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Abstract

All non-trivial stereo problems need model priors to deal
with ambiguities and noise perturbations. To meet require-
ments of increasingly demanding tasks such as modeling for
rendering, a proper model prior should impose preference
on the true scene structure, while avoiding artificial bias
such as fronto-parallel. We introduce a geometric model
prior based on a novel technique we call kernel correla-
tion. Maximizing kernel correlation is shown to be equal to
distance minimization in the M-estimator sense. As a model
prior, kernel correlation is demonstrated to have good prop-
erties that can result in renderable, very smooth and accu-
rate depth map. The results are evaluated both qualitatively
by view synthesis and quantitatively by error analysis.

1. Introduction
Stereo vision has been one of the central topics in computer
vision. Despite the contemporary development in range
sensing, such as by laser range finders or by structured light
techniques, stereo vision continues to be important as a pas-
sive and rich sensor that provides both photometric and ge-
ometric information.

Discrete stereo vision, usually formulated as labeling
each pixel in an image with a small set of disparities, has
matured due to the recent progress in energy minimiza-
tion techniques such as graph cut [5] and belief propagation
[21]. Two comprehensive reviews of the state-of-the-art are
available [18, 7]. In [18] Scharstein and Szeliski primar-
ily address the performance issue, while in [7] Brownet.
al. put emphasis on correspondence methods, speed, and
occlusion detection methods.

However, discrete depth outputs cannot always satisfy
all 3D modeling requirements. For example, for rendering
purpose, it is very difficult to synthesize from discrete depth
map visually acceptable images from viewing angles other
than a small neighborhood around the original view point.
We give such an example in Figure 1, first row. In this case
we are rendering using the hand labeled “ground-truth” dis-
parity and we get nothing more than two parallel planes.

A common conception for such imperfection is that

Figure 1: Rendered using: first row, the hand-labeled
“ground-truth” disparity (from the Tsukuba stereo dataset
[15]); second row, disparity of the new method.

their isn’t enough visual support for a better reconstruction.
There is little texture, and the total disparity difference in
the whole region is just one pixel. We demonstrate in this
paper that such coarse disparity estimation is not the limit
that a computational method can achieve. By using a model
prior proposed in this paper, a continuous valued, more ac-
curate 3D model is computable from just two views (second
row of Figure 1).

In the next section, we introduce our new model prior.
This is followed by introduction of the new stereo vision
framework. In Section 4 we compare our model prior with
existing methods. We give experimental results and perfor-
mance evaluation in Section 5. Finally the paper is closed
by conclusions and discussions.

2. Kernel Correlation
2.1. Kernel Correlation Definition
Kernel correlation (KC) between two pointsxi andxj is
defined as the correlation of kernel functions (K(x, y)) cen-
tered at the two points,

KC(xi, xj) =
∫

K(x, xi) ·K(x, xj)dx. (1)

We limit ourselves to kernel functions that are usually used
in the Parzen window density estimation [16], instead of the
broader “kernel” definition in machine learning community.
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Furthermore, for ease of illustration we focus our discuss on
the isotropic Gaussian kernel:

KG(x, xi) = (πσ2)−D/2 exp (−‖x− xi‖2/σ2). (2)

Here‖x−y‖ is the Euclidean distance between two vectors
x andy, andD is the dimension of the vectors. KC of
Gaussian kernels has a very simple form,

KCG(xi, xj) = (2πσ2)−0.5D exp
{−‖xi − xj‖2/2σ2

}
.

(3)
Further, we define KC between a pointxi and a point set

X as theleave-one-out KC,

KC(xi,X ) =
∑

xj∈X ,xj 6=xi

KC(xi, xj), (4)

and defineKC of the whole point setas

KC(X ) =
∑

xi∈X
KC(xi,X ) =

∑

xi∈X

∑

xj 6=xi

KC(xi, xj).

