], 0 R δ[[b 6= b]āc], 0 R 0,

and, for every y distinct from b: āc R δ[[y 6= b]āc] and 0 R δ[[y = b]āc]. Because P R [[Q]] (note that P is a
state-based process), it is immediate that [[P ]] R [[Q]] by Definition 4.1. It remains to show that R is indeed
a simulation. This is easily checked by following through Definition 4.3. For example, since P R [[Q]] and the
input action is possible from P , we have to show its continuations satisfies clause (1) in Definition 4.3. We

have that P
a(x)
−−→ ( 1

2 · āc+ 1
2 · 0), and also:

[[Q]]
τ̂

==⇒ [[Q]]
a(x)
−−→ (

1

2
· [x = b]āc+

1

2
· [x 6= b]āc) = Θ.

It remains to show that for every w, ( 1
2 · āc + 1

2 · 0) R Θ[w/x]. If w = b, then this follows from the fact
that āc R δ[[b = b]āc] and 0 R δ[[b 6= b]āc]. Otherwise, w 6= b and it follows from āc R δ[[w 6= b]āc] and
0 R δ[[w = b]āc].

Notice the rather unusual clause for input action in Definition 4.3, where no silent action from Θ2 is
permitted after the input transition. This is reminiscent of the notion of delay (bi)simulation [10, 21, 27]. If

instead of that clause, we simply require Θ
â(x)
==⇒ Θ′′ and ∆[w/x]R Θ′′[w/x] then, in the presence of mismatch,

simulation is not sound w.r.t. the may-testing preorder, even in the non-probabilistic case. Consider, for
example, the following processes:

P = a(x).āb Q = a(x).[x 6= c]τ.āb

where we recall that τ.R abbreviates νz.(z(u) | z̄z.R) for some z 6∈ fn(R). The process P can make an input
transition, and regardless of the value of x, it can then output b on channel a. Notice that for Q, we have

Q
a(x)
−−→ [x 6= c]τ.āb

τ
−−→ νz(0 | āb) = Q′.

Q′ can also output b on channel a, so under this alternative definition, Q can simulate P. But P 6vpmay Q, as
the test āc.a(y).ω will distinguish them. This issue has also appeared in the theory of weak (late) bisimulation
for the non-probabilistic π-calculus; see, e.g., [23].

Note that the above definition of /S is what is usually called the “early” simulation. One can obtain
different variants of “late” simulation using different alternations of the universal quantification on names
and the existential quantifications on distributions in clause 1 of Definition 4.3. Any of these variants leads
to a strictly more discriminating simulation. To see why, consider the weaker of such late variants, i.e., one
in which the universal quantifier on w comes after the existential quantifier on Θ1:
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If s
a(x)
−−→ ∆ and x 6∈ fn(s,Θ), then there exists Θ1 such that for every name w, there exist Θ2 and Θ′ such

that Θ
τ̂

==⇒ Θ1

a(x)
−−→ Θ2, Θ2[w/x]

τ̂
==⇒ Θ′, and (∆[w/x]) R Θ′.

Let us denote this variant with vS′ . Consider the following processes:

P = a(x).b̄x.0 + a(x).0 + a(x).[x = z]b̄x.0 Q = τ.a(x).b̄x.0 + τ.a(x).0

It is easy to see that P vS Q but P 6vS′Q.

If we drop the silent transitions Θ2[w/x]
τ̂

==⇒ Θ′ in clause (1) of Definition 4.3, i.e., we let Θ′ = Θ2[w/x]
(hence, we get a delay simulation), then again we get a strictly stronger relation than vS . Let us refer to this
stronger relation as vD. Let P be a(x).(c 1

2
⊕ d) and let Q be a(x).τ.(c 1

2
⊕ d). Here we remove the parameters

in the input prefixes c and d to simplify presentation. Again, it can be shown that P vS Q but P 6vD Q.
For the latter to hold, we would have to prove 1

2 · δ[c] + 1
2 · δ[d] /S δ[τ.(c 1

2
⊕ d)], which is impossible.

Note that (failure) simulation is a relation between processes and distributions, rather than between
processes, so it is not immediately obvious that it is a preorder. This is established in Corollary 4.14 below,
whose proof requires a series of lemmas.

In the following, when we apply a substitution to an action, we assume that the substitution affects both
the free and the bound names in the action. For example, if α = a(x) and θ = [b/a, y/x] then αθ = b(y).
However, application of a substitution to processes or distributions must still avoid capture.

Lemma 4.5. Suppose σ is a renaming substitution.

1. If s
α
−−→ ∆ then sσ

ασ
−−→ ∆σ.

2. If ∆
α̂

==⇒ ∆′ then ∆σ
α̂σ

==⇒ ∆′σ.

Lemma 4.6. Let I be a finite index set, and let
∑
i∈I pi = 1. Suppose si

a(xi)
−−→ ∆i for each i ∈ I. Let x be

a fresh name not occuring in any of si, a(xi) or ∆i. Then∑
i∈I

pi · δ[si]
a(x)
−−→

∑
i∈I

pi ·∆i[x/xi].

Given the above lemma, given transitions si
a(xi)
−−→ ∆i, we can always assume that, all the xi’s are the same

fresh name, so that when lifting those transitions to distributions, we shall omit the explicit renaming of
individual xi. This will simplify the presentation of the proofs in the following. The same remark applies to
bound output transitions.

Lemma 4.7. Suppose
∑
i∈I pi = 1 and ∆i

α̂
==⇒ Φi for each i ∈ I, where I is a finite index set. Then∑

i∈I
pi ·∆i

α̂
==⇒

∑
i∈I

pi · Φi.

Proof. Same as in the proof of Lemma 6.6. in [9].

Lemma 4.8. For every state-based process s, we have s /S δ[s] and s /FS δ[s].

Proof. Let R ⊆ Sp ×D(Sp) be the relation defined as follows: s R Θ iff Θ = δ[s]. It is easy to see that R is
a simulation and also a failure simulation.

Lemma 4.9. Suppose ∆ /S Φ and ∆
α
−−→ ∆′, where α is either τ , a free action or a bound output action.

Then Φ
α̂
−−→ Φ′ for some Φ′ such that ∆′ /S Φ′.

Proof. Similar to the proof of Lemma 6.7 in [9].

Lemma 4.10. Suppose ∆ /S Φ and ∆
a(x)
−−→ ∆′. Then for all name w, there exist Ψ1, Ψ2 and Ψ such that

Φ
τ̂

==⇒ Ψ1

a(x)
−−→ Ψ2, Ψ2[w/x]

τ̂
==⇒ Ψ, and (∆′[w/x]) /S Ψ.
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Proof. From ∆ /S Φ we have that

∆ =
∑
i∈I

pi · δ[si], si /S Φi, Φ =
∑
i∈I

pi · Φi. (1)

and from ∆
a(x)
−−→ ∆′ we have:

∆ =
∑
j∈J

qj · δ[tj ], tj
a(x)
−−→ Θj , ∆′ =

∑
j∈J

qj ·Θj . (2)

We assume w.l.o.g. that all pi and qj are non-zero. Following [9], we define two index sets: Ij = {i ∈ I | si =
tj} and Ji = {j ∈ J | tj = si}. Obviously, we have

{(i, j) | i ∈ I, j ∈ Ji} = {(i, j) | j ∈ J, i ∈ Ji}, and (3)

∆(si) =
∑
j∈Ji

qj ∆(tj) =
∑
i∈Ij

pi. (4)

It follows from (4) that we can rewrite Φ as

Φ =
∑
i∈I

∑
j∈Ji

pi · qj
∆(si)

· Φi.

Note that si = tj when j ∈ Ii. Since si /S Φi, and si = tj
a(x)
−−→ Θj , we have, given any name w, some Φ1

ij ,

Φ2
ij and Φij such that:

Φi
τ̂

==⇒ Φ1
ij

a(x)
−−→ Φ2

ij , Φ2
ij [w/x]

τ̂
==⇒ Φij , Θj [w/x] /S Φij . (5)

Let

Ψ1 =
∑
i∈I

∑
j∈Ji

pi · qj
∆(si)

· Φ1
ij Ψ2 =

∑
i∈I

∑
j∈Ji

pi · qj
∆(si)

· Φ2
ij Ψ =

∑
i∈I

∑
j∈Ji

pi · qj
∆(si)

· Φij .

Lemma 4.7 and (5) above give us:

Φ =
∑
i∈I

∑
j∈Ji

pi · qj
∆(si)

· Φi
τ̂

==⇒ Ψ1

a(x)
−−→ Ψ2 Ψ2[w/x]

τ̂
==⇒ Ψ

It remains to show that ∆′[w/x] /S Ψ.

∆′[w/x] =
∑
j∈J

qj ·Θj [w/x]

=
∑
j∈J

qj ·
∑
i∈Ij

pi
∆(tj)

·Θj [w/x] using (4)

=
∑
i∈I

∑
j∈Ji

pi · qj
∆(si)

·Θj [w/x] using (3)

/S
∑
i∈I

∑
j∈Ji

pi · qj
∆(tj)

· Φij = Ψ using (5) and linearity of /S

Lemma 4.11. Suppose ∆ /S Φ and ∆
α̂

==⇒ ∆′, where α is either τ , a free action or a bound output. Then

Φ
α̂

==⇒ Φ′ for some Φ′ such that ∆′ /S Φ′.

Proof. Similar to the proof of Lemma 6.8 in [9].

Proposition 4.12. The relation /S is reflexive and transitive.
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Proof. Reflexivity of /S follows from Lemma 4.8. To show transitivity, let us define a relation R ⊆ Sp×D(Sp)
as follows: s R Θ iff there exists ∆ such that s /S ∆ and ∆ /S Θ. We show that R is a simulation.

But first, we claim that Θ /S ∆ /S Φ implies Θ R Φ. This can be proved similarly as in the case of CSP
(see the proof of Proposition 6.9 in [9]).

