
Chapter 2

Kernel Correlation for Robust

Distance Minimization

We introduce kernel correlation between points, between a point and a set of points,

and among a set of points. We show that kernel correlation is equivalent to M-

estimators, and kernel correlation of a point set is a one-to-one function of an entropy

measure of the point set. In many cases maximization of kernel correlation is directly

linked to geometric distance minimization, and kernel correlation can be evaluated

efficiently by discrete kernels.

2.1 Correlation in Vision Problems

Correlation describes the relevancy of two entities. In statistics, correlation is a value

that quantifies the co-occurrence of two random variables. And in vision problems,

(normalized) correlation between two image patches has long been used for measuring

the similarities (one kind of relevancy) between them. They have been used for image

alignment, feature point tracking, periodicity detection, et. al.

Correlation is usually defined on the intensity images. An intensity image I can

be considered as a function of the pixel coordinate x: I(x), and correlation between

two image patches I1 and I2 is defined as
∑

x

I1(x) · I2 (T (x, θ)) ,

where T (x, θ) is a transformation that warps the patch I2 such that I2 is put in the
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same coordinate as I1.

When studying point-samples, we are given just the coordinates of a set of points,

{x}. The above definition of correlation is no longer applicable since we are given a

set of geometric entities without any appearance information. We are given a set of

points with nothing to compare.

However, the presence or absence of feature points themselves tell a lot more than

the coordinates of the points. It also manifests relationship between pairs of points

and between sets of points, as well as the structures implied by the points. For

example, the point set B is obviously more “similar” to point set A than point set

C in Figure 2.1, and Point x is obviously more “compatible” with point set C than

y. The “similarity” and “compatibility” obviously exhibit some sort of “relevancy”,

which should be able to be formulated by a correlation measure.

A B C

y
x

Figure 2.1: Relevancy between sets of points (A and B) and between a point and a

point set (x and C).

The simplest way of capturing the relevancy is to treat the feature points as binary

intensity images which have only values 0 (absence) and 1 (presence). In fact binary

correlation of the noiseless patterns in Figure 2.1 returns the maximum value when A

is aligned with B. However, when noise presents, or when we have different sampling

strategy in obtaining point sets A and B, the binary images will usually not match.

And this simplest correlation approach won’t work.

In the following we present a technology we call kernel correlation. The basic

idea is simple. We build a “blurry” image by convolving each point with a kernel,

usually a Gaussian kernel. And we can study the correlation between these “blurry”

images. It turns out that the correlation of these “blurry” images implies more than

“relevancy” of point sets. It also captures many vague human perceptions such as
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cleanness, compactness, smoothness and proximity.

2.2 Kernel Correlation Between Two Points

Definition 2.1. (Kernel Correlation.) Given two points xi, xj, their kernel correla-

tion is defined as

KC(xi, xj) =

∫
K(x, xi) ·K(x, xj)dx. (2.1)

Here K(x, y) is a kernel function. The kernel functions adopted here are those

commonly used in Parzen density estimation [73], not those kernels in general sense

adopted in support vector machine (SVM). Specifically, a kernel function K(x, y)

should satisfy the following conditions,

1. K(x, y) : RD ×RD → R is a non-negative and piecewise smooth function.

2. Symmetric: K(x, y) = K(y, x).

3. Integrate to 1:
∫

x
K(x, y)dx = 1.

4.
∫

x
K(x, y) · K(x, z)dx defined for any y ∈ RD and z ∈ RD. This is to ensure

that kernel correlation between points is defined.

5. lim‖y−z‖→∞
z∂KC(y,z)

∂y
= 0. This property will be used to ensure the robustness

of the kernel correlation measure.

There are many kernel functions that satisfy the above conditions, such as the

Gaussian kernel, Epanechnikov kernel and tri-cube kernels [67, 37]. In the following

we will discuss as an example the Gaussian kernel,

KG(x, xi) = (πσ2)−D/2 · e− (x−xi)
T (x−xi)

σ2 , (2.2)

where D is the dimension of the column vector x. The primary reason for putting an

emphasis on the Gaussian kernel is due to two nice properties of Gaussian kernels.

First, derivatives of a Gaussian kernel are infinitely continuous functions. Second,

derivatives of a Gaussian kernel, like the Gaussian kernel itself, decays exponentially

as a function of the Mahanalobis distance [25] − (x−xi)
T (x−xi)
σ2 . These properties of

the Gaussian kernels ensure smooth gradient fields in registration problems, and they
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entail robustness as will be discussed in the sequel. The other reason for this choice is

for the convenience of analysis. Gaussian kernel correlation has a simple relationship

with the distance between points.

Kernels possessing properties (1) to (5) can all be used in point-sampled vision

problems. Kernel correlation using the other kernels also entails robust distance

minimization framework. But the kernel correlation is a more sophisticated function

of distance between points, and the gradient field is no longer infinitely smooth. We

will discuss the shared properties between the Gaussian kernel and other kernels in

the following, while using Gaussian kernel as an example.

Conceptually the correlation operation involves two step. First, a point is con-

volved with a kernel. Second, the amount of overlap between the two “blurred” points

is computed. Figure 2.2 shows the convolution step in 2D and the resulting “blurry”

image used for correlation.

Figure 2.2: Convolution changes a single point to a blurry blob, 2D intensity map.

