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Abstract

We study the approximability of two natural Boolean constraint satisfaction problems: Horn sat-
isfiability and exact hitting set. Under the Unique Games conjecture, we prove the following optimal
inapproximability and approximability results for finding an assignment satisfying as many constraints
as possible given a near-satisfiable instance.

1. Given an instance of Max Horn-3SAT that admits an assignment satisfying (1 − ε) of its con-
straints for some small constant ε > 0, it is hard to find an assignment satisfying more than
(1− 1/O(log(1/ε))) of the constraints. This matches a linear programming based algorithm due
to Zwick [Zwi98], resolving the natural open question raised in that work concerning the optimal-
ity of the approximation bound.
Given a (1− ε) satisfiable instance of Max Horn-2SAT for some constant ε > 0, it is possible to
find a (1− 2ε)-satisfying assignment efficiently. This improves the algorithm given in [KSTW00]
which finds a (1−3ε)-satisfying assignment, and also matches the (1−cε) hardness for any c < 2
derived from vertex cover (under UGC).

2. An instance of Max 1-in-k-HS consists of a universe U and a collection C of subsets of U of
size at most k, and the goal is to find a subset of U that intersects the maximum number of sets
in C at a unique element. We prove that Max 1-in-k-HS is hard to approximate within a factor
of O(1/ log k) for every fixed integer k. This matches (up to constant factors) an easy factor
Ω(1/ log k) approximation algorithm for the problem, and resolves a question posed in [GT05].
It is crucial for the above hardness that sets of size up to k are allowed; indeed, when all sets have
size k, there is a simple factor 1/e-approximation algorithm.

Our hardness results are proved by constructing integrality gap instances for a semidefinite programming
relaxation for the problems, and using Raghavendra’s result [Rag08] to conclude that no algorithm can
do better than the SDP assuming the UGC. In contrast to previous such constructions where the instances
had a good SDP solution by design and the main task was bounding the integral optimum, the challenge
in our case is the construction of appropriate SDP vectors and the integral optimum is easy to bound.
Our algorithmic results are based on rounding appropriate linear programming relaxations.

∗Supported in part by a Packard Fellowship, NSF CCF 0953155, and US-Israel BSF grant 2008293. Email:
guruswami@cmu.edu, yuanzhou@cs.cmu.edu.



1 Introduction

Schaefer proved long ago that there are only three non-trivial classes of Boolean constraint satisfaction
problems (CSPs) for which satisfiability is polynomial time decidable [Sch78]. These are LIN-mod-2 (linear
equations modulo 2), 2-SAT, and Horn-SAT. The maximization versions of these problems (where the goal
is to find an assignment satisfying the maximum number of constraints) are NP-hard, and in fact APX-hard,
i.e., NP-hard to approximate within some constant factor bounded away from 1. An interesting special case
of the maximization version is the following problem of “finding almost-satisfying assignments”: Given
an instance which is (1 − ε)-satisfiable (i.e., only ε fraction of constraints need to be removed to make it
satisfiable for some small constant ε), can one efficiently find an assignment satisfying most (say, 1−f(ε)−
o(1) where f(ε)→ 0 as ε→ 0) of the constraints? 1

The problem of finding almost-satisfying assignments was first suggested and studied in a beautiful
paper by Zwick [Zwi98]. This problem seems well-motivated, as even if a Max CSP is APX-hard in general,
in certain practical situations instances might be close to being satisfiable (for example, a small fraction of
constraints might have been corrupted by noise). An algorithm that is able to satisfy most of the constraints
of such an instance could be very useful.

As pointed out in [KSTW00], Schaefer’s reductions together with the PCP theorem imply that the pre-
vious goal is NP-hard to achieve for any Boolean CSP for which the satisfiability problem is NP-complete.
Indeed, all but the above three tractable cases of Boolean CSPs have a “gap at location 1,” which means that
given a satisfiable instance it is NP-hard to find an assignment satisfying α fraction of the constraints for
some constant α < 1. This result has been extended to CSPs over arbitrary domains recently [JKK09].

The natural question therefore is whether for the three tractable Boolean CSPs, LIN-mod-2, 2-SAT,
and Horn-SAT, one can find almost-satisfying assignments in polynomial time. Effectively, the question is
whether there are “robust” satisfiability checking algorithms that can handle a small number of inconsistent
constraints and still produce a near-satisfying assignment.

With respect to the feasibility of finding almost-satisfying assignments, LIN-mod-2, 2-SAT, and Horn-
SAT behave rather differently from each other. For LIN-mod-2, Håstad in his breakthrough paper [Hås01]
showed that for any ε, δ > 0, finding a solution satisfying 1/2 + δ of the equations of a (1 − ε)-satisfiable
instance is NP-hard. In fact, this result holds even when each equation depends on only 3 variables. Since
just picking a random assignment satisfies 1/2 the constraints in expectation, this shows, in a very strong
sense, that there is no robust satisfiability algorithm for LIN-mod-2.

In sharp contrast to this extreme hardness for linear equations, Zwick [Zwi98] proved that for 2-SAT
and Horn-SAT one can find almost-satisfying assignments in polynomial time. For Max 2SAT, Zwick
gave a semidefinite programming (SDP) based algorithm that finds a (1 − O(ε1/3))-satisfying assignment
(i.e., an assignment satisfying a fraction (1−O(ε1/3)) of the constraints) given as input a (1− ε)-satisfiable
instance. This algorithm was later improved to one that finds a 1−O(

√
ε)-satisfying assignment by Charikar,

Makarychev, and Makarychev [CMM09]. The 1 − O(
√
ε) bound is known to be best possible under the

Unique Games conjecture (UGC) [Kho02, KKMO07]. In fact, this hardness result for Max 2SAT was the
first application of the UGC and one of the main initial motivations for its formulation by Khot [Kho02].

For Max Horn-SAT, Zwick gave a linear programming (LP) based algorithm to find an assignment
satisfying (1 − O(log log(1/ε)/ log(1/ε))) of constraints of a (1 − ε)-satisfiable instance. Recall that an
instance of Horn-SAT is a CNF formula where each clause consists of at most one unnegated literal.2

1Throughout the paper, constraints could have weights, and by a “fraction α of constraints” we mean any subset of constraints
whose total weight is a fraction α of the sum of the weights of all constraints. For CSPs with no unary constraints, the approxima-
bility of the weighted and unweighted versions are known to be the same [CST01].

2The dual variant dual-Horn-SAT is an instance of SAT where each clause has at most one negated literal and it is also
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Equiavlently, each clause is of the form xi, xi, or xi ∧ x2 ∧ · · · ∧ xk → xk+1 for variables xi. For Max
Horn-3SAT where each clause involves at most three variables, the algorithm finds a (1−O(1/ log(1/ε)))-
satisfying assignment. Note that the fraction of unsatisfied constraints is exponentially worse for Max Horn-
SAT compared to Max 2SAT.

Horn-SAT is a fundamental problem in logic and artificial intelligence. Zwick’s robust Horn satisfiability
algorithm shows the feasibility of solving instances where a small number of constraints are faulty and
raises the following natural question, which was also explicitly raised in [Zwi98]. Is this 1/ log(1/ε) deficit
inherent? Or could a more sophisticated algorithm, say based on an SDP relaxation instead of the LP
relaxation used in [Zwi98], improve the deficit to something smaller (such as εb for some constant b as in
the case of the SDP based algorithm for Max 2SAT)? It is known that for some absolute constant c < 1,
it is NP-hard to find a (1 − εc)-satisfying assignment given a (1 − ε)-satisfiable instance of Max Horn-
SAT [KSTW00].

In this work, we address the above question and resolve it (conditioned on the UGC), showing the
1/ log(1/ε) deficit to be inherent. We also investigate another problem, the “exact hitting set” problem for
set sizes bounded by k, which has a very peculiar approximation behavior [GT05]. It admits a much better
approximation algorithm on satisfiable instances, as well as when sets all have size exactly (or close to) k.
We prove that these restrictions are inherent, and relaxing these rules out a constant factor approximation
algorithm (again, under the UGC). We describe our results in more detail below in Section 2.

Remark 1. For (1 − ε)-satisfiable instances of Max 2-SAT, even the hardness of finding a (1 − ωε(1)ε)-
satisfying assignment is not known without assuming the UGC (and the UGC implies the optimal 1−Ω(

√
ε)

hardness bound). For Max Horn-SAT, as mentioned above, we know the NP-hardness of finding a (1−εc)-
satisfying assignment for some absolute constant c < 1. Under the UGC, we are able to pin down the exact
asymptotic dependence on ε.

