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Abstract

All non-trivial stereo problems need model priors to deal
with ambiguities and noise perturbations. To meet require-
ments of increasingly demanding tasks such as modeling for
rendering, a proper model prior should impose preference
on the true scene structure, while avoiding artificial bias
such as fronto-parallel. We introduce a geometric model
prior based on a novel technique we call kernel correla-
tion. Maximizing kernel correlation is shown to be equal to
distance minimization in the M-estimator sense. As a model
prior, kernel correlation is demonstrated to have good prop-
erties that can result in renderable, very smooth and accu-
rate depth map. The results are evaluated both qualitatively
by view synthesis and quantitatively by error analysis.

Figure 1: Rendered using: first row, the hand-labeled
“ground-truth” disparity (from the Tsukuba stereo dataset
[15]); second row, disparity of the new method.

their isn't enough visual support for a better reconstruction.
1. Introduction There is little texture, and the total disparity difference in
the whole region is just one pixel. We demonstrate in this
Stereo vision has been one of the central topics in computemaper that such coarse disparity estimation is not the limit
vision. Despite the contemporary development in range that a computational method can achieve. By using a model
sensing, such as by laser range finders or by structured lighprior proposed in this paper, a continuous valued, more ac-
techniques, stereo vision continues to be important as a paseurate 3D model is computable from just two views (second
sive and rich sensor that provides both photometric and ge-row of Figure 1).
ometric information. In the next section, we introduce our new model prior.
Discrete stereo vision, usually formulated as labeling This is followed by introduction of the new stereo vision
each pixel in an image with a small set of disparities, has framework. In Section 4 we compare our model prior with
matured due to the recent progress in energy minimiza-existing methods. We give experimental results and perfor-
tion techniques such as graph cut [5] and belief propagationmance evaluation in Section 5. Finally the paper is closed
[21]. Two comprehensive reviews of the state-of-the-art are by conclusions and discussions.
available [18, 7]. In [18] Scharstein and Szeliski primar-
ily address the performance issue, while in [7] Broem 2. Kernel Correlation
gtclﬂitioirggt‘:;';r? r:nce?r::)edss?ondence methods, speed, anﬂ.l. Kernel Correlation Definition
However, discrete depth outputs cannot always satisfy Kernel correlation (KC) between two points andz; is
all 3D modeling requirements. For example, for rendering defined as the correlation of kernel functiod§((, y)) cen-
purpose, itis very difficult to synthesize from discrete depth tered at the two points,
map visually acceptable images from viewing angles other
than a small neighborhood around the original view point. KC(z, ;) = /K(m,xi) -K(x,xj)d. 1)
We give such an example in Figure 1, first row. In this case
we are rendering using the hand labeled “ground-truth” dis- We limit ourselves to kernel functions that are usually used
parity and we get nothing more than two parallel planes.  inthe Parzen window density estimation [16], instead of the
A common conception for such imperfection is that broader “kernel” definition in machine learning community.



Furthermore, for ease of illustration we focus our discuss on
the isotropic Gaussian kernel:
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Here||z — y|| is the Euclidean distance between two vectors
x andy, and D is the dimension of the vectors. KC of
Gaussian kernels has a very simple form,

Ko(x,2;) = (n0®) P exp (—|lo — zi*/o?).

KCq(zi, ) = (2n0°) %% exp {—||z; — z;||* /207 } .
3)
Further, we define KC between a pointand a point set
X as theleave-one-out KC

KO(.I‘“X) =
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and defineKC of the whole point sets

KC(X)= Y KC(x;,X)= Y Y KC(aj ;).
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The forme;; = exp {—|jx; — z;]|*/20?} is known as
theaffinity or proximitybetween points and it has biological
significance [28]. Symmetric affinity matrix in the form of
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has been used by Scott and Longuet-Higgins [19] to de-

that the update af; is robust against distant points; for ex-
ample, 3D points across the depth discontinuity. To see this
we study the local update rule of KC. A necessary condition
for a local maximum at step + 1 is,
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Wherewg” = exp{—[z{"™ — z;]|2/202}. This leads to
the weighted average updating rule
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Now it is easy to see thadim,, ., ||—oo wgf)xj =0, or

distant points have no influence on local updates. As a re-
sult Gaussian KC maximization is robust to points from a
different structure.

