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Abstract. Correlation is a very effective way to align intensity images.
We extend the correlation technique to point set registration using a
method we call kernel correlation. Kernel correlation is an affinity mea-
sure, and it is also a function of the point set entropy. We define the
point set registration problem as finding the maximum kernel correla-
tion configuration of the the two point sets to be registered. The new
registration method has intuitive interpretations, simple to implement
algorithm and easy to prove convergence property. Our method shows
favorable performance when compared with the iterative closest point
(ICP) and EM-ICP methods.

1 Introduction

Point set registration is among the most fundamental problems in vision research.
It is widely used in areas such as range data fusion, medical image alignment,
object localization, tracking, object recognition, just to name a few.

One of the most effective methods in registration is correlation. In vision
problems, correlation between two image patches has long been used for mea-
suring the similarities between them. When studying discrete point sets, such
as those returned by range sensors or feature detectors, however, we are given
just the coordinates of a set of points. The definition of correlation is no longer
directly applicable since we are given a set of geometric entities without any
appearance information to compare.

Nevertheless, the presence or absence of feature points themselves tell a lot
more than the coordinates of individual points. They also present the structure
implied by the point sets. The simplest way of capturing such structure is to
treat the feature points as binary intensity images which have only values 0
(absence) and 1 (presence). However, when noise presents, or when we have
different sampling strategies in obtaining the two point sets, the binary images
usually do not match.

In the following we present a technique we call kernel correlation that ex-
tends the concept of correlation to point sets. We begin by introducing kernel
correlation.
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2 Kernel Correlation

2.1 Definitions

Kernel correlation (KC) is defined on three levels. First, it is defined on two
points. Given two points xi and xj , their kernel correlation (KC) is defined as

KC(xi, xj) =
∫

K(x, xi) ·K(x, xj)dx. (1)

Here K(x, xi) is a kernel function centered at the data point xi. We limit
ourselves to the symmetric, non-negative kernel functions that are usually used
in the Parzen window density estimation [11], instead of the broader “kernel”
definition in the machine learning community. Such kernels include the Gaussian
kernel, Epanechnikov kernel, tri-cubic kernel, et. al. [7]. In the following we use
the Gaussian kernel as an example for its simplicity. The Gaussian kernel has
the form:

KG(x, xi) = (πσ2)−D/2 exp (−‖x− xi‖2/σ2). (2)

Here ‖x − y‖ is the Euclidean distance between two vectors x and y, and D is
the dimension of the vectors.

Because the kernel functions we adopt are symmetric, it’s not surprising to
see that the KC defined in (1) is a function of distance between the two points.
For example, the KC corresponding to the Gaussian kernel is,

KCG(xi, xj) = (2πσ2)−D/2 exp
{−‖xi − xj‖2/2σ2

}
. (3)

KC’s for other kernels can be shown to be functions of distance ‖xi−xj‖ as well.
For clarity of the presentation we will not list them here. But we will discuss their
shared properties with the Gaussian kernel whenever necessary. Right side of (3)
is known in the vision community as “affinity” or “proximity”[17]: a closeness
measure. In this paper we show its utility in registration problems.

Next we define the KC between a point and the whole set of points X , the
Leave-one-out Kernel Correlation (LOO-KC),

KC(xi,X ) =
∑

xj 6=xi

KC(xi, xj). (4)

According to (3) and (4), for the Gaussian case we have

KCG(xi,X ) = (2π)−D/2
∑

xj 6=xi

exp{−‖xj − xi‖2/2σ2} (5)

Leave-one-out KC defines the total affinity from a point to a point set.
Finally, we extend the KC definition to a point set: the total sum of the

LOO-KC of all the points xk in the set,

KC(X ) =
∑

i

KC(xi,X ) = 2
∑

i 6=j

KC(xi, xj). (6)

If the points in the set are close to each other, the KC value is large. In this
sense KC of a point set is a compactness measure of the point set.
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2.2 Entropy Equivalence

If we define the density of the point set X as the kernel density estimate:

P (x) =
N∑

i=1

K(x, xi)/N, (7)

and adopt the Renyi’s Quadratic Entropy (RQE) [15] as,

Hrqe = −log

∫

x

P (x)2dx, (8)

KC of the point set has a simple relationship with the entropy measure,

KC(X ) ∝ C + exp{−Hrqe}. (9)

The above observation follows directly by expanding the
∫

x
P (x)2dx term in

the entropy definition. In fact,

N2 ·
∫

P (x)2dx =


∑

i

∫

x

K(x, xi)2dx + 2
∑

i6=j

∫

x

K(x, xi)K(x, xj)dx




= C ′ + KC(X ).