Now to show that R is a simulation, there are two cases to consider. Suppose s R Φ, i.e., s /S ∆ /S Φ.

• Suppose s
α
−−→ Θ, where α is either τ , a free action or a bound output action. From s /S ∆, we have

∆
α̂

==⇒ ∆′ and Θ /S ∆′. (6)

By Lemma 4.11 and (6), we have Φ
α̂

==⇒ Φ′ and ∆′ /S Φ′, and by the above claim and (6), Θ R Φ′.

• Suppose s
a(x)
−−→ Θ, so we have: for all w, there exist ∆1, ∆2, and ∆′ such that

∆
τ̂

==⇒ ∆1

a(x)
−−→ ∆2, ∆2[w/x]

τ̂
==⇒ ∆′, and Θ[w/x] /S ∆′. (7)

Since ∆ /S Φ, by Lemma 4.11 we have Φ
τ̂

==⇒ Φ1 and ∆1 /S Φ1. And since ∆1

a(x)
−−→ ∆2, by Lemma 4.10,

for all w, there exist Φ2, Φ3 and Φ4 such that:

Φ1
τ̂

==⇒ Φ2

a(x)
−−→ Φ3, Φ3[w/x]

τ̂
==⇒ Φ4, ∆2[w/x] /S Φ4.

Lemma 4.11, together with ∆2[w/x] /S Φ4 and ∆2[w/x]
τ̂

==⇒ ∆′, implies that Φ4
τ̂

==⇒ Φ5 and ∆′ /S Φ5

for some Φ5. From Θ[w/x] /S ∆′ and ∆′ /S Φ5, we have Θ[w/x] R Φ5. Putting it all together, we have:

Φ
τ̂

==⇒ Φ2

a(x)
−−→ Φ3, Φ3[w/x]

τ̂
==⇒ Φ5, Θ[w/x] R Φ5.

Thus R is indeed a simulation.

Proposition 4.13. The relation /FS is reflexive and transitive.

Proof. Reflexivity of /FS follows from Lemma 4.8. To show transivity, we use a similar argument as in the
proof of Proposition 4.12: define R such that s R Θ iff there exists ∆ such that s /FS ∆ and ∆ /FS Θ. We
show that R is a failure simulation.

Suppose s R Θ. The matching up of transitions between s and Θ is proved similarly to the case with
simulation, by proving the analog of Lemmas 4.9 - 4.11 for failure simulation. It then remains to show that

when s 6↓X then there exists Θ′ such that Θ
τ̂

==⇒ Θ′ 6↓X . Since s R Θ, by the definition of R, we have a ∆

s.t. s /FS ∆ and ∆ /FS Θ. The former implies that ∆
τ̂

==⇒ ∆′ 6↓X , for some ∆′. It can be shown that, using

arguments similar to the proof of Lemma 4.11 that Θ
τ̂

==⇒ Θ′ for some Θ′ such that ∆′ /FSΘ′. Suppose
d∆′e = {si}i∈I , i.e., ∆′ =

∑
i∈I pi ·δ[si] with

∑
i∈I pi = 1. Obviously, si 6↓X for each i ∈ I. By Proposition 4.2,

Θ =
∑
i∈I pi ·Θi for some distributions Θi such that δ[si] /FS Θi. The latter implies, by Definition 4.1, that

si /FS Θi. Since si 6↓X , it follows that Θi
τ̂

==⇒ Θ′i 6↓X , for some Θ′i. Thus Θ
τ̂

==⇒ (
∑
i∈I pi ·Θi) 6↓X .

Corollary 4.14. The relations vS and vFS are preorders.

Proof. The fact that vS is a preorder follows from Lemma 4.11 and Proposition 4.12. Similar arguments
hold for vFS , using an analog of Lemma 4.11 and Proposition 4.13.

5. Soundness of the simulation preorders

In proving soundness of the simulation preorders with respect to testing preorders, we first need to prove
certain congruence properties, i.e., closure under restriction and parallel composition. For this, it is helpful to
consider a slightly more general definition of simulation, which incorporates another relation. This technique,
called the up-to technique, has been used in the literature to prove congruence properties of various pre-orders
for the π-calculus [22].
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Definition 5.1 (Up-to rules). Let R ⊆ Sp × D(Sp). Define the relation Rt where t ∈ {r, ν, p} as the
smallest relation which satisfies the closure rule for t, given below (where σ is a renaming substitution):

s R ∆
sσ Rr ∆σ

r
s R ∆

(ν~x.s) Rν (ν~x.∆)
ν

s1 R ∆1 s2 R ∆2

(s1 | s2) Rp (∆1 | ∆2)
p

Definition 5.2 ((Failure) Simulation up-to). A relation R ⊆ Sp ×D(Sp) is said to be a (failure) simu-
lation up to renaming (likewise, restriction and parallel composition) if it satisfies the clauses 1, and 2, (and
3 for failure simulation) in Definition 4.3, but with R replaced by Rr (respectively, Rν and Rp).

It is easy to see that R ⊆ Rt for any t ∈ {r, ν} (i.e., via the identity relation as renaming substitution in
the former, and via the empty restriction in the latter). The following lemma is then an easy consequence.

Lemma 5.3. If R is a (failure) simulation then it is a (failure) simulation up-to renaming, and also a
(failure) simulation up to restriction.

Our objective is really to show that simulation up-to parallel composition is itself a simulation. This
would then entail that (the lifted) simulation is closed under parallel composition, from which soundness
w.r.t. may-testing follows. We prove this indirectly in three stages:

• simulation up-to renaming is a simulation;

• simulation up-to restriction is a simulation up-to renaming (hence also a simulation by the previous item);

• and, finally, simulation up-to parallel composition is a simulation up-to restriction.

5.1. Up to renaming

Note that as a consequence of Lemma 4.5 (1), given an injective renaming substitution σ, we have: if

sσ
α′

−−→ ∆′ then there exists α and ∆ such that α′ = ασ, ∆′ = ∆σ and s
α
−−→ ∆. This is proved by simply

applying Lemma 4.5 (1) to sσ
α′

−−→ ∆′ using the inverse of σ.
In the following, we shall write Rtt to denote (Rt)t, i.e., the result of applying the up-to closure rule t

twice to R.
Lemma 5.4. Rrr = Rr.
Lemma 5.5. If ∆1 Rr ∆2 then (∆1σ) Rr (∆2σ) for any renaming substitution σ.

Proof. This follows from the fact that ∆1 Rr ∆2 implies ∆1σ Rrr ∆2σ and that Rrr = Rr.
Lemma 5.6. If R is a (failure) simulation up to renaming, then Rr ⊆ /S (respectively, Rr ⊆ /FS).

Proof. Suppose R is a simulation. It is enough to show that Rr is a simulation. So suppose s Rr ∆ and

s
α
−−→ Θ. By the definition of Rr, s = s′σ and ∆ = ∆′σ for some renaming substitution σ and some s′ and

∆′ such that s′ R ∆′. There are several cases to consider depending on the type of α.

• α is τ or a free action: By Lemma 4.5 (1) we have s′
α′

−−→ Θ′ for some α′ and Θ′ such that α = α′σ and

Θ = Θ′σ. Since R is a simulation up to renaming, s′R∆′ implies that ∆′
α̂′

==⇒ ∆1 and Θ′ Rr ∆1. The

former implies, by Lemma 4.5 (2), that ∆
α̂

==⇒ ∆2 for some ∆2 such that ∆2 = ∆1σ, while the latter
implies, by Lemma 5.5, that Θ = (Θ′σ) Rr (∆1σ) = ∆2.

• α = a(x) for some a and x: In this case, x 6∈ fn(s,∆), so we can assume, without loss of generality, that

x does not occur in σ. Using a similar argument as in the previous case, we have that s′
b(x)
−−→ Θ′ for some

b and Θ′ such that σ(b) = a and Θ = Θ′σ. Since R is a simulation up to renaming, s′R∆′ implies that
for every name w, there exist ∆1

w, ∆2
w and ∆w such that:

∆′
τ̂

==⇒ ∆1
w

b(x)
−−→ ∆2

w, ∆2
w[w/x]

τ̂
==⇒ ∆w, and (8)

Θ′[w/x] Rr ∆w. (9)
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Let Φ1 = ∆1
wσ, Φ2 = ∆2

wσ and Φ = ∆wσ. From (8) and Lemma 4.5 (2) we get:

∆ = ∆′σ
τ̂

==⇒ ∆1
wσ = Φ1

a(x)
−−→ ∆2

wσ = Φ2.

By (8), the freshness assumption of x w.r.t. σ, and Lemma 4.5 (2), we get

Φ2[w/x] = ∆2
wσ[w/x] = ∆2

w[w/x]σ
τ̂

==⇒ ∆wσ = Φ.

Finally, by (9) and Lemma 5.5, Θ[w/x] = Θ′σ[w/x] = Θ′[w/x]σ Rr ∆wσ = Φ.

• α = ā(x): This case can be proved similarly to the previous cases.

For the case where R is a failure simulation, we additionally need to show that whenever s Rr ∆ and s 6↓X ,

we have ∆
τ̂

==⇒ Θ 6↓X for some Θ. Since sR∆, we have s = s′σ and ∆ = ∆′σ for some s′, ∆ and renaming
substitution σ. Let X ′ = Xσ−1, i.e., X ′ is the inverse image of X under σ. Then we have that s′ 6↓X′ , and

∆′
τ̂

==⇒ Θ′ 6↓X′ . Applying σ−1 to the latter, we obtain ∆
τ̂

==⇒ Θ 6↓X .

Lemma 5.7. Suppose P vS Q (P vFS Q) and σ is a renaming substitution. Then Pσ vS Qσ (respectively,
Pσ vFS Qσ).

Proof. Immediate from Lemma 5.6.