(5)
The formeij = exp {−‖xi − xj‖2/2σ2} is known as

theaffinityor proximitybetween points and it has biological
significance [28]. Symmetric affinity matrix in the form of




1 e12 . . . e1j . . . e1N

e21 1 . . . e2j . . . e2N

. . . . . . . . . . . . . . . . . .
eN1 eN2 . . . eNj . . . 1


 (6)

has been used by Scott and Longuet-Higgins [19] to de-
termine correspondences between two point sets. When
the kernel is Gaussian, the three definitions of KC can
have the following correspondence to the affinity matrix.
KC between pointsxi and xj is proportional to theeij

and eji terms in the affinity matrix. The leave-one-out
KC (KC(xi,X )) is the sum of theith row or ith column
excluding the diagonal element, and KC of the point set
KC(X ) is the sum of all the off-diagonal elements.

2.2. Properties of Kernel Correlation
2.2.1 MaxKC for Robust Distance Minimization

According to (3) and (4), for the Gaussian case, we have

KCG(xi,X ) ∝
∑

xj∈X ,xj 6=xi

exp{−‖xj − xi‖2/2σ2}. (7)

This is a function of distances between pairs of points.
Note that the influences ofxj ’s on xi are different. Distant
points have negligible contributions, and only neighboring
points have influences. In fact, maximizing KC is equiv-
alent to minimizing distance betweenxi to all xj ’s in the
M-estimator [10] sense. The benefit of minimizing (7) is

that the update ofxi is robust against distant points; for ex-
ample, 3D points across the depth discontinuity. To see this
we study the local update rule of KC. A necessary condition
for a local maximum at stepn + 1 is,

∂KCG(xi,X )
∂xi

∝
∑

xj∈X ,xj 6=xi

w
(n)
ij (xi − xj) = 0,

wherew
(n)
ij = exp {−‖x(n)

i − xj‖2/2σ2}. This leads to
the weighted average updating rule

x
(n+1)
i =

∑

j 6=i

w
(n)
ij xj/

∑

j 6=i

w
(n)
ij . (8)

Now it is easy to see thatlim‖xj−xi‖→∞ w
(n)
ij xj = 0, or

distant points have no influence on local updates. As a re-
sult Gaussian KC maximization is robust to points from a
different structure.

2.2.2 KC Maximization by Local Updates

Another appealing property of KC is thatKC(X )
can be maximized by maximizing the leave-one-out
KC (KC(xi,X )) iteratively over all xi. Maximizing
KC(xi,X ) simultaneously increases the sum of theith row
andith column (excluding diagonal) of the affinity matrix,
while leaving all other elements intact. As a result,KC(X ),
which is proportional to the total sum of the off-diagonal
elements in the affinity matrix, is increased. This property
makes it possible to maximize KC by local updates.

SinceKC(X ) is bounded for a finite point set, iterative
update of leave-one-out KC is guaranteed to converge to a
fixed point.

2.2.3 KC as an Object Space Model Prior

Kernels are defined directly in the object space in our stereo
formulation. To see the smoothing effect by the KC prior,
we give a 2D example. As in Figure 2, imagine we have a
2D scene composed of two disjointed sinusoid depth curves
(green solid curves). Imagine that the red circles(xi, zi)
are the noisy observation of the true scene. We compare
three smoothing methods. The first is the weighted average
method over the immediate 2-neighbors. The smoothed re-
sult is plotted as cyan diamonds. The output is still noisy
and there is oversmoothing at the discontinuity. The sec-
ond is kernel weighted average ([9]) using a Gaussian ker-
nel with scaleσ = 4. The output is plotted as blue crosses.
The noise is sufficiently suppressed in this case. However,
the oversmoothing across boundary is even worse. Finally,
we use KC with kernel scaleσ = 4. The output at a point
xi is defined as the maximum leave-one-out KC position:
argmaxz KC ((xi, z),X ), whereX is the observed noisy
point set in 2D. The KC smoothing result is shown as black
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dots in the figure. Notice that noise is sufficiently sup-
pressed, and at the same time depth discontinuity is pre-
served.
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Figure 2: Comparing smoothing methods. For the kernel
weighted average (K.W.A.) and kernel correlation methods,
σ = 4.

The depth discontinuity preservation property of KC is
due to its nature that pairs of points with large distance don’t
interact. In the above example, points across the structure
may have similar reference view distances that cause over-
smoothing in the first two methods, but their large distances
in the object space prohibit them from interacting in the KC
method.