2 Our results and previous work

2.1 Horn-SAT

We prove the following hardness result concerning finding almost-satisfying assignments for Max Horn-
SAT (in fact for the arity 3 case where all clauses involve at most 3 variables). In the sequel, we use the
terminology “UG-hard” to mean at least as hard as refuting the Unique Games conjecture.

Theorem 1. For some absolute constant C > 0, for every ε > 0, given a (1 − ε)-satisfiable instance of
Max Horn-3SAT, it is UG-hard to find an assignment satisfying more than a fraction

(
1− C

log(1/ε)

)
of the

constraints.

Zwick gave a polynomial time algorithm that finds a 1 − O( log k
log(1/ε))-satisfying assignment on input a

(1 − ε)-satisfiable instance of Max Horn-kSAT. Our inapproximability bound is therefore optimal up to
the constant C, and resolves Zwick’s question on whether his algorithm can be improved in the negative.
(For arbitrary arity Horn-SAT, Zwick’s algorithm has the slightly worse 1 − O(log log(1/ε)/ log(1/ε))
performance ratio; we do not show this to be tight.)

Theorem 1 shows that Max Horn-SAT has a very different quantitative behavior compared to Max 2SAT
with respect to approximating near-satisfiable instances: the fraction of unsatisfied clauses Ω(1/ log(1/ε))
is exponentially worse than the O(

√
ε) fraction that can be achieved for Max 2SAT.

polynomial time solvable.
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A strong hardness result for Min Horn Deletion, the minimization version for Horn-SAT, was shown
in [KSTW00]. It follows from their reduction that for some absolute constant c < 1, it is NP-hard to find a
(1− εc)-satisfying assignment given a (1− ε)-satisfiable instance of Max Horn-SAT. The constant c would
be extremely close to 1 in this result as it is related to the soundness in Raz’s parallel repetition theorem.
While our inapproximability bound is stronger and optimal, we are only able to show UG-hardness and not
NP-hardness.

In light of our strong hardness result for Max Horn-3SAT, we also consider the approximability of the
arity two case. For Max Horn-2SAT, given a (1 − ε)-satisfiable instance, an approximation preserving
reduction from vertex cover shows that it is UG-hard to find a (1 − cε)-satisfying assignment for c < 2.
It is also shown in [KSTW00] that one can find a (1 − 3ε)-satisfying assignment efficiently. We improve
the algorithmic bound (to the matching UG-hardness) by proving the following theorem, based on half-
integrality of an LP relaxation for the problem.

Theorem 2. Given a (1 − ε)-satisfiable instance for Max Horn-2SAT, it is possible to find a (1 − 2ε)-
satisfying assignment in polynomial time.

2.2 Exact hitting set

We consider the “exact hitting set” problem where the goal is to find a subset that intersects a maximum
number of sets from an input family at exactly one element. Formally,

Definition 1. Let k > 2 be a fixed integer. An instance of Max 1-in-k-HS consists of a universe U =
{x1, x2, . . . , xn} and a collection C of subsets of U each of size at most k. The objective is to find a subset
S ⊆ U that maximizes the number of sets T ∈ C for which |S ∩ T | = 1. When all sets in C have size equal
to k, we refer to the problem as Max 1-in-Ek-HS.

In addition to being a natural CSP, the exact hitting set problem arises in many contexts where one has
to make unique choices from certain specified subsets. The complexity of this problem was investigated in
[GT05] and [DFHS08], where applications of the problem to pricing, computing ad-hoc selective families
for radio broadcasting, etc. are also discussed.

Our interest in this problem stems in part from the following peculiar approximability behavior of Max
1-in-k-HS, as pointed out in [GT05]. The Max 1-in-k-HS problem appears to be much easier to approx-
imate on “satisfiable instances” (where a hitting set intersecting all subsets exactly once exists) or when
all sets have size exactly equal to k (instead of at most k). In both these cases, there is a factor 1/e-
approximation algorithm, and obtaining a (1/e+ ε)-approximation is NP-hard even when both restrictions
hold simultaneously [GT05].

For Max 1-in-k-HS itself, the best approximation factor known to be possible in polynomial time is
Ω(1/ log k). This is based on partitioning the collection C into O(log k) parts based on geometric intervals
[2i, 2i+1) of set sizes, and running a simple randomized algorithm (that handles the case where all sets
have sizes within a factor of two) on the sub-collection which has the most sets. Despite the simplicity and
seeming naiveness of this algorithm, no factor ω(1/ log k) algorithm is known for the problem. No hardness
factor better than the 1/e bound (which holds even for Max 1-in-Ek-HS) is known either. Improving the gap
in our understanding of the approximability of Max 1-in-k-HS was posed as an open question in [GT05].

For the case when k is not fixed but can also grow with the universe size n, a factor (log n)−Ω(1) hardness
was shown in [DFHS08], under the assumption NP 6⊆ TIME(2n

γ
) for some γ > 0. However, their method

does not seem to be applicable to the case of bounded set size.
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In this work, we prove the following tight result, establishing the difficulty of improving the simple
Ω(1/ log k)-approximation algorithm. This shows that it is hard to simultaneously do well on two different
“scales” of set sizes.

Theorem 3. For some absolute constant C ′ > 0, for every α > 0, given a (1−1/k1−α)-satisfiable instance
of Max 1-in-k-HS, it is UG-hard to find a subset intersecting more than a fraction C′

α log k of the sets exactly
once.

The gap in the above hardness result is also located at the “correct” satisfiability threshold, as we show
the following complementary algorithmic result. Our algorithm in fact works for the more general Max
1-in-k-SAT problem where negated literals are allowed and the goal is to find an assignment for which a
maximum number of clauses have exactly one literal set to true. For satisfiable instances of Max 1-in-k-
SAT, a factor 1/e approximation algorithm was given in [GT05].

Theorem 4. For every constant B > 1, the following holds. There is a polynomial time algorithm that,
given a (1 − 1

Bk )-satisfiable instance of Max 1-in-k-SAT, finds a truth-assignment on variables satisfying

exactly one literal in a fraction λ of the clauses, where λ =
(

1−1/
√
B

e

)2
.

3 Proof method

We construct integrality gap instances for a certain semidefinite programming relaxation (described in Sec-
tion 3.1), and then use Raghavendra’s theorem [Rag08] to conclude that assuming the Unique Games con-
jecture, no algorithm can achieve an approximation ratio better than the SDP integrality gap.

In contrast to previous such integrality gap constructions (eg., for Max Cut) where the instances had
a good SDP solution “by design” and the technical core was bounding the integral optimum, in our case
bounding the integral optimum is the easy part and the challenge is in the construction of appropriate SDP
vectors. See Section 3.2 for an overview of our gap instances. It is also interesting that our SDP gaps match
corresponding LP gaps. In general it seems like an intriguing question for which CSPs this is the case and
therefore LPs suffice to get the optimal approximation ratio.

For our algorithmic results (see Section 3.3), we use a natural linear programming relaxation. For Max
1-in-k-SAT we show that randomized rounding gives a good approximation. The algorithm for Max Horn-
2SAT proceeds by showing half-integrality of the LP.

3.1 The canonical SDP for Boolean CSPs and UG-Hardness

For Boolean CSP instances, we write C as the set of constraints over variables x1, x2, · · · , xn ∈ {0, 1}.
The SDP relaxation from [Rag08], which we call the canonical SDP, sets up for each constraint C ∈ C
a local distribution πC on all the truth-assignments {σ : XC → {0, 1}}, where XC is the set of variables
involved in the constraint C. This is implemented via scalar variables πC(σ) which are required to be
non-negative and satisfy

∑
σ:XC→{0,1} πC(σ) = 1. For each variable x, two orthogonal vectors v(x,0) and

v(x,1), corresponding to the events x = 0 and x = 1, are set up. The SDP requires for each variable x,
v(x,0) · v(x,1) = 0 and v(x,0) + v(x,1) = I where I is a global unit vector. (In the integral solution, one of
the vectors v(x,1),v(x,0) — based on the x’s Boolean value — is intended to be I and the other one to be 0.)

Then, as constraint (5), the SDP does a consistency check: for two variables x, y (that need not be
distinct) involved in the same constraint C, and for every b1, b2 ∈ {0, 1}, the SDP insists that the inner
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product v(x,b1) · v(y,b2) equals Prσ∈πC [(σ(x) = b1) ∧ (σ(y) = b2)].