2.2.2 KC Maximization by Local Updates

Another appealing property of KC is thakC(X)
can be maximized by maximizing the leave-one-out
KC (KC(z;, X)) iteratively over allz;. Maximizing
KC(x;, X) simultaneously increases the sum of itterow
andi'” column (excluding diagonal) of the affinity matrix,
while leaving all other elements intact. As aresHlt;(X),
which is proportional to the total sum of the off-diagonal
elements in the affinity matrix, is increased. This property
makes it possible to maximize KC by local updates.
Since K C'(X) is bounded for a finite point set, iterative

termine correspondences between two point sets. Wherupdate of leave-one-out KC is guaranteed to converge to a

the kernel is Gaussian, the three definitions of KC can
have the following correspondence to the affinity matrix.
KC between pointse; and «; is proportional to thee;;
and e;; terms in the affinity matrix. The leave-one-out
KC (KC(z;, X)) is the sum of thé'* row ori*" column
excluding the diagonal element, and KC of the point set
KC(X) is the sum of all the off-diagonal elements.

2.2. Properties of Kernel Correlation
2.2.1 MaxKC for Robust Distance Minimization

According to (3) and (4), for the Gaussian case, we have

>
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KCq(z;, X) x exp{—|lz; — z;||?/20%}. (7)

This is a function of distances between pairs of points.
Note that the influences af;’s on z; are different. Distant
points have negligible contributions, and only neighboring
points have influences. In fact, maximizing KC is equiv-
alent to minimizing distance between to all z;'s in the
M-estimator [10] sense. The benefit of minimizing (7) is

fixed point.

2.2.3 KC as an Object Space Model Prior

Kernels are defined directly in the object space in our stereo
formulation. To see the smoothing effect by the KC prior,
we give a 2D example. As in Figure 2, imagine we have a
2D scene composed of two disjointed sinusoid depth curves
(green solid curves). Imagine that the red cirdles z;)

are the noisy observation of the true scene. We compare
three smoothing methods. The first is the weighted average
method over the immediate 2-neighbors. The smoothed re-
sult is plotted as cyan diamonds. The output is still noisy
and there is oversmoothing at the discontinuity. The sec-
ond is kernel weighted average ([9]) using a Gaussian ker-
nel with scales = 4. The output is plotted as blue crosses.
The noise is sufficiently suppressed in this case. However,
the oversmoothing across boundary is even worse. Finally,
we use KC with kernel scale = 4. The output at a point

x; is defined as the maximum leave-one-out KC position:
argmazx, KC ((z;,2), X), whereX is the observed noisy
point set in 2D. The KC smoothing result is shown as black



dots in the figure. Notice that noise is sufficiently sup- 3. Kernel Correlation in Stereo
pressed, and at the same time depth discontinuity is pre-

served. 3.1. The New Stereo Energy Function
15 ‘ ‘ Our new energy function follows the general energy func-
o oround Truth oboe b tion framework: weighted contribution from evidence
Small Window Average A,:,-"S'S' (color matching error) and model prior. But we define the
*  Kemnel Weighted Average §ro model prior as the kernel correlation of the reconstructed
10/ _* Kernel Correlation i 1 .
° ot point set,
- o’;‘.ﬂ!o“
pLITTE o
. sl | Exc(d) =Y C(zi,d;) = X- KC(X(d)).  (9)
° ° o *‘ 7
o A
.soaoogsg. x )
{.;;' ? "s‘." S Hered = {d;} is the set of depths to be computeti(d)
o Pt 2 ] is the point set obtained by projecting the pixels into 3D
7838 according to the depth mah )\ is a weighting term. The
evidence ternC(z;, d;) is determined by the color in the
-5 ‘ ‘ ! ‘ reference viewd; the depth at pixek;, and colors of the
0 10 20 30 40 50 . : . o .
X corresponding pixels in the other visible views. As we have

seen in Section 2.2.3, our prior has the ability to suppress

Figure 2: Comparing smoothing methods. For the kernel noise by using a large window, and because it is defined in
weighted average (K.W.A.) and kernel correlation methods, 3D space it can preserve discontinuity at the same time.
o =4.