We conclude that 1) sufficiently large window averaging
is needed in order to handle noise; 2) object space smooth-
ing with a robust mechanism is needed in order to preserve
discontinuity. We will show in Section 4 that, unfortunately,
existing model priors don’t possess both of these properties.

2.3. Approximating Kernel Correlation

Direct computation ofKC(X ) requires enumerating all
pairs of points, anO(N2) computation. Fortunately, for
the kernels we adopt the influence of a point is negligible
beyond a certain distance. Thus we can approximate KC
using only local interactions. For the case of Gaussian ker-
nel, we have two choices. First, we can approximate KC
by using (7) and (5). We find the neighbors ofxi within
a radius and approximate the leave-one-out KC within the
window. The second way is to use discretized version of
(1), the original definition of correlation. The second ap-
proach is especially useful when the model prior is applied
to multiple view reconstruction, where points from differ-
ent views interact. In this case nearest neighbor finding in a
large dynamic dataset can be a difficult problem itself.

3. Kernel Correlation in Stereo

3.1. The New Stereo Energy Function

Our new energy function follows the general energy func-
tion framework: weighted contribution from evidence
(color matching error) and model prior. But we define the
model prior as the kernel correlation of the reconstructed
point set,

EKC(d) =
∑

i

C(xi, di)− λ ·KC(X (d)). (9)

Hered = {di} is the set of depths to be computed.X (d)
is the point set obtained by projecting the pixels into 3D
according to the depth mapd. λ is a weighting term. The
evidence termC(xi, di) is determined by the color in the
reference view,di the depth at pixelxi, and colors of the
corresponding pixels in the other visible views. As we have
seen in Section 2.2.3, our prior has the ability to suppress
noise by using a large window, and because it is defined in
3D space it can preserve discontinuity at the same time.

3.2. Solving the Energy Function

Minimizing the energy function (9) is not trivial. It is a con-
tinuous value optimization problem and discrete optimiza-
tion methods like max-flow graph cut do not apply. If we
are content with a discrete solution, we show in Appendix C
of [27] that the energy function belongs to the energy func-
tion groupF2 [13]. But the energy function (9) violates the
regularity conditionwhen the kernel scale in the depth di-
rection is too large, namely, greater than0.91∆d, where∆d
is the disparity resolution.

In this paper we report stereo results obtained by mini-
mizing (9) with iterative gradient descent. At each step we
sequentially update the depth of each pixel by minimizing
the sum of the color matching error and the negative leave-
one-out KC. From Section 2.2.2 we know that the energy
function (9) decreases at each step. Thus the convergence
of the gradient descent approach to a fix point is guaranteed.

In our experiments, we initialize our algorithm using a
simple stereo method: intensity window correlation. Figure
3 demonstrates the efficacy of our algorithm. The initial re-
sults provided by a11 × 11 window correlation were very
noisy. Note that the depth map of the final result is accurate
enough that it captures the disparity difference between the
tie and shirt of the right person. (Please see the electronic
version of the paper if the printed version is of poorer qual-
ity.) For comparison we show the reconstruction by a graph
cut method in the fourth column, where discretization effect
is quite obvious.
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Reference image Initialization by intensity 
window correlation

Final result Result by graph cut + Potts

Figure 3:Stereo results by minimizing the new KC energy function.

4. Comparing Existing Priors

This section serves to compare the KC model prior to exist-
ing methods. For an in-depth review of various assumptions
made in stereo, the reader is referred to [11].

4.1. Implicit Fronto-Parallel Model

We first compare KC stereo with intensity window corre-
lation (IWC) [11]. In an IWC algorithm, matching errors
are spatially averaged in a local window to produce evi-
dence supporting different depth hypotheses. The IWC im-
plicitly assumes local constancy of disparity, or the fronto-
parallel model prior. To achieve a smoother reconstruction
in IWC, larger windows are required. However, pixels in a
large window may violate the fronto-parallel assumption,
resulting in matching errors. Even worse, large window
may straddle depth discontinuity and result in reconstruc-
tion failure. Thecouplingof intensity matching and model
prior in an IWC algorithm thus makes it difficult to ensure
both accurate color matching and smooth 3D model. In
contrast, the “correlation” of KC is defined on the geom-
etry alone and color matching is defined on individual pix-
els and their correspondences. We can enforce very smooth
3D shapes by adjusting both the weightλ and increasing the
size of the correlation window, yet still ensure depth discon-
tinuity due to the embedded M-estimator mechanism. Also
due to thedecoupling, color matching error can be kept ac-
curate.