5.2. Up to name restriction

The following lemma says that transitions are closed under name restriction, if certain conditions are satisfied.

Lemma 5.8. 1. For every state-based process s, every action α and every list of names ~x such that {~x} ∩
n(α) = ∅, s

α
−−→ ∆ implies ν~x.s

α
−−→ ν~x.∆.

2. For every ∆ and Φ, every action α and every list of names ~x such that {~x}∩n(α) = ∅, ∆
α
−−→ Φ implies

ν~x.∆
α
−−→ ν~x.Φ.

3. Suppose s
āb
−−→ ∆ and suppose ~x and ~y are names such that {~x, ~y} ∩ {a, b} = ∅. Then ν~xνbν~y.s

ā(b)
−−→

ν~xν~y.∆.

Lemma 5.9. If ∆ Rν Θ then (ν~x.∆) Rν (ν~x.Θ)

Lemma 5.10. If R is a (failure) simulation up to restriction, then Rν ⊆ /S (respectively, Rν ⊆ /FS).

Proof. Suppose R is a simulation up to restriction. We show that Rν is a simulation up to renaming, hence
by Lemma 5.6 we have Rν ⊆ Rνr ⊆ /S .

Suppose s Rν∆ and s
α
−−→ Θ. By the definition of Rν , we have that s = ν~x.s′, ∆ = ν~x.∆′, and

s′[~y/~x] R ∆′[~y/~x] for some ~y such that {~y} ∩ fn(s,∆) = ∅.
There are several cases depending on how the transition s

α
−−→ Θ is derived. Note that there may be

implicit α-renaming involved in the derivations of a transition judgment. We assume that the names ~x are

chosen such that no α-renaming is needed in deriving the transition relation ν~x.s′
α
−−→ Θ, e.g., one such

choice would be one that avoids clashes with the free names in ~y, s, and ∆.

• α is either τ or a free action. In this case, the transition must have been derived as follows:

s′
α
−−→ Θ′

ν~x.s′
α
−−→ ν~x.Θ′

res

where Θ = ν~x.Θ′ and n(α) ∩ {~x} = ∅. Here a double-line in the inference rule indicates zero or more
applications of the rule. An inspection on the operational semantics will reveal that in this case, n(α) ⊆
fn(s) and fn(Θ) ⊆ fn(s). So in particular, {~y}∩n(α) = ∅. We thus can apply the renaming substitution

[~y/~x, ~x/~y] to get s′[~y/~x]
α
−−→ Θ′[~y/~x]. Since s′[~y/~x] R ∆′[~y/~x], we have that ∆′[~y/~x]

α
==⇒ ∆′′[~y/~x] and
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Θ′[~y/~x] Rν ∆′′[~y/~x]. The former implies, via Lemma 5.8 (1), that ν~x.∆′
α

==⇒ ν~x.∆′′ and the latter
implies, via Lemma 5.9, that (ν~x.Θ′) Rν (ν~x.∆′′). Since Rν ⊆ (Rν)r, we also have (ν~x.Θ′) Rνr (ν~x.∆′′).

• α = a(z): With a similar argument as in the previous case, we can show that in this case we must have

s
a(z)
−−→ Θ′ where Θ = ν~x.Θ′. We need to show that for every name w, there exist Γ1

w, Γ2
w and Γw such

that ∆
τ̂

==⇒ Γ1
w

a(z)
−−→ Γ2

w, Γ2
w[w/z]

τ̂
==⇒ Γw, and Θ[w/z] Rνr Γw.

Note that z 6∈ {~x}, but it may be the case that z ∈ {~y}. So we first apply a renaming [u/z, z/u, ~y/~x, ~x/~y],

for some fresh name u, to the transition s′
a(z)
−−→ Θ′ to get s′[~y/~x]

a(u)
−−→ Θ′[u/z, ~y/~x].

Since s′[~y/~x] R ∆′[~y/~x], we have, for every name w, some ∆1
w, ∆2

w and ∆w such that

∆′[~y/~x]
τ̂

==⇒ ∆1
w

a(u)
−−→ ∆2

w, ∆2
w[w/u]

τ̂
==⇒ ∆w, and (10)

Θ′[u/z, ~y/~x][w/u] = Θ′[w/z, ~y/~x] Rν ∆w[w/u]. (11)

Let Φ1
w, Φ2

w and Φw be distributions such that ∆1
w = Φ1

w[~y/~x], ∆2
w = Φ2

w[u/z, ~y/~x], and ∆w = Φw[~y/~x].
So in particular, ∆2

w[w/u] = Φ2
w[w/z, ~y/~x] and ∆w[w/u] = Φw[w/z, ~y/~x]. Then (10) can be rewritten as:

∆′[~y/~x]
τ̂

==⇒ Φ1
w[~y/~x]

a(u)
−−→ Φ2

w[u/z, ~y/~x] Φ2
w[w/z, ~y/~x]

τ̂
==⇒ Φw[~y/~x], (12)

and (11) can be rewritten as:

Θ′[w/z, ~y/~x] Rν Φw[w/z, ~y/~x]. (13)

Now, to define Γ1
w, Γ2

w and Γw, we need to consider two cases, based on the value of w. The reason is
that in the construction of Γw we need to bound the free names in Φw, so if z is substituted with a name
in ~y, it could get captured.

– w 6∈ {~x, ~y}. In this case, define:

Γ1
w = ν~x.Φ1

w, Γ2
w = ν~x.Φ2

w, Γw = ν~x.Φw.

By Lemma 5.8 (1) and (12), we have:

ν~x.∆′
τ̂

==⇒ Γ1
w

a(z)
−−→ Γ2

w, Γ2
w[w/z]

τ̂
==⇒ Γw

and by Lemma 5.9 and (13), we have

(Θ[w/z]) = (ν~x.Θ′)[w/z] Rν Γw,

hence also, (Θ[w/z]) = (ν~x.Θ′)[w/z] Rνr Γw.

– w ∈ {~x, ~y}. Let v be a new name (distinct from all other names considered so far). From the previous
case, we know how to construct Γ1

v, Γ2
v and Γv such that

ν~x.∆′
τ̂

==⇒ Γ1
v

a(z)
−−→ Γ2

v, Γ2
v[v/z]

τ̂
==⇒ Γv (Θ[v/z]) Rνr Γv. (14)

In this case, let Γ1
w = Γ1

v, Γ2
w = Γ2

v and Γw = Γv[w/v]. (Note that because subsitution is capture-
avoiding, the bound names in Γv will be renamed via α-conversion). Then by Lemma 4.5 (2) and
Lemma 5.5 and (14):

ν~x.∆′
τ̂

==⇒ Γ1
w

a(z)
−−→ Γ2

w, Γ2
v[w/z]

τ̂
==⇒ Γw (Θ[w/z]) Rνr Γw.

• If α is a bound output action, i.e., α = ā(b) for some a and b. There are two subcases to consider,
depending on whether b ∈ {~x} (i.e., one of the restriction names ~x is extruded) or not. The latter can be
proved similarly to the previous case. We show here a proof of the former case. So suppose b ∈ ~x, i.e.,
ν~x = ν~x1νbν~x2 and suppose that [~y/~x] maps b to c, i.e., ν~y = ν~y1νcν~y2. Suppose the transition relation
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is derived as follows:

s
āb
−−→ Θ′

ν~x2.s
āb
−−→ ν~x2.Θ

′
res

νbν~x2.s
ā(b)
−−→ ν~x2.Θ

′

open

ν~x1νbν~x2.s
′
ā(b)
−−→ ν~x1ν~x2.Θ

′
res

Applying the renaming [~y/~x, ~x/~y] we have: s[~y/~x]
āc
−−→ Θ′[~y/~x]. Since s′[~y/~x] R ∆′[~y/~x], we have that

∆′[~y/~x]
āc

==⇒ Φ, and Θ′[~y/~x] Rν Φ. (15)

Let Ψ[~y/~x] = Φ. Lemma 5.8 (3) and (15) imply that

ν~x.∆′ = ν~y1νc~y2.∆
′[~y/~x]

ā(c)
==⇒ ν~y1ν~y2.Ψ[~y/~x] = ν~x1~x2.Ψ[c/b]

and by an application of a renaming (Lemma 4.5 (1)) we get ν~x.∆′
ā(b)
==⇒ ν~x1ν~x2.Ψ. Lemma 5.9 and (15)

imply (ν~x1ν~x2.Θ
′[c/b])Rν (ν~x1ν~x2.Ψ[c/b]) hence, via the renaming [c/b, b/c], (ν~x1ν~x2.Θ

′)Rνr (ν~x1ν~x2.Ψ).

If R is a failure simulation up to restriction, we need to additionally show that Rν satisfies clause 3 of
Definition 4.3. Suppose s Rν Θ. Then s = ν~x.s′ and Θ = ν~x.Θ′ for some ~x, s′ and Θ′ such that s′ R Θ′.

Suppose s 6↓X . We need to show that Θ
τ̂

==⇒ ∆ such that ∆ 6↓X for some ∆. Since name restriction hides

visible actions, it can be shown that s′ 6↓X\{~x} iff ν~x.s′ 6↓X . So from s′ R Θ′ we have that Θ′
τ̂

==⇒ ∆′ 6↓X\{~x} .
Let ∆ = ν~x.∆′. Then by Lemma 5.8 (2), we have Θ = ν~x.Θ′

τ̂
==⇒ ν~x.∆′ = ∆ 6↓X .

Lemma 5.11. If P vS Q (P vFS Q) then (ν~x.P ) vS (ν~x.Q) (respectively, (ν~x.P ) vFS (ν~x.Q)).

Proof. This is a simple corollary of Lemma 5.3 and Lemma 5.10.

5.3. Up to parallel composition

The following lemma will be useful in proving the closure of simulation under parallel composition. It is
independent of the underlying calculus, and is originally proved in [9].