The depth discontinuity preservation property of KC is 3.2. Solving the Energy Function
due to its nature that pairs of points with large distance don't == | i _ . _
interact. In the above example, points across the structuré\_/“r"m'z'ng the energy fgnctlon (9) is not t”,v'al' ltisa con-
may have similar reference view distances that cause overlinU0Us value optimization problem and discrete optimiza-
smoothing in the first two methods, but their large distances1°n methods like max-flow graph cut do not apply. If we

in the object space prohibit them from interacting in the KC 27 contentwith a discrete solution, we show in Appendix C
method. of [27] that the energy function belongs to the energy func-

! 5 i .
We conclude that 1) sufficiently large window averaging tion group ™ [13]. Butthe energy function (9) violates the

. . L2 . regularity conditionwhen the kernel scale in the depth di-
is needed in order to handle noise; 2) object space smooth-" """
. ] o . rection is too large, namely, greater thafl Ad, whereAd
ing with a robust mechanism is needed in order to Preserve. . o disparity resolution
discontinuity. We will show in Section 4 that, unfortunately, panty '

existing model priors don’t possess both of these properties. N this paper we report stereo results obtained by mini-
mizing (9) with iterative gradient descent. At each step we

sequentially update the depth of each pixel by minimizing

2.3. Approximating Kernel Correlation the sum of the color matching error and the negative leave-

) ) ) . one-out KC. From Section 2.2.2 we know that the energy
Direct computation ofKC(X) requires enumerating all  nction (9) decreases at each step. Thus the convergence

pairs of points, arO(N*) computation. Fortunately, for ot he gradient descent approach to a fix point is guaranteed.
the kernels we adopt the influence of a point is negligible . S . .
In our experiments, we initialize our algorithm using a

beyond a certain distance. Thus we can approximate KC . e L : .
’ . . . simple stereo method: intensity window correlation. Figure
using only local interactions. For the case of Gaussian ker- . . -
) . . 3 demonstrates the efficacy of our algorithm. The initial re-
nel, we have two choices. First, we can approximate KC : . .
. . ) L sults provided by a1 x 11 window correlation were very
by using (7) and (5). We find the neighbors xf within . : .
. ; L noisy. Note that the depth map of the final result is accurate
a radius and approximate the leave-one-out KC within the . : o
: . . : . enough that it captures the disparity difference between the
window. The second way is to use discretized version of ; . . .
o - . tie and shirt of the right person. (Please see the electronic
(1), the original definition of correlation. The second ap- . . . e
: : S . version of the paper if the printed version is of poorer qual-
proach is especially useful when the model prior is applied . . .
ity.) For comparison we show the reconstruction by a graph

to mL_JIt|pIe_ view recons_tructlon, where po_mts fro_m thfe_r- cut method in the fourth column, where discretization effect
ent views interact. In this case nearest neighbor finding in a.

large dynamic dataset can be a difficult problem itself. IS quite obvious.



Reference image Initialization by intensity Final result Result by graph cut + Potts
window correlation

Figure 3:Stereo results by minimizing the new KC energy function.

4. Comparing Existing Priors 4.2. Locally Planar Embedding Model

This section serves to compare the KC model prior to exist- There exist stereo algorithms that compare warped intensity

ing methods. For an in-depth review of various as:~:umptionspatches according to local geometry, such as the oriented
made in stereo, the reader is referred to [11] particle method [8]. However, it still assumes locally planar

embedding. It remains difficult to decide the window size
and orientation, and it is not known how to fill the gaps

4.1. Implicit Fronto-Parallel Model between neighboring oriented particles.

We first compare KC stereo with intensity window corre- )
lation (IWC) [11]. In an IWC algorithm, matching errors  4.3. Segmentation Based Methods

are spatially averaged in a local window to produce evi- \we have seen several successful examples of stereo match-
dence supporting different depth hypotheses. The IWC im-ing proceeded by a segmentation step [3, 25, 14]. The un-
plicitly assumes local constancy of disparity, or the fronto- derlying assumption is that the segmented regions can each
parallel model prior. To achieve a smoother reconstructionpe fit by a parametric model. The segmentation can be
in IWC, larger windows are required. However, pixels in a color [25] or graph-cut based [3, 14]. If the image is over-
large window may violate the fronto-parallel assumption, segmented, a merging step is applied after the depth for each
resulting in matching errors. Even worse, large window region is estimated. The advantage of the KC prior is that it
may straddle depth discontinuity and result in reconstruc- js not restricted to any single parametric form. As a result, it
tion failure. Thecouplingof intensity matching and model  goes not need to know in advance the parametric models, or
prior in an IWC algorithm thus makes it difficult to ensure - the number of regions. This directly results in the automatic