KC stereo shares the same assumption with the very suc-
cessful two-step algorithm [20] in image-based rendering:
Geometric variation is slower than color changes. If the
assumption is violated, both rendering and reconstruction
are difficult for any known algorithm and the discussion is
beyond the scope of this paper. Under such assumption,
it makes sense to enforce smooth geometric models while
keeping intensity sampling sharp. In this sense KC stereo
is the converse of the two step rendering algorithm: recon-
struction versus rendering.

4.2. Locally Planar Embedding Model
There exist stereo algorithms that compare warped intensity
patches according to local geometry, such as the oriented
particle method [8]. However, it still assumes locally planar
embedding. It remains difficult to decide the window size
and orientation, and it is not known how to fill the gaps
between neighboring oriented particles.

4.3. Segmentation Based Methods
We have seen several successful examples of stereo match-
ing proceeded by a segmentation step [3, 25, 14]. The un-
derlying assumption is that the segmented regions can each
be fit by a parametric model. The segmentation can be
color [25] or graph-cut based [3, 14]. If the image is over-
segmented, a merging step is applied after the depth for each
region is estimated. The advantage of the KC prior is that it
is not restricted to any single parametric form. As a result, it
does not need to know in advance the parametric models, or
the number of regions. This directly results in the automatic
discovery of the crease (highlighted by circles) in Figure 10,
which is missed by [14].

4.4. Parametric Model
Next we compare stereo algorithms that adopt parametric
model priors. When scene geometry is simple enough and
can be specified by user interaction, stereo is transferred
to a model fitting problem. Reconstruction of very good
polyhedral architectural models are reported in [26]. For
scenes with complex geometry it is impossible to adopt such
an approach. More general priors such as those based on
splines [22] have also been proposed. Their success de-
pends on choices such as functional forms and support of
each function. The adaptive spline method [23] partially
addresses the support issue, with the introduced difficulty
of “cracks” at the boundary of splines. KC model prior is
non-parametric and very general. KC prior with large ker-
nel scale share the benefits of a parametric model: Contri-
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butions of pixels in a large region are considered.

4.5. Disparity Gradient Model
The next class of model priors are defined by constraining
the magnitudes of the first or second order derivatives of
the reconstructed structure [12, 4, 1]. A derivative-based
prior term generally has two problems: over-smoothing and
the Gibbs effect (ringing or over-shooting at the discontinu-
ity region). To handle depth discontinuity, the model prior
needs to couple with a line process.

4.6. Potts Model
Current state-of-the-art stereo algorithms usually adopt the
Potts model prior [5]. The combination of Potts model and
graph cut algorithm produces the best performing stereo al-
gorithms as reported in [18]. By using the Potts model, we
hope that when we introduce finer discretization of dispar-
ity, we would get more and more accurate 3D reconstruc-
tion. We show in Figure 4 (first two columns) that this is
not true. We increased the number of disparity levels for
about one hundred times and we still get approximately the
same discrete fronto-parallel model. If we reduce the rel-
ative weight (corresponding to ourλ), noise will dominate
very quickly. KC model prior on the other hand supports
very smooth and accurate reconstruction (Figure 4, last col-
umn).

Potts, ∆d = 1.0 KCPotts, ∆d = 0.01

Figure 4:Potts model does not result in more accurate depth
map with finer disparity resolution (first two columns),
while by using the KC model prior an algorithm outputs
much smoother and yet more accurate results, including
along discontinuities.