Lemma 5.12. 1. (
∑
j∈J pj · Φj) | (

∑
k∈K qk ·∆k) =

∑
j∈J

∑
k∈K(pj · qk) · (Φj | ∆k).

2. Suppose R,R′ ⊆ Sp × D(Sp) are two relations such that sR′∆ whenever s = s1 | s2 and ∆ = ∆1 | ∆2

with s1R∆1 and s2R∆2. Then Φ1R∆1 and Φ2R∆2 imply (Φ1 | Φ2)R′(∆1 | ∆2).

We also need a slightly more general substitution lemma for transitions than the one given in Lemma 4.5
(1). In the following, we denote with n(θ) the set of all names appearing in the domain and range of θ.

Lemma 5.13. For any substitution σ, the following hold:

1. If s
α
−−→ ∆ and bn(α) ∩ n(σ) = ∅ then sσ

ασ
−−→ ∆σ.

2. If ∆
α̂

==⇒ Φ and bn(α) ∩ n(σ) = ∅ then ∆σ
α̂σ

==⇒ Φσ.

The following lemma shows that transitions are closed under parallel composition, under suitable condi-
tions.

Lemma 5.14. 1. If s
α
−−→ ∆ and fn(s′) ∩ bn(α) = ∅ then s | s′

α
−−→ ∆ | δ[s′] and s′ | s

α
−−→ δ[s′] | ∆.

2. If Φ
α̂

==⇒ ∆, where α is either τ , a free action or a bound output, and fn(Φ′) ∩ bn(α) = ∅ then

Φ | Φ′
α̂

==⇒ ∆ | Φ′ and Φ′ | Φ
α̂

==⇒ Φ′ | ∆.

3. If Φ
a(y)
−−→ Φ′ and ∆

āw
−−→ ∆′ then Φ | ∆

τ
−−→ Φ′[w/y] | ∆′.
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4. If Φ
a(y)
−−→ Φ′ and ∆

ā(y)
−−→ ∆′ then Φ | ∆

τ
−−→ νy.(Φ′ | ∆′).

Lemma 5.15. If R is a simulation, then Rp ⊆ /S .

Proof. We show that Rp is a simulation up to restriction, and therefore, by Lemma 5.10, it is included in /S .

So suppose s Rp ∆ and s
α
−−→ Θ. By definition, we have s = s1 | s2 and ∆ = ∆1 | ∆2 such that s1 R ∆1

and s2 R ∆2. There are several cases to consider depending on the type of α:

• α is a free output action. There can be two ways in which the transition s
α
−−→ Θ is derived. We show

here one case; the other case is symmetric. So suppose the transition is derived as follows:

s1

α
−−→ Θ′

s1 | s2

α
−−→ Θ′ | δ[s2]

par

where Θ = Θ′ | δ[s2]. Since s1 R ∆1, we have ∆1
α̂

==⇒ ∆′1 and Θ′ R ∆′1. The former implies, via

Lemma 5.14 (2), that ∆1 | ∆2
α̂

==⇒ ∆′1 | ∆2. Since s2 R ∆2 by assumption, and therefore δ[s2] R ∆2, by
Lemma 5.12 (2) we have Θ = (Θ′ | δ[s2]) Rp (∆′1 | ∆2) and therefore also Θ = (Θ′ | δ[s2]) Rpν (∆′1 | ∆2).

• α = a(y) and y 6∈ fn(s,∆). That is, in this case, the transition is derived as follows:

s1

a(y)
−−→ Θ′

s1 | s2

a(y)
−−→ Θ′ | δ[s2]

par

and y 6∈ fn(s2). (There is another symmetric case which we omit here.) Since s1 R ∆1, we have, for
every name w, some ∆1

w, ∆2
w and ∆w such that:

∆1
τ̂

==⇒ ∆1
w

a(y)
−−→ ∆2

w, ∆2
w[w/y]

τ̂
==⇒ ∆w, and (16)

Θ′[w/y] R ∆w. (17)

From (16) above and Lemma 5.14 (2), and the assumption that y 6∈ fn(s,∆), we have

∆1 | ∆2
τ̂

==⇒ ∆1
w | ∆2

a(y)
−−→ ∆2

w | ∆2, ∆2
w[w/y] | ∆2

τ̂
==⇒ ∆w | ∆2.

Since s2 R ∆2, and therefore δ[s2] R ∆2, it then follows from (17) and Lemma 5.12 (2) that Θ[w/y] =
(Θ′[w/y] | δ[s2]) Rp (∆w | ∆2) and therefore Θ[w/y] = (Θ′[w/y] | δ[s2]) Rpν (∆w | ∆2).

• α = ā(y) and y 6∈ fn(s,∆). This case is similar to the previous cases, except that we only need to consider
an instantiation of y with a fresh name.

• α = τ and the transition s
τ
−−→ Θ is derived via a Com-rule. We show here one case; the other case can

be dealt with symmetrically. So suppose the transition is derived as follows:

s1

a(y)
−−→ Θ1 s2

āw
−−→ Θ2

s1 | s2

τ
−−→ Θ1[w/y] | Θ2

com

Without loss of generality, we can assume that y 6∈ fn(s,∆). Since s1 R ∆1 and s2 R ∆2, we have:

– For every name w, there are Λ1, Λ2 and ∆w
1 such that

∆1
τ̂

==⇒ Λ1

a(y)
−−→ Λ2, Λ2[w/y]

τ̂
==⇒ ∆w

1 and (18)

Θ1[w/y] R ∆w
1 (19)

– There exists ∆′2 such that

∆2
τ̂

==⇒ Φ1

āw
−−→ Φ2

τ̂
==⇒ ∆′2 and (20)

Θ2 R ∆′2 (21)
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From (18), (20), and Lemma 5.14 (2)-(3), we have:

∆1 | ∆2
τ̂

==⇒ Λ1 | Φ1

τ
−−→ Λ2[w/y] | Φ2

τ̂
==⇒ ∆w

1 | ∆′2,

and Lemma 5.12 (2), together with (19) and (21), implies (Θ1[w/y] | Θ2) Rp (∆w
1 | ∆′2) and therefore

(Θ1[w/y] | Θ2) Rpν (∆w
1 | ∆′2).

• α = τ and the transition s
τ
−−→ Θ is derived via the Close-rule:

s1

a(y)
−−→ Θ1 s2

ā(y)
−−→ Θ2

s1 | s2

τ
−−→ νy.(Θ1 | Θ2)

close.

Again, we only show one of the two symmetric cases. Without loss of generality, assume that y is chosen
to be fresh w.r.t. s and ∆. Since s1 R∆1 and s2 R∆2, we have:

– For every name w, there are Λ1, Λ2 and ∆w
1 such that

∆1
τ̂

==⇒ Λ1

a(y)
−−→ Λ2, Λ2[w/y]

τ̂
==⇒ ∆w

1 and Θ1[w/y] R ∆w
1 .

Note that letting w = y, we have

∆1
τ̂

==⇒ Λ1

a(y)
−−→ Λ2, Λ2

τ̂
==⇒ ∆y

1 and (22)

Θ1 R ∆y
1 (23)

– There exist Φ1, Φ2 and ∆′2 such that

∆2
τ̂

==⇒ Φ1

ā(y)
−−→ Φ2

τ̂
==⇒ ∆′2 and (24)

Θ2 R ∆′2 (25)

Then, by (22), (24), Lemma 5.14 (2) and (4), and Lemma 5.8 (1), we have:

∆1 | ∆2
τ̂

==⇒ Λ1 | Φ1

τ
−−→ νy.(Λ2 | Φ2)

τ̂
==⇒ νy.(∆y

1 | ∆′2).

Lemma 5.12 (2), together with (23) and (25), implies (Θ1 | Θ2) Rp (∆y
1 | ∆′2), which also means:

(Θ1 | Θ2) Rpν (∆y
1 | ∆′2). Now by Lemma 5.9, the latter implies that

νy.(Θ1 | Θ2) Rpν νy.(∆y
1 | ∆′2).

Lemma 5.16. If R is a failure simulation, then Rp ⊆ /FS .

Proof. Suppose sRp∆ and s 6↓X . By definition, we have s = s1 | s2 and ∆ = ∆1 | ∆2 such that s1 R ∆1 and
s2 R ∆2. Then we have si 6↓X for i = 1, 2. Define a set A as follows:

A = {a, ā | a ∈ fn(s1, s2,∆1,∆2)} ∪X.

That is, A contains the set of free (co-)names in si and ∆i and X. Let Xi be the largest set such that X ⊆
Xi ⊆ A and si 6↓Xi

. Since R is a failure simulation, it follows that there exist ∆′i such that ∆i
τ

==⇒ ∆′i 6↓Xi
.

By Lemma 5.14 (2), we have ∆1 | ∆2
τ

==⇒ ∆′1 | ∆′2. We claim that (∆′1 | ∆′2) 6↓X . Suppose otherwise, that

is, there exist t1 ∈ d∆′1e and t2 ∈ d∆′2e such that either (t1 | t2) ↓µ, for some µ ∈ X, or (t1 | t2)
τ
−−→. If

(t1 | t2) ↓µ then our operational semantics entails that either t1 ↓µ or t2 ↓µ, which contradicts the fact that

∆′i 6↓Xi . So let’s assume that (t1 | t2)
τ
−−→ . Again, from the assumption ∆′i 6↓Xi , we can immediately rule

out the cases where ti
τ
−−→ or ti ↓µ, for some µ ∈ X. This leaves us only with the cases where t1

µ
−−→ and

t2
µ̄
−−→ where µ 6∈ X and µ̄ 6∈ X. But since ∆′i 6↓Xi

, this can only be the case if µ 6∈ X1 and µ̄ 6∈ X2. From
the operational semantics, it is easy to see that fn(∆′1,∆

′
2) ⊆ fn(∆1,∆2), so it must be the case that µ ∈ A
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and µ̄ ∈ A. It also must be the case that s1 ↓µ, for otherwise, it would contradict the “largest” property of

X1. Similarly, we can argue that s2 ↓µ̄. But then this would imply that (s1 | s2)
τ
−−→, contradicting the fact

that (s1 | s2) 6↓X .
The matching up of transitions and the using of R to prove the preservation property of /FS under

parallel composition are similar to those in the corresponding proof in Lemma 5.15 for simulations, so we
omit them.

