Chapter 2

Kernel Correlation for Robust

Distance Minimization

We introduce kernel correlation between points, between a point and a set of points,
and among a set of points. We show that kernel correlation is equivalent to M-
estimators, and kernel correlation of a point set is a one-to-one function of an entropy
measure of the point set. In many cases maximization of kernel correlation is directly
linked to geometric distance minimization, and kernel correlation can be evaluated

efficiently by discrete kernels.

2.1 Correlation in Vision Problems

Correlation describes the relevancy of two entities. In statistics, correlation is a value
that quantifies the co-occurrence of two random variables. And in vision problems,
(normalized) correlation between two image patches has long been used for measuring
the similarities (one kind of relevancy) between them. They have been used for image

alignment, feature point tracking, periodicity detection, et. al.

Correlation is usually defined on the intensity images. An intensity image I can
be considered as a function of the pixel coordinate x: I(x), and correlation between

two image patches I; and I, is defined as
> Liz) L(T(x,0)),
where T'(z,0) is a transformation that warps the patch 5 such that 5 is put in the
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same coordinate as I;.

When studying point-samples, we are given just the coordinates of a set of points,
{z}. The above definition of correlation is no longer applicable since we are given a
set of geometric entities without any appearance information. We are given a set of

points with nothing to compare.

However, the presence or absence of feature points themselves tell a lot more than
the coordinates of the points. It also manifests relationship between pairs of points
and between sets of points, as well as the structures implied by the points. For
example, the point set B is obviously more “similar” to point set A than point set
C' in Figure 2.1, and Point x is obviously more “compatible” with point set C' than
y. The “similarity” and “compatibility” obviously exhibit some sort of “relevancy”,

which should be able to be formulated by a correlation measure.
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Figure 2.1: Relevancy between sets of points (A and B) and between a point and a

point set (x and C).

The simplest way of capturing the relevancy is to treat the feature points as binary
intensity images which have only values 0 (absence) and 1 (presence). In fact binary
correlation of the noiseless patterns in Figure 2.1 returns the maximum value when A
is aligned with B. However, when noise presents, or when we have different sampling
strategy in obtaining point sets A and B, the binary images will usually not match.

And this simplest correlation approach won’t work.

In the following we present a technology we call kernel correlation. The basic
idea is simple. We build a “blurry” image by convolving each point with a kernel,
usually a Gaussian kernel. And we can study the correlation between these “blurry”
images. It turns out that the correlation of these “blurry” images implies more than

“relevancy” of point sets. It also captures many vague human perceptions such as
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cleanness, compactness, smoothness and proximity.

2.2 Kernel Correlation Between Two Points

Definition 2.1. (Kernel Correlation.) Given two points x;, x;, their kernel correla-

tion is defined as
KC(x;,xj) = /K(x,xi) - K(x,xj)dx. (2.1)

Here K(x,y) is a kernel function. The kernel functions adopted here are those
commonly used in Parzen density estimation [73], not those kernels in general sense
adopted in support vector machine (SVM). Specifically, a kernel function K(z,y)

should satisfy the following conditions,

1. K(z,y): RP x RP — R is a non-negative and piecewise smooth function.
2. Symmetric: K(x,y) = K(y, ).
3. Integrate to 1: [ K(x,y)dz = 1.

4. [ K(z,y) - K(z,z)dz defined for any y € RP and z € RP. This is to ensure

that kernel correlation between points is defined.

5. limyy—z|—oo Za%y(y’z) = 0. This property will be used to ensure the robustness

of the kernel correlation measure.

There are many kernel functions that satisfy the above conditions, such as the
Gaussian kernel, Epanechnikov kernel and tri-cube kernels [67, 37]. In the following

we will discuss as an example the Gaussian kernel,

_ (z—z)T (z—a;)

Koz, z;) = (mo?) 7P/ e o2 , (2.2)

where D is the dimension of the column vector . The primary reason for putting an
emphasis on the Gaussian kernel is due to two nice properties of Gaussian kernels.
First, derivatives of a Gaussian kernel are infinitely continuous functions. Second,
derivatives of a Gaussian kernel, like the Gaussian kernel itself, decays exponentially
as a function of the Mahanalobis distance [25] —W*ﬁ) These properties of

the Gaussian kernels ensure smooth gradient fields in registration problems, and they

17



entail robustness as will be discussed in the sequel. The other reason for this choice is
for the convenience of analysis. Gaussian kernel correlation has a simple relationship
with the distance between points.

Kernels possessing properties (1) to (5) can all be used in point-sampled vision
problems. Kernel correlation using the other kernels also entails robust distance
minimization framework. But the kernel correlation is a more sophisticated function
of distance between points, and the gradient field is no longer infinitely smooth. We
will discuss the shared properties between the Gaussian kernel and other kernels in

the following, while using Gaussian kernel as an example.

Conceptually the correlation operation involves two step. First, a point is con-
volved with a kernel. Second, the amount of overlap between the two “blurred” points
is computed. Figure 2.2 shows the convolution step in 2D and the resulting “blurry”

image used for correlation.

Figure 2.2: Convolution changes a single point to a blurry blob, 2D intensity map.