The first goal of introducing a model prior is to propa-
gate confident estimation into ambiguous regions. Figure
5 gives an illustration why KC prior works better than the
Potts prior at fine resolution. Let us assume scene points
A andC have unique texture and can be accurately deter-
mined by color matching, while color matching for pointB
is ambiguous or with low confidence. Suppose the disparity
discretization is fine enough and the three points are at three
different disparity levels,L1, L2, L3. The right part of Fig-
ure 5 gives the energy corresponding to the Potts energy and
the KC energy as a function of disparityd. The Potts model

prior gives a constant energy when B is labeled either asL1

or L3 because B has a different disparity from eitherA or
C. WhenB is labeled asL2, the true disparity, however, the
Potts model gives double penalty becauseB has a different
disparity from bothA andC. The Potts model prior is con-
tradicting with the true scene structure in this case. Potts
prior introduces unwanted fronto-parallel bias. In contrast,
KC prior with large enough kernel scale is consistent with
the true scene structure. KC model prior thus helps to prop-
agate confident estimation into ambiguous region.

d

B

L3

L2

L1

A

C

d

en
er

gy

Figure 5: Propagation of confident estimation. PointsA
andC have unique texture. Confident estimation atA and
C are propagated toB by the KC model prior, but not by
the Potts prior.

The second goal of introducing a model prior is to sup-
press noise. Disparity estimation from stereo images alone
are extremely noisy. This makes the noise-suppression role
of a model prior crucial. There are two ways of suppressing
the noise. The first way is increasing the weight. Doing so,
however, magnifies both good preferences (such as smooth-
ness) and bad biases (such as fronto-parallel). With increas-
ing weight, a Potts stereo algorithm will output less and less
disparity levels, until finally a single fronto-parallel recon-
struction. The second way is to allow a pixel to interact
with a large window of neighbors. With increased window
size, the average behavior within a large set of points can
be extracted. We show in our experiments that very clean
reconstructions can be achieved by this second way. Un-
fortunately, existing geometric priors are usually defined on
immediate neighbors only, possibly due to the difficulty to
analyze complex Markov random fields with links beyond
immediate neighbors. We believe interaction with only im-
mediate neighbors is one of the reasons why those methods
produce much noisier models than ours. KC, on the other
hand, allows for increasing the window size, yet preventing
unwanted effects from too far points because of its robust-
ness property shown in 2.2.
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5. Experiments
5.1. Qualitative Results
Our first example was given in Figure 1, a head model con-
tained in the Tsukuba dataset [15]. From two views,we re-
covered a more realistic 3D shape. Here we see a renderable
reconstruction from a frontal pair.

Our reconstructed foreground model for the five frame
Dayton sequence was compared with two other methods in
Figure 3. We choose Gaussian kernels with scale1.5 in
both(u, v) directions (image plane) and the disparity direc-
tion, andλ = 200.0. The kernel is defined in 3D space.
To approximate the leave-one-out KC, pixels within a7× 7
window are projected to 3D and their influence on the center
point is considered. Each update of gradient descent takes
about 10 seconds on a 2.2 GHz PC and the algorithm con-
verges after 20 steps. The reference view (view 3) is warped
to view 1 and view 5 in Figure 6. The synthesized images
are almost indistinguishable from the original ones.

Figure 6:Left: original image. Right: synthesized image.

Next, we apply our new stereo formulation in the Eu-
clidean space. We work with five frames of theLodgese-
quence [6], whose reference view is shown in Figure 7. The
depth of the scene is between[5×106, 9×106]. We choose
depth increment to be5 × 104, which corresponds to ap-
proximately 80 discrete depth levels in the whole range.
The 3D kernel is chosen to be isotropic with kernel scale
σ = 7.5 × 104, and we chooseλ = 10. Figure 8 shows
several synthesized images using the reconstructed model.
The smooth shape of the building and the occlusion in the
scene are accurately captured by our single reference view
algorithm.

5.2. Quantitative Evaluation
5.2.1 Bad Pixel Statistics

We present quantitative evaluation of the performance of
our new stereo algorithm with real image sequences. We

Figure 7: Lodge sequence: the reference view and recov-
ered depth.

Figure 8:Synthesized views for the Lodge sequence.

use four standard test images with ground-truth data used
in [18]. A disparity map is evaluated by the percentage of
“bad pixels”, where a bad pixel is a pixel whose estimated
disparity has an estimated error greater than 1 (not including
1).