Lemma 5.17. 1. If P1 vS Q1 and P2 vS Q2 then P1 | P2 vS Q1 | Q2.

2. If P1 vFS Q1 and P2 vFS Q2 then P1 | P2 vFS Q1 | Q2.

Proof. It is enough to show that (/S)p ⊆ /S and (/FS)p ⊆ /FS , which follow directly from Lemmas 5.15 and
5.16 respectively.

5.4. Soundness

We now proceed to proving the main result, which is that P vS Q implies P vpmay Q, and P vFS Q implies
P vpmust Q. The structure of the proof follows closely that of [7]. Most of the intermediate lemmas in this
section are not specific to the π-calculus; rather, they utilise the underlying pLTS semantics.

Let πω be the set of all π processes that may use action ω. We write s
α
−−→ω ∆ if either α = ω or α 6= ω

but both s 6 ω−→ and s
α
−−→ ∆ hold. We define

τ̂
−−→w as we did for

τ̂
−−→, using

τ
−−→ω in place of

τ
−−→.

Similarly, we define ==⇒ω and
α̂

==⇒ω. Simulation and failure simulation are adapted to πω as follows.

Definition 5.18. Let /eFS ⊆ πω ×D(πω) be the largest relation such that s /eFS Θ implies

• If s
a(x)
−−→ω ∆ and x 6∈ fn(s,Θ), then for every name w, there exists Θ1, Θ2 and Θ′ such that

Θ
τ̂

==⇒ω Θ1

a(x)
−−→ω Θ2, Θ2[w/x]

τ̂
==⇒ω Θ′, and (∆[w/x]) R Θ′.

• if s
α
−−→ω ∆ and α is not an input action, then there is some Θ′ with Θ

α̂
==⇒ω Θ′ and ∆ /eFS Θ′

• if s 6↓X with ω ∈ X then there is some Θ′ with Θ
τ̂

==⇒ω Θ′ and Θ′ 6↓X .

Similarly we can define /eS by dropping the third clause. Let P veFS Q if [[P ]]
τ̂

==⇒ω Θ for some Θ with

[[Q]] /eFS Θ. Similarly, P veS Q if [[Q]]
τ̂

==⇒ω Θ for some Θ with [[P ]] /eS Θ.

Note that for π-processes P,Q, there is no action ω, therefore we have P vFS Q iff P veFS Q, and P vS Q
iff P veS Q.

Lemma 5.19. Let P,Q be processes in π and T be a process in πω.

1. If P vS Q then T | P veS T | Q.

2. If P vFS Q then T | P veFS T | Q.

Proof. Similar to the proof of Lemma 5.17.

Lemma 5.20. 1. P vpmay Q if and only if for every test T we have

max(V([[ν~x.(T | P )]])) ≤ max(V([[ν~x.(T | Q)]]))

where ~x contain the free names of T , P and Q, excluding ω.

2. P vpmust Q if and only if for every test T we have

min(V([[ν~x.(T | P )]])) ≤ min(V([[ν~x.(T | Q)]]))

where ~x contain the free names of T , P and Q, excluding ω.

Proof. The results follow from the simple fact that, for non-empty finite outcome sets O1, O2,

• O1 vHo O2 iff max(O1) ≤ max(O2)
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• O1 vSm O2 iff min(O1) ≤ min(O2)

which is established as Proposition 2.1 in [9].

Lemma 5.21. ∆1
τ̂

==⇒ ∆2 implies max(V(∆1)) ≥ max(V(∆2)) and min(V(∆1)) ≤ min(V(∆2)).

Proof. Similar properties are proven in [9, Lemma 6.15] using a function maxlive instead of max ◦ V.
Essentially the same arguments apply here.

Proposition 5.22. 1. ∆1 /eS ∆2 implies max(V(∆1)) ≤ max(V(∆2)).

2. ∆1 /eFS ∆2 implies min(V(∆1)) ≥ min(V(∆2)).

Proof. The first clause is proven in [9, Proposition 6.16] using a function maxlive instead of max ◦ V. The
second clause is proven in [7, Proposition 4.10]

Theorem 5.23. 1. P vS Q implies P vpmay Q
2. P vFS Q implies P vpmust Q.

Proof. We prove the second statement; similar is the first one. Suppose P vFS Q. Given Proposition 5.20,
it is sufficient to show that for every test T ,

min(V([[ν~x(T | P )]])) ≤ min(V([[ν~x(T | Q)]]))

where ~x contain the free names of T , P andQ, but excluding ω. SincevFS is preserved by parallel composition
(cf. Lemma 5.19) and name restriction, we have that ν~x(T | P ) veFS ν~x(T | Q), which means there is a Θ

such that [[ν~x(T | P )]]
τ̂

==⇒ Θ and [[ν~x(T | Q)]] /eFS Θ. The result then follows from Proposition 5.22 and
Lemma 5.21.

6. A modal logic for πp

We consider a modal logic based on a fragment of Milner-Parrow-Walker’s (MPW) modal logic for the (non-
probabilistic) π-calculus [18], but extended with a probabilistic disjunction operator ⊕, similar to that used
in [7]. The language of formulas is given by the following grammar:

ϕ ::= > | ref(X) | 〈a(x)〉ϕ | 〈āx〉ϕ | 〈ā(x)〉ϕ | ϕ1 ∧ ϕ2 | ϕ1 p⊕ϕ2

The x’s in 〈a(x)〉ϕ and 〈ā(x)〉ϕ are binders, whose scope is over ϕ. The diamond operator 〈a(x)〉 is called a
bound input modal operator, 〈āx〉 a free output modal operator and 〈ā(x)〉 a bound output modal operator.
In the formula ref(X), X is a set consisting of names and/or co-names. Intuitively, X in ref(X) can be seen
as a “refusal” set, i.e., a process that satisfies this formula cannot make any transition on the channels in X.
A process satisfies a probabilistic disjunction ϕ1 p⊕ϕ2 if it can be partitioned (via internal transitions) into
two probabilistic distributions, one satisfying ϕ1 and the other satisfying ϕ2.

Instead of binary conjunction and probabilistic disjunction, we sometimes write
∧
i∈I ϕi and ϕ1 p⊕ϕ2 for

finite index set I; they can be expressed by nested use of their binary forms. We refer to this modal logic as
F . Let L be the sub-logic of F by skipping the ref(X) clause. The semantics of F is defined as follows.

Definition 6.1. The satisfaction relation |= between a distribution and a modal formula is defined induc-
tively as follows:

• ∆ |= > always.

• ∆ |= ref(X) iff there is a ∆′ with ∆
τ̂

==⇒ ∆′ and ∆′ 6↓X .

• ∆ |= 〈a(x)〉ϕ iff for all z there are ∆1, ∆2, ∆′ and w such that ∆
τ̂

==⇒ ∆1

a(w)
−−→ ∆2, ∆2[z/w]

τ̂
==⇒ ∆′

and ∆′ |= ϕ[z/x].

• ∆ |= 〈āx〉ϕ iff for some ∆′, ∆
̂̄ax

==⇒ ∆′ and ∆′ |= ϕ.

• ∆ |= 〈ā(x)〉ϕ iff for some ∆′ and w 6∈ fn(ϕ,∆), ∆
̂̄a(w)
==⇒ ∆′ and ∆′ |= ϕ[w/x].

• ∆ |= ϕ1 ∧ ϕ2 iff ∆ |= ϕ1 and ∆ |= ϕ2.
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• ∆ |= ϕ1 p⊕ϕ2 iff there are ∆1,∆2 ∈ D(Sp) with ∆1 |= ϕ1 and ∆2 |= ϕ2, such that ∆
τ̂

==⇒ p ·∆1 + (1−
p) ·∆2.

We write ∆ vL Θ just when ∆ |= ψ implies Θ |= ψ for all ψ ∈ L, and ∆ vF Θ just when Θ |= ϕ implies
∆ |= ϕ for all ϕ ∈ F . We write P vL Q when [[P ]] vL [[Q]], and P vF Q when [[P ]] vF [[Q]].

Following [7], in order to show soundness of the logical preorders w.r.t. the simulation pre-orders, we
need to define a notion of characteristic formulas.

Definition 6.2 (Characteristic formula). The F-characteristic formulas ϕs and ϕ∆ of, respectively, a
state-based process s and a distribution ∆ are defined inductively as follows:

ϕs :=
∧
{〈α〉ϕ∆ | s

α
−−→ ∆} ∧ ref({µ | s 6↓µ}) if s 6

τ
−−→,

ϕs :=
∧
{〈α〉ϕ∆ | s

α
−−→ ∆, α 6= τ} ∧

∧
{ϕ∆ | s

τ
−−→ ∆} otherwise.

ϕ∆ :=
⊕

s∈d∆e∆(s) · ϕs

where
⊕

is a generalised probabilistic choice as in Section 2. The L-characteristic formulas ψs and ψ∆ are
defined likewise, but omitting the conjuncts ref({µ | s 6↓µ}).

Note that because we use the late semantics (cf. Figure 1), the conjunction in ϕs is finite even though there
can be infinitely many (input) transitions from s.

Example 6.3. Let P and Q be as given in Example 4.4. The characteristic formula for P is

ϕP = 〈a(x)〉(〈āc〉> 1
2
⊕>).