both accurate color matching and smooth 3D model. In giscovery of the crease (highlighted by circles) in Figure 10,
contrast, the “correlation” of KC is defined on the geom- hich is missed by [14].

etry alone and color matching is defined on individual pix-
els and their correspondences. We can enforce very smootl21 4. Parametric Model
3D shapes by adjusting both the weighdnd increasing the o
size of the correlation window, yet still ensure depth discon- Next we compare stereo algorithms that adopt parametric
tinuity due to the embedded M-estimator mechanism. Also model priors. When scene geometry is simple enough and
due to thedecoupling color matching error can be kept ac- can be specified by user interaction, stereo is transferred
curate. to a model fitting problem. Reconstruction of very good
KC stereo shares the same assumption with the very sucpolyhedral architectural models are reported in [26]. For
cessful two-step algorithm [20] in image-based rendering: scenes with complex geometry it is impossible to adopt such
Geometric variation is slower than color changes. If the an approach. More general priors such as those based on
assumption is violated, both rendering and reconstructionsplines [22] have also been proposed. Their success de-
are difficult for any known algorithm and the discussion is pends on choices such as functional forms and support of
beyond the scope of this paper. Under such assumptiongach function. The adaptive spline method [23] partially
it makes sense to enforce smooth geometric models whileaddresses the support issue, with the introduced difficulty
keeping intensity sampling sharp. In this sense KC stereoof “cracks” at the boundary of splines. KC model prior is
is the converse of the two step rendering algorithm: recon-non-parametric and very general. KC prior with large ker-
struction versus rendering. nel scale share the benefits of a parametric model: Contri-



butions of pixels in a large region are considered. prior gives a constant energy when B is labeled eithdr;as
or L3 because B has a different disparity from eitkieor
4.5. Disparity Gradient Model C. WhenB is labeled ad.,, the true disparity, however, the

i i .. Potts model gives double penalty becadshas a different
The next class of model priors are defined by constraining disparity from bothA andC'. The Potts model prior is con-

the magnitudes of the first or second order derivatives of o jicting with the true scene structure in this case. Potts
the reconstructed structure [12, 4, 1]. A derivative-based i, introduces unwanted fronto-parallel bias. In contrast,
prior term generally has two problems: over-smoothing and i prior with large enough kernel scale is consistent with

the Gibbs effect (ringing or over-shooting at the discontinu- the true scene structure. KC model prior thus helps to prop-

ity region). To handle depth discontinuity, the model prior agate confident estimation into ambiguous region.
needs to couple with a line process.

4.6. Potts Model

Current state-of-the-art stereo algorithms usually adopt the d

Potts model prior [5]. The combination of Potts model and e

graph cut algorithm produces the best performing stereo al- w 07 - PP ety
{

gorithms as reported in [18]. By using the Potts model, we o
hope that when we introduce finer discretization of dispar- L,
ity, we would get more and more accurate 3D reconstruc-
tion. We show in Figure 4 (first two columns) that this is ,
not true. We increased the number of disparity levels for L, A
about one hundred times and we still get approximately the g

same discrete fronto-parallel model. If we reduce the rel-

ative weight (corresponding to ow), noise will dominate  Figure 5: Propagation of confident estimation. Points
very quickly. KC model prior on the other hand supports and C' have unique texture. Confident estimatiordaand
very smooth and accurate reconstruction (Figure 4, last col-C' are propagated ta3 by the KC model prior, but not by
umn). the Potts prior.
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The second goal of introducing a model prior is to sup-
press noise. Disparity estimation from stereo images alone
are extremely noisy. This makes the noise-suppression role
KC of a model prior crucial. There are two ways of suppressing
the noise. The first way is increasing the weight. Doing so,
however, magnifies both good preferences (such as smooth-
ness) and bad biases (such as fronto-parallel). With increas-
ing weight, a Potts stereo algorithm will output less and less
disparity levels, until finally a single fronto-parallel recon-
struction. The second way is to allow a pixel to interact
with a large window of neighbors. With increased window
size, the average behavior within a large set of points can
. L . ) ; be extracted. We show in our experiments that very clean
gate confident estimation into ambiguous regions. Figure ; . )