Here we use the fact that
∫

x
K(x, xi)2dx is a constant and the definition of

KC(X ) (6). Note that the relationship does not assume any specific form of
kernel function, as long as the integrals are defined.

Thus the compactness measure of KC is linked to the compactness measure
of entropy. A minimum entropy system is the one with the maximum affinity
(minimum distance) between all pairs of points. The information theoretic com-
pactness measure indeed has a geometric interpretation.

We were brought to the attention of the independent work by Principe and
Xu [13]. They expanded the RQE definition in the Gaussian case and defined
the integral of the cross product terms as “information potential”. Their purpose
for such decomposition is efficient evaluation of entropy and entropy gradients
in the context of information theoretic learning. In contrast, our goal is instead
to configure a dynamic point set.

2.3 KC as an M-Estimator

If there are just two points involved, maximum KC corresponds to minimum
distance between them. However, when we are dealing with multiple points, it’s
not immediately obvious what is being optimized. For instance, in the Gaussian
case we have (5). What does it mean to maximize KC? It turns out that in this
case we are still minimizing the distance, but in the sense of M-estimators.

In an M-estimator, instead of minimizing the usual sum of quadratic dis-
tances, Eq =

∑
j (xi − xj)

2, we are minimizing a robust version of the distance
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function Er =
∑

j g
(
(xi − xj)2

)
, where g is a robust function [8]. The advantage

of changing from the quadratic distance function to the robust function is that
local configuration of xi is insensitive to remote points. To see this we compare
the gradients of the above two functions.

∂Eq/∂xi ∝
∑

j
(xi − xj) (10)

∂KCG(xi,X )/∂xi ∝
∑

j
exp(−‖xi − xj‖2/2σ2)(xj − xi). (11)

The gradient term (10) is very sensitive to outliers in that any outlier point xj can
have arbitrarily large contribution to the gradient. Remember that the gradient
is the direction (and magnitude in the quadratic function case) to update xi. To
minimize Eq, estimation of xi will be severely biased toward the outlier points.
In the KCG case, however, there is a second term exp(−‖xi − xj‖2/2σ2) that
decays exponentially as a function of distance. Consequently, remote outliers will
have no influence to local Er minimization.

When we use kernels other than the Gaussian kernel, we can still have the M-
estimator equivalence when maximizing KC. For example, by using the Epanech-
nikov kernel, we implicitly embedded a line process [5] into the correlation pro-
cess: Points beyond a certain distance don’t contribute.

Chen and Meer [3] also observed the equivalence of mode finding in a kernel
density estimate and the M-estimators. The difference is that they are fitting
parametric models to a set of static data (the projection pursuit example), or
clustering the static point set. The introduction of KC is to robustly configure
dynamic point sets.

3 Kernel Correlation for Registration

Given two finite size point sets, the model set M and the scene set S, our
registration method is defined as finding the parameter θ of a transformation T
to minimize the following cost function,

COST (S,M, θ) = −
∑

s∈S

∑

m∈M
KC(s, T (m, θ)). (12)

Notice that in the above equation each transformed model point m is interacting
with all the scene points. We call (12) a multiply-linked registration cost function.
This is in contrast to the ICP algorithm, where each model point is connected
to its nearest scene point only. It can be shown that,

KC(S ∪ T (M, θ)) = KC(S) + KC(T (M, θ))− 2COST (S,M, θ). (13)

KC(S) is independent of θ. Under rigid transformation, KC(T (M, θ)) is also
constant. This is the case because KC is a function of Euclidean distances be-
tween pairs of points (e.g. (3)). Rigid transformation reconfigures the point set as
a whole and preserves the Euclidean distances between all pairs of points. Thus
KC(T (M, θ)) is invariant. As a result KC(S∪T (M, θ)) = C−2COST (S,M, θ).
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Due to the equivalence of KC and entropy (Section 2.2), our registration method
implies finding the minimum entropy configuration of the joint point set S ∪
T (M, θ) in the RQE sense.

By denoting the kernel density estimates (KDE) as

PM(x, θ) =
∑

m∈M
K(x, T (m, θ))/N, PS(x) =

∑

s∈S
K(x, s)/N,

we can show that the cost function is also proportional to the correlation of the
two KDE’s,

COST (S,M, θ) = −N2

∫

x

PM · PS dx. (14)

3.1 Convergence of a KC Registration Algorithm

It’s easy to show that the cost function (12) is bounded from below. If we use
gradient descent based method to minimize the cost function such that the
cost function is decreasing at each step, the convergence of the cost function
to a fixed point is guaranteed. Convergence properties for other registration
methods, such as ICP or EM-ICP are usually difficult to study because their
cost functions, defined on nearest neighbors, change from iteration to iteration
as the point configuration evolves. In contrast, the KC registration function is
defined globally and each step of minimization decreases the same cost function.