Since the kernel functions are symmetrical, it’s not surprising to see that the
correlation is a function of distance between the two points. For Gaussian kernels,

we have a very simple relationship,

Lemma 2.1. (Correlation of Gaussian Kernels as an Affinity Measure.) Correlation

of two isotropic Gaussian kernels centered at x; and x; depends only on their Euclidean

distance d;; = ((3:1 — ;)" (@ — :cj))l/Q, more specifically,

2
i

KCq(xi,xj) = /Kg(a:,x,-) - Ke(z,2;)de = (2n0%) P2 202 (2.3)
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Ti+T;
2

substituting (2.2) into (2.3), and after some simply manipulation it can be shown

Proof. We change variable z to x = y + in the integral part of (2.3). By

2
_2Ty 4y

KCaai,)) = (no®) P [ " 5kay,

Yy
d;; is independent of y. So

23Ty

dz;
KCq(x;,xj) = (7TO'2)D6%2/€ o2 dy.
Yy

The integral in the above equation is well-known to be (70%/2)”/2 the normalization
term of a Gaussian distribution. As a result (2.3) holds.[]

22 . . ..
/7" is known as an affinity measure or proximity measure

The function form e
in vision research [86]. The affinity increases as the distance between two points
decreases. It has been previously used in the correspondence problems [86, 91, 74]
and psychological studies of illusions [106]. The introduction of kernel correlation
provides an effective way of measuring the affinity between points. This will become

very clear when we discuss interactions among multiple points.

For other kernels, kernel correlation is also a function of distance due to the
symmetric kernels we adopt. Figure 2.3 demonstrates this point. They are more
complex functions of distance and are more difficult to analyze. However, if we adopt
numerical methods to compute kernel correlation, these difficulty disappears. We will

introduce a way to approximate KC value using discrete kernels in the sequel.
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Figure 2.3: Kernel correlation as a function of distance between points.

For anisotropic kernels with symmetric covariance matrix. The Euclidean distance

in (2.3) is replaced by the Mahanalobis distance.
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An important conclusion we draw from Lemma 2.1 is that maximizing the kernel
correlation between two points is equivalent to minimizing the distance between them.
As we mentioned in Chapter 1, many vision problems can be put into a distance
minimization framework. Thus maximization of pairwise kernel correlation implies a
mechanism that can play a significant role in point-sample registration, regularization

and merging problems.

Of course, in all non-trivial cases in computer vision, we will need to study inter-
actions between more than two points. We extend the definition of kernel correlation

in the following sections.

2.3 Leave-One-Out Kernel Correlation

2.3.1 Definition

Given a point set X = {x;}, we define a measure of compatibility between a point xy
with the rest of the points X \ x,

Definition 2.2. (Leave-one-out kernel correlation.) The leave-one-out kernel corre-

lation between a point xj and the whole point set X 1is,

KC(z, X) = Y KC(zy, ;). (2.4)

TiFT)

Notice that here we reuse the same symbol K C' for leave-one-out kernel correlation.
Hopefully the exact meaning of K'C can be inferred from the variable list. By abusing
this symbol, we can avoid unnecessary introduction of a list of symbols pertaining to

similar concepts.

As a direct result of Lemma 2.1, it’s easy to see that the leave-one-out kernel

correlation is a function of pairwise distance.

Lemma 2.2. (Leave-one-out Gaussian Kernel Correlation as a Function of Distance.)
The leave-one-out Gaussian kernel correlation is a function of distances between xy,
and the rest of the points in the set X.

a2y
KCgq(xg, X) = (2m0°%)~P/2 Z e 22 (2.5)

T FT)
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As we know now, adoption of kernels other than the Gaussian kernel will result

in similar conclusions, with different functional forms as the summation terms.

From Lemma 2.2, we can have the following conclusion about kernel correlation

under rigid motion.

Lemma 2.3. (Invariant of kernel correlation under rigid transformation.) Suppose
T is a rigid transformation in RY, then the leave-one-out kernel correlation using

1sotropic kernels is invariant under T,

KC (T(x1), T (X)) = KC(ay, X). (2.6)

Proof A rigid transformation preserves the Euclidean distance between points.
From Lemma 2.2 it’s evident the kernel correlation is invariant under rigid transfor-

mation. .

Proof of Lemma 2.3 is independent of the kernel functions being selected, as long

as the kernel correlation is a function of distance.

To show what it means to maximize kernel correlation, we apply Lemma 2.2 in an
example shown in Figure 2.4. The left figure shows the configuration and evolution
of the points. There are 11 fixed points (black diamonds) in a 2D space. A moving
point (green circle) is initially put at the top left corner of the diagram. At each step
we compute the gradient ¢ of the kernel correlation and update the position of the
moving point using x,(gnﬂ) = x,in) + Ag'™, a simple gradient ascent scheme. To gain

an insight into the problem we take a look at the gradient field,

I(KCg) G
a—a;k X Z € 20 - (ZCj —.Tk) (27)

T FT)

The gradient field, or the force imposed upon xy, is a vector sum of all the attraction
forces xy receives from the 11 fixed points. The force between each pair of points is

composed of two parts,

1. The part proportional to the distance between the two points, x; — x;. Notice
that the direction of the force is pointing from x; to x;. This can be thought

of as the elastic force between the two points.