Maximize EC∈C [Prσ∈πC [C(σ) = 1]] (1)

Subject to v(xi,0) · v(xi,1) = 0 ∀i ∈ [n] (2)

v(xi,0) + v(xi,1) = I ∀i ∈ [n] (3)

‖I‖2 = 1 (4)

Prσ∈πC [σ(xi) = b1 ∧ σ(xj) = b2] = v(xi,b1) · v(xj ,b2) ∀C ∈ C, xi, xj ∈ C, b1, b2 ∈ {0, 1}
(5)

Note that if we discard all the vectors by removing constraints (2)∼(4), and changing constraints (5) to
Prσ∈πS [σ(xi) = b1 ∧ σ(xj) = b2] = X(xi,b1),(xj ,b2), the SDP becomes a lifted LP in Sherali-Adams
system. We call this LP scheme the lifted LP in this paper.

The following striking theorem (Theorem 1.1 in [Rag08]) states that once we have an integrality gap for
the canonical SDP, we also get a matching UG-hardness. Below and elsewhere in the paper, a c vs. s gap
instance is an instance with SDP optimum at least c and integral optimum at most s.

Theorem 5. Let 1 > c > s > 0. If a constraint satisfaction problem Λ admits a c vs. s integrality gap
instance for the above canonical SDP, then for every constant η > 0, given an instance of Λ that admits
an assignment satisfying (c − η) of constraints, it is UG-Hard to find an assignment satisfying more than
(s+ η) of constraints.

To make our construction of integrality gaps easier, we notice the following simplification of the above
SDP. Suppose we are given the global unit vector I and a vector vx for each variable x in the CSP instance,
subject to the following constraints:

(I − vx) · vx = 0 ∀ variables x (6)

Prσ∈πC [σ(xi) = 1 ∧ σ(xj) = 1] = vxi · vxj ∀C ∈ C, xi, xj ∈ C . (7)

Defining v(x,1) = vx and v(x,0) = I − vx, it is easy to check that all constraints of the above SDP are
satisfied. For instance, for variables x, y belonging to a constraint C,

v(x,0) · v(y,1) = (I − v(x,1)) · v(y,1) = ‖v(y,1)‖2 − v(x,1) · v(y,1)

= Prσ∈πC [σ(y) = 1]−Prσ∈πC [(σ(x) = 1) ∧ (σ(y) = 1)]
= Prσ∈πC [(σ(x) = 0) ∧ (σ(y) = 1)] ,

and other constraints of (5) follow similarly.
Henceforth in this paper, we will work with this streamlined canonical SDP with vector variables I ,

{vx}, scalar variables corresponding to the local distributions πC , constraints (6) and (7), and objective
function (1).

3.2 Overview of construction of SDP gaps

Horn-3SAT. In the concluding section of [Zwi98], Zwick remarks that there is an integrality gap for the LP
he uses that matches his approximation ratio. Indeed such a LP gap is not hard to construct and we start by
describing one such instance. The instance begins with clause x1, and in the intermediate (k − 1) clauses,
the i-th clause x1 ∧ · · · ∧ xi → xi+1 makes xi+1 true if all the previous clauses are satisfied. Then the last
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clause xk generates a contradiction. Thus the optimal integral solution is at most (1 − 1/k). On the other
hand, one possible fractional solution starts with x1 = (1 − ε) for some ε > 0. Then for 1 6 i < k, by
letting (1− xi+1) =

∑i
j=1(1− xj), all the intermediate (k − 1) clauses are perfectly “satisfied” by the LP,

while the gap (1− xi+1) = 2i−1ε increases exponentially. Thus by letting ε = 1/2k−2, we get xk = 0 and
the LP solution is at least (1− 1/2Ω(k)). The instance gives a (1− 2−Ω(k)) vs. (1− 1/k) LP integrality gap.

Now we convert this LP gap instance into an SDP gap instance in two steps. First, we reduce the arity
of the instance from k to 3. Then, we find a set of vectors for the LP solution to make it an SDP solution.

For the first step, to get an instance of Max Horn-3SAT, we introduce yi which is intended to be
x1 ∧ · · · ∧ xi−1. For 1 6 i < k, we replace the intermediate clauses by xi ∧ yi → xi+1, and add
xi ∧ yi → yi+1 to meet the intended definition of yi. We call each of these two clauses as comprising
one step (the exact instance IHorn

k , which is slightly different for technical reasons mentioned below, can be
found in Section 4.1.1). It is easy to show that for this instance there is a solution of value (1 − 1/2Ω(k))
even for the lifted LP.

Finding vectors for the SDP turns out to be more challenging. Note that if we want to perfectly satisfy all
the intermediate clauses in SDP, we need to obey vxi ·vyi 6 ‖vxi+1‖2 and vxi ·vyi 6 ‖vyi+1‖2 for 1 6 i < k.
Thus to make the norms ‖vxi+1‖2 and ‖vyi+1‖2 decrease fast (since we want ‖vxk‖2 = ‖vyk‖2 = 0), we
need to make the inner product vxi · vyi decrease fast as well. But technically it is hard to make both kinds
of quantities decrease at a high rate for all intermediate clauses. Our solution is to decrease the norms and
inner products alternately. More specifically, we divide the intermediate clauses into blocks, each of which
contains two consecutive steps. In the first step of each block, we need that the inner product is much smaller
than the norms so that we can decrease the norms quickly, but we preserve the value of inner product. Thus
we cannot do this step repeatedly, and we need the second step, where we decrease the inner product (while
preserving the norms) in preparation to start the first step of the next block.

1-in-k Hitting Set. We use a simple symmetric instance as our gap instance. Ideally, the instance includes
all subsets of the universe with size at most k and we put uniform weights on sets of geometrically varying
sizes (see Section 5.1 for our real gap instance which is slightly different). We first show that every subset
intersects at most a (weighted) fraction O(1/ log k) of the sets exactly once. Then, to prove a much better
SDP solution, in contrast to Max Horn-3SAT, the main effort is in finding a good solution for lifted LP.
Once we get a good solution for lifted LP, because of symmetry, the norms for all variables are defined to be
the same value, and the pairwise inner products are also defined to be the same value. Then we only need to
find vectors for a highly symmetric inner-product matrix, a step which is much easier than the counterpart
of Max Horn-3SAT.

For the lifted LP, for each set in the instance, we place overwhelming weight on singleton subsets (only
one variable is selected to be true) in all local distributions. This guarantees a good fractional solution. If
we put all the weight on singletons though, the consistency check fails even for single-variable marginal
distributions, whereas we need to ensure consistency of all pairwise-variable marginal distributions. Thus,
for a feasible LP solution, we need to place some small weight on other subsets in order to obtain consistent
marginal distributions. Indeed, we manage to generate a valid solution by giving an appropriate probability
mass to the full set and all subsets of half the size in each local distribution.

3.3 Overview of algorithmic results

Our algorithmic results for Max Horn-2SAT and Max 1-in-k-SAT (Theorems 2 and 4 respectively) are
obtained by rounding fractional solutions of appropriate linear programming (LP) relaxations.
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The algorithm for Max Horn-2SAT is indeed a 2-approximation algorithm for Min Horn-2SAT Dele-
tion problem (refer to Section 4.2 for the definition of Min Horn-2SAT Deletion). We prove a half-
integrality property of the optimal solution to the natural LP relaxation of the problem, which can be viewed
as a generalization of half-integrality property of (the natural LP for) Vertex Cover. We take the optimal
solution of the natural LP relaxation, iteratively make every variable move towards half-integral values (0,
1, and 1/2), while never increasing the value of the solution. This yields an optimal half-integral solution
which can then be trivially rounded to obtain an integral solution that gives a factor 2 approximation.

For almost-satisfiable instances of Max 1-in-k-SAT, we prove that randomized rounding (according to
the fractional value of any optimal LP solution) gives a constant factor approximation. This gives a robust
version of the algorithm in [GT05] which achieved a factor 1/e-approximation for (perfectly) satisfiable
instances.

4 Approximability of Max Horn-3SAT

4.1 SDP gap and UG hardness for Max Horn-3SAT

4.1.1 Instance

We consider the following Max Horn-3SAT instance IHorn
k parameterized by k > 1.

Start point: x0, y0

Block i (0 6 i 6 k − 1) Step i.1 : x2i ∧ y2i → x2i+1, x2i ∧ y2i → y2i+1

Step i.2 : x2i+1 ∧ y2i+1 → x2i+2, x2i+1 ∧ y2i+1 → y2i+2

End point: x2k ∧ y2k → x2k+1, x2k ∧ y2k → y2k+1

x2k+1, y2k+1

It is easy to see this instance contains (4k + 6) clauses, and cannot be completely satisfied. Thus we have:

Lemma 6. Every Boolean assignment satisfies at most a fraction 1− 1/(4k + 6) of the clauses of IHorn
k .