We show that [[Q]] |= ϕP . By Definition 6.1, it is enough to show that, for every z, there are ∆1, ∆2 and ∆′

such that [[Q]]
τ̂

==⇒ ∆1

a(x)
−−→ ∆2, ∆2[z/x]

τ̂
==⇒ ∆′ and ∆′ |= 〈āc〉. The first two conditions are satisfied by

letting ∆1 = [[Q]], ∆2 = 1
2 · [x = b]āc+ 1

2 · [x 6= b]āc and ∆′ = ∆2[z/x]. It remains to show ∆′ |= 〈āc〉> 1
2
⊕>.

Let ∆′1 = [z = b]āc and ∆′2 = [z 6= b]āc. Then obviously ∆′ = 1
2 ·∆

′
1 + 1

2 ·∆
′
2. To show ∆′ |= 〈āc〉> 1

2
⊕>, we

do case analysis on z:

• If z = b, then we have ∆′1 |= 〈āc〉> and ∆′2 |= >. Then ∆′ |= 〈āc〉> 1
2
⊕> follows immediately.

• Otherwise z 6= b. In this case, we have ∆′1 |= > and ∆′2 |= 〈āc〉>. Again, ∆′ |= 〈āc〉> 1
2
⊕> follows.

Given a state based process s, we define its size, |s|, as the number of process constructors and names in
s. The following lemma is straightforward from the definition of the operational semantics of πp.

Lemma 6.4. If s
α
−−→ ∆ then |s| > |t| for every t ∈ d∆e.

Lemma 6.5. For every ∆ ∈ D(Sp), ∆ |= ϕ∆, as well as ∆ |= ψ∆.

Proof. It is enough to show that δ[s] |= ϕs. This is proved by induction on |s|. So suppose s 6
τ
−−→. Then:

ϕs = ref({µ | s 6↓µ})∧∧
{〈a(x)〉ϕ∆ | s

a(x)
−−→ ∆} ∧

∧
{ϕ∆ | s

τ
−−→ ∆}∧∧

{〈āx〉ϕ∆ | s
āx
−−→ ∆} ∧

∧
{〈ā(x)〉ϕ∆ | s

ā(x)
−−→ ∆}.

where ϕ∆ =
⊕

s∈d∆e∆(s).ϕs. For each of the conjunct φ, we prove that δ[s] |= φ. We show here two cases;

the other cases are similar.

• φ = ref(X), where X = {µ | s 6↓µ}. For each µ ∈ X we have s 6↓µ. Since s 6
τ
−−→, we see that s 6↓X .

• φ = 〈a(x)〉ϕ∆. So suppose s
a(x)
−−→ ∆ and d∆e = {si | i ∈ I} and ∆ =

∑
i∈I pi · δ[si]. Since |si| < |s|, by

the induction hypothesis, for every name w, we have δ[si[w/x]] |= ϕsi[w/x] and therefore:

∆[w/x] =
∑
i∈I

pi · δ[si[w/x]] |=
⊕
i∈I

pi · ϕsi[w/x] = ϕ∆[w/x].
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Let Φ1 = Φ2 = δ[s]. Obviously we have, for every w, Φ1
τ̂

==⇒ Φ2

a(x)
−−→ ∆ and ∆[w/x] |= ϕ∆[w/x]. So by

Definition 6.1, δ[s] |= φ.

Lemma 6.6. For any processes P and Q, [[P ]] |= ϕ[[Q]] implies P vFS Q, and likewise [[Q]] |= ψ[[P ]] implies
P vS Q.
Proof. Let R be the relation defined as follows: s R Θ iff Θ |= ϕs. We first prove the following claim:

Θ |= ϕ∆ implies there exists Θ′ such that Θ
τ̂

==⇒ Θ′ and ∆ R Θ′. (26)

To prove this claim (following [7]), suppose that Θ |= ∆. By definition, ϕ∆ =
⊕

i∈I pi · ϕsi and ∆ =∑
i∈I pi ·δ[si]. For every i ∈ I, we have Θi ∈ D(Sp) with Θi |= ϕsi such that Θ

τ̂
==⇒ Θ′ with Θ′ =

∑
i∈I pi ·Θi.

Since si R Θi for all i ∈ I, we have ∆ R Θ′.
We now proceed to show that R is a failure simulation, hence proving the first statement of the lemma.

So suppose s R Θ.

1. Suppose s
τ
−−→ ∆. By the definition of R, we have Θ |= ϕs. By Definition 6.2, we also have Θ |= ϕ∆. By

(26) above, there exists Θ′ such that Θ
τ̂

==⇒ Θ′ and ∆ R Θ′.

2. Suppose s
āx
−−→ ∆. Then by Definition 6.2, Θ |= 〈āx〉ϕ∆. So Θ

āx
==⇒ Θ′ and Θ′ |= ϕ∆, for some Θ′. By

(26), there exists Θ′′ such that Θ′
τ̂

==⇒ Θ′′ and ∆ R Θ′′. This means that Θ
āx

==⇒ Θ′′ and ∆ R Θ′′.

3. Suppose s
a(x)
−−→ ∆ for some x 6∈ fn(s,Θ). By Definition 6.2, Θ |= 〈a(x)〉ϕ∆. This means for every name

z, there exists Θ1
z, Θ2

z and Θz such that Θ
τ̂

==⇒ Θ1
z

a(x)
−−→ Θ2

z, Θ2
z[z/x]

τ̂
==⇒ Θz and Θz |= ϕ∆[z/x].1 Then

by (26) we have Θz
τ̂

==⇒ Θ′z and ∆[z/x] R Θ′z. So we indeed have, for every name z, Θ1
z, Θ2

z and Θ′z s.t.

Θ
τ̂

==⇒ Θ1
z

a(x)
−−→ Θ2

z, Θ2
z[z/x]

τ̂
==⇒ Θ′z and ∆[z/x] R Θ′z.

4. Suppose s
ā(x)
−−→ ∆. This case is similar to the previous one, except that we need only to consider one

instance of x with a fresh name.

5. Suppose s 6↓X for a set of channel names X. By Definition 6.2, we have Θ |= ref(X). Hence, there is

some Θ′ with Θ
τ̂

==⇒ Θ′ and Θ′ 6↓X .

To establish the second statement, define R by sRΘ iff Θ |= ψs. Just as above it can be shown that R
is a simulation. Then the second statement of the lemma easily follows.

Theorem 6.7. 1. If P vL Q then P vS Q.
2. If P vF Q then P vFS Q.
Proof. Suppose P vL Q. By Lemma 6.5, we have [[P ]] |= ψ[[P ]], hence [[Q]] |= ψ[[P ]]. Then by Lemma 6.6, we
have P vS Q. For the second statement, assume P vFS Q, we have [[Q]] |= ϕ[[Q]] and hence [[P ]] |= ϕ[[Q]], and
thus P vFS Q.

7. Completeness of the simulation preorders

To prove completeness, we use the same approach as [7], by resorting to vector-based testing (see Section 3
and Theorem 3.3). In the following, we assume a function new that takes as an argument a finite set of
names and outputs a fresh name, i.e., if new(N) = x then x 6∈ N. If N = {x1, . . . , xn}, we write [x 6= N ]P
to abbreviate [x 6= x1][x 6= x2] · · · [x 6= xn]P.

1 Strictly speaking, we should also consider the case where Θ1
z

a(w)
−−→ Θ2

z , but it is easy to see that since x 6∈ fn(s,Θ) we can
always apply a renaming to rename w to x.
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For convenience of presentation, we write ~ω for the vector in [0, 1]Ω defined by ~ω(ω) = 1 and ~ω(ω′) = 0
for any ω′ 6= ω. We also extend the ApplyΩ function to allow applying a test to a distribution, defined as
ApplyΩ(T,∆) = V(ν~x([[T ]] | ∆)) where ~x = fn(T,∆)− Ω.

Lemma 7.1. If ∆ |= ϕ then ∆σ |= ϕσ for any renaming substitution σ.

In the following, given a name a, we write a.P to denote a(y).P for some y 6∈ fn(P ). Similarly, we write
ā.P to denote āa.P. Recall that the size of a state-based process, |s|, is the number of symbols in s. The size
of a distribution ∆, written |∆|, is the multiset {|s| | s ∈ d∆e}. There is a well-founded ordering on |∆|, i.e.,
the multiset (of natural numbers) ordering, which we shall denote with ≺.

Lemma 7.2. Let P be a process and T, Ti be tests.

1. o ∈ ApplyΩ(ω, P ) iff o = ~ω.

2. Let X = {µ1, ..., µn} and T = µ1.ω + ...+ µn.ω. Then ~0 ∈ ApplyΩ(T, P ) iff [[P ]]
τ̂

==⇒ ∆ for some ∆ with
∆ 6↓X .

3. Suppose the action ω does not occur in the test T . Then o ∈ ApplyΩ(ω + a(x).([x = y]τ.T + ω), P ) with

o(ω) = 0 iff there is ∆ such that [[P ]]
̂̄ay

==⇒ ∆ and o ∈ ApplyΩ(T [y/x],∆).

4. Suppose the action ω does not occur in the test T and fn(P ) ⊆ N . Then o ∈ ApplyΩ(ω + a(x).([x 6=

N ]τ.T + ω), P ) with o(ω) = 0 iff there is ∆ such that [[P ]]
̂̄a(y)

==⇒ ∆ and o ∈ ApplyΩ(T [y/x],∆).

5. Suppose the action ω does not occur in the test T . Then o ∈ ApplyΩ(ω+ āx.T, P ) with o(ω) = 0 iff there

are ∆, ∆1 and ∆2 such that [[P ]]
τ̂

==⇒ ∆1

a(y)
−−→ ∆2, ∆2[x/y]

τ̂
==⇒ ∆ and o ∈ ApplyΩ(T,∆).