reconstructions can be achieved by this second way. Un-

5 gives an illustration why KC prior works better than the . A )
. ! 4 .~ fortunately, existing geometric priors are usually defined on
Potts prior at fine resolution. Let us assume scene points.

A andC have unique texture and can be accurately deter—ImmeOIIate neighbors only, posmbly due to the_ difficulty to
. . : . analyze complex Markov random fields with links beyond
mined by color matching, while color matching for poiBit

. . . . . .. immediate neighbors. We believe interaction with only im-
is ambiguous or with low confidence. Suppose the disparity ) . .

: AT . mediate neighbors is one of the reasons why those methods
discretization is fine enough and the three points are at three

different disparity levelsL, Lo, Ls. The right part of Fig-  Produce much noisier models than ours. KC, on the other
. . hand, allows for increasing the window size, yet preventing
ure 5 gives the energy corresponding to the Potts energy and

the KC energy as a function of disparity The Potts model unwanted effects from too far points because of its robust-
ness property shown in 2.2.

Potts, Ad = 1.0

Potts, Ad = 0.01

Figure 4:Potts model does not resultin more accurate depth
map with finer disparity resolution (first two columns),
while by using the KC model prior an algorithm outputs
much smoother and yet more accurate results, including
along discontinuities.

The first goal of introducing a model prior is to propa-



5. Experiments
5.1. Qualitative Results

tained in the Tsukuba dataset [15]. From two views,we r¢
covered a more realistic 3D shape. Here we see a renderéaw..
reconstruction from a frontal pair.

Our reconstructed foreground model for the five frame
Dayton sequence was compared with two other methods in
Figure 3. We choose Gaussian kernels with sdalein
both (u, v) directions (image plane) and the disparity direCpe .
tion, and\ = 200.0. The kernel is defined in 3D space. -
To approximate the leave-one-out KC, pixels withina 7
window are projected to 3D and their influence on the cent
point is considered. Each update of gradient descent tak
about 10 seconds on a 2.2 GHz PC and the algorithm cc
verges after 20 steps. The reference view (view 3) is warp
to view 1 and view 5 in Figure 6. The synthesized image ¥
are almost indistinguishable from the original ones. o

Figure 7: Lodge sequence: the reference view and recov-
ered depth.

Figure 8:Synthesized views for the Lodge sequence.

use four standard test images with ground-truth data used
in [18]. A disparity map is evaluated by the percentage of
“bad pixels”, where a bad pixel is a pixel whose estimated
Figure 6:Left: original image. Right: synthesized image. cligsparity has an estimated error greater than 1 (not including
Next, we apply our new stereo formulation in the Eu- To avoid large color matching errors due to aliasing, we
clidean space. We work with five frames of thedgese- adopt the color matching method introduced by Birchfield
guence [6], whose reference view is shown in Figure 7. The and Tomasi [2]. To eliminate the “foreground-fattening” ef-
depth of the scene is betwefinx 10°,9 x 10]. We choose  fect at depth discontinuity areas, we incorporate the static
depth increment to b& x 10%, which corresponds to ap- cues [5] in our energy function. All results reported are
proximately 80 discrete depth levels in the whole range. generated by using the same set of parameters. We set the
The 3D kernel is chosen to be isotropic with kernel scale kernel scale to be,, = 4 in the directions parallel to
o = 7.5 x 10*, and we choose& = 10. Figure 8 shows the image planeg; = 0.5 in the disparity dimension (an
several synthesized images using the reconstructed modegnisotropic kernel), and = 10. Pixels within al3 x 13
The smooth shape of the building and the occlusion in the window contributes to the KC value. We observe very clean
scene are accurately captured by our single reference viewdisparity maps (Figure 9) in all four cases.

algorithm. To quantify our results, we count the percentage of the
bad pixels in three regions: all valid regions, textureless re-
5.2. Quantitative Evaluation gions and depth discontinuity regions. Percentages of bad

pixels in these three regions are listed in Table 2. The num-
bers in parentheses are the ranks of our algorithm within the
We present quantitative evaluation of the performance oftop 20 best performing algorithms. Given the gradient de-
our new stereo algorithm with real image sequences. Wescent optimization strategy we are using, we consider this

5.2.1 Bad Pixel Statistics



performance satisfactory.