4.1.2 Construction of a good SDP solution

We will work with the SDP in simplified form described at the end of Section 3.1. Recall that the SDP
requires a local distribution for each clause, and uses vectors to check the consistency on every pair of
variables that belong to the clause. To construct a good solution for the SDP, we want to first find a good
solution in the scalar part (i.e., local distributions), and then construct vectors which meet the consistency
requirement. But it is difficult to construct a lot of vectors which meet all the requirements simultaneously.
Thus, we break down the whole construction task into small pieces, each of which is easy to deal with. As
long as there are solutions to these small pieces, and the solutions agree with each other on some interfaces,
we can coalesce the small solutions together and come up with a global solution. The following definition
and claim formally help us bring down the difficulty, and focus on one local block of variables at a time.

Definition 2 (partial solution). Let C′ ⊆ C be a subset of clauses. f = {πC = πC(f),vx = vx(f), I =
I(f) | ∀C ∈ C′, x ∈ C} is said to be a partial solution on C′, if all constraints of the SDP restricted to the
subset of variables defined in f are satisfied.

Claim 7. Let C1, C2 ⊆ C be two disjoint set of clauses. Given f and g are partial solution on C1, C2

respectively. If for all v1,v2 (not necessarily distinct) defined in both f and g, v1(f) ·v2(f) = v1(g) ·v2(g),
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then there exists a partial solution, namely h, for C1 ∪ C2, such that ∀C1 ∈ C1, C2 ∈ C2, πC1(h) =
πC1(f), πC2(h) = πC2(g).

Proof. Let X be the set of variables x for which vx(f) and vx(g) are both defined. Denote Vf = {vx(f) |
x ∈ X} ∪ {I(f)} and Vg = {vx(g) | x ∈ X} ∪ {I(g)}. Since the dot products of every pair of vectors
in Vf exactly equals the dot product between the corresponding pair in Vg, there is a rotation (orthogonal
transformation) T such that I(f) = TI(g) and for all x ∈ X , vx(f) = Tvx(g).

Now define the partial solution g′ as πC(g′) = πC(g) for all C ∈ C2 and vx(g′) = Tvx(g), I(g′) =
TI(g) for all x ∈ C ∈ C2. Obviously f and g′ agree on all the scalar and vector variables that are defined
in both f and g′. Letting

vx(h) =
{

vx(f) x ∈ C ∈ C1

vx(g′) x ∈ C ∈ C2
, πC(h) =

{
πC(f) C ∈ C1

πC(g′) C ∈ C2
,

it is easy to see h is a partial solution on C1 ∪ C2.

By the above lemma, if we establish the following lemma which constructs a good partial solution on
each block (the proof of which is deferred to Section 4.1.3), it is then easy to get a good global solution.

Lemma 8. For each Block i (0 6 i 6 k − 1), each 0 < c 6 0.2, let rc = 1.5(1 + c)/(1.5 + c), and for
each 0 < p 6 1

(1+c)rc
, there is a partial solution f which completely satisfies all the clauses in Block i (by

local distributions), and with following properties,

‖vx2i(f)‖2 = ‖vy2i(f)‖2 = 1− p
vx2i(f) · vy2i(f) = 1− (1 + c)p

‖vx2i+2(f)‖2 = ‖vy2i+2(f)‖2 = 1− rcp
vx2i+2(f) · vy2i+2(f) = 1− (1 + c)rcp.

As explained in Section 3.2, in the first step (the step to decrease norms), to make ‖vx2i+2(f)‖2 and
‖vy2i+2(f)‖2 much smaller than ‖vx2i(f)‖2 and ‖vy2i(f)‖2, we need the inner product vx2i(f) · vy2i(f) to
be small. This is why we introduce c, and require that vx2i(f) · vy2i(f) = 1 − (1 + c)p. Ideally the larger
c is, the faster the norms decrease. But due to technical reasons, in the second step (the step to decrease the
inner product), we are not able to decrease the inner product fast when it is much smaller than the norms.
So we put a upper bound c 6 0.2 in the lemma.

Using Lemma 8 together with Claim 7, we immediately get the following corollary.

Corollary 9. For the union of Block 0 to Block k′ (0 6 k′ 6 k − 1), given parameters 0 < c 6 0.2
and 0 < p 6 1

(1+c)rk
′+1
c

, there is a partial solution g which completely satisfies all the clauses, and with

following properties,

‖vx0(g)‖2 = ‖vy0(g)‖2 = 1− p
vx0(g) · vy0(g) = 1− (1 + c)p

‖vx2k′+2
(g)‖2 = ‖vy2k′+2

(g)‖2 = 1− rk′+1
c p

vx2k′+2
(g) · vy2k′+2

(g) = 1− (1 + c)rk
′+1
c p.
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Proof. Apply induction on k′. The basis case k′ = 0 is exactly Lemma 8. For k′ > 0, by induction
hypothesis there is a partial solution g′ satisfying all the clauses of the union of Blocks 0 to k′ − 1 with the
same parameter c, p. By Lemma 8, there is a partial solution f satisfying all the clauses of Block k′ with
parameter c, rk

′
c p. Since g′ and f agree on pairwise inner-products over the definition of {vx2k′ ,vy2k′}, by

Claim 7, there is a partial solution g on the union of Blocks 0 to k′ completely satisfying all the clauses.

With the above pieces in place, we now come to the final SDP solution.

Lemma 10. The optimal SDP solution for the instance IHorn
k has value at least 1− 1

(2k+3)1.05k
.

Proof. By Corollary 9, for any 0 < c 6 0.2, by setting p = 1
(1+c)rkc

. There is a partial solution g completely
satisfying all the clauses of all the blocks, with

‖vx0(g)‖2 = ‖vy0(g)‖2 = 1− 1
(1 + c)rkc

‖vx2k
(g)‖2 = ‖vy2k(g)‖2 = c/(1 + c)

vx2k
(g) · vy2k(g) = 0.

Based on g, we define a local distribution on two “Start point” clauses by making x0 (or y0) equal 1 with
probability 1− p. At “End point”, we define the local distribution on clause x2k ∧ y2k → x2k+1 as

Prπ[x2k = 1 ∧ y2k = 0 ∧ x2k+1 = 0] = c/(1 + c)
Prπ[x2k = 0 ∧ y2k = 1 ∧ x2k+1 = 0] = c/(1 + c)
Prπ[x2k = 0 ∧ y2k = 0 ∧ x2k+1 = 0] = (1− c)/(1 + c) .

And a similar distribution for the clause x2k ∧ y2k → y2k+1 can be defined (by replacing x2k+1 by y2k+1 in
the equations above). The distribution on clauses x2k+1 and y2k+1 never picks the corresponding variable
to be 1. By defining vx2k+1

and vy2k+1
to be zero vectors, we note that the distributions are consistent with

vectors. Thus the solution we construct is valid.
On the other hand, note that all the distributions locally satisfy the clauses, except for the distributions

at “Start point” satisfy the corresponding clause with probability 1 − 1
(1+c)rkc

, thus the SDP solution is

1− 2
(4k+6)(1+c)rkc

= 1 > 1− 1
(2k+3)rkc

. By setting c = 0.2, we get rc > 1.05. Thus the best SDP solution is

better than 1− 1
(2k+3)1.05k

.

Combining Lemma 6 and Lemma 10, we get the following theorem.

Theorem 11. IHorn
k is a (1−ε) vs. (1−Ω(1/ log(1/ε))) gap instance of Max Horn-3SAT for the canonical

SDP relaxation.

Together with Theorem 5, Theorem 11 implies our main result, Theorem 1, on Max Horn-SAT.

4.1.3 Proof of the Key Lemma 8

For Block i, denote the clauses in Step i.1 by C1x and C1y, and the clauses in Step i.2 by C2x and C2y. We
first construct partial solutions on Step i.1 and Step i.2 separately, as follows.

Partial solution on Step i.1 We first define a local distribution on satisfying assignments for C1x as follows,
and C1y in a similar way (by replacing x2i+1 by y2i+1 in following equations).

PrπC1x
[x2i = 1 ∧ y2i = 1 ∧ x2i+1 = 1] = 1− (1 + c)p

9



PrπC1x
[x2i = 1 ∧ y2i = 0 ∧ x2i+1 = 0] = cp

PrπC1x
[x2i = 0 ∧ y2i = 1 ∧ x2i+1 = 0] = cp

PrπC1x
[x2i = 0 ∧ y2i = 0 ∧ x2i+1 = 1] = (1 + c− rc)p =

(1 + c)c
1.5 + c

· p

PrπC1x
[x2i = 0 ∧ y2i = 0 ∧ x2i+1 = 0] = (rc − 2c)p =

1.5− 1.5c− 2c2

1.5 + c
· p.