6. o ∈ ApplyΩ(
⊕

i∈I pi · Ti, P ) iff o =
∑
i∈I pi · oi for some oi ∈ ApplyΩ(Ti, P ) for all i ∈ I.

7. o ∈ ApplyΩ(
∑
i∈I τ.Ti, P ) if for all i ∈ I there are qi ∈ [0, 1] and ∆i such that

∑
i∈I qi = 1, [[P ]]

τ̂
==⇒∑

i∈I qi ·∆i and o =
∑
i∈I qi · oi for some oi ∈ ApplyΩ(Ti,∆i).

Proof. The proofs of items 1 and 2 are similar to the proofs of Lemma 6.7(1) and 6.7(2) in [7] for pCSP;
items 6 and 7 correspond to Lemma 6.7(4) and Lemma 6.7(5) in [7], respectively. Items 3, 4 and 5 have
a counterpart in Lemma 6.7(3) of [7], but they are quite different, due to the name-passing feature of the
π-calculus, and the possibility of checking the identity of the input value via the match and the mismatch
operators. We show here a proof of item 3; the proofs of items 4 and 5 are similar.

We first generalize item 3 to distributions: given ω and T as above, we have, for every distribution Θ,

o ∈ ApplyΩ(ω + a(x).([x = y]τ.T + ω),Θ) with o(ω) = 0 iff there is ∆ such that Θ
̂̄ay

==⇒ ∆ and o ∈ ApplyΩ(T [y/x],∆).

The ‘if’ part is straightforward from Definition 3.2. We show the ‘only if’ part here. The proof will make use
of the following claim (easily proved by induction on |Θ|):

Claim: o ∈ ApplyΩ([y = y]τ.T [y/x] + ω,Θ) with o(ω) = 0 iff

there is ∆ such that Θ
τ̂

==⇒ ∆ and o ∈ ApplyΩ(T [y/x],∆).
(27)

So, suppose we have o ∈ ApplyΩ(ω + a(x).([x = y]τ.T + ω),Θ) with o(ω) = 0. We show, by induction on

|Θ|, that there exists ∆ such that Θ
āy

==⇒ ∆ and o ∈ ApplyΩ(T [y/x],∆). Let T ′ = ω+ a(x).([x = y]τ.T +ω),
and suppose Θ = p1 ·δ[s1]+ . . .+pn ·δ[sn], for pairwise distinct state-based processes s1, . . . , sn, and suppose
that ~z is an enumeration of the set fn(T ′,Θ)− Ω. Then

ApplyΩ(T ′,Θ) = VΩ(p1 · δ[ν~z(T ′|s1)] + . . .+ pn · δ[ν~z(T ′|sn)]).

From Definition 3.2, in order to have o(ω) = 0, it must be the case that ν~z(T ′|sj)
τ
−−→ for every j ∈

{1, . . . , n}. From the definition of the operational semantics, there are two cases where this might happen:

• For some i, si
τ
−−→ Λ for some distribution Λ. Let Θ′ = p1 · δ[s1] + . . . + pi · Λ + . . . + pn · δ[sn]. Then

we have Θ
τ̂
−−→ Θ′ and ν~z(T ′|Θ)

τ̂
−−→ ν~z(T ′|Θ′). The latter means that o ∈ VΩ(ν~z(T ′|Θ′)) as well. By

Lemma 6.4, we know that |Λ| ≺ {|si|}, and therefore |Θ′| ≺ |Θ|. By the induction hypothesis,

Θ
τ̂
−−→ Θ′

̂̄ay
==⇒ ∆ and o ∈ ApplyΩ(T [y/x],∆).
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• For every i ∈ {1, . . . , n}, we have si 6
τ
−−→ . This can only mean that the τ transition from ν~z(T ′|si) derives

from a communiation between T ′ and si. This means that si ↓ā, for every i ∈ {1, . . . , n}. We claim that,

in fact, for every i, we have si
āy
−−→ Θi, for some Θi. For otherwise, we would have that for some j,

ν~z(T ′|sj)
τ
−−→ ν~z(([u = y]τ.T [y/x] + ω) | Θj), for some u distinct from y. But this means that only the

ω action is enabled in the test, so all results of VΩ(ν~z(([u = y]τ.T [y/x] + ω) | Θi)) in this case would
have a non-zero ω component, which would mean that o(ω) would be non-zero as well, contradicting the

assumption that o(ω) = 0. So, we have si
āy
−−→ Θi for every i ∈ {1, . . . , n}. Let Θ′ = p1 ·Θ1 + . . .+pn ·Θn.

Then we have Θ
āy
−−→ Θ′ and ν~z(T ′ | Θ)

τ
−−→ ν~z(T ′′ | Θ′) where T ′′ = [y = y]τ.T [y/x] + ω. The latter

transition means that o ∈ VΩ(ν~z(T ′′ | Θ′)) = ApplyΩ(T ′′,Θ′). We can therefore apply Claim 27 to get:

Θ
āy
−−→ Θ′

τ̂
==⇒ ∆ and o ∈ ApplyΩ(T [y/x],∆).

Lemma 7.3. If o ∈ ApplyΩ(
∑
i∈I τ.Ti, P ) then for all i ∈ I there are qi ∈ [0, 1] and ∆i with

∑
i∈I qi = 1

such that [[P ]]
τ̂

==⇒
∑
i∈I qi ·∆i and o =

∑
i∈I qi · oi for some oi ∈ ApplyΩ(Ti,∆i).

Proof. The proof is similar to the proof of Lemma 6.8 in [7].

The key to the completeness proof is to find a ‘characteristic test’ for every formula ϕ ∈ L with a certain
property. The construction of these characteristic tests is given in the following lemma. Note that unlike in
the case of pCSP [7], this construction is parameterised by a finite set of names N , representing the set of
free names of the process/distribution on which the test applies to. This parameter is important for the test
to be able to detect output of fresh names.

Lemma 7.4. For every finite set of names N and every ϕ ∈ F such that fn(ϕ) ⊆ N , there exists a test
T〈N,ϕ〉 and vϕ ∈ [0, 1]Ω, such that

∆ |= ϕ iff ∃o ∈ ApplyΩ(T〈N,ϕ〉,∆) : o ≤ vϕ (28)

for every ∆ with fn(∆) ⊆ N , and in case ϕ ∈ L we also have

∆ |= ϕ iff ∃o ∈ ApplyΩ(T〈N,ϕ〉,∆) : o ≥ vϕ. (29)

T〈N,ϕ〉 is called a characteristic test of ϕ and vϕ its target value.

Proof. The characteristic tests and target values are defined by induction on ϕ:

• ϕ = >: Let T〈N,ϕ〉 := ω for some ω ∈ Ω and vϕ := ~ω.

• ϕ = ref(X) with X = {µ1, ..., µn}. Let Tϕ := µ1.ω + ...+ µn.ω for some ω ∈ Ω, and vϕ = ~0.

• ϕ = 〈āx〉ψ: Let T〈N,ϕ〉 := ω + a(y).([y = x]τ.T〈N,ψ〉 + ω) for some y 6∈ fn(T〈N,ψ〉), where ω ∈ Ω does not
occur in T〈N,ψ〉 and vϕ := vψ.

• ϕ = 〈ā(x)〉ψ: Let z = new(N) and N ′ = N ∪ {z}. Without loss of generality, we can assume that
x = z (since we consider terms equivalent modulo α-conversion). Then let T〈N,ϕ〉 := ω + a(x).([x 6=
N ]τ.T〈N ′,ψ〉 + ω), where ω ∈ Ω does not occur in T〈N ′,ψ〉 and vϕ := vψ.

• ϕ = 〈a(x)〉ψ: Let z = new(N) and N ′ = N ∪ {z}. Let pw ∈ (0, 1] for w ∈ N ′ be chosen arbitrarily such
that

∑
w∈N ′ pw = 1. Then let

T〈N,ϕ〉 :=
⊕
w∈N ′

pw · (ωw + āw.T〈N ′,ψ[w/x]〉)

where ωw does not occur in T〈N ′,ψ[w/x]〉 for each w ∈ N ′, and ωw1
6= ωw2

if w1 6= w2. We let vϕ :=∑
w∈N ′ pw · vψ[w/x].

• ϕ =
∧
i∈I ϕi where I is a finite and non-empty index set. Choose an Ω-disjoint family (T〈N,ϕi〉, vϕi

)i∈I
of characteristic tests and target values. Let pi ∈ (0, 1] for i ∈ I be chosen arbitrarily s.t.

∑
i∈I pi = 1.
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Then let

T〈N,ϕ〉 :=
⊕
i∈I

pi · T〈N,ϕi〉 and vϕ :=
∑
i∈I

pi · vϕi .

• ϕ =
⊕

i∈I pi · ϕi. Choose an Ω-disjoint family (Ti, vi)i∈I of characteristic tests Ti with target values vi
for each ϕi, such that there are distinct success actions ωi for i ∈ I that do not occur in any of those
tests. Let T ′i := Ti 1

2
⊕ωi and v′i := 1

2vi + 1
2 ~ωi. Note that for all i ∈ I also T ′i is a characteristic test of ϕi

with target value v′i. Let T〈N,ϕ〉 :=
∑
i∈I τ.T〈N,ϕi〉 and vϕ :=

∑
i∈I pi · v′i.

We now prove (28) above by induction on ϕ:

• ϕ = >: obvious.

• ϕ = ref(X). Suppose ∆ |= ϕ. Then there is a ∆′ with ∆
τ̂

==⇒ ∆′ and ∆′ 6↓X . By Lemma 7.2(2),
~0 ∈ ApplyΩ(T〈N,ϕ〉,∆).

Now suppose ∃o ∈ ApplyΩ(T〈N,ϕ〉,∆) : o ≤ vϕ. This means o = ~0, so by Lemma 7.2(2) there is a ∆′ with

∆
τ

==⇒ ∆′ and ∆′ 6↓X . Hence ∆ |= ϕ.