2
djk’

2. The part that decays exponentially with respect to the distance, e™ 2.2.
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As a result, for points that have distance d;; < o, the system is equivalent to
a spring-mass system. For points that are at a large distance, their influence de-
creases exponentially. This dynamic system accepts weighted contributions from a
local neighborhood, while being robust to distant outliers. The kernel correlation
reaches an extreme point at the same time the spring-mass system reaches an equilib-
rium, where forces z; received from all the fixed points sum up to zero. In the figure

forces received from each individual point are plotted as blue arrows.
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Figure 2.4: Maximizing the kernel correlation between a point and a set of fixed points
(black diamonds). Here 0 = 6. (a) The trajectory of the point. (b) The evolution of

kernel correlation.

2.3.2 Kernel Correlation for Robust Distance Minimization
Kernel correlation as an M-estimator

An appealing property of kernel correlation is that although kernel correlation is
defined over the whole RP, its effective region is a local aperture. This can be seen in
Figure 2.5 in a one dimensional case. When the distance-to-scale ratio g exceeds 5,
the value of the kernel correlation drops from 1 to below 3.73 x 107%. Points beyond
this range have virtually no effect on the point in the center. This aperture effect of

kernel correlation leads to the robustness.
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Figure 2.5: Kernel correlation and its first derivative as a function of distance to
scale ratio g. Here the kernel is not normalized and only the relative magnitude is

meaningful.

To illustrate the robustness of kernel correlation, we show its equivalence to some
well-known robust estimation techniques. The robustness of the kernel correlation
technique comes from its ability to ignore the influence of distant points, or out-
liers. The mechanism is the same as the M-estimator technique in robust statistical
regression [105, 39, 82, 66].

In an M-estimator, instead of finding parameters to minimize the quadratic cost

function

E=Y (si—f) (2.8)
the M-estimator minimizes the cost function,

E, = Zg ((yi — 1)?), (2.9)

here y; is the i'" observation and f is the parameter to be estimated. The function ¢
is a robust function ,e.g. the Tukey bi-weight function [105], Huber’s robust function
[39], or the Lorentzian function [78,; 112].

The necessary condition for minimizing the above equation is that

El =Y (yi—f)-hyi—f)=0, (2.10)

%
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where h = % is the interaction function [59]. From the above condition the

optimal solution for f is the weighted average,

f= Zzh(yz_f)yz
Zz‘h(yi_f) '

In the above equation, the weight for each datum is h(y; — f). Thus it’s essential to

(2.11)

have small weights for data that are distant to the current f estimate (an M-estimator
method is an iterative process starting from some initial value). In fact, Li [59] proved
that for a regularization term to be robust to outliers, the interaction function must
satisfy,

Lim Jyh(y: ~ )l = € < . 212

When C' = 0, points at infinity do not have any influence in the estimation of f, while

when C' > 0, points at infinity have limited influence.

In the following we study the robustness of several common regularization / re-
gression techniques. We first look at the robustness of the least-square technique.
Corresponding to the quadratic cost function (2.8), the interaction function h = 1.
All points are weighted equally. As a result, a single point at infinity can ruin the

estimation, a significant source of non-robustness.

Secondly, we study the robustness of estimation techniques that embed a line pro-
cess in the cost function [31, 8]. When discontinuity is detected, usually signaled when
ly — f| > 7, smoothing (interaction) across the discontinuity boundary is prohibited.

This corresponds to an interaction function
Lo fy—fl<~
hrp(§) = : (2.13)
0, ly=flz~

and the corresponding robust cost function is

g(&) = min(y*,€%). (2.14)

The drawback of embedding a line process in the cost function is that it introduces
discontinuity in the cost function. As a result, it makes gradient-descent based opti-
mization techniques undefined. Furthermore, all data in the window contribute equal

influence. The choice of a good window size v is thus crucial.

There is an interesting connection between the line process embedded quadratic

function and the mean shift technique [18]. Equation (2.11) is already a mean shift
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updating rule. For line process embedded quadratic function, we have hyp = 1 in the

window. The iterative updating rule for the is
Yi
f=v7r7 N =Avi:lyi— fl <~}
NI

which is also a mean shift updating rule.

Finally, we study kernel correlation from an M-estimator point of view. For Gaus-

sian kernel, the interaction function is
52

hie(§) oc e 2. (2.15)

Obviously lim¢_.oc Ehke(§) = 0 and infinite points have no influence at all. Other

kernels, such as the Epanechnikov and tri-cube, can be considered as line process

embedded robust functions because the kernels are defined only within a window,

or the interaction function is constantly zero beyond twice the window size (see our

requirement for kernel functions in Section 2.2, property 5).

From the above discussion we conclude that the kernel correlation naturally in-
cludes the robust mechanism of the M-estimator technique. In addition, by designing

kernel functions, we can choose the desired robust functions.

Breakdown Point and Efficiency Issues

The M-estimator technique is an iterative process. It starts with an initial value and
progressively finds parameters with smaller costs. It is known that the M-estimator is
not robust if the initialization is too close to outliers. This problem cannot be solved

by the M-estimator itself. In this sense M-estimators has zero breakdown point.