To avoid large color matching errors due to aliasing, we
adopt the color matching method introduced by Birchfield
and Tomasi [2]. To eliminate the “foreground-fattening” ef-
fect at depth discontinuity areas, we incorporate the static
cues [5] in our energy function. All results reported are
generated by using the same set of parameters. We set the
kernel scale to beσuv = 4 in the directions parallel to
the image plane,σd = 0.5 in the disparity dimension (an
anisotropic kernel), andλ = 10. Pixels within a13 × 13
window contributes to the KC value. We observe very clean
disparity maps (Figure 9) in all four cases.

To quantify our results, we count the percentage of the
bad pixels in three regions: all valid regions, textureless re-
gions and depth discontinuity regions. Percentages of bad
pixels in these three regions are listed in Table 2. The num-
bers in parentheses are the ranks of our algorithm within the
top 20 best performing algorithms. Given the gradient de-
scent optimization strategy we are using, we consider this
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performance satisfactory.

Figure 9:Estimated disparity maps. Left to right: ground-
truth; our result; bad-pixels;

Table 1:Performance of the kernel-correlation based stereo
algorithm.

Tsukuba Map Sawtooth Venus
All 2.21 (8) 0.52 (11) 1.16 (6) 0.86 (2)

Discontinuity 7.66 (3) 5.98 (11) 3.99 (4) 5.07 (3)
Textureless 1.99 (9) 0.58 (12) 0.86 (3)

Table 2: Bad Pixel Statistics. The numbers in the paren-
theses are the ranks of our algorithm compared to the top
20 best stereo algorithms as of May 22nd, 2003, time of the
experiment.

5.2.2 Good Pixel Statistics

To show the advantage of our algorithm over the graph cut
method, we take a cross-section of the estimated disparity
of the Venus pair. Together we show the result of the swap-
ping graph cut algorithm [5] in the same plot, Figure 10.
The discretization effect is clearly visible for the graph cut
method, while our result is a much better approximation to
the ground-truth. Also, pay attention to the rightmost part
of the plot (columns> 400). The ground-truth disparity
clearly shows a increasing trend of disparity, caused by a
fold in the scene object (highlighted by the circles). Our

reconstruction follows the change closely. But graph cut
produces a constant disparity in the whole region.

Figure 10:Disparity of scanline 300 of the Venus pair.

To show that this improved accuracy is not an isolated
phenomenon, we study the statistics of the “good pixels”,
or the pixels whose disparity estimation error is less than or
equal to 1. We show histograms and standard deviations of
the estimation errors in Figure 11. We do not compare the
Tsukuba dataset because the dataset does not have sub-pixel
ground-truth disparity map. The first row shows the results
using our new algorithm, while the second row shows the
results generated by the swapping graph cut algorithm [5],
implemented by Scharstein and Szeliski [18]. In all cases
the errors of our method have smaller standard deviations
than those generated by graph cut, especially in the map
pair and the Venus pair, where our results have a standard
deviation of less than half of the standard deviation of the
graph cut algorithm.
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Figure 11:Histogram of the disparity estimation errors of
“good“ pixels. First row: KC stereo algorithm. Second
row: graph cut.
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6. Summary
We introduced the kernel correlation based model prior in
this paper. It is equal to an M-estimator with a large inter-
action window. KC model prior shows better capability in
resolving ambiguity and suppressing noise. Very accurate
and smooth reconstructed models are reported.

There are some open issues in the approach. The first
one is the kernel scale selection. The scales are selected
empirically in our experiments and 3D points at different
disparities use the same kernel function. This is a prob-
lem for distant points whose disparity differences tend to
be small. In our experiments we observe oversmoothing
in the background, such as the camcorder in the Tsukuba
set (last row, center image of 9). The second problem is
the speed problem. Our current code (not optimized) needs
10 to 30 seconds for each iteration. However, we see very
large potentials for speeding up the algorithm because the
algorithm is highly parallel. Third, we need to study better
energy minimization algorithms for the new stereo formu-
lation. Finally, Szeliski and Scharstein [24] demonstrated
that stereo matching can be improved by correctly interpo-
lating the color matching error (the first term in our energy
function (9)). An integrated consideration of both terms is
of our interest.
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