Recall rc = 1.5(1 + c)/(1.5 + c). Note that all the probabilities are defined to be non-negative values by the
range of c and p, and they sum up to 1.

We observe the following inner-product matrix A over I,vx2i ,vy2i ,vx2i+1 ,vy2i+1 is consistent with the
local distributions on satisfying assignments for C1x and C1y.

A =


1 1− p 1− p 1− rcp 1− rcp

1− p 1− p 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p
1− p 1− (1 + c)p 1− p 1− (1 + c)p 1− (1 + c)p

1− rcp 1− (1 + c)p 1− (1 + c)p 1− rcp 1− (1 + c)p
1− rcp 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p 1− rcp


By Claim 22 in Appendix A we know that A is positive semidefinite, and therefore there is a set of vectors
consistent with our local distributions, i.e., we get a partial solution on Step i.1.

Partial solution on Step i.2 We define the local distribution on satisfying assignments for C2x as follows.
The distribution for C2y is defined in a similar way (by replacing x2i+2 with y2i+2 in the following equa-
tions). Let q = rcp and ε = c/1.5.

PrπC2x
[x2i+1 = 1 ∧ y2i+1 = 1 ∧ x2i+2 = 1] = 1− (1 + ε)q

PrπC2x
[x2i+1 = 1 ∧ y2i+1 = 0 ∧ x2i+2 = 0] = εq

PrπC2x
[x2i+1 = 0 ∧ y2i+1 = 1 ∧ x2i+2 = 0] = εq

PrπC2x
[x2i+1 = 0 ∧ y2i+1 = 0 ∧ x2i+2 = 1] = εq

PrπC2x
[x2i+1 = 0 ∧ y2i+1 = 0 ∧ x2i+2 = 0] = (1− 2ε)q.

Note that all the probabilities are defined to be non-negative values by the range of c and p, and they
sum up to 1.

Then note that the following inner-product matrix B over I,vx2i+1 ,vy2i+1 ,vx2i+2 ,vy2i+2 is consistent
with the local distribution.

B =


1 1− q 1− q 1− q 1− q

1− q 1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− q 1− (1 + 1.5ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + 1.5ε)p 1− q


Again by Claim 22 in Appendix A, B is positive semidefinite, and therefore there is a set of vectors consis-
tent with local distributions – we have constructed a partial solution on Step i.2.

Combining the two partial solutions. It is easy to check with our parameter setting, partial solutions on
Step i.1 and Step i.2 agree on pairwise inner-products between their shared vectors I,vx2i+1 ,vy2i+1 . Thus,
there is a partial solution on Block i, with

‖vx2i(f)‖2 = ‖vy2i(f)‖2 = 1− p

10



vx2i(f) · vy2i(f) = 1− (1 + c)p
‖vx2i+2(f)‖2 = ‖vy2i+2(f)‖2 = 1− q = 1− rcp

vx2i+2(f) · vy2i+2(f) = 1− (1 + 1.5ε)q = 1− (1 + c)rcp. �

4.2 Algorithm for Min Horn-2SAT Deletion and Max Horn-2SAT

In the Min Horn-2SAT Deletion problem, we are given a Horn-2SAT instance, and the goal is to find a
subset of clauses of minimum total weight whose deletion makes the instance satisfiable. A factor 3 approxi-
mation algorithm for Min Horn-2SAT Deletion is given in [KSTW00]. Here we improve the approximation
ratio to 2. By a simple reduction from vertex cover, this is optimal under the UGC. Our motivation to study
Min Horn-2SAT Deletion in the context of this paper is to pin down the fraction of clauses one can satisfy
in a (1 − ε)-satisfiable instance of Horn-2SAT: we can satisfy a fraction (1 − 2ε) of clauses (even in the
weighted case), and satisfying a (1 − cε) fraction is hard for c < 2 assuming that vertex cover does not
admit a c-approximation for any constant c < 2.

In this section, we prove the following theorem by showing half-integrality of a natural LP relaxation
for the problem.

Theorem 12. There is a polynomial-time 2-approximation algorithm for Min Horn-2SAT Deletion prob-
lem.

A direct corollary of Theorem 12 is the following result for approximating near-satisfiable instances of
Max Horn-2SAT.

Theorem 2 (restated). Given a (1 − ε)-satisfiable instance for Max Horn-2SAT, it is possible to find a
(1− 2ε)-satisfying assignment efficiently.

4.2.1 LP Formulation

We find it slightly more convenient to present the algorithm for dual Horn-2SAT where each clause has at
most one negated literal. (So the clauses are of the form x, x̄, x ∨ y, or x → y, for variables x, y.) Let
w

(D)
ij > 0 be the weight imposed on the disjunction constraint xi ∨ xj (for each pair of i, j such that i < j),

and w(I)
ij > 0 be the weight imposed on the implication constraint xi → xj (for each pair of i, j such that

i 6= j). For each variable xi, let w(T )
i be the weight on xi being true (i.e. xi = 1), and w(F )

i be the weight
on xi being false (i.e. xi = 0). Then we write the following LP relaxation, where each real variable yi
corresponds to the integer variable xi.

Minimize
∑
i∈V

w
(T )
i (1− yi) +

∑
i∈V

w
(F )
i yi +

∑
i<j

w
(D)
ij z

(D)
ij +

∑
i 6=j

w
(I)
ij z

(I)
ij

Subject to z
(D)
ij > 1− yi − yj ∀i < j

z
(I)
ij > yi − yj ∀i 6= j

z
(D)
ij > 0 ∀i < j

z
(I)
ij > 0 ∀i 6= j

yi ∈ [0, 1] ∀i ∈ V

Let OPT be the optimal value of the integral solution, and OPTLP be the optimal value of the LP
solution. We have OPTLP 6 OPT.
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4.2.2 Half-integrality and rounding

Given a LP solution f = {z(D)
ij , z

(I)
ij , yi}, we can assume z(D)

ij = max{1−yi−yj , 0} and z(I)
ij = max{yi−

yj , 0} to minimize Val(f). Thus, we only need f = {yi} to characterize a solution, and we have

Val(f) =
∑
i∈V

w
(T )
i (1− yi) +

∑
i∈V

w
(F )
i yi +

∑
i<j

w
(D)
ij max{1− yi − yj , 0}+

∑
i 6=j

w
(I)
ij max{yi − yj , 0}.

Lemma 13. There is a polynomial-time algorithm that, given a solution f = {yi} to the above LP, converts
f into another solution f∗ = {y∗i } such that each y∗i is half-integral, i.e. y∗i ∈ {0, 1, 1/2}, and Val(f∗) 6
Val(f).

Proof. We run Algorithm 1 whose input is the LP formulation and one of the solutions f = {yi}, and whose
output is the desired f∗.

Algorithm 1 Round any LP solution f = {yi} to a half-integral solution f∗, with Val(f∗) 6 Val(f)
1: while ∃i ∈ V : yi 6∈ {0, 1, 1/2} do
2: choose k ∈ V , such that yk 6∈ {0, 1, 1/2} (arbitrarily)
3: if yk < 1/2 then
4: p← yk
5: else
6: p← 1− yk
7: end if
8: S ← {i : yi = p}, S′ ← {i : yi = 1− p}
9: a← max{yi : yi < p, 1− yi : yi > 1− p, 0}, b← min{yi : yi > p, 1− yi : yi < 1− p, 1/2}

10: f (a) ← {y(a)
i = a}i∈S ∪ {y(a)

i = 1− a}i∈S′ ∪ {y
(a)
i = yi}i∈V \(S∪S′)

11: f (b) ← {y(b)
i = b}i∈S ∪ {y(b)

i = 1− b}i∈S′ ∪ {y
(b)
i = yi}i∈V \(S∪S′)

12: if Val(f (a)) 6 Val(f (b)) then
13: f ← f (a)

14: else
15: f ← f (b)

16: end if
17: end while
18: return f (as f∗)

It’s easy to see that Algorithm 1 always maintains a valid solution f to the LP (i.e., all variables yi’s
are within the [0, 1] range). Then we only need to prove the following two things to show the correctness
of Algorithm 1, 1) the while loop terminates (in linear steps), 2) in each loop, min{Val(f (a)),Val(f (b))} 6
Val(f), so that Val(f) never increases in the whole algorithm.