Figure 9: Estimated disparity maps. Left to right: ground-
truth; our result; bad-pixels;

reconstruction follows the change closely. But graph cut
produces a constant disparity in the whole region.

Disparity at scaniine 300

— Ground Truth
~ = Kernel Corrleation

-~ Graph Cut

0 100 200 300 400 500

Figure 10:Disparity of scanline 300 of the Venus pair.

To show that this improved accuracy is not an isolated
phenomenon, we study the statistics of the “good pixels”,
or the pixels whose disparity estimation error is less than or
equal to 1. We show histograms and standard deviations of
the estimation errors in Figure 11. We do not compare the
Tsukuba dataset because the dataset does not have sub-pixel
ground-truth disparity map. The first row shows the results
using our new algorithm, while the second row shows the
results generated by the swapping graph cut algorithm [5],
implemented by Scharstein and Szeliski [18]. In all cases
the errors of our method have smaller standard deviations
than those generated by graph cut, especially in the map

Table 1:Performance of the kernel-correlation based stereo pair and the Venus pair, where our results have a standard

algorithm.
Tsukuba| Map Sawtooth| Venus
All 2.21(8) | 0.52(11)| 1.16(6) | 0.86 (2)
Discontinuity | 7.66 (3) | 5.98 (11)| 3.99 (4) | 5.07 (3)
Textureless | 1.99 (9) 0.58(12) | 0.86 (3)

Table 2: Bad Pixel Statistics. The numbers in the paren-
theses are the ranks of our algorithm compared to the top
20 best stereo algorithms as of May 22nd, 2003, time of the

experiment.

5.2.2 Good Pixel Statistics

To show the advantage of our algorithm over the graph cut 10000
method, we take a cross-section of the estimated disparity

of the Venus pair. Together we show the result of the swap-
ping graph cut algorithm [5] in the same plot, Figure 10.

The discretization effect is clearly visible for the graph cut

method, while our result is a much better approximation to
the ground-truth. Also, pay attention to the rightmost part Figure 11:Histogram of the disparity estimation errors of
of the plot (columns> 400). The ground-truth disparity
clearly shows a increasing trend of disparity, caused by arow: graph cut.
fold in the scene object (highlighted by the circles). Our

deviation of less than half of the standard deviation of the
graph cut algorithm.

Map, kernel correlation Sawtooth, KC Venus, KC

10000
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“good"” pixels. First row: KC stereo algorithm. Second



0. Summary [10] P.J.HuberRobust Statisticslohn Wiley & Sons, New York,
We introduced the kernel correlation based model prior in ew York, 1951
this paper. It is equal to an M-estimator with a Iargepinter- [11] T'. Kanade anq M. Qkutomi. A stereo matchﬁng algorithm

. C . L with an adaptive window: Theory and experimenEEE
actlon_wmdow._ K_C model prior sh_ows bgtter capability in TPAMI, 16(9):920-932, September 1994.
resolving ambiguity and suppressing noise. Very accurate
and smooth reconstructed models are reported.

There are some open issues in the approach. The first
one is the kernel scale selection. The scales are selectefl3] V- Kolmogorov and R. Zabih. What energy functions can
empirically in our experiments and 3D points at different gg_rgulmmuzed via graph cuts? BCCV'02 pages Part lil,
disparities use the same kernel function. This is a prob- '
lem for distant points whose disparity differences tend to [14] M. H. Lin and C. Tomasi. Surfaces with occlusions from
be small. In our experiments we observe oversmoothing layered stereo. ICVPR'03 pages 710-717, June 2003.
in the background, such as the camcorder in the Tsukubg15] Y. Nakamura, T. Matsuura, K. Satoh, and Y. Ohta. Occlusion
set (last row, center image of 9). The second problem is detectable stereo - occlusion patterns in camera matrix. In
the speed problem. Our current code (not optimized) needs ~ CVPR'96 pages 371-378.