Some other robustness techniques, such as the least median of squares (LMedS)
[82, 66] or RANSAC [36], can avoid this problem by drawing a large number of
samples from the solution space: The correct solution should produce the smallest
median error, or satisfy the maximum number of observed data. They can have
breakdown point up to 50%. However, these methods can be computationally costly,
depending on the contamination ratio of the data, the size of the elemental set and
the size of the total data set [66].

LMedS and RANSAC are known for their poor statistical efficiency. The statistical
efficiency is measured by the variance of the estimated parameters. Since LMedS and

RANSAC use a minimum subset of the inlier data, their estimation variance are
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usually large. Therefore they are not efficient. In contrast, the M-estimator can
usually take into account a large set of inlier data, if the scales of the M-estimators
are properly chosen. In such cases an M-estimator can produce efficient estimate of

the parameters.

To conclude, the kernel correlation technique can be very efficient if the kernel

scale is properly selected. However, its robustness is sensitive to initial values.

2.3.3 Choice of Kernel Scales

We discuss the problem of kernel scale selection in this section. The effect of kernel

scale is shown in two cases, with or without outliers.

The choice of kernel scales is important for deciding whether to smooth across two
point-samples or to treat them as two separate entities, a case we call the bridge-or-
break effect. To illustrate the effect, we show the point configuration in Figure 2.6,
where in one dimensional space we have two fixed points (z; = 0 and x5 = 1) and
one moving point (y). We call the point configuration where y is in the middle of
the two fixed points as a “bridge”, Figure 2.6(a), because the moving point y serves
to connect the two fixed points and supports the statement that the two fixed points
belong to a single structure. Conversely, we call the other point configuration where y
coincides with one of the fixed point as a “break” (Figure 2.6(b)), because y supports

the fact that z; and z, are two isolated structures.

O <
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@ (b)

Figure 2.6: Bridge-or-break point configurations. The two points represented by
squares (r1 and x3) are fized. The point y (disc) moves between them. (a) A “bridge”
configuration. (b) A “break” configuration.

Next, we show that maximum kernel correlation under different kernel scales en-

tails the bridge-or-break effect. Suppose the distance between x; and x5 is 1. We are
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interested in finding the maximum kernel correlation position for the moving point v,
under different kernel scales o. In one extreme case, o < 1, we expect that y should
be close to either x; or x5 to maximize the kernel correlation, a break configuration.
In the other extreme, we expect ¢ > 1, the maximum kernel correlation is achieved
when y = 0.5, a bridge configuration. Figure 2.7 shows the maximum kernel correla-
tion position as a function of kernel scale 0. We notice that the change from “break”
(0 < 0.3) to “bridge” (o > 0.5) is very sharp. That is, except for a small range of o

value, the maximum kernel correlation favors either break or bridge.

o
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o

Max KC position of y
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Figure 2.7: Maximum kernel correlation position as a function of kernel scale o.

The strong preference for either break or bridge is a desirable property in many
vision problems. For example, in stereo and optic flow regularization problems, we
want the regularization term to smooth out slow changing disparity / optic flows,
while we don’t want the regularization to over-smooth regions with large discontinuity.
The bridge-or-break effect of the kernel correlation naturally implies such a choice of
smoothing or not-smoothing. For example, we can consider the distance between
the two fixed points as the depth discrepancy between two neighboring pixels in a
stereo algorithm. If the gap is small compared to the kernel scale o, maximum kernel
correlation will try to put the moving point in between them, thus achieves smoothing.
Or if the gap is big, maximum kernel correlation will encourage the moving point to be
close to either of the two fixed points, thus achieving depth discontinuity preservation.

By properly choosing o, we can enforce smoothing and discontinuity preservation
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adaptively. We will show various examples throughout this thesis.

Next, we discuss the case when there are no outliers. The choice of kernel scale will
be a trade-off between bias and variance (efficiency) [37]. The underlying assumption
behind all non-parametric regularization techniques is that the data can be locally
fit by a linear manifold (a line, a plane, et. al ). Large support magnifies this
locally-linear preference. As a result, large kernel scale will introduce large bias by
smoothing across a large support. On the other hand, noise in the data is more likely
to be canceled if we choose large support. From the statistics perspective, with more
data introduced in a smoothing algorithm, the variance of the smoothed output will
become smaller. In summary, large kernels achieve more efficient output in exchange

for large bias.

The choice of kernel size in practice is in general a difficult problem. We will not
put kernel scale selection as our research topic in this thesis. In our experiments we

choose the kernel scale empirically.

2.3.4 Examples: Geometric Distance Minimization

In this section we will study the geometric interpretations for maximizing the leave-
one-out kernel correlation in several special cases. In these examples maximizing
kernel correlation directly corresponds to geometric distance minimization. We will

discuss what the technique implies in general point sets in Section 2.4.