To prove the first point, we consider the set Wf = {0 < y < 1/2 : ∃i ∈ V, s.t. y = yi ∨ y = 1− yi}. In
each loop, the algorithm picks a p from Wf . At the end of the loop, we see that p is wiped from Wf while
no new elements are added. Thus, after linear steps of the loop, Wf becomes ∅ and the loop terminates.

For the second point, we define f (t) = {y(t)
i = t}i∈S ∪ {y(t)

i = 1− t}i∈S′ ∪ {y
(t)
i = yi}i∈V \(S∪S′) for

t ∈ [a, b] at Line 9 in the algorithm. Then if we can show Val(f (t)) is a linear function within t ∈ [a, b],
together with the fact p ∈ [a, b], we shall conclude that min{Val(f (a)),Val(f (b))} 6 Val(f (p)) = Val(f).
To prove the linearity of Val(f (t)), we only need to show that g1(t) = max{1− y(t)

i − y
(t)
j , 0} and g2(t) =

12



max{y(t)
i − y

(t)
j , 0} are linear with the respect to t ∈ [a, b], for any possible i, j. Thus we discuss the

following five cases.

• i, j ∈ V \ (S ∪ S′). In this case, g1 and g2 are constant functions.

• i ∈ V \ (S ∪ S′), j ∈ S ∪ S′. In this case, the only “non-linear point” is at t = 1 − yi for g1 and
t = yi for g2. But these two points are away from [a, b].

• i ∈ S ∪ S′, j ∈ V \ (S ∪ S′). Similar argument works as the previous case.

• i ∈ S, j ∈ S′ (or i ∈ S′, j ∈ S). In this case, 1 − y(t)
i − y

(t)
j = 0 always holds for t ∈ [a, b] and

therefore g1 is constant function. On the other hand, since y(t)
i 6 y

(t)
j (or y(t)

i > y
(t)
j ) , we also have

g2(t) = 0 (or g2(t) = y
(t)
i − y

(t)
j = 1− 2t) being linear.

• i, j ∈ S (or i, j ∈ S′). In this case, y(t)
i = y

(t)
j always holds for t ∈ [a, b] and therefore g2 is

constant function. On the other hand, since y(t)
i + y

(t)
j 6 1 (or y(t)

i + y
(t)
j > 1), we also have

g1(t) = 1− y(t)
i − y

(t)
j = 1− 2t (or g1(t) = 0) being linear.

A direct corollary of Lemma 13 is the following.

Corollary 14. There is a polynomial-time algorithm to get a solution f such that Val(f) = OPTLP and the
variables in f are half-integral (i.e. being one of 0, 1, and 1/2).

Now we are ready for the proof of Theorem 12.

Proof of Theorem 12. Apply Corollary 14 to get an optimal LP solution f = {yi} which has half-integral
values. Then define fint = {xi} as follows. For each i ∈ V , let xi = 1 when yi > 1/2, and xi = 0 when
yi = 0. We observe that

• xi 6 2yi and 1− xi 6 1− yi for each i ∈ V .

• For each i < j, we have max{1− xi − xj , 0} 6 max{1− yi − yj , 0} since xi > yi and xj > yj .

• For each i 6= j, we see that when max{yi − yj , 0} = 0 ⇒ yi 6 yj , we always have xi 6 xj ⇒
max{xi− xj , 0} = 0. On the other hand, when max{yi− yj , 0} > 0⇒ max{yi− yj , 0} > 1/2, we
have max{xi − xj , 0} 6 1 6 2 max{yi − yj , 0}.

Altogether, we have

Val(fint) =
∑
i∈V

w
(T )
i (1− xi) +

∑
i∈V

w
(F )
i xi +

∑
i<j

w
(D)
ij max{1− xi − xj , 0}+

∑
i 6=j

w
(I)
ij max{xi − xj , 0}

6
∑
i∈V

w
(T )
i (1− yi) +

∑
i∈V

w
(F )
i 2yi +

∑
i<j

w
(D)
ij max{1− yi − yj , 0}+

∑
i 6=j

w
(I)
ij 2 max{yi − yj , 0}

6 2Val(f) = 2OPTLP 6 2OPT.
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5 Inapproximability and approximation algorithm for Max 1-in-k-HS

5.1 SDP gap and UG-hardness for Max 1-in-k-HS

In this section, we construct an SDP gap for Max 1-in-k-HS, and prove Theorem 3, which is restated as
follows.

Theorem 3 (restated). For some absolute constant C ′ > 0, for every α > 0, given a (1 − 1/k1−α)-
satisfiable instance of Max 1-in-k-HS, it is UG-hard to find a subset intersecting more than a fraction
C′

α log k of the sets exactly once.

We start by constructing the gap instance.

Instance. We define the (weighted) instance of Max 1-in-k-HS, denoted IEHS(m,n, ε), parameter 0 <
ε < 1, m > 2 and n > εm · 22dm(1+ε)e as follows.

• The universe U = [n] = {1, 2, . . . , n}.

• Define the sets C by choosing t ∈ m+ 1,m+ 2, · · · , dm(1 + ε)e uniform randomly, and picking a
subset S ⊆ U with size 2t by random, then letting S ∈ C and the weight of S be the corresponding
probability.

Note that in such an instance, the size of Si is at most k = 2dm(1+ε)e.

5.1.1 Upper bound of optimal integral solution

In this section, we prove the following Lemma showing that the above instance does not have a good exact
hitting set.

Lemma 15. There is a constant C1 such that for all 0 < ε < 1, m > 2 and n > εm · 22dm(1+ε)e, the
optimal solution to IEHS(m,n, ε) has value at most C1/(ε log k).

We begin with the following two statements that will be useful in bounding the value of any integral
solution to IEHS(m,n, ε).

Lemma 16. Suppose the hitting set V ⊆ U is of size l. Then the probability that a size-z (2 6 z 6 l/2) set

is hit exactly once by V , is at most 2z
n · l ·

(
1
e

)zl/4n
.

Proof.

PrS∈C [|S ∩ V | = 1
∣∣|S| = z] =

l
(
n−l
z−1

)(
n
z

)
= l · (n− l)!(n− z)!z!

(n− l − z + 1)!(z − 1)!n!

= zl · (n− l)!
(n− l − z + 1)!

· (n− z)!
n!

6 zl · (n− l)z−1

(n− z)z

=
z

n− z
· l ·
(

1− l − z
n− z

)z−1

14



6
z

n− z
· l ·
(1
e

)(z−1)(l−z)/(n−z)

6
z

n− z
· l ·
(1
e

)zl/4(n−z)
(2 6 z 6 l/2)

6
2z
n
· l ·
(1
e

)zl/4n
(z 6 l/2 6 n/2)

Claim 17. For all x > 0 and m ∈ N+, we have

m∑
i=1

2ixe−2ix 6 2/ ln 2.

Proof.

m∑
i=1

2ixe−2ix 6
+∞∑
i=−∞

2ixe−2ix

=
[log2 1/x]∑
i=−∞

2ixe−2ix +
+∞∑

i=[log2 1/x]+1

2ixe−2ix

6
∫ [log2 1/x]+1

−∞
2yxe−2yxdy +

∫ +∞

[log2 1/x]
2yxe−2yxdy (monotonicity)

6 2
∫ +∞

−∞
2yxe−2yxdy

=
2

ln 2
.

We can now prove Lemma 15.

Proof of Lemma 15. Set C1 = max{32/ ln 2, 12}. Given a solution V , let l = |V |. If l > 2 · 2dm(1+ε)e,
then l > 2|S|,∀S ∈ C. In this case, the probability that S ∈ C is hit exactly once, is

PrS∈C [|S ∩ V | = 1] =
dm(1+ε)e∑
t=m+1

PrS∈C [|S| = 2t] ·PrS∈C [|S ∩ V | = 1
∣∣|S| = 2t]

=
1
εm

dm(1+ε)e∑
t=m+1

PrS∈C [|S ∩ V | = 1
∣∣|S| = 2t]

6
1
εm

dm(1+ε)e∑
t=m+1

2 · 2t

n
· l ·
(1
e

)2tl/4n
(by Lemma 16)

6
1
εm
· 16

ln 2
(by Claim 17)
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6 C1/(ε log k).

On the other hand, if l < 2 · 2dm(1+ε)e, then

PrS∈C [|S ∩ V | = 1] 6 PrS∈C [|S ∩ V | > 1]

6 PrS∈C [|S ∩ V | > 1
∣∣∣|S| = 2dm(1+ε)e]

= 1−
(

n− l
2dm(1+ε)e

)
/

(
n

2dm(1+ε)e

)
= 1− (n− l)!

(n− l − 2dm(1+ε)e)!
· (n− 2dm(1+ε)e)!

n!

6 1−
(n− l − 2dm(1+ε)e

n

)l
6 1−

(n− 3 · 2dm(1+ε)e

n

)2·2dm(1+ε)e

(l < 2 · 2dm(1+ε)e)

6
6 · 22dm(1+ε)e

n
(∀0 6 x 6 1, y > 0, (1− x)y > 1− xy)

6 6/εm 6 C1/(ε log k).

And this proves the lemma.

5.1.2 Construction of good SDP solution

We prove that the canonical SDP has a solution with value close to 1.

Lemma 18. For the Max 1-in-k-HS instance IEHS(m,n, ε), the optimal solution to the canonical SDP has
value at least 1− 4/2m > 1− 4/k1−ε.

To prove Lemma 18, recall the canonical SDP for Max 1-in-k-HS as follows.

Maximize ES∈C [Prσ∈πS [|σ−1(1)| = 1]]
Subject to vi · I = ‖vi‖2 ∀i, j ∈ U

‖I‖2 = 1 ∀i ∈ U
Prσ∈πS [σ(i) = 1] = ‖vi‖2 ∀S ∈ C, i ∈ S

Prσ∈πS [σ(i) = 1 ∧ σ(j) = 1] = vi · vj ∀S ∈ C, i 6= j ∈ S

Now, we exhibit an SDP solution for the instance IEHS(m,n, ε) that has value close to 1. We first
construct the scalars, and then the vectors.

Constructing the solution – scalars. Let M = 2m, p = 2/M, q = 1/M . p and q will be the marginal
probability for single element pairs. and For each S ∈ C, and each σ : S → {0, 1}, define the local
distribution πS as follows:

πS(σ) =



|S|
|S|−2 ·

(
|S|
|S|−1 −

3|S|−2
|S|−1 · p+ 2q

)
/
(|S|

1

)
|σ−1(1)| = 1

4
|S|−2 ·

(
(|S| − 1)(p− q)− (1− p)

)
/
( |S|
|S|/2

)
|σ−1(1)| = |S|

2

1−
(|S|

1

)
πS(σ)||σ|=1 −

( |S|
|S|/2

)
πS(σ)||σ−1(1)|=|S|/2

= 1
|S|−1 −

|S|
|S|−1 · p+ 2q |σ−1(1)| = |S|

0 otherwise
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Given M < |S| for all S ∈ C, it is easy to check πS is always non-negative. And it can be checked that∑
σ⊆S πS(σ) = 1. Thus, πS is a valid probability distribution.
Then we calculate the following values which are related to the SDP.

• For all i ∈ S ∈ C,

Prσ∈πS [σ(i) = 1] = 1− |S| − 1
|S|

· |S|
|S| − 2

·
( |S|
|S| − 1

− 3|S| − 2
|S| − 1

· p+ 2q
)

−1
2
· 4
|S| − 2

·
(

(|S| − 1)(p− q)− (1− p)
)

= p.

• For all i 6= j ∈ S ∈ C,

Prσ∈πS [σ(i) = 1 ∧ σ(j) = 1] =
( 1
|S| − 1

− |S|
|S| − 1

· p+ 2q
)

+
(

1− |S|/2− 1
2(|S| − 1)

)
· 4
|S| − 2

·
(

(|S| − 1)(p− q)− (1− p)
)

= q.

Constructing the solution – vectors. Now we need to show there exists a set of vectors passing the consis-
tency check on local distributions we defined above. In fact, we show there exists set of vectors satisfying
even stricter requirements, where the inner-product between every pair of vectors is defined, as follows,

‖vi‖2 = p ∀i ∈ U
vi · vj = q ∀i 6= j ∈ U
vi · I = ‖vi‖2 ∀i ∈ U
‖I‖2 = 1

Thus we only need to show the corresponding inner-product matrix is positive semidefinite. The matrix is
in the form of

A =
[

1 pbT

pb (p− q)I + qJ

]
where b is n× 1 all-one vector, J is the n× n all-one matrix, and I is the identity matrix.

Given x = (x0, x1, · · · , xn) ∈ Rn,

xTAx = (x0, x1, · · · , xn)
[

1 pbT

pb (p− q)I + qJ

]
(x0, x1, · · · , xn)T

= x2
0 + 2px0(

n∑
i=1

xi) + q(
n∑
i=1

xi)2 + (p− q)
n∑
i=1

x2
i

Note that this quadratic form is always non-negative when p > q and 4p2−4q 6 0⇔ q > p2. Our p = 2/M
and q = 1/M satisfies these conditions. Therefore the inner-product matrix is positive semidefinite and the
vectors exist.

Now we can prove Lemma 18, which says the optimal SDP solution has value close to 1.
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Proof of Lemma 18. The value of the solution we exhibited above is

ES∈C [Prσ∈πS [|σ−1(1)| = 1]] = ES∈C

[ ∑
σ:S→{0,1},|σ|−1(1)=1

πS(σ)
]

= ES∈C

[ |S|
|S| − 2

·
( |S|
|S| − 1

− 3|S| − 2
|S| − 1

· p+ 2q
)]

> ES∈C

[ |S|
|S| − 1

− 3|S| − 2
|S| − 1

· p+ 2q
]

= ES∈C [1− 3p+ 2q + (1− p)/(|S| − 1)]
> ES∈C [1− 3p+ 2q]
= 1− 3p+ 2q = 1− 4/M .

Together with Theorem 5, Lemmas 15 and 18 imply Theorem 3.

5.2 A robust algorithm for almost-satisfiable Max 1-in-k-SAT

In this section, we prove the following theorem.

Theorem 4 (restated). For every constant B > 1, the following holds. There is a polynomial time algo-
rithm that given a (1 − 1

Bk )-satisfiable instance of Max 1-in-k-SAT, finds a truth-assignment on variables

satisfying exactly one term for a fraction λ of the clauses, where λ =
(

1−1/
√
B

e

)2
.

The algorithm is based on rounding an LP relaxation for the problem, and gives a robust version of the
algorithm in [GT05] which achieved a factor 1/e-approximation for (perfectly) satisfiable instances.

Given a truth-assignment σ and a clause C, we denote σ∩C by the set of terms in C satisfied by σ. Our
algorithm first solves the following LP relaxation of the problem.

Maximize EC∈C [Prσ∈πC [|σ ∩ C| = 1]]
Subject to Prσ∈πC [σ(i) = 1] = xi ∀C ∈ C, i ∈ C

Given a solution {πC} and {xi} to the LP, we generate an assignment τ by for each i ∈ U letting
τ(xi) = 1 with probability xi. Then we prove the following lemma which directly implies Theorem 4.

Lemma 19. For every constant B > 1, when OPTLP > 1− 1
Bk , we have

Eτ [PrC∈C [|τ ∩ C| = 1]] >
(1− 1/

√
B

e

)2
.

Proof. Given EC∈C [Prσ∈πC [|σ ∩ C| = 1]] > 1− 1
Bk , by an averaging argument, we know that for at least

(1− 1/
√
B) fraction of C ∈ C are “good”, i.e., for these C clauses, we have

Prσ∈πC [|σ ∩ C| = 1] > 1− 1√
Bk

.
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For each good C ∈ C, and for each term t ∈ C, let p(t) = xi if t = xi, or p(t) = 1 − xi if t = xi, i.e.
p(t) is the probability that t is satisfied by τ . Then we know that∑

t∈C
p(t) = Eσ∈πC [|σ ∩ C|] > Prσ∈πC [|σ ∩ C| = 1] > 1− 1√

Bk
.

On the other hand,∑
t∈C

p(t) = Eσ∈πC [|σ ∩ C|] 6 Prσ∈πC [|σ ∩ C| = 1] + (1−Prσ∈πC [|σ ∩ C| = 1])|C| 6 1 + 1/
√
B. (8)

We now lower bound the probability that τ satisfies C, using the Lemma 20 proved at the end of the
section. We discuss the following two cases to establish the lower bound.

Case 1. If all the terms in C depend on distinct variables, then

Prτ [|τ ∩ C| = 1] =
∑
t∈C

p(t)
∏

t′∈C,t6=t′
(1− p(t′)). (9)

For good C we know that
∑

t∈C p(t) ∈ [1 − 1√
Bk
, 1 + 1/

√
B] ⊆ [1 − 1/

√
B, 1 + 1/

√
B], By Lemma 20

given right after this proof, we know that (9) > (1− 1/
√
B)/e2.