• ϕ = 〈āx〉φ : Suppose ∆ |= ϕ. Then ∆
āx

==⇒ ∆′ and ∆′ |= φ. By the induction hypothesis, ∃o ∈
ApplyΩ(T〈N,φ〉,∆

′) : o ≤ vφ. By Lemma 7.2(3), this means o ∈ ApplyΩ(ω+a(y).([y = x]τ.T〈N,φ〉+ω),∆).

Therefore, we have o ∈ ApplyΩ(T〈N,ϕ〉,∆) and o ≤ vϕ.

Conversely, suppose ∃o ∈ ApplyΩ(T〈N,ϕ〉,∆) : o ≤ vϕ. This implies o(ω) = 0. By Lemma 7.2(3), this

means ∆
āy

==⇒ ∆′ and o ∈ ApplyΩ(T〈N,φ〉,∆
′). By the induction hypothesis, we have ∆′ |= φ, and

therefore, by Definition 6.1, ∆ |= ϕ.

• ϕ = 〈ā(x)〉φ : This is similar to the previous case. The only difference is that the guard [x 6= N ] makes
sure that it is the bound output transition that is enabled from ∆, so we use Lemma 7.2(4) in place of
Lemma 7.2(3).

• ϕ = 〈a(x)〉φ : Suppose ∆ |= ϕ. Then for every name w, there exist ∆1, ∆2 and ∆′ such that:

∆
τ̂

==⇒ ∆1

a(x)
−−→ ∆2, ∆2[w/x]

τ̂
==⇒ ∆′, and ∆′ |= φ[w/x]. (30)

In particular, (30) holds for any w ∈ N ′, where N ′ = N ∪ {new(N)}. By the induction hypothesis,
∃ow ∈ ApplyΩ(T〈N ′,φ[w/x]〉) : ow ≤ v〈N ′,φ[w/x]〉, hence by Lemma 7.2(5),

ow ∈ ApplyΩ(ω + āw.T〈N ′,φ[w/x]〉,∆)

for each w ∈ N ′. Then by Lemma 7.2(6), we have o ∈ ApplyΩ(T〈N,ϕ〉,∆)) where o =
∑
w∈N ′ pw ·ow ≤ oϕ.

Suppose ∃o ∈ ApplyΩ(T〈N,ϕ〉,∆) : o ≤ vϕ. Then by Lemma 7.2(6), we have o =
∑
w∈N ′ pw · ow for some

ow with ow ∈ ApplyΩ(ω+ āw.T〈N ′,φ[w/x]〉,∆). The latter means, by Lemma 7.2(5), for each w ∈ N ′, there
are ∆1, ∆2 and ∆′ such that

∆
τ̂

==⇒ ∆1

a(x)
−−→ ∆2, ∆2[w/x]

τ̂
==⇒ ∆′, and (31)

ow ∈ ApplyΩ(T〈N ′,φ[w/x]〉,∆
′). (32)

Since
∑
w∈N ′ pw · ow = o ≤ vϕ =

∑
w∈N ′ pw · vφ[w/x], we have

ow ≤ vφ[w/x] (33)

for each w ∈ N ′. Otherwise, suppose ow(ω) > vφ[w/x](ω) for some ω ∈ Ω. We would have o(ω) =
pw · ow(ω) > pw · vφ[w/x](ω) = vϕ(w), a contradiction to o ≤ vϕ. By (32), (33), and the induction
hypothesis, we have

∆′ |= φ[w/x]. (34)

To show ∆ |= ϕ, we need to show for every w, there exist ∆1, ∆2 and ∆′ satisfying (31) and (34) above.
We have shown this for w ∈ N ′. For the case where w 6∈ N ′, this is obtained from the case where x = z
via the renaming [w/z]: Recall that z 6∈ N , so z 6∈ fn(∆2) and z 6∈ fn(φ). Therefore, we have, from



24 Y. Deng and A. Tiu

(31) and Lemma 4.5 (2), ∆2[z/x][w/z] = ∆2[w/x]
τ̂

==⇒ ∆′[w/z] and from (34) and Lemma 7.1, we have
∆′[w/z] |= φ[w/x] = φ[z/x][w/z].

• ϕ =
∧
i∈I ϕi : Suppose ∆ |= ϕ. Then ∆ |= φi for all i ∈ I, and by the induction hypothesis, oi ∈

ApplyΩ(T〈N,φi〉,∆) : oi ≤ vϕi
and by Lemma 7.2(6)∑

i∈I
pi · oi ∈ ApplyΩ(T〈N,ϕ〉,∆) and

∑
i∈I

pi · oi ≤
∑
i∈I

pi · vϕi
= vϕ.

Suppose ∃o ∈ Apply(T〈N,ϕ〉,∆) : o ≤ vϕ Then by Lemma 7.2(6), o =
∑
i∈I pi·oi with oi ∈ Apply(T〈N,φi〉,∆)

for each i ∈ I. As in the last case, we see from
∑
i∈I pi · oi ≤

∑
i∈I pi · vϕi that oi ≤ vϕi for each i ∈ I.

By induction, we have ∆ |= φi, therefore, by Definition 6.1, ∆ |= ϕ.

• ϕ =
⊕

i∈I pi · ϕi : Suppose ∆ |= ϕ. Then ∆
τ̂

==⇒
∑
i∈I pi ·∆i and ∆i |= φi. By the induction hypothesis,

∃oi ∈ ApplyΩ(Ti,∆i) : oi ≤ vi.
Hence, there are o′i ∈ ApplyΩ(T ′i ,∆i) with o′i ≤ v′i. Thus by Lemma 7.2(7), o :=

∑
i∈I pi · o′i ∈

ApplyΩ(T〈N,ϕ〉,∆), and o ≤ vϕ.
Conversely, suppose ∃o ∈ Apply(T〈N,ϕ〉,∆) : o ≤ vϕ. Then by Lemma 7.3, there are qi and ∆i, for all

i ∈ I, such that
∑
i∈I qi = 1 and ∆

τ̂
==⇒

∑
i∈I qi ·∆i and o =

∑
i∈I qi · o′i for some o′i ∈ ApplyΩ(T ′i ,∆i).

Now o′i(ωi) = v′i(ωi) = 1
2 for each i ∈ I. Using that (Ti)i∈I is an Ω-disjoint family of tests, 1

2qi =

qio
′
i(ωi) = o(ωi) ≤ vϕ(ωi) = piv

′
i(ωi) = 1

2pi. As
∑
i∈I qi =

∑
i∈I pi = 1, it must be that qi = pi for all

i ∈ I. Exactly as in the previous case we obtain o′i ≤ v′i for all i ∈ I. Given that T ′i = Ti 1
2
⊕ωi, using

Lemma 7.2(6), it must be that o′ = 1
2oi + 1

2 ~ωi for some oi ∈ ApplyΩ(Ti,∆i) with oi ≤ vi. By induction,
∆i |= φi for all i ∈ I, Therefore, by Definition 6.1, ∆ |= ϕ.

In case ϕ ∈ L, ϕ cannot be of the form ref(X). Then it is easy to show that
∑
ω∈Ω vϕ(ω) = 1 and for all ∆

and o ∈ ApplyΩ(Tϕ,∆) we have
∑
w∈Ω o(ω) = 1. Therefore, o ≤ vϕ iff o ≥ vϕ iff o = vϕ, yielding (29).

Completeness of vΩ
pmay and vΩ

pmust, and hence also vpmay and vpmust by Theorem 6.7 and Theorem 3.3,
follows from Lemma 7.4.

Theorem 7.5. 1. If P vΩ
pmay Q then P vL Q.

2. If P vΩ
pmust Q then P vF Q.

Proof. Suppose P vΩ
pmay Q and [[P ]] |= ψ for some ψ ∈ L. Let N = fn(P,ψ) and let T〈N,ψ〉 be a characteristic

test of ψ with target value vψ. Then by Lemma 7.4, we have

∃o ∈ ApplyΩ(T〈N,ψ〉, [[P ]]) : o ≥ vψ.

But since P vΩ
pmay Q, this means ∃o′ ∈ ApplyΩ(T〈N,ψ〉, [[Q]]) : o ≤ o′, and thus o′ ≥ vψ. So again, by

Lemma 7.4, we have [[Q]] |= ψ. The case for must preorder is similar, using the Smyth preorder.

Theorem 7.6. 1. If P vpmay Q then P vS Q.
2. If P vpmust Q then P vFS Q.

8. Related and future work

There have been a number of previous works on probabilistic extensions of the π-calculus by Palamidessi et.
al. [14, 3, 19]. One distinction between our formulation with that of Palamidessi et. al. is the fact that we
consider an interpretation of probabilistic summation as distribution over state-based processes, whereas in
those works, a process like s p⊕ t is considered as a proper process, which can evolve into the distribution
p ·δ[s]+(1−p) ·δ[t] via an internal transition. We could encode this behaviour by a simple prefixing with the
τ prefix. It would be interesting to see whether similar characterisations could be obtained for this restricted
calculus. As far as we know, there are no existing works in the literature that give characterisations of the
may- and must-testing preorders for the probabilistic π-calculus.



Characterisations of Testing Preorders for a Finite Probabilistic π-Calculus 25

We structure our completeness proofs for the simulation preorders along the line of the proofs of similar
characterisations of simulation preorders for pCSP [9, 7]. The name-passing feature of the π-calculus, however,
gives rise to several complications not encountered in pCSP, and requires new techniques to deal with. In
particular, due to the possibility of scope extrusion and close communication, the congruence properties of
(failure) simulation is proved using an adaptation of the up-to techniques [22].

The immediate future work is to consider replication/recursion, for which we will need an advanced notion
of weak transitions and consider divergence carefully, as in [8]. In the presence of replication/recursion we
also have to limit ourselves to finite-state systems in order to characterise testing preorders by simulations.
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