Maximizing kernel correlation for minimizing distance to nearest neighbors

Our first example is shown in Figure 2.8(a). The nearest neighbor to zy, is z,, and the
distance between them is dj,,. Suppose the next nearest neighbor to x; in X is x,, with
a distance dyp,. If (dpn/0)? < (dpm/0)?, KCq(xy, X) = Ce™@n/20)*  Maximizing the
leave-one-out kernel correlation is equivalent to minimizing the distance between xy

to its nearest neighbor.

Notice that although we are minimizing the distance between zj to its nearest
neighbor, it’s not necessary to explicitly find the nearest neighbor x,,. In Section 2.5.2
we will show that the kernel correlation can be maximized by using gradient descent
algorithms without knowing the nearest neighbors. This can result in considerably

simpler algorithms, especially when the neighborhood system is dynamically chang-
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X d I
(a) (b)

Figure 2.8: Special settings for kernel correlation maximization. (a)Minimizing dis-
tance to the nearest neighbor. The dashed circle is the range of 30. (b) Minimizing

the vertical distance.

ing.

For more general cases, more than one nearest neighbor will have non-negligible
contributions to the correlation value. The result is a more complicated neighborhood
system where the contribution of each point decays exponentially as a function of
their distance to the reference point. This is similar to the weighting mechanism of
kernel weighted average [37] where closer points are weighted more. As we will see
in the next chapter, this sophisticated neighborhood system will bring robustness to
our registration algorithm against both noises and outliers. Again, this sophisticated
neighborhood system is implicitly defined by kernel correlation. In practice there’s

no need to actually find all the nearest neighbors.

Maximizing kernel correlation for minimizing distance to a plane

As seen in Figure 2.8(b), the points X' \ z; form a dense and uniformly distributed
cloud on a planar surface. The density is relative to the scale of the Gaussian kernel o.
We say a point set is dense if ¢ > d, where d is the average distance between points.

We can thus decompose the distance from z;, to any point z; # zj into two parts,
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the part parallel to the plane dllj and the part perpendicular to the plane dij. Since
the perpendicular distance is the same for all z;, we can write it as d;-, the distance
from z; to the plane. According to the Pythagorean theorem, dzj =di? + dl,g The
leave-one-out kernel correlation can be written as,

12 42
d kj

KCq(zy, X) €27 - Z e 22, (2.16)
TFT,
a)?

In this special setting, the term due to the parallel distance ) € 202 remains

TiFT
approximately constant when x;, shifts around, because the dense and uniform nature
of the points on the plane. Thus

12
di;

KCq(xg, X) x e 2.7 (2.17)

Maximizing the kernel correlation is equivalent to minimizing the distance from the

point x; to the plane.

Although we are minimizing the distance from a point to a plane defined by a set
of points, there isn’t any plane fitting and distance definition involved. The distance

is minimized implicitly as we maximize the kernel correlation.

In practice the plane defined by the points can be noisy. Kernel correlation has
a built-in smoothing mechanism that can detect the implicit plane defined by the
noisy data set. Maximizing kernel correlation still minimizes the distance between

the point to the implicit plane in this case.

For general point cloud settings it is not immediately clear what is being minimized
when we maximize the kernel correlation, except that we know x; is moving toward
a area with dense point distribution. Maximization of kernel correlation for general

point sets is the topic of our next section.

2.4 Kernel Correlation of a Point-Sampled Model

Given a point set X, in some cases we need to give a quantitative evaluation of
“compactness” of points. For example, when we reconstruct 3D models from sev-
eral photographs, sometimes infinitely many reconstructions may explain the set of
observed images equally well in terms of photo-consistency. One such case is when

we reconstruct a scene with a concave uniform region (Figure 2.9 (a)). No matter
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a (b) C

Figure 2.9: Ambiguity of reconstructing a uniform colored concave region. (a)The

true scene. (b) A compact reconstruction. (c) A less compact reconstruction.

how many photos we take, the ambiguity cannot be resolved under ambient light-
ing. Reconstructions of Figure 2.9(b) and Figure 2.9(c) can explain all the photos
equally well. But it’s easy for us to accept a reconstruction of Figure 2.9 (b) because
it’s smooth and compact, a scene structure more often observed in real world. This
smooth and compact prior has been used in computer vision algorithms whenever

there is ambiguity. Otherwise the problems are not solvable.

We define such a “compactness” or “smoothness” value for point-sampled models

by kernel correlation, in an effort to capture these vague perceptions.

Definition 2.3. (Kernel correlation of a point set.) The kernel correlation of a point
set X is defined as the total sum of the leave-one-out correlations of all the points xy,

i the set,
KC(X) =) KC(x, X). (2.18)
k

The compactness of the whole point set (a global measure) is the sum of com-
patibility (a local measure) of individual points. We can think of a point-sampled
model as a dynamic particle system. The requirement for maximum kernel correlation
provides attraction forces for individual points. As the point-sampled model evolves
toward larger kernel correlation state, on average the distances between point-samples

become smaller, thus achieving compactness of the point samples.

Another well-known measure of compactness is the entropy. Here we are mostly
interested in the definition of entropy in information theory [20]. An entropy mea-

sure is defined on a distribution. Given a probability density function p(x), where
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[ p(z)dx = 1, the entropy can be the Shannon’s entropy ([20])

Hshannon(p(x)) = — /p(x) log p(z)dz (2.19)

or the Renyi’s family of entropy [81],

1
Hrnpla), @) = 17—

log/p(x)adx. (2.20)

Here o > 0 and Hspannon(p(x)) = lima—1 Hgenyi(p(2, @0)).