10 to 30 seconds for each iteration. However, we see very[16] E. Parzen. On estimation of a probability density function
large potentials for speeding up the algorithm because the  and mode.Annals of Mathematical Statistic83(3):1065—

[12] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour modelslJCV, 1(4):321-331, January 1988.

algorithm is highly parallel. Third, we need to study better 1076, 1962.

energy minimization algorithms for the new stereo formu- [17] A. Rényi. On measures of entropy and information Pho-
lation. Finally, Szeliski and Scharstein [24] demonstrated ceedings of the 4th Berkeley Symposium on Mathematics,
that stereo matching can be improved by correctly interpo- Statistics and Probabilityvolume 1, pages 547-561. Uni-
lating the color matching error (the first term in our energy versity of California Press, 1961.

function (9)). An integrated consideration of both terms is [18] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
of our interest. dense two-frame stereo correspondence algorithtd€V,

47(1):7-42, May 2002,
[19] G.L. Scott and H.C. Longuet-Higgins. An algorithm for as-

Refe rences sociating the features of two imagelroceedings: Biologi-

. ) cal Sciences244(1309):21-26, April 1991.
[1] P. Anandan. A computational framework and an algorithm

for the measurement of visual motioldCV, 2(3):283-310.  [20] J. Shade, S. Gortler, L.-W. He, and R. Szeliski. Layered

depth images. I8BIGGRAPH'98pages 231-242.

[2] S. Birchfield and C. Tomasi. A pixel dissimilarity mea- P g Pagd . )
sure that is insensitive to image samplingEEE TPAM| [21] J. Sun, H.-Y. Shum, and N.-N. Zheng. Stereo matching using
20(4):401-406, April 1998. belief propagation. IEECCV’'02 pages Part Il, 510-524.

[3] S. Birchfield and C. Tomasi. Multiway cut for stereo and [22] R. Szeliskiand J. Coughlan. Hierarchical spline-based image

motion with slanted surfaces. ICCV'99, pages 489-495, registration. ICVPR'94 pages 194-201.
September 1999. [23] R. Szeliski and H.-Y. Shum. Motion estimation with

[4] T. E. Boult. What is regular in regularization? 16CV'87, quadtree splineSEEE TPAM 18(12):1199-1210, Decem-

pages 457—462. ber 1996.
[5] Y. Boykov, O. Veksler, and R. Zabih Fast approxi- [24] R. Szeliski and D. Scharstein. Symmetric sub-pixel stereo

T . tching.ECCV’ Part Il, 525-540.
mate energy minimization via graph cutdEEE TPAM| matching. ECCV'02 pages Part Il, 525-540

23(11):1222-1239, November 2001. [25] H. Tao, H.S. Sawhney, and R. Kumar. A global matching
[6] A. Broadhurst, T. W. D q dR. Cibolla. A b framework for stereo computation. I6CV 2001 volume I,
. Broadhurst, T. W. Drummond, and R. Cipolla. A prob- ages 532-539. July 2001.
abilistic framework for space carving. I€CV 2001 vol- pag g ] )
ume I, pages 388—393. [26] C. J. Taylor, P. E. Debevc_ec, and J. Malik. Reconstructing
7] M.z B b B hk dGD. H Ad ] polyhedral models of architectural scenes from photographs.
4. brown, D. burscnka, an .D. nager. vances In In ECCV'96 volume 2, pages 659—668.
computational stereolEEE TPAMI 25(8):993-1008, Au- ) p 9 o ) )
gust 2003. [27] Y. Tsin. Kernel correlation as an affinity measure in point-
sampled vision problem3echnical Report, CMU-RI-03-36
[8] P. Fua. Reconstructing complex surfaces from multiple 2003.

stereo views. IlCVPR’95 pages 1078-1085.
View 3 Pag [28] S. Ullman. The Interpretation of Visual MotionMIT Press,

[9] T. Hastie, R. Tibshirani, and J. Friedmaithe Elements of Cambridge, Massachusetts, 1979.
Statistical Learning, Data Mining, Inference and Prediction
Springer, 2001.