3.2 Accuracy of KC Registration

We will empirically study the accuracy of our registration algorithm in Section 5.
Here we will discuss one of the simplest cases to theoretically characterize the
KC registration algorithm.

Given a point set M and it’s transformed version S = T (M, θ∗), a reg-
istration method should satisfy what we call the minimum requirement for a
registration algorithm. That is, θ∗ should correspond to one of the global min-
ima of the cost function. Although this requirement seems to be trivial, we will
show in our experiments that it is not met by other multiply-linked registra-
tion algorithms. Here we first give a proof that our registration algorithm meets
the minimum requirement under rigid transformation. The extension to no-rigid
motion is followed. We observe that

N2

∫

x

(PM − PS)2 dx = N2

(∫

x

P 2
Mdx +

∫

x

P 2
Sdx− 2

∫

x

PM · PSdx

)
(15)

= C + KC(T (M, θ)) + KC(S) + 2 · COST (S,M, θ). (16)

Here C is a constant due to KC values of a point with itself. KC(S) is indepen-
dent of θ. As we discussed in the beginning of this section, KC(T (M, θ)) is also
a constant under rigid transformation. Thus minimizing the left side of (15) is
equivalent to minimizing our registration cost function. When θ = θ∗, PM and
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PS are exactly the same and the left side of (15) is zero, the global minimum.
That is, θ∗ corresponds to one of the global minima of the KC registration cost
function. Note that this statement is independent of the kernel functions being
chosen and the kernel scale, as long as the integrals in the proof are all defined.

The KC registration framework can be extended to non-rigid transformations
if we minimize a normalized KC cost function. By denoting the normalization
term as IM = (

∫
x

P 2
Mdx)1/2 the normalized cost function is

COST n = −
∑

s∈S,m∈M
KC(s, T (m, θ))/IM. (17)

Similar to (16), we can show that

N2

∫

x

(PM/IM − PS/IS)2dx = 2N2 + 2 · COST n/IS , (18)

where IS = (
∫

x
P 2
Sdx)1/2 is independent of θ. Given that S = T (M, θ∗), θ∗ will

again be one of the global minima of the registration cost function (17), even
under non-rigid transformations.

3.3 Discrete Approximation of the Registration Cost Function

In practice we don’t need to enumerate each pair of model and scene points in
order to evaluate the cost function (12) or (17). We can use the discrete version
of (14) to approximate the registration cost. That is, we compute two discrete
KDE’s, PM(x, θ) and PS(x) at grid points x, and use −∑

x PM(x, θ) · PS(x) to
approximate the scaled cost function. Compared to the ICP or EM-ICP methods,
there is no nearest neighbor finding step involved in the KC registration, which
can result in significant simplification in algorithm implementation. PS(x) plays
the role of an affinity map in our algorithm. The affinity of a model point m to
the scene points can be computed by correlating K(x,m) with PS(x).

4 Related Work

We store the affinity information in a density estimate. This technique bears
much resemblance to the registration methods based on distance transform (DT)
[2]. However, there are some important differences. First, DT is known to be
extremely sensitive to outliers and noise because a single point can have influence
to a large area. The influence of each point in the KC case is local. Thus KC
based registration can be robust to outliers. Second, our affinity map is usually
sparse for usual point sets such as an edge map or a laser range scan, with
most grid points having zero values. The affinity map can be efficiently stored in
data structures such as an octree. In contrast, high resolution DT in 3D is very
costly. This prompted Lavallée and Szeliski to approximate 3D DT using octree
spline [10].
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One elegant registration method based on DT is the partial Hausdorff dis-
tance registration [9]. By minimizing partial Hausdorff distance, a registration
algorithm can have up to 50 percent breakdown point. The underlying robust-
ness mechanism is the same as the least medium of squares (LMedS) algorithm
[16] in robust regression. However, the registration depends on a single critical
point in the data set and most information provided by other points are ignored.
Compared to other registration methods such as ICP and our proposed method,
it is very sensitive to noise.

Scott and Longuet-Higgins [17] explored the possibility of finding correspon-
dence by singular value decomposition (SVD) analysis of an affinity matrix,
whose elements are proportional to the Gaussian KC values. Their algorithm is
known to be vulnerable to perturbations such as large rotations, outliers and
noise. In addition, forming a large affinity matrix for a large point set is costly.

One of the most successful point set registration algorithms is the iterative
closest point (ICP) algorithm [1, 19]. A naive implementation of ICP is not ro-
bust because the cost function is a quadratic function of distance. To be robust,
line-process like outlier detection or M-estimator like cost functions have been
suggested [19, 4]. KC registration can be considered as multiply-linked and ro-
bust ICP. The benefits of establishing multiple-links will become clear when we
compare the two algorithms in Section 5.

KC registration is mathematically most related to the EM-ICP algorithm [6]
and the SoftAssignment algorithm [14], which are also multiply-linked ICP. For
example, at each step, EM-ICP minimizes the following function:

∑

m∈M

∑

s∈S
exp(−‖T (m, θ)− s‖2/σ2)‖T (m, θ)− s‖2/N(m, θ). (19)

where N(m, θ) =
∑

s exp(−‖T (m, θ)− s‖2/σ2) is a normalization term. In fact,
the KCG cost function has the same gradient as EM-ICP, except the normaliza-
tion term. Due to these mathematical similarity, KC registration and EM-ICP
performs very similarly, except that EM-ICP does not meet the minimum re-
quirement of a registration algorithm: The exactly aligned point sets does not
correspond to the global minimum of the EM-ICP cost function. Depending on
the point sets being registered and the kernel scale, the EM-ICP (as well as Sof-
tAssignment) algorithms can give biased registration even for clean data. This
point will be demonstrated in our experiments. For in-depth discussion on this
topic, the reader is referred to our technical report [18] (pp. 56-59). In addition,
the KC provides a framework for using different kernel functions for registration
and its convergence proof does not rely on statistical methods such as EM.

5 Performance Evaluation

We compare the KC registration algorithm with the ICP and EM-ICP algorithm
in this section. We implemented two versions of the KC algorithm. The first one is
a simple 2D Matlab version that uses the Matlab “fminsearch” function (Nelder-
Mead simplex method) for optimization. In this case the gradients are not explic-
itly computed. The second implementation is a C++ 3D version that computes
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gradients and uses the variable metric method [12] for optimization. The 2D Mat-
lab code is available at webpage: http://www.cs.cmu.edu/∼ytsin/KCReg/. The
3D ICP registration algorithm used for comparison is developed independently
by the CMU 3D vision group (http://www.cs.cmu.edu/∼3dvision/). Both the
3D ICP and our 2D ICP code in Matlab implemented the outlier thresholding
mechanism [19].

For evaluation purpose, we use a 2D range data (the road-data, 277 points)
acquired by a SICK LMS 221 laser scanner and a 3D bunny model (the ”bunny1”-
data, 699 points) acquired by a Minolta Vivid 700 scanner. The models are shown
in Figure 1. Extensive registration experiments on thousands of 2D scans and
some other 3D models can be found at our website.

2D range data 3D model

Fig. 1. The data set for performance evaluation.

5.1 Convergence Region

We first test the convergence properties of ICP, EM-ICP and KC in 2D. Two
copies of the road data are generated by adding different random noise. One of
the copies is then rotated on its center of mass for a certain angle. We study the
convergence performance of the three registration methods by registering rotated
point sets at different angles. The results are shown in Figure 2. The leftmost
plot shows the registration costs as functions of the rotation angle. Note that
we allow full 2D Euclidean motions and the cost is a 3D function. We plot a 1D
slice of the cost function for clarity. With a kernel scale of σ = 15, both EM-
ICP and KC have very smooth cost functions in the whole test range. In the
ICP cost function we see a lot of local minima, which correspond to the much
smaller convergence region in the center plot of Figure 2. The plot shows average
registration error between corresponding points after registration. The EM-ICP
has a little wider convergence region than the KC registration in this data set.
However, we observed constantly larger registration error in the EM-ICP case.
Here we experimentally demonstrate that EM-ICP does not meet the minimum
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requirement for registration. The right plot shows the average registration error
as a function of the kernel scale in the noiseless case. KC registration has zero
error regardless of the kernel scale.
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Fig. 2. 2D convergence study. The widest ICP convergence region (with varying outlier
detection threshold) is shown here.

We conduct two different convergence test on the 3D data. We draw 100
random θ (6D parameter space) samples from a uniform distribution. We trans-
form the bunny1 data set using the random parameters and form 100 pairs for
registration. The Venn diagram of the successful registrations is shown in Figure
3(a). The KC method has larger convergence region(79 versus 60, or 24 versus
5 when excluding the “easy” cases for both ).

5524 5

K.C.

ICP

16

5948 10

K.C.