Given a point-sampled model, we have the innate capability of approximating the
objective density function corresponding to the model. We perceive high densities
where point samples concentrate (a tautology, but it is the most obvious way of mea-
suring the density). Parzen [73] introduced a computational method to quantitatively

evaluate the density of a point-sampled model: the Parzen window technique,

1
plz) = i > K(z,xp). (2.21)
rpeX
Here |X| is the size of the point set, and K is a kernel function. Notice that the
distribution we defined does not correspond to a probabilistic distribution. It should

rather be considered as a configuration of the point set X.

Interestingly enough, the compactness measure using kernel correlation is equiva-
lent to the Renyi’s quadratic entropy (RQE) compactness measure if we use the same

kernel in both cases.

Theorem 2.1. (Relationship between the kernel correlation and the Renyi’s quadratic
entropy.) The kernel correlation of a point set X is a monotonic,one-to-one function

of the Renyi’s quadratic entropy

Hiqe(p(2)) = —10g/p(x)2d:(7.

And in fact,

Hyge(p(x)) = —log (% + ‘XL'QKC(X)).

C = (2m0?)~P/2 is a constant.

Proof The proof of the Theorem is straight forward. We just need to expand the

[ p(z)?dx term and substitute in the definitions of kernel correlation between points
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(2.1), leave-one-out kernel correlation (2.4) and the kernel correlation (2.18).

/p(x)de = /12{\2 (Z Kg(z, zy, ) da (2.22)

TEEX

= |X‘2 Z KG T, x1) + Z Z Ke(z,zy) - Kg(w, x;) | da(2.23)

TRLEX TRE€EX x;#x)
1
= B /KGxa:k d:zc—kz Z /KGmxk -Ke(z,z;)dx
TRLEX rR€X x;#£x)
(2.24)
1
= B Z KC(xy, zk) Z Z KC(zg, xj) (2.25)
TREX TR EX zjFT),
1
- 7P (Z C+ ) KC’(:vk,X)> (2.26)
TEEX TLEX
1
= (|X|C+ KC(X)) (2.27)

|2

From (2.22) to (2.23) we expand the terms in the summation and re-arrange the
terms. The summation and integral are switched from (2.23) to (2.24) because we
are studying finite point sets and the integral are defined. We use the definition of
kernel correlation between points (2.1) in (2.25). In (2.26) the definition of leave-one-
out correlation (2.4) is substituted in, and we used the result from Lemma 2.1 for
computing K C(zy, zx). And finally in (2.27) we substitute in the definition of kernel
correlation of a point set (2.18). Once the above relationship is found, the Theorem
is evident. [

We were brought to the attention of the independent work by Principe and Xu [79].
They expanded the RQE definition in the Gaussian case and defined the integral of the
cross product terms as “information potential”. Their purpose for such decomposition
is efficient evaluation of entropy and entropy gradients in the context of information

theoretic learning. In contrast, our goal is instead to configure a dynamic point set.

Figure 2.10 shows the relationship between KC'(X') and entropy defined by the
Renyi’s quadratic entropy (o = 2.0), Shannon’s entropy and Renyi’s square root
entropy (o = 0.5). The linear relationship between KC(X) and the exponential
of Renyi’s quadratic entropy is obvious. Moreover, we observe that the monotonic

relationship seems to extend to both the Shannon’s entropy and the Renyi’s square
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root entropy. We leave the study of possible extension of Theorem 2.1 to all entropy

definitions as our future work.
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Figure 2.10: Monotonic relationship between the kernel correlation and entropy def-

initions. The plot shows the relationship based on a two-point configuration in 1D.

The horizontal azis of the plot is the kernel correlation of the point set. The corre-

sponding vertical axis value is the entropy of the same point set configuration. The

curves reflect the relationship between kernel correlation and entropy under different

point configuration with different between point distance.

The importance of Theorem 2.1 is that it depicts a minimum entropy system. A

minimum entropy configuration is achieved when every point is most compatible with

the rest of the points, where the compatibility is defined as the leave-one-out kernel

correlation. We have several observations regarding Theorem 2.1,

1. The proof of the theorem is independent of the kernel choice, as long as the

kernel correlation between two points is defined, or when the integral is defined.
Thus Theorem 2.1 holds independent of the choice of kernel functions.

2. Theorem 2.1 shows that entropy can be describes by geometric distances or

dynamics among points. All points receive attraction force from other points

and maximum kernel correlation (or minimum entropy) is achieved when the

total attraction force among them reaches limit, or a distance function defined

on them is minimized. This point of view unites two different ways of describing
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the compactness of point-sampled model: geometric and information theoretic

interpretations.

3. Theorem 2.1 shows that entropy can be decomposed into pair-wise interaction.
As a result, entropy optimization can be achieved by some efficient optimization
technique, such as graph cut. We will discuss this topic further in detail in
Chapter 6 and Appendix C.

The compactness of a point set is a global concept. Theorem 2.1 demonstrated
that this global measure can be optimized by local interactions. Especially, iteratively
maximizing the leave-one-out kernel correlation for each point will result in progres-
sive increase of the point set kernel correlation. This point is not trivial since the
kernel correlation terms for point x (KC(xy,z;)) appears not only in the leave-one-
out kernel correlation K'C(zy, X), but also in all other leave-one-out kernel correlation
terms, KC(z;, X'),i # k. Position change of x; alters all leave-one-out kernel corre-
lation terms. So how can we guarantee the overall change of all leave-one-out kernel
correlations to be uphill by maximizing a single one? We summarize this point in the

following lemma.

Lemma 2.4. (Iterative Maximization of Point Set Kernel Correlation by Individ-
ual Maximization of Leave-one-out Kernel Correlation.) Local mazimum of the ker-
nel correlation KC(X) can be achieved by iteratively maximizing KC(xg, X), k =
1,2,...,]X].

Proof. We first show that KC(X) can be written as a sum of terms relating to

x; and terms irrelevant to xy,.

KC(X) = Y KC(z;,X)

= ZZKO(%,@)

i g
i<j
= 2-KC(xp, X)+2- Y KC(xx)) (2.28)
ik, j#k,i<j
The first term in (2.28) is exactly twice the leave-one-out kernel correlation related
to xp and the second term is independent of the position of ;. Or the second term

remains constant as xj changes. L.
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Lemma 2.4 is the basis for the iterative local update methods in both Chapter 4
and Chapter 5. It guarantees the convergence of KC(X') as a whole.

2.5 Optimization Strategies

We discuss two optimization strategies for kernel correlation maximization. The first
strategy, explicit distance minimization, is based on Lemma 2.1 and Lemma 2.2. In
this approach the nearest neighbors are explicitly identified and an M-estimator like
distance function is minimized. The second approach makes direct use of discrete
kernel correlation. The relative efficiency between the two strategies is determined

by the size of the neighborhood and the dimension of the space under consideration.

According to Lemma 2.4, KC(X) can be maximized by iteratively maximizing
KC(zg, X). We will primarily discuss maximizing leave-one-out kernel correlation in

the following.

2.5.1 Optimization by Explicit Distance Minimization

The computation of KC(X') involves enumerating all pairs of points. This can be
costly (N? computation). Due to the aperture effect of kernel correlation, it is not
necessary to consider all pairs of interactions. Only pairs of points within a certain

distance need to be considered.

If we can find all the neighbors of a point x; within a distance, for example 60,

the Gaussian kernel correlation can be approximated by,

KCo(mp, X) oc » e 2, (2.29)
z; €N (z1,)

where N (z}) is the neighbors of 2. For Epanechnikov and tri-cube kernels, the kernel

correlation value is exact by enumerating points within 20, o being the bandwidth.

The above formulation is analytic and the gradient of KC with respect to xy
can be easily computed. We can adopt the well known optimization techniques to
maximize KC(zy,X). These methods include the Levenberg-Marquardt method,
conjugate gradient descent method, Newton-Raphson method, et. al, [78]. In addi-
tion, we can adopt a mean shift update rule for optimizing the kernel correlation, see

Section 2.3.2. Left plot of Figure 2.11 shows the distance minimization perspective
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of kernel correlation maximization. Quivers in the plot are gradients that correspond
to HECERT) 0 e N (ay).

oxy,
The computational burden of this approach is proportional to the size of the
neighborhood |N(xy)|, which in turn depends on the kernel scale o and the point

sample density.

In some vision problems the neighborhood system of a point is predefined. For
example, in the reference view stereo problem, the neighborhood system is determined
by the imaging hardware. Thus there is no effort in maintaining the neighborhood
information. In this case the neighborhood size is small and fixed, and the distance

minimization strategy is preferable for its computational efficiency.
Density Estimate View

Distance View
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Figure 2.11: Two different views of kernel correlation. Left: robust distance function
point of view. Right: kernel density estimate by summing discrete kernels of the fized

points (black diamonds in the left image).

2.5.2 Optimization by Discrete Kernel Correlation

A discrete kernel is a function with finite support defined on a discretized grid of a
space. It is an approximation to the continuous kernel in that correlation between

two discrete kernels should approximate correlation of two corresponding continuous
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kernels. Our strategy of discrete kernel design is presented in Appendix A.1. In the
following we define the discrete version of kernel correlation and introduce the density

estimation perspective of kernel correlation optimization.

Given two points z; and z;, the kernel correlation between them is defined as

KC(x;,x;) = Z K(z,x;) - K(z,x;). (2.30)

Here z a discrete value defined by the discretization of a space.
We rewrite the definition of leave-one-out kernel correlation as following,

KC(xi, X) = Y KC(u,))

TiFETY

= Z ZK(ﬂfaIk)'K(x>$j)

TijFTE T

= ZK(x,xk) Z K(z,x;)

TiF£TY

x ZK(z,xk)P(a:,X \ Zg), (2.31)

here

Pz, X\ 25) = ;x S K(z,z) (2.32)

is the density function estimated from the point set X'\ z;, (right plot of Figure 2.11).
Finding the maximum kernel correlation is thus transferred to the problem of finding

the maximum correlation between K (x,z) and the density function P(x, X \ xy).