Since the kernel functions are symmetrical, it’s not surprising to see that the

correlation is a function of distance between the two points. For Gaussian kernels,

we have a very simple relationship,

Lemma 2.1. (Correlation of Gaussian Kernels as an Affinity Measure.) Correlation

of two isotropic Gaussian kernels centered at xi and xj depends only on their Euclidean

distance dij =
(
(xi − xj)

T (xi − xj)
)1/2

, more specifically,

KCG(xi, xj) =

∫

x

KG(x, xi) ·KG(x, xj)dx = (2πσ2)−D/2e−
d2
ij

2σ2 (2.3)
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Proof. We change variable x to x = y +
xi+xj

2
in the integral part of (2.3). By

substituting (2.2) into (2.3), and after some simply manipulation it can be shown

KCG(xi, xj) = (πσ2)−D

∫

y

e−
2yT y

σ2 − d2
ij

2σ2 dy.

d2
ij is independent of y. So

KCG(xi, xj) = (πσ2)−De−
d2
ij

2σ2

∫

y

e−
2yT y

σ2 dy.

The integral in the above equation is well-known to be (πσ2/2)D/2, the normalization

term of a Gaussian distribution. As a result (2.3) holds.¤

The function form e−d2/σ2
is known as an affinity measure or proximity measure

in vision research [86]. The affinity increases as the distance between two points

decreases. It has been previously used in the correspondence problems [86, 91, 74]

and psychological studies of illusions [106]. The introduction of kernel correlation

provides an effective way of measuring the affinity between points. This will become

very clear when we discuss interactions among multiple points.

For other kernels, kernel correlation is also a function of distance due to the

symmetric kernels we adopt. Figure 2.3 demonstrates this point. They are more

complex functions of distance and are more difficult to analyze. However, if we adopt

numerical methods to compute kernel correlation, these difficulty disappears. We will

introduce a way to approximate KC value using discrete kernels in the sequel.
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Figure 2.3: Kernel correlation as a function of distance between points.

For anisotropic kernels with symmetric covariance matrix. The Euclidean distance

in (2.3) is replaced by the Mahanalobis distance.
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An important conclusion we draw from Lemma 2.1 is that maximizing the kernel

correlation between two points is equivalent to minimizing the distance between them.

As we mentioned in Chapter 1, many vision problems can be put into a distance

minimization framework. Thus maximization of pairwise kernel correlation implies a

mechanism that can play a significant role in point-sample registration, regularization

and merging problems.

Of course, in all non-trivial cases in computer vision, we will need to study inter-

actions between more than two points. We extend the definition of kernel correlation

in the following sections.

2.3 Leave-One-Out Kernel Correlation

2.3.1 Definition

Given a point set X = {xi}, we define a measure of compatibility between a point xk

with the rest of the points X \ xk,

Definition 2.2. (Leave-one-out kernel correlation.) The leave-one-out kernel corre-

lation between a point xk and the whole point set X is,

KC(xk,X ) =
∑

xj 6=xk

KC(xk, xj). (2.4)

Notice that here we reuse the same symbol KC for leave-one-out kernel correlation.

Hopefully the exact meaning of KC can be inferred from the variable list. By abusing

this symbol, we can avoid unnecessary introduction of a list of symbols pertaining to

similar concepts.

As a direct result of Lemma 2.1, it’s easy to see that the leave-one-out kernel

correlation is a function of pairwise distance.

Lemma 2.2. (Leave-one-out Gaussian Kernel Correlation as a Function of Distance.)

The leave-one-out Gaussian kernel correlation is a function of distances between xk

and the rest of the points in the set X .

KCG(xk,X ) = (2πσ2)−D/2
∑

xj 6=xk

e−
d2
jk

2σ2 (2.5)

.
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As we know now, adoption of kernels other than the Gaussian kernel will result

in similar conclusions, with different functional forms as the summation terms.

From Lemma 2.2, we can have the following conclusion about kernel correlation

under rigid motion.

Lemma 2.3. (Invariant of kernel correlation under rigid transformation.) Suppose

T is a rigid transformation in RD, then the leave-one-out kernel correlation using

isotropic kernels is invariant under T ,

KC (T (xk), T (X )) = KC(xk,X ). (2.6)

Proof A rigid transformation preserves the Euclidean distance between points.

From Lemma 2.2 it’s evident the kernel correlation is invariant under rigid transfor-

mation. ¤.

Proof of Lemma 2.3 is independent of the kernel functions being selected, as long

as the kernel correlation is a function of distance.

To show what it means to maximize kernel correlation, we apply Lemma 2.2 in an

example shown in Figure 2.4. The left figure shows the configuration and evolution

of the points. There are 11 fixed points (black diamonds) in a 2D space. A moving

point (green circle) is initially put at the top left corner of the diagram. At each step

we compute the gradient g(n) of the kernel correlation and update the position of the

moving point using x
(n+1)
k = x

(n)
k + λg(n), a simple gradient ascent scheme. To gain

an insight into the problem we take a look at the gradient field,

∂(KCG)

∂xk

∝
∑

xj 6=xk

e−
d2
jk

2σ2 · (xj − xk) (2.7)

The gradient field, or the force imposed upon xk, is a vector sum of all the attraction

forces xk receives from the 11 fixed points. The force between each pair of points is

composed of two parts,

1. The part proportional to the distance between the two points, xj − xk. Notice

that the direction of the force is pointing from xk to xj. This can be thought

of as the elastic force between the two points.

2. The part that decays exponentially with respect to the distance, e−
d2
jk

2σ2 .
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As a result, for points that have distance djk ¿ σ, the system is equivalent to

a spring-mass system. For points that are at a large distance, their influence de-

creases exponentially. This dynamic system accepts weighted contributions from a

local neighborhood, while being robust to distant outliers. The kernel correlation

reaches an extreme point at the same time the spring-mass system reaches an equilib-

rium, where forces xk received from all the fixed points sum up to zero. In the figure

forces received from each individual point are plotted as blue arrows.
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Figure 2.4: Maximizing the kernel correlation between a point and a set of fixed points

(black diamonds). Here σ = 6. (a) The trajectory of the point. (b) The evolution of

kernel correlation.

2.3.2 Kernel Correlation for Robust Distance Minimization

Kernel correlation as an M-estimator

An appealing property of kernel correlation is that although kernel correlation is

defined over the whole RD, its effective region is a local aperture. This can be seen in

Figure 2.5 in a one dimensional case. When the distance-to-scale ratio d
σ

exceeds 5,

the value of the kernel correlation drops from 1 to below 3.73× 10−6. Points beyond

this range have virtually no effect on the point in the center. This aperture effect of

kernel correlation leads to the robustness.
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Figure 2.5: Kernel correlation and its first derivative as a function of distance to

scale ratio d
σ
. Here the kernel is not normalized and only the relative magnitude is

meaningful.

To illustrate the robustness of kernel correlation, we show its equivalence to some

well-known robust estimation techniques. The robustness of the kernel correlation

technique comes from its ability to ignore the influence of distant points, or out-

liers. The mechanism is the same as the M-estimator technique in robust statistical

regression [105, 39, 82, 66].

In an M-estimator, instead of finding parameters to minimize the quadratic cost

function

E =
∑

i

(yi − f)2, (2.8)

the M-estimator minimizes the cost function,

Er =
∑

i

g
(
(yi − f)2

)
, (2.9)

here yi is the ith observation and f is the parameter to be estimated. The function g

is a robust function ,e.g. the Tukey bi-weight function [105], Huber’s robust function

[39], or the Lorentzian function [78, 112].

The necessary condition for minimizing the above equation is that

E ′
r =

∑
i

(yi − f) · h(yi − f) = 0, (2.10)
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where h = ∂g
∂(yi−f)

is the interaction function [59]. From the above condition the

optimal solution for f is the weighted average,

f =

∑
i h(yi − f) · yi∑

i h(yi − f)
. (2.11)

In the above equation, the weight for each datum is h(yi − f). Thus it’s essential to

have small weights for data that are distant to the current f estimate (an M-estimator

method is an iterative process starting from some initial value). In fact, Li [59] proved

that for a regularization term to be robust to outliers, the interaction function must

satisfy,

lim
yi→∞

|yih(yi − f)| = C < ∞. (2.12)

When C = 0, points at infinity do not have any influence in the estimation of f , while

when C > 0, points at infinity have limited influence.

In the following we study the robustness of several common regularization / re-

gression techniques. We first look at the robustness of the least-square technique.

Corresponding to the quadratic cost function (2.8), the interaction function h = 1.

All points are weighted equally. As a result, a single point at infinity can ruin the

estimation, a significant source of non-robustness.

Secondly, we study the robustness of estimation techniques that embed a line pro-

cess in the cost function [31, 8]. When discontinuity is detected, usually signaled when

|y − f | ≥ γ, smoothing (interaction) across the discontinuity boundary is prohibited.

This corresponds to an interaction function

hLP (ξ) =

{
1, |y − f | < γ

0, |y − f | ≥ γ
, (2.13)

and the corresponding robust cost function is

g(ξ) = min(γ2, ξ2). (2.14)

The drawback of embedding a line process in the cost function is that it introduces

discontinuity in the cost function. As a result, it makes gradient-descent based opti-

mization techniques undefined. Furthermore, all data in the window contribute equal

influence. The choice of a good window size γ is thus crucial.

There is an interesting connection between the line process embedded quadratic

function and the mean shift technique [18]. Equation (2.11) is already a mean shift
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updating rule. For line process embedded quadratic function, we have hLP = 1 in the

window. The iterative updating rule for the is

f =
yi

|N (f)| , N (f) = {yi : |yi − f | < γ},

which is also a mean shift updating rule.

Finally, we study kernel correlation from an M-estimator point of view. For Gaus-

sian kernel, the interaction function is

hKC(ξ) ∝ e−
ξ2

2σ2 . (2.15)

Obviously limξ→∞ ξhKC(ξ) = 0 and infinite points have no influence at all. Other

kernels, such as the Epanechnikov and tri-cube, can be considered as line process

embedded robust functions because the kernels are defined only within a window,

or the interaction function is constantly zero beyond twice the window size (see our

requirement for kernel functions in Section 2.2, property 5).

From the above discussion we conclude that the kernel correlation naturally in-

cludes the robust mechanism of the M-estimator technique. In addition, by designing

kernel functions, we can choose the desired robust functions.

Breakdown Point and Efficiency Issues

The M-estimator technique is an iterative process. It starts with an initial value and

progressively finds parameters with smaller costs. It is known that the M-estimator is

not robust if the initialization is too close to outliers. This problem cannot be solved

by the M-estimator itself. In this sense M-estimators has zero breakdown point.

Some other robustness techniques, such as the least median of squares (LMedS)

[82, 66] or RANSAC [36], can avoid this problem by drawing a large number of

samples from the solution space: The correct solution should produce the smallest

median error, or satisfy the maximum number of observed data. They can have

breakdown point up to 50%. However, these methods can be computationally costly,

depending on the contamination ratio of the data, the size of the elemental set and

the size of the total data set [66].

LMedS and RANSAC are known for their poor statistical efficiency. The statistical

efficiency is measured by the variance of the estimated parameters. Since LMedS and

RANSAC use a minimum subset of the inlier data, their estimation variance are
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usually large. Therefore they are not efficient. In contrast, the M-estimator can

usually take into account a large set of inlier data, if the scales of the M-estimators

are properly chosen. In such cases an M-estimator can produce efficient estimate of

the parameters.

To conclude, the kernel correlation technique can be very efficient if the kernel

scale is properly selected. However, its robustness is sensitive to initial values.

2.3.3 Choice of Kernel Scales

We discuss the problem of kernel scale selection in this section. The effect of kernel

scale is shown in two cases, with or without outliers.

The choice of kernel scales is important for deciding whether to smooth across two

point-samples or to treat them as two separate entities, a case we call the bridge-or-

break effect. To illustrate the effect, we show the point configuration in Figure 2.6,

where in one dimensional space we have two fixed points (x1 = 0 and x2 = 1) and

one moving point (y). We call the point configuration where y is in the middle of

the two fixed points as a “bridge”, Figure 2.6(a), because the moving point y serves

to connect the two fixed points and supports the statement that the two fixed points

belong to a single structure. Conversely, we call the other point configuration where y

coincides with one of the fixed point as a “break” (Figure 2.6(b)), because y supports

the fact that x1 and x2 are two isolated structures.

x1 x2 x1 x2

y y

(a) (b)

Figure 2.6: Bridge-or-break point configurations. The two points represented by

squares (x1 and x2) are fixed. The point y (disc) moves between them. (a) A “bridge”

configuration. (b) A “break” configuration.

Next, we show that maximum kernel correlation under different kernel scales en-

tails the bridge-or-break effect. Suppose the distance between x1 and x2 is 1. We are
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interested in finding the maximum kernel correlation position for the moving point y,

under different kernel scales σ. In one extreme case, σ ¿ 1, we expect that y should

be close to either x1 or x2 to maximize the kernel correlation, a break configuration.

In the other extreme, we expect σ À 1, the maximum kernel correlation is achieved

when y = 0.5, a bridge configuration. Figure 2.7 shows the maximum kernel correla-

tion position as a function of kernel scale σ. We notice that the change from “break”

(σ < 0.3) to “bridge” (σ > 0.5) is very sharp. That is, except for a small range of σ

value, the maximum kernel correlation favors either break or bridge.
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Figure 2.7: Maximum kernel correlation position as a function of kernel scale σ.

The strong preference for either break or bridge is a desirable property in many

vision problems. For example, in stereo and optic flow regularization problems, we

want the regularization term to smooth out slow changing disparity / optic flows,

while we don’t want the regularization to over-smooth regions with large discontinuity.

The bridge-or-break effect of the kernel correlation naturally implies such a choice of

smoothing or not-smoothing. For example, we can consider the distance between

the two fixed points as the depth discrepancy between two neighboring pixels in a

stereo algorithm. If the gap is small compared to the kernel scale σ, maximum kernel

correlation will try to put the moving point in between them, thus achieves smoothing.

Or if the gap is big, maximum kernel correlation will encourage the moving point to be

close to either of the two fixed points, thus achieving depth discontinuity preservation.

By properly choosing σ, we can enforce smoothing and discontinuity preservation
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adaptively. We will show various examples throughout this thesis.

Next, we discuss the case when there are no outliers. The choice of kernel scale will

be a trade-off between bias and variance (efficiency) [37]. The underlying assumption

behind all non-parametric regularization techniques is that the data can be locally

fit by a linear manifold (a line, a plane, et. al ). Large support magnifies this

locally-linear preference. As a result, large kernel scale will introduce large bias by

smoothing across a large support. On the other hand, noise in the data is more likely

to be canceled if we choose large support. From the statistics perspective, with more

data introduced in a smoothing algorithm, the variance of the smoothed output will

become smaller. In summary, large kernels achieve more efficient output in exchange

for large bias.

The choice of kernel size in practice is in general a difficult problem. We will not

put kernel scale selection as our research topic in this thesis. In our experiments we

choose the kernel scale empirically.

2.3.4 Examples: Geometric Distance Minimization

In this section we will study the geometric interpretations for maximizing the leave-

one-out kernel correlation in several special cases. In these examples maximizing

kernel correlation directly corresponds to geometric distance minimization. We will

discuss what the technique implies in general point sets in Section 2.4.

Maximizing kernel correlation for minimizing distance to nearest neighbors

Our first example is shown in Figure 2.8(a). The nearest neighbor to xk is xn and the

distance between them is dkn. Suppose the next nearest neighbor to xk in X is xm with

a distance dkm. If (dkn/σ)2 ¿ (dkm/σ)2, KCG(xk,X ) ≈ Ce−(dkn/2σ)2 . Maximizing the

leave-one-out kernel correlation is equivalent to minimizing the distance between xk

to its nearest neighbor.

Notice that although we are minimizing the distance between xk to its nearest

neighbor, it’s not necessary to explicitly find the nearest neighbor xn. In Section 2.5.2

we will show that the kernel correlation can be maximized by using gradient descent

algorithms without knowing the nearest neighbors. This can result in considerably

simpler algorithms, especially when the neighborhood system is dynamically chang-
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Figure 2.8: Special settings for kernel correlation maximization. (a)Minimizing dis-

tance to the nearest neighbor. The dashed circle is the range of 3σ. (b) Minimizing

the vertical distance.

ing.

For more general cases, more than one nearest neighbor will have non-negligible

contributions to the correlation value. The result is a more complicated neighborhood

system where the contribution of each point decays exponentially as a function of

their distance to the reference point. This is similar to the weighting mechanism of

kernel weighted average [37] where closer points are weighted more. As we will see

in the next chapter, this sophisticated neighborhood system will bring robustness to

our registration algorithm against both noises and outliers. Again, this sophisticated

neighborhood system is implicitly defined by kernel correlation. In practice there’s

no need to actually find all the nearest neighbors.

Maximizing kernel correlation for minimizing distance to a plane

As seen in Figure 2.8(b), the points X \ xk form a dense and uniformly distributed

cloud on a planar surface. The density is relative to the scale of the Gaussian kernel σ.

We say a point set is dense if σ À d̄, where d̄ is the average distance between points.

We can thus decompose the distance from xk to any point xj 6= xk into two parts,
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the part parallel to the plane d
‖
kj and the part perpendicular to the plane d⊥kj. Since

the perpendicular distance is the same for all xj, we can write it as d⊥k , the distance

from xk to the plane. According to the Pythagorean theorem, d2
kj = d⊥2

k + d
‖2
kj. The

leave-one-out kernel correlation can be written as,

KCG(xk,X ) ∝ ·e−
d⊥2
k

2σ2 ·
∑

xj 6=xk

e−
d
‖2
kj

2σ2 . (2.16)

In this special setting, the term due to the parallel distance
∑

xj 6=xk
e−

d
‖2
kj

2σ2 remains

approximately constant when xk shifts around, because the dense and uniform nature

of the points on the plane. Thus

KCG(xk,X ) ∝ e−
d⊥2
k

2σ2 . (2.17)

Maximizing the kernel correlation is equivalent to minimizing the distance from the

point xk to the plane.

Although we are minimizing the distance from a point to a plane defined by a set

of points, there isn’t any plane fitting and distance definition involved. The distance

is minimized implicitly as we maximize the kernel correlation.

In practice the plane defined by the points can be noisy. Kernel correlation has

a built-in smoothing mechanism that can detect the implicit plane defined by the

noisy data set. Maximizing kernel correlation still minimizes the distance between

the point to the implicit plane in this case.

For general point cloud settings it is not immediately clear what is being minimized

when we maximize the kernel correlation, except that we know xk is moving toward

a area with dense point distribution. Maximization of kernel correlation for general

point sets is the topic of our next section.

2.4 Kernel Correlation of a Point-Sampled Model

Given a point set X , in some cases we need to give a quantitative evaluation of

“compactness” of points. For example, when we reconstruct 3D models from sev-

eral photographs, sometimes infinitely many reconstructions may explain the set of

observed images equally well in terms of photo-consistency. One such case is when

we reconstruct a scene with a concave uniform region (Figure 2.9 (a)). No matter
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(a) (b) (c)

Figure 2.9: Ambiguity of reconstructing a uniform colored concave region. (a)The

true scene. (b) A compact reconstruction. (c) A less compact reconstruction.

how many photos we take, the ambiguity cannot be resolved under ambient light-

ing. Reconstructions of Figure 2.9(b) and Figure 2.9(c) can explain all the photos

equally well. But it’s easy for us to accept a reconstruction of Figure 2.9 (b) because

it’s smooth and compact, a scene structure more often observed in real world. This

smooth and compact prior has been used in computer vision algorithms whenever

there is ambiguity. Otherwise the problems are not solvable.

We define such a “compactness” or “smoothness” value for point-sampled models

by kernel correlation, in an effort to capture these vague perceptions.

Definition 2.3. (Kernel correlation of a point set.) The kernel correlation of a point

set X is defined as the total sum of the leave-one-out correlations of all the points xk

in the set,

KC(X ) =
∑

k

KC(xk,X ). (2.18)

The compactness of the whole point set (a global measure) is the sum of com-

patibility (a local measure) of individual points. We can think of a point-sampled

model as a dynamic particle system. The requirement for maximum kernel correlation

provides attraction forces for individual points. As the point-sampled model evolves

toward larger kernel correlation state, on average the distances between point-samples

become smaller, thus achieving compactness of the point samples.

Another well-known measure of compactness is the entropy. Here we are mostly

interested in the definition of entropy in information theory [20]. An entropy mea-

sure is defined on a distribution. Given a probability density function p(x), where
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∫
p(x)dx = 1, the entropy can be the Shannon’s entropy ([20])

HShannon(p(x)) = −
∫

p(x) log p(x)dx (2.19)

or the Renyi’s family of entropy [81],

HRenyi(p(x), α) =
1

1− α
log

∫
p(x)αdx. (2.20)

Here α > 0 and HShannon(p(x)) = limα→1 HRenyi(p(x, α)).

Given a point-sampled model, we have the innate capability of approximating the

objective density function corresponding to the model. We perceive high densities

where point samples concentrate (a tautology, but it is the most obvious way of mea-

suring the density). Parzen [73] introduced a computational method to quantitatively

evaluate the density of a point-sampled model: the Parzen window technique,

p(x) =
1

|X |
∑
xk∈X

K(x, xk). (2.21)

Here |X | is the size of the point set, and K is a kernel function. Notice that the

distribution we defined does not correspond to a probabilistic distribution. It should

rather be considered as a configuration of the point set X .

Interestingly enough, the compactness measure using kernel correlation is equiva-

lent to the Renyi’s quadratic entropy (RQE) compactness measure if we use the same

kernel in both cases.

Theorem 2.1. (Relationship between the kernel correlation and the Renyi’s quadratic

entropy.) The kernel correlation of a point set X is a monotonic,one-to-one function

of the Renyi’s quadratic entropy

Hrqe(p(x)) = − log

∫

x

p(x)2dx.

And in fact,

Hrqe(p(x)) = − log

(
C

|X | +
1

|X |2KC(X )

)
.

C = (2πσ2)−D/2 is a constant.

Proof The proof of the Theorem is straight forward. We just need to expand the∫
p(x)2dx term and substitute in the definitions of kernel correlation between points
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(2.1), leave-one-out kernel correlation (2.4) and the kernel correlation (2.18).

∫
p(x)2dx =

∫
1

|X |2
( ∑

xk∈X
KG(x, xk)

)2

dx (2.22)

=

∫
1

|X |2


 ∑

xk∈X
K2

G(x, xk) +
∑
xk∈X

∑

xj 6=xk

KG(x, xk) ·KG(x, xj)


 dx(2.23)

=
1

|X |2


 ∑

xk∈X

∫
K2

G(x, xk)dx +
∑
xk∈X

∑

xj 6=xk

∫
KG(x, xk) ·KG(x, xj)dx




(2.24)

=
1

|X |2


 ∑

xk∈X
KC(xk, xk) +

∑
xk∈X

∑

xj 6=xk

KC(xk, xj)


 (2.25)

=
1

|X |2
( ∑

xk∈X
C +

∑
xk∈X

KC(xk,X )

)
(2.26)

=
1

|X |2 (|X |C + KC(X )) (2.27)

From (2.22) to (2.23) we expand the terms in the summation and re-arrange the

terms. The summation and integral are switched from (2.23) to (2.24) because we

are studying finite point sets and the integral are defined. We use the definition of

kernel correlation between points (2.1) in (2.25). In (2.26) the definition of leave-one-

out correlation (2.4) is substituted in, and we used the result from Lemma 2.1 for

computing KC(xk, xk). And finally in (2.27) we substitute in the definition of kernel

correlation of a point set (2.18). Once the above relationship is found, the Theorem

is evident. ¤

We were brought to the attention of the independent work by Principe and Xu [79].

They expanded the RQE definition in the Gaussian case and defined the integral of the

cross product terms as “information potential”. Their purpose for such decomposition

is efficient evaluation of entropy and entropy gradients in the context of information

theoretic learning. In contrast, our goal is instead to configure a dynamic point set.

Figure 2.10 shows the relationship between KC(X ) and entropy defined by the

Renyi’s quadratic entropy (α = 2.0), Shannon’s entropy and Renyi’s square root

entropy (α = 0.5). The linear relationship between KC(X ) and the exponential

of Renyi’s quadratic entropy is obvious. Moreover, we observe that the monotonic

relationship seems to extend to both the Shannon’s entropy and the Renyi’s square

33



root entropy. We leave the study of possible extension of Theorem 2.1 to all entropy

definitions as our future work.
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Figure 2.10: Monotonic relationship between the kernel correlation and entropy def-

initions. The plot shows the relationship based on a two-point configuration in 1D.

The horizontal axis of the plot is the kernel correlation of the point set. The corre-

sponding vertical axis value is the entropy of the same point set configuration. The

curves reflect the relationship between kernel correlation and entropy under different

point configuration with different between point distance.

The importance of Theorem 2.1 is that it depicts a minimum entropy system. A

minimum entropy configuration is achieved when every point is most compatible with

the rest of the points, where the compatibility is defined as the leave-one-out kernel

correlation. We have several observations regarding Theorem 2.1,

1. The proof of the theorem is independent of the kernel choice, as long as the

kernel correlation between two points is defined, or when the integral is defined.

Thus Theorem 2.1 holds independent of the choice of kernel functions.

2. Theorem 2.1 shows that entropy can be describes by geometric distances or

dynamics among points. All points receive attraction force from other points

and maximum kernel correlation (or minimum entropy) is achieved when the

total attraction force among them reaches limit, or a distance function defined

on them is minimized. This point of view unites two different ways of describing
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the compactness of point-sampled model: geometric and information theoretic

interpretations.

3. Theorem 2.1 shows that entropy can be decomposed into pair-wise interaction.

As a result, entropy optimization can be achieved by some efficient optimization

technique, such as graph cut. We will discuss this topic further in detail in

Chapter 6 and Appendix C.

The compactness of a point set is a global concept. Theorem 2.1 demonstrated

that this global measure can be optimized by local interactions. Especially, iteratively

maximizing the leave-one-out kernel correlation for each point will result in progres-

sive increase of the point set kernel correlation. This point is not trivial since the

kernel correlation terms for point xk (KC(xk, xi)) appears not only in the leave-one-

out kernel correlation KC(xk,X ), but also in all other leave-one-out kernel correlation

terms, KC(xi,X ), i 6= k. Position change of xk alters all leave-one-out kernel corre-

lation terms. So how can we guarantee the overall change of all leave-one-out kernel

correlations to be uphill by maximizing a single one? We summarize this point in the

following lemma.

Lemma 2.4. (Iterative Maximization of Point Set Kernel Correlation by Individ-

ual Maximization of Leave-one-out Kernel Correlation.) Local maximum of the ker-

nel correlation KC(X ) can be achieved by iteratively maximizing KC(xk,X ), k =

1, 2, . . . , |X |.

Proof. We first show that KC(X ) can be written as a sum of terms relating to

xk and terms irrelevant to xk.

KC(X ) =
∑

i

KC(xi,X )

=
∑

i

∑

j 6=i

KC(xi, xj)

= 2
∑
i<j

KC(xi, xj)

= 2 ·KC(xk,X ) + 2 ·
∑

i6=k,j 6=k,i<j

KC(xi, xj) (2.28)

The first term in (2.28) is exactly twice the leave-one-out kernel correlation related

to xk and the second term is independent of the position of xk. Or the second term

remains constant as xk changes. ¤.
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Lemma 2.4 is the basis for the iterative local update methods in both Chapter 4

and Chapter 5. It guarantees the convergence of KC(X ) as a whole.

2.5 Optimization Strategies

We discuss two optimization strategies for kernel correlation maximization. The first

strategy, explicit distance minimization, is based on Lemma 2.1 and Lemma 2.2. In

this approach the nearest neighbors are explicitly identified and an M-estimator like

distance function is minimized. The second approach makes direct use of discrete

kernel correlation. The relative efficiency between the two strategies is determined

by the size of the neighborhood and the dimension of the space under consideration.

According to Lemma 2.4, KC(X ) can be maximized by iteratively maximizing

KC(xk,X ). We will primarily discuss maximizing leave-one-out kernel correlation in

the following.

2.5.1 Optimization by Explicit Distance Minimization

The computation of KC(X ) involves enumerating all pairs of points. This can be

costly (N2 computation). Due to the aperture effect of kernel correlation, it is not

necessary to consider all pairs of interactions. Only pairs of points within a certain

distance need to be considered.

If we can find all the neighbors of a point xk within a distance, for example 6σ,

the Gaussian kernel correlation can be approximated by,

KCG(xk,X ) ∝
∑

xj∈N (xk)

e−
dkj

2σ2 , (2.29)

where N (xk) is the neighbors of xk. For Epanechnikov and tri-cube kernels, the kernel

correlation value is exact by enumerating points within 2σ, σ being the bandwidth.

The above formulation is analytic and the gradient of KC with respect to xk

can be easily computed. We can adopt the well known optimization techniques to

maximize KC(xk,X ). These methods include the Levenberg-Marquardt method,

conjugate gradient descent method, Newton-Raphson method, et. al, [78]. In addi-

tion, we can adopt a mean shift update rule for optimizing the kernel correlation, see

Section 2.3.2. Left plot of Figure 2.11 shows the distance minimization perspective
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of kernel correlation maximization. Quivers in the plot are gradients that correspond

to
∂KC(xk,xj)

∂xk
, xj ∈ N (xk).

The computational burden of this approach is proportional to the size of the

neighborhood |N (xk)|, which in turn depends on the kernel scale σ and the point

sample density.

In some vision problems the neighborhood system of a point is predefined. For

example, in the reference view stereo problem, the neighborhood system is determined

by the imaging hardware. Thus there is no effort in maintaining the neighborhood

information. In this case the neighborhood size is small and fixed, and the distance

minimization strategy is preferable for its computational efficiency.
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Figure 2.11: Two different views of kernel correlation. Left: robust distance function

point of view. Right: kernel density estimate by summing discrete kernels of the fixed

points (black diamonds in the left image).

2.5.2 Optimization by Discrete Kernel Correlation

A discrete kernel is a function with finite support defined on a discretized grid of a

space. It is an approximation to the continuous kernel in that correlation between

two discrete kernels should approximate correlation of two corresponding continuous
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kernels. Our strategy of discrete kernel design is presented in Appendix A.1. In the

following we define the discrete version of kernel correlation and introduce the density

estimation perspective of kernel correlation optimization.

Given two points xi and xj, the kernel correlation between them is defined as

KC(xi, xj) =
∑

x

K(x, xi) ·K(x, xj). (2.30)

Here x a discrete value defined by the discretization of a space.

We rewrite the definition of leave-one-out kernel correlation as following,

KC(xk,X ) =
∑

xj 6=xk

KC(xk, xj)

=
∑

xj 6=xk

∑
x

K(x, xk) ·K(x, xj)

=
∑

x

K(x, xk)
∑

xj 6=xk

K(x, xj)

∝
∑

x

K(x, xk)P (x,X \ xk), (2.31)

here

P (x,X \ xk) =
1

|X \ xk|
∑

xj 6=xk

K(x, xj) (2.32)

is the density function estimated from the point set X \xk (right plot of Figure 2.11).