Case 2. If some terms in C depend on the same variable, i.e. ∃i : xi, xi ∈ C, then by (8) we know that∑
t∈C\{xi,xi} 6 1/

√
B < 1. Thus terms in C \ {xi, xi} depend on distinct variables, and also by Lemma

20, we know that

Prτ [|τ ∩ C| = 1] = 1 ·
∏

t∈C\{xi,xi}

(1− p(t)) > (1− 1/
√
B)/e2.

Combining the two cases above, we get

Eτ [PrC∈C [|τ ∩ C| = 1]] = EC∈C [Prτ [|τ ∩ C| = 1]]
> (1− 1/

√
B)EC∈C [Prτ [|τ ∩ C| = 1]|C is good]

>
(1− 1/

√
B

e

)2
.

It remains to prove the following inequality which was used in the above proof.

Lemma 20. Given x1, x2, · · · , xn ∈ [0, 1], and 1− ε 6
∑

i xi 6 1 + ε where ε < 1 then∑
i

xi
∏
j 6=i

(1− xj) >
1− ε
e2

.

Proof. We use the following claim to prove this lemma.

Claim 21. For n > 2, given a set of n numbers {xi} as described in the lemma, the objective function∑
i xi
∏
j 6=i(1− xj) is minimized when

• All the xi’s are the same, or
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• ∃i : xi = 0 or ∃i : xi = 1.

Proof. Suppose the first condition doesn’t hold, we prove the second one holds. Without loss of generality
assume that x1 6= x2. Then rewrite the objective function as∑

i

xi
∏
j 6=i

(1− xj)

= (1− x1)(1− x2)
(∑
i>3

xi
∏

j 6=i,j>3

(1− xj)
)

+
(
x1(1− x2) + x2(1− x1)

)∏
j>3

(1− xj)

Let C1 =
∑

i>3 xi
∏
j 6=i,j>3(1− xj) and C2 =

∏
j>3(1− xj), we have∑

i

xi
∏
j 6=i

(1− xj) = C1 + (C2 − C1)(x1 + x2) + (C1 − 2C2)x1x2

Note that when fixing the sum x1 +x2, we can change individual values of x1 and x2 within [0, 1] while still
{xi} still being a valid solution. By the perturbing, only the term (C1 − 2C2)x1x2 in the objective function
might have value changed. Since x1 6= x2, we know that C1 − 2C2 > 0 or making x′1 = x′2 = (x1 + x2)/2
gets no larger objective function value. When C1 − 2C2 > 0, x1 and x2 should be “apart from” each other,
thus one of x1 and x2 must touch their bound, i.e., 0 or 1.

Now we use this claim and induction on n to prove the lemma. The lemma trivially holds in the base
case when n = 1. When n = k > 1, supposing the lemma holds for all n < k, we discuss the three cases
proposed by Claim 21 (splitting the second case in the claim into two).

• When all xi’s are the same, we know that xi = S/n where S =
∑

i xi. Then∑
i

xi
∏
j 6=i

(1− xj) = S
(

1− S

n

)n−1
> Se−S >

1− ε
e2

• When ∃i : xi = 0, with out loss of generality, suppose x1 = 0. Then this reduces to the same problem
with (n− 1) variables and the induction hypothesis gives us a (1− ε)/e2 lower bound.

• When ∃i : xi = 1, again with out loss of generality, suppose x1 = 1. Now the objective function
becomes

∏
i>2(1− xi) while

∑
i>2 xi is at most ε. It is easy to see the product is lower bounded by

(1− ε). (All but one of xi are 0.)

6 Concluding remarks on finding almost-satisfying assignments for CSPs

In the world of “CSP dichotomy” (see [HN08] for a recent survey), the tractability of LIN-mod-2, 2-SAT,
and Horn-SAT is explained by the existence of non-trivial polymorphisms which combine many satisfying
assignments to produce a new satisfying assignment. The Boolean functions which are polymorphisms
for LIN-mod-2, 2-SAT, and Horn-SAT are xor (of odd size), majority, and minimum respectively. The
existence of algorithms to find almost-satisfying assignments to 2-SAT and Horn-SAT can be attributed to
the “noise stability” of the majority and minimum functions. The xor function of many variables, on the
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other hand, is highly sensitive to noise. This distinction seems to underly the difficulty of solving near-
satisfiable instances of LIN-mod-2 and Håstad’s tight hardness result for the problem.

For Boolean CSPs, we understand the complexity of finding almost-satisfying assignments for all the
cases where deciding satisfiability is tractable: it is possible in polynomial time for 2-SAT and Horn-SAT,
and NP-hard for LIN-mod-2. Further, under the UGC, the exact approximation threshold as a function of
the gap ε to perfect satisfiability is also pinned down for both 2-SAT and Horn-SAT. What about CSPs
over larger domains? For any CSP Π that can “express linear equations” (this notion is formalized in the
CSP dichotomy literature, but we can work with the intuitive meaning for this discussion), Håstad’s strong
inapproximability result for near-satisfiable linear equations over abelian groups [Hås01] implies hardness of
finding an almost satisfying assignment for (1−ε)-satisfiable instances of Π. A recent breakthrough [BK09]
established that every other tractable CSP (i.e., a polynomial time decidable CSP that cannot express linear
equations) must be of so-called “bounded width,” which means that a natural local propagation algorithm
correctly decides satisfiability of every instance of that CSP.

We end this paper with the appealing conjecture that every bounded width CSP admits a robust satisfia-
bility algorithm that can find a (1−g(ε))-satisfying assignment given a (1−ε)-satisfiable instance for some
function g() such that g(ε)→ 0 as ε→ 0. (We should clarify that in this context we always treat the domain
size k of the CSP as fixed and let ε → 0, so g(ε) can have an arbitrary dependence on k. Note that Unique
Games itself, which is a bounded width CSP, admits a robust satisfiability algorithm that satisfies a fraction
1−O(

√
ε log k) of constraints in a (1−ε)-satisfiable instance [CMM06].) By the preceding discussion, this

conjecture would imply that bounded width characterizes the existence of robust satisfiability algorithms
for CSPs.
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A Two positive semidefinite matrices

We now establish the positive semidefiniteness of the matrices encountered in Section 4.1.3.

Claim 22. Given 0 < c 6 0.2, 0 < p 6 1
1+crc, q = rcp, ε = c/1.5, the following two matrices are positive

semidefinite.

A =


1 1− p 1− p 1− rcp 1− rcp

1− p 1− p 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p
1− p 1− (1 + c)p 1− p 1− (1 + c)p 1− (1 + c)p

1− rcp 1− (1 + c)p 1− (1 + c)p 1− rcp 1− (1 + c)p
1− rcp 1− (1 + c)p 1− (1 + c)p 1− (1 + c)p 1− rcp

 ,
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B =


1 1− q 1− q 1− q 1− q

1− q 1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− q 1− (1 + ε)q 1− (1 + ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− q 1− (1 + 1.5ε)q
1− q 1− (1 + ε)q 1− (1 + ε)q 1− (1 + 1.5ε)p 1− q

 .

Proof. Let J be the all 1 matrix, E1 be the matrix with 1 in entry (1, 1) as the only one non-zero entry.
We also define Ei,j , Fi,j and Gi,j as matrices with only four non-zero entries located in the intersections of
Column i, j and Row i, j. The sub-matrices of Ei,j , Fi,j and Gi,j on Column i, j and Row i, j are defined
as

(for Ei,j)
[

1 1
1 1

]
, (for Fi,j)

[
2 1
1 0.5

]
and (for Gi,j)

[
1 −1
−1 1

]
.

Clearly, all of J , E1, Ei,j , Fi,j and Gi,j are positive semidefinite matrices.
Then we can write A as

A = (1− (1 + c)p)J + cp(E1,2 + E1,3) + (1 + c− rc)p(E1,4 + E1,5) + (2rc − 1− 3c)pE1

= (1− (1 + c)p)J + cp(E1,2 + E1,3) +
(1 + c)c
1.5 + c

· p(E1,4 + E1,5) +
1.5− 2.5c− 3c2

1.5 + c
· pE1,

Note that all the coefficient before matrices are non-negative within the range of c. Since A can be written
as the sum of several positive semidefinite matrices, A is positive semidefinite.

For matrix B, note that

B = (1− (1 + ε)q)J + εq(E1,2 + E1,3 + F1,4 + F1,5) + 0.5εqG4,5 + (1− 5ε)E1,

Clearly, as long as 5ε = 5c/1.5 < 1, B can be expressed as sum of positive semidefinite matrices, and
hence B is positive semidefinite.
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