The density correlation view provides us with some unique advantages,

1. The density P(x, X \ z}) implicitly encodes all neighborhood and distance in-

formation. This is evident from Lemma 2.1 and Lemma 2.2.

2. Updating the density takes linear time in terms of the number of points. Con-

sequently, updating the neighborhood information takes linear time.

If the density has been estimated, the computational burden for kernel correlation
optimization is proportional to the discrete kernel size but independent of the number
of points in the neighborhood. When the neighborhood system has large size or

is dynamically evolving, the density approach is more efficient than the distance
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minimization approach because nearest neighbor finding and KD-tree maintaining
can be very costly in these cases. We will encounter such an example in Chapter 5,

where we put stereo and model merging into the same framework.

To be consistent with other optimization criteria, such as photo-consistency term
in stereo algorithms, where the cost function is to be minimized, we will discuss how
to minimize the negative kernel correlation, which is the same as maximizing the

kernel correlation.

We define the position of a point z; to be a function of a parameter 0, x;(6). 6
can be the depth of a pixel in the stereo problem or the orientation of a template in
the registration problem. For each point xj, the optimization problem can be defined
as finding the optimal 6 such that the negative leave-one-out kernel correlation is
minimized,

0* = argmin —KC(x(0), X) (2.33)
9

The corresponding cost function is,

C(0) = —KC(x4(0), X). (2.34)

According to (2.31), (2.34) can be written as

C(0) == P(x)- K(x,z(0)). (2.35)

Here we denote P(z) = P(x, X \ z1(0)), the density estimated by all points except
xr. Notice that the summation only needs to be performed at grid points x where

K(z,x,(0)) # 0. The non-zero grids correspond to the support of a discrete kernel.

We can iteratively minimize the above cost function by gradient-based optimiza-
tion algorithms. The Jacobi (first order derivative) and Hessian (second order deriva-
tive) of the cost function is listed in Appendix A.2. For clarity of the presentation we
will not provide details of the deduction, which is straightforward by using the chain

rule of derivatives.

With the known first and second order derivatives, we can plug them into op-
timization algorithms such as Newton-Raphson algorithm to minimize the negative
kernel correlation when the solution is close enough to the optimum. However, cau-
tion should be used because the second order derivative (A.3) is not always positive,

see Figure A.1(c) for such an example. When the second order derivative is negative,
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Newton-Raphson type optimization will result in maximization of the cost function.

So after each update, one should check if the update really decreases the cost function.

For optimization problems with high dimensional parameter vector #, computation
of the Hessian matrix can be very costly. In such cases, numerical method such as
the conjugate gradient descent method or the variable metric method [78] should be
used instead. These methods ensure each update decreases the cost function, while

having quadratic convergence when the solution is close to the energy basin.

We summarize our kernel correlation optimization algorithm in the following.

Algorithm 2.1. Kernel Correlation Optimization Algorithm

e Preparation step.
1. Initialize a array P(x), which is used to store the density estimation of all
the discrete kernel values.

2. For all x, € X, add the corresponding kernel K (xy,z) to P(x).

e Update step.

Until converging or reaching the mazximum iteration steps, do the following. For
each v, € X,

Subtract the kernel K(xy,x) from P(x);

Optimize the leave-one-out correlation by finding the best 6;

— Update xy;

Add the kernel centered at the new xy, value to P(zx).

Notice that in the above algorithm the neighborhood information is dynamically
updated whenever a new value for x, is available. This is achieved by repositioning the
kernel K (z,xy) after each update of xj. Also observe that the optimization produces

continuous values of 6, even though we are using discrete kernels.

An important issue of the approach is the accuracy of the discrete approximation
to the continuous kernel correlation values. We show in Appendix A.1 that the
Gaussian kernel correlation can be approximated very accurately by using a discrete
kernel with radius 3. Subpixel accuracy is also achieved by our design of discrete
kernels therein. We will further discuss the accuracy issues of kernel correlation in

registration problems in the next chapter.
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2.6 Summary

In this chapter we introduced a simple yet powerful mechanism to establish relevancy
between point samples: the kernel correlation technique. The power of the technique

comes from the following properties,

1. Kernel correlation contains the robust distance minimization mechanism of M-
estimators. Thus kernel correlation can be statistically efficient and robust at
the same time. We show several geometric explanations of maximizing ker-
nel correlation, including distance minimizing to a nearest plane and distance

minimizing to nearest neighbors.

2. Maximizing kernel correlation is equivalent to minimizing Renyi’s quadratic
entropy. Kernel correlation unites the two separate definition of compactness of
a point set: a geometric interpretation where distance between points is used
for measure compactness, and an information theoretic interpretation where a

function of the point-sample distribution is used for measuring the compactness.

3. The kernel correlation technique provides an integrated framework for minimiz-
ing a robust distance function without explicitly finding the nearest neighbors
or interpolating sub-manifold. In addition, kernel correlation provides an alter-
native way of representing the neighborhood information by keeping a density
estimate of the point-sample distribution. Updating the neighborhood informa-

tion is linear in terms of the number of points.
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