Finding the maximum kernel correlation is thus transferred to the problem of finding

the maximum correlation between K(x, xk) and the density function P (x,X \ xk).

The density correlation view provides us with some unique advantages,

1. The density P (x,X \ xk) implicitly encodes all neighborhood and distance in-

formation. This is evident from Lemma 2.1 and Lemma 2.2.

2. Updating the density takes linear time in terms of the number of points. Con-

sequently, updating the neighborhood information takes linear time.

If the density has been estimated, the computational burden for kernel correlation

optimization is proportional to the discrete kernel size but independent of the number

of points in the neighborhood. When the neighborhood system has large size or

is dynamically evolving, the density approach is more efficient than the distance
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minimization approach because nearest neighbor finding and KD-tree maintaining

can be very costly in these cases. We will encounter such an example in Chapter 5,

where we put stereo and model merging into the same framework.

To be consistent with other optimization criteria, such as photo-consistency term

in stereo algorithms, where the cost function is to be minimized, we will discuss how

to minimize the negative kernel correlation, which is the same as maximizing the

kernel correlation.

We define the position of a point xk to be a function of a parameter θ, xk(θ). θ

can be the depth of a pixel in the stereo problem or the orientation of a template in

the registration problem. For each point xk, the optimization problem can be defined

as finding the optimal θ such that the negative leave-one-out kernel correlation is

minimized,

θ∗ = argmin
θ

−KC(xk(θ),X ) (2.33)

The corresponding cost function is,

C(θ) = −KC(xk(θ),X ). (2.34)

According to (2.31), (2.34) can be written as

C(θ) = −
∑

x

P (x) ·K(x, xk(θ)). (2.35)

Here we denote P (x) = P (x,X \ xk(θ)), the density estimated by all points except

xk. Notice that the summation only needs to be performed at grid points x where

K(x, xk(θ)) 6= 0. The non-zero grids correspond to the support of a discrete kernel.

We can iteratively minimize the above cost function by gradient-based optimiza-

tion algorithms. The Jacobi (first order derivative) and Hessian (second order deriva-

tive) of the cost function is listed in Appendix A.2. For clarity of the presentation we

will not provide details of the deduction, which is straightforward by using the chain

rule of derivatives.

With the known first and second order derivatives, we can plug them into op-

timization algorithms such as Newton-Raphson algorithm to minimize the negative

kernel correlation when the solution is close enough to the optimum. However, cau-

tion should be used because the second order derivative (A.3) is not always positive,

see Figure A.1(c) for such an example. When the second order derivative is negative,
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Newton-Raphson type optimization will result in maximization of the cost function.

So after each update, one should check if the update really decreases the cost function.

For optimization problems with high dimensional parameter vector θ, computation

of the Hessian matrix can be very costly. In such cases, numerical method such as

the conjugate gradient descent method or the variable metric method [78] should be

used instead. These methods ensure each update decreases the cost function, while

having quadratic convergence when the solution is close to the energy basin.

We summarize our kernel correlation optimization algorithm in the following.

Algorithm 2.1. Kernel Correlation Optimization Algorithm

• Preparation step.

1. Initialize a array P (x), which is used to store the density estimation of all

the discrete kernel values.

2. For all xk ∈ X , add the corresponding kernel K(xk, x) to P (x).

• Update step.

Until converging or reaching the maximum iteration steps, do the following. For

each xk ∈ X ,

– Subtract the kernel K(xk, x) from P (x);

– Optimize the leave-one-out correlation by finding the best θ;

– Update xk;

– Add the kernel centered at the new xk value to P (x).

Notice that in the above algorithm the neighborhood information is dynamically

updated whenever a new value for xk is available. This is achieved by repositioning the

kernel K(x, xk) after each update of xk. Also observe that the optimization produces

continuous values of θ, even though we are using discrete kernels.

An important issue of the approach is the accuracy of the discrete approximation

to the continuous kernel correlation values. We show in Appendix A.1 that the

Gaussian kernel correlation can be approximated very accurately by using a discrete

kernel with radius 3. Subpixel accuracy is also achieved by our design of discrete

kernels therein. We will further discuss the accuracy issues of kernel correlation in

registration problems in the next chapter.
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2.6 Summary

In this chapter we introduced a simple yet powerful mechanism to establish relevancy

between point samples: the kernel correlation technique. The power of the technique

comes from the following properties,

1. Kernel correlation contains the robust distance minimization mechanism of M-

estimators. Thus kernel correlation can be statistically efficient and robust at

the same time. We show several geometric explanations of maximizing ker-

nel correlation, including distance minimizing to a nearest plane and distance

minimizing to nearest neighbors.

2. Maximizing kernel correlation is equivalent to minimizing Renyi’s quadratic

entropy. Kernel correlation unites the two separate definition of compactness of

a point set: a geometric interpretation where distance between points is used

for measure compactness, and an information theoretic interpretation where a

function of the point-sample distribution is used for measuring the compactness.

3. The kernel correlation technique provides an integrated framework for minimiz-

ing a robust distance function without explicitly finding the nearest neighbors

or interpolating sub-manifold. In addition, kernel correlation provides an alter-

native way of representing the neighborhood information by keeping a density

estimate of the point-sample distribution. Updating the neighborhood informa-

tion is linear in terms of the number of points.
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