ICP

379

(a) (b)

Fig. 3. Venn diagram of the sets of successfully registered model-pairs. Numbers are
sizes of the regions. (a) Random transformation. (b) Pairwise.

Next, we study pairwise registration of 32 scans of the bunny model acquired
from different views by the laser scanner. There are in total 496 pairs of point
sets to be registered. We visually examine each of the registration results. The
Venn diagram for this experiment is shown in Figure 3(b). Again, the KC method
has larger success rate than ICP (107 versus 69, or 48 versus 10 excluding the
“easy” cases).

Our experiments show that the KC registration method has larger conver-
gence region. This is due to a smoothed cost function which enables an opti-
mization algorithm to find a good registration more easily. The smoothness is
provided by weighting the contributions of the multiple-links between a point
and its neighbors.
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5.2 Sensitivity to Noise

For both the 2D and and 3D data, we use the same method to test how sensitive
the registration methods are in the presence of noise perturbation. We generate
slightly rotated versions of the same point set, and add zero mean random noise
to both the reference model and the rotated model. At every noise level, we
register 30 pairs of noise corrupted point sets.

After registration we compute the average shift between corresponding points
in the two registered point sets. If the point sets are registered well, the average
shift should be close to zero because the added noise has zero mean. We can thus
use the standard deviation of the average shifts over the 30 pairs as a measure
of sensitivity to noise. We plot the standard deviation and average shift as a
function of the noise level in Figure 4. The kernel scale is 5 for the 2D tests and
20 for the 3D tests. In both (2D and 3D) cases we observe that KC registration
has smaller variance than ICP. At the same time, the registration error is small.
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Error STD
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Fig. 4. Sensitivity to noise tests.

The superior capability of the KC technique can be explained by its extended
interaction with neighbors. KC considered weighted effects of points in a large
neighborhood, instead of just its immediate nearest neighbor, thus achieving
better ability to resist noise.

5.3 Robustness

To test robustness, we register outlier corrupted point sets. We generate the
reference model and the rotated model the same way as the previous section.
Instead of corrupting the models with noise, we add 20% of outliers. The outlier
points are randomly drawn from a uniform distribution. The corrupted point
sets is illustrated in Figure 5. In both the 2D and 3D cases, we use the ICP and
KC methods to register 100 pairs of outlier corrupted data.

Examples of 2D registration final results are presented in the left two plots
of Figure 5. For ICP we tried three outlier-detection thresholds, 20, 5 and a
concatenation of 20 and 5. The best of the three, by concatenating two ICP
registrations with thresholds 20 and 5, correctly registered 43 out of 100 pairs.
In contrast, KC registration robustly registered all 100 pairs.
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−40 −20 0
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−40 −20 0

−20
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40

KC Registration (2D) ICP registration (3D) KC registration (3D)

Fig. 5. Robustness tests. Note the added outlier points in all cases.

Exemplar 3D registration final results are demonstrated in the right two plots
of Figure 5. The performance of the ICP algorithm is beyond our expectation. It
failed only in 8 pairs of the outlier corrupted data sets. Still, KC registration can
achieve better robustness. Again, KC registered all 100 pairs without mistake,
by using a large range of different kernel scales.

In our experiments with KC registration in 3D, we do observe failed cases
when the scale is either too small (easily fell victim to outlier distractions) or too
large (containing too many outliers in the neighborhood). Thus in the presence of
outliers, proper scale selection is an important and open issue in our technique.

In our experiments there are two kinds of outliers. First, the points that
have a large distance to all the model points. These points are taken care of by
both the M-estimator mechanism of KC, and the distance thresholding of ICP.
Second, the points that fall in the neighborhood of a model point. These points
can be very distracting to singly-linked methods such as ICP. For KC, each point
is connected to multiple points. As long as the percentage of outliers in the local
neighborhood is small, their influence can be averaged out by contributions from
other inlier points. Consequently, KC is capable of registering despite of these
local distractions.

6 Conclusions

In this paper we introduced a registration method by dynamically configuring
point sets, whose fitness is measured by KC. KC is shown to be an M-estimator.
KC is also equivalent to an entropy measure.

KC based registration can be considered as a robust, multiply-linked ICP.
It has a built-in smoothing mechanism that makes it very important in dealing
with noise and outlier corrupted data sets. We experimentally demonstrated that
it outperforms ICP in terms of convergence region, robustness and resistance to
noise, and it outperforms EM-ICP in terms of registration accuracy.

Kernel function selection is an interesting direction. The choice of kernels
determines the underlying robust function to be used. We leave it to our future
research.
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