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ABSTRACT

As a feed-forward architecture, the recently proposed
maxout networks integrate dropout naturally and show state-
of-the-art results on various computer vision datasets. This
paper investigates the application of deep maxout networks
(DMNps) to large vocabulary continuous speech recognition
(LVCSR) tasks. Our focus is on the particular advantage of
DMNs under low-resource conditions with limited
transcribed speech. We extend DMNs to hybrid and
bottleneck feature systems, and explore optimal network
structures (number of maxout layers, pooling strategy, etc)
for both setups. On the newly released Babel corpus,
behaviors of DMNs are extensively studied under different
levels of data availability. Experiments show that DMNs
improve low-resource speech recognition significantly.
Moreover, DMNs introduce sparsity to their hidden
activations and thus can act as sparse feature extractors.

Index Terms— Deep maxout networks,
recognition, low-resource conditions, deep learning

speech

1. INTRODUCTION

Deep neural networks (DNNs) have been applied to
automated speech recognition (ASR) and shown superior
performance over the traditional GMM-HMM models.
Applications of DNNs fall into two categories. In hybrid
systems, DNNs are trained to classify context-dependent
states and estimate their posterior probabilities [1, 2]. In
tandem systems, we use DNNs to generate phone posteriors
or bottleneck features (BNF), and build normal GMM-
HMM models with the discriminative front-end [3, 4, 5, 6].
These acoustic modeling techniques are distinct from the
earlier ANN-HMM systems [7] in the sense that there are
more hidden layers in the DNN topology. Therefore, DNN
based acoustic models tend to have much more parameters
than GMM-HMM. For example, in [§8], the hybrid system
with a 5-hidden-layer fully-connected DNN has 12 times
more parameters than its corresponding GMM-HMM
system. When DNNs are fine-tuned on small training sets,
this large parameter space can cause overfitting easily and
degrade the model robustness on unseen decoding data.
Various methods have been proposed to enhance DNN
acoustic modeling under low-resource conditions. A
potential solution is to build sparse DNNs [8], either through
imposing regularizers on hidden-layer parameters or through

rounding close-to-zero parameters back to zero. Although
speeding up model training, sparse DNNs fail to improve
recognition performance significantly. Meanwhile, dropout
is presented as a useful strategy to prevent overfitting in
DNN fine-tuning [9]. Random dropout is observed to
perform effectively on phone recognition [9] and LVCSR
[10, 11], displaying special benefits when language
resources become highly limited. Also, a large amount of
work has been dedicated to training DNNs over multiple
languages, for both hybrid [11, 12] and tandem systems [3,
5]. Multilingual network training enables cross-language
knowledge transfer and can happen either in pre-training [13]
or in the fine-tuning stage [11, 12].

This paper investigates the utility of maxout networks [14]
in boosting the performance of low-resource speech
recognition. Maxout networks differ from the standard
multi-layer perceptron (MLP) in that hidden units at each
layer are divided into non-overlapping groups. Each group
generates a single activation via the max pooling operation.
Due to reduced hidden activations, maxout networks shrink
the size of model parameters effectively, which makes them
particularly suitable for low-resource conditions. Also,
training of maxout networks optimizes the activation
function for each unit and thus enhances the networks’
modeling capacity. Used in conjunction with dropout and
convolutional layers, maxout networks set the state of the art
on computer vision benchmark datasets [14].

In this study, we make the first attempt to apply maxout
networks to LVCSR tasks. We extend the maxout model to
the deep maxout networks' (DMNs) architecture and use it
for both hybrid and BNF tandem systems. Pre-training
based on stacked denoising autoencoders (SDAs) is
performed to initialize DMN parameters and facilitate
subsequent fine-tuning. We evaluate the effectiveness of
DMNs on the Babel Tagalog dataset [6, 15]. Extensive
experiments are conducted to determine appropriate DMN
settings such as number of maxout layers, size of unit
groups and learning rate schedule. Under the LimitedLP
condition with 10 hours of training data, DMNs outperform
the standard DNNs significantly, resulting in consistent
word error rate (WER) reduction. In addition, DMNs can
naturally enforce sparsity on their high-level hidden
activations. The sparse feature representations extracted
from DMNs further improve hybrid setups.

! Although DMNs can be viewed as a special case of DNNs, we
distinguish them to be different types in this paper.



2. REVIEW OF DNNS

A DNN is an MLP which consists of many hidden layers
before the softmax output layer. On each hidden layer, the
DNN computes the activations of conditionally independent
hidden units given the input vector. When using sigmoid
activation, the emission of the I-th layer, i.e., the input to the
I+1-th layer, can be computed as follows:
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where Uy =0t, W is the matrix of connection weights
between the I-1-th and I-th layers, by is the bias vector at
the I-th layer, o(X) = (1+exp(—x))" is the sigmoid function.

Training DNNs directly with error back-propagation (BP)
may be problematic in that BP easily gets stuck at poor local
optima. A common solution is to initialize DNN parameters
using unsupervised pre-training such as restricted
Boltzmann machines (RBMs) [16] and stacked denoising
autoencoders (SDAs) [17]. A denoising autoencoder (DA)
has the same structure as the traditional autoencoder, with
the only difference of corrupting the input by adding some
form of noise. SDAs can be trained in a greedy layer-wise
manner. Training of each DA involves reconstructing the
clean input from the corrupted version of it. In our
experiments, we observe that SDAs based pre-training
performs comparably with RBMs in terms of the recognition
of DNN acoustic models. However, training of SDAs is
more efficient than training of RBMs. Therefore, we use
SDAs as the pre-training method through this paper.

2.1. Hybrid Systems

When building hybrid systems, we train a DNN with a
softmax output layer to classify the input acoustic features
into classes corresponding to context-dependent tied states.
The DNN output is an estimate of the posterior probability
P(s |0v) of each state s given the observation O :

exp(W U +by)
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Hybrid systems share the model structure (phone set,

HMM topology, tying of context-dependent states) coming
from an initial GMM-HMM model that has been maximum
likelihood (ML) trained on the same data. That model is
also used to generate the true class label of each frame
through forced-alignment with the transcripts. During
recognition, the emission probability of the HMM state s
can be computed by converting state posteriors in Eq. (2) as
follows:
P (5|0t )-P(0Ot)
where P(s) is the state prior probability which can be
approximately estimated from the training data by simple
counting, the observation probability P(0;) is independent
of the word sequence and can be ignored.

P(0:|s) =

2.2. BNF Systems

The BNF front-end can be extracted from a narrow
bottleneck hidden layer in DNNs and used to construct
GMM-HMM tandem systems. In this paper, we turn to the
previously established deep BNF (DBNF) framework [6] for
bottleneck feature generation. The DNN exploited by DBNF
inserts multiple hidden layers between the input data and the
bottleneck layer, and pre-trains these prior-to-bottleneck
layers using SDAs. A hidden layer and the final softmax
layer are added on top of the bottleneck layer. DBNF differs
from other BNF approaches [4, 5] in that its hidden layers
are arranged asymmetrically around the bottleneck layer.
The whole DBNF network is then fine-tuned on the
available training data. BNF training has adopted phones or
context-independent states as frame-level super-vision.
However, we observe that context-dependent states give
BNF systems better recognition results. Thus, we use the
same frame labels as in hybrid systems during DBNF
training. We refer interested readers to [6] for more details.

3. DEEP MAXOUT NETWORKS FOR LVCSR

Deep maxout networks (DMNSs) consist of multiple layers
which generate hidden activations via the maxout function.
Figure 1(a) illustrates the I-th layer in a maxout network
where the hidden units are divided into disjunct groups. We
denote the number of unit groups as | and the group size
(how many units each group contains) as g. The maxout
function is imposed on each unit group to generate this
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is computed as
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where h" = Wu,; +b, represents the linear pre-
activation values. We can see that the maxout function
applies a max pooling operation on h" . The maximal value
within each group is taken as the output from the I-th layer.
A DMN can be constructed by connecting multiple maxout
layers consecutively and finally adding the softmax layer.
No pre-training is carried out for maxout networks in [14].
When applying DMNs to LVCSR, the networks may
become really deep to fully capture different kinds of
variability in human speech. In this case, pre-training
becomes necessary for initializing network parameters
properly and facilitating DMN fine-tuning. We can pre-train
a single maxout layer with the autoencoder depicted in
Figure 1(b). This structure behaves similarly with the
normal autoencoder, except for the maxout activations as
the hidden output. Artificial corruptions can also be added to
the input. Training of this autoencoder tries to minimize the
difference between the reconstruction output and the clean
input. The whole DMN can be pre-trained by stacking
autoencoders corresponding to the maxout layers and
training them in a layer-wise manner.
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Fig. 1. Maxout architectures in this paper: (a) maxout layer with the group size of 3; (b) maxout autoencoder; (c) sparse feature extractor.

3.1. Application to LVCSR

The application of DMNs to speech recognition is easy to
accomplish. We replace the DNN modules used in LVCSR
systems (see Section 2) with DMNs. In this study we aim at
improving LVCSR when only limited training data is
available. We argue that DMNSs are particularly suitable for
low-resource tasks because of the following two reasons.
First, compared with standard DNNs, DMNs can reduce
the size of network parameters significantly. Suppose that a
DNN and DMM contain the same number of units at each
hidden layer. Then the size of each connection matrix in the

DMN is 1/g of the size of the connection matrix in the DNN.

This parameter reduction enhances model robustness under
limited data. Second, unlike DNNs, DMNs do not fix the
shape of the activation function for hidden outputs. By
tuning weight vectors of the subsumed hidden units, each
maxout activation is capable of approximating any convex
functions [14] and thus can be optimized towards specific
datasets in hand. This property enables DMNs to capture
and model speech variability from limited data more
effectively.

An important part of DMN acoustic modeling is the
integration of dropout, a technique performing particularly
well for low-resource speech recognition. Maxout networks
are found to maximize the model averaging effects caused
by dropout. Therefore, we impose dropout on each DMN
hidden layer by following the implementation described in
[L1]. On each presentation of a training example, maxout
activations from each hidden layer are randomly omitted via
a binomial distribution. This distribution is governed by a
pre-specified probability referred to as drop factor in [11].
Dropout is applied only during training (fine-tuning). For
testing (recognition), network parameters need to be scaled
properly according to the value of the drop factor [11].

3.2. DMNs as Sparse Feature Extractors

In addition to acting as acoustic models directly, a trained
DMN can also be used as a sparse feature extractor. Sparse
outputs are generated from an arbitrary layer by applying a
non-maximum masking operation, rather than max pooling.
Specifically, given each input frame, all the units within
each group have their individual outputs, instead of being
pooled together into one output. However, only the maximal
value in this group is retrained, while the other outputs are

rounded to 0. An example is presented in Figure 1(c), where
the group size is 3 and 2/3 of maxout activations are set to 0.
In Section 4.5, we experimentally show that these sparse
outputs pose a useful representation for the raw acoustic
features and can further improve the performance of hybrid
systems.

4. EXPERIMENTS

4.1. Experimental Setup

We use the Babel corpus that has been collected and
released under the TARPA Babel research program. The
goal of the Babel program is to realize rapid deployment of
speech recognition and spoken term detection systems for
low-resource languages. Up to now, the corpus has covered
Cantonese, Tagalog, Turkish, Pashto and Vietnamese. The
full language pack (FullLP) of each language consists of
around 80 hours of telephony speech for training and 20
hours for system development. Each audio file records
spontaneous conversations lasting approximately for 10
minutes. The data collection attempts to cover a variety of
acoustic conditions (e.g., street, office, inside vehicles),
speaking styles, and various dialects. Also, a notable portion
of the audio data are either non-speech events (e.g., breath,
laugh, cough, lip smack, ring) or non-lexical speech (e.g.,
hesitations, fragments and foreign words). Due to all these
factors, speech recognition on the Babel corpus is a very
difficult task, ending up with much higher WERs than on
other benchmark datasets such as Wall Street Journal and
Switchboard [6, 15].

In this paper, we conduct our experiments on Tagalog and
focus on the limited language pack (LimitedLP, version
babell106b-v0.2g-sub-train). This condition only has 10
hours of speech data and the corresponding resources
(dictionary, language model) for system building. As a
comparison with LimitedLP, 40 hours of training data are
selected from Tagalog FullLP (version babell06-v0.2f) to
simulate a 40HrLP rich-resource condition. During
decoding, we select 2 hours of speech from the entire 20-
hour development data as the dev set, and another 2.5 hours
as the eval set. The training, dev and eval sets have no
overlapping speakers. All decoding runs use a trigram
language model built solely from training transcriptions.
The Tagalog LimitedLP and 40HrLP datasets have the
statistics summarized in Table 1.



Table 1. Statistics of the datasets used in the experiments. The
OOV rate is measured on transcriptions of the 2-hour dev set.

Statistics _ Conditions
LimitedLP 40HrLP
# speakers 132 482
training (hours) 10.7 40.3
dictionary size 8k 35k
OOV rate 9.1% 1.8%

4.2. GMM and SGMM Systems

On both LimitedLP and 40HrLP, GMM-HMM systems are
built with the same recipe. We first train the initial ML
model based on 39-dimensional PLP-+delta+acceleration
features with per-speaker cepstral mean normalization. Then
9 frames of PLPs are spliced together and projected down to
40 dimensions with linear discriminant analysis (LDA). A
maximum likelihood linear transform (MLLT) is applied on
the LDA features and generates the LDA+MLLT model.
Finally, to deal with speaker variability, speaker adaptive
training (SAT) is performed using feature-space maximum
likelihood linear regression (fMLLR). On the two datasets,
the numbers of context-dependent triphone states are 1920
and 3066 respectively, with an average of 10 and 16
Gaussian components per state.

On top of the SAT systems, we train subspace Gaussian
mixture models (SGMM) [18] for better recognition
outcomes. Learning of universal background model (UBM)
and SGMM parameters is carried out in the fMLLR feature
space. We adopt the SGMM configurations (e.g., number of
shared Gaussians, subspace dimensions) in [19]. Because of
shared subspace parameters, SGMM can model more tied
states than GMM. On LimitedLP and 40HrLP, the numbers
of tied states are increased to 2851 and 4542, and each state
on average has 3 and 5 substates respectively. Discrimina-
tive training is further performed based on the maximum
mutual information (MMI) criterion. Due to space limit, we
don’t elaborate on our MMI-SGMM setup. More details can
be found in [18, 19] and the Kaldi toolkit [20]. Figure 2
shows the WERSs of the resulting MMI-SGMM models.

4.3. Effectiveness of DMNs for Hybrid Systems

Hybrid systems inherit the model structure (phone set,
HMM topology, tying of context-dependent states) from the
SAT models built in the previous section. The class labels
for speech frames are generated by SAT GMM-HMM
through forced alignment. DNN inputs include 9 fMLLR
frames (4 on each side of the current frame) which are
further reduced to 250 dimensions by LDA. These speaker
adaptive features in our experiments perform better than the

uncorrelated PLPs and correlated log filter bank coefficients.

DNN parameters are initialized with SDAs based pre-
training. We follow [6] for SDAs learning with masking
noise and the denoising factor of 0.2. Pre-training of each
layer has the learning rate of 0.01 and runs for 10 epochs.
During fine-tuning, an exponentially decaying learning rate
schedule is used for gradient descent. Specifically, the

learning rate starts from 0.08 and remains unchanged for 15
epochs. Then the learning rate is halved at each epoch until
the cross-validation error on a held-out set stops to drop. A
momentum of 0.5 is used in both pre-training and fine-
tuning for fast converging. The batch size is 128 for pre-
training and 256 for fine-tuning. Each DNN hidden layer
consists of 1024 units, which is observed to perform better
than 512 units and similarly with 2048 units.

When applying DMNs to hybrid systems, we start with
400 unit groups at each hidden layer and with the group size
of 3. This setting gives DMNs approximately the same
number (1200 vs. 1024) of hidden units as DNNs. Fine-
tuning of DMNs has the identical configuration as that of
DNNs. However, with the introduction of dropout, fine-
tuning for DMNs must start from a larger learning rate 0.1
[14]. Figure 2 makes a comparison between the DNN, DNN
with dropout and DMN models on the 2-hour dev set.
Similarly with [11], dropout applied in DNNs and DMNs
has the drop factor of 0.2 on each hidden layer. We can see
that under LimitedLP, DNN-+dropout performs better than
DNN with the same pre-training. This confirms the
effectiveness of dropout in improving DNNs with limited
training data. The DMN model outperforms both DNN and
DNN-+dropout consistently, resulting in better performance
than MMI-SGMM. In contrast, under 40HrLP, the three
methods perform comparably as shown in Figure 2(b).
These results demonstrate the advantage of DMNs when
applied to low-resource LVCSR. Under the LimitedLP
condition, Table 2 lists WERs corresponding to the best
settings discovered in Figure 2(a). Compared with the DNN
baseline, the DMN achieves 1.8% absolute improvement on
the dev set and 2.0% on the eval set. In the following
experiments, we only work on the LimitedLP condition.

Note that these gains are obtained when the parameters of
DMNs are randomly initialized. Now we perform SDAs
based pre-training as discussed in Section 3. In this case, the
network initial values come closer to the optimum. Thus, we
use smaller learning rates for DMN fine-tuning, reducing
the starting value from 0.1 to 0.06. The last row of Table 2
shows that SDAs pre-training brings additional improve-
ment to the DMN model, i.e., 0.4% absolute on the dev set
and 0.2% on the eval set.

Evaluations are also conducted to reveal how DMNs
behave when the number of unit groups and the group size
are changed. We fix the number of maxout layers to 6 and
the number of hidden units at each layer to 1200. LimitedLP
hybrid systems are constructed with different combinations
of group number and group size. Their results on the dev

Table 2. WERs (%) of LimitedLP hybrid systems on the dev and
eval sets. The last row shows the DMN with SDAs pre-training.

Model Pre-training Dev WER% Eval WER%
DNN SDAs 68.8 72.0
DNN-+dropout SDAs 67.8 70.9
DMN Random 67.0 70.1

[ DMN | SDAs [ 66.6 [ 69.9
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set are shown in Table 3. For a fair comparison, no pre-
training is performed for the various DMN architectures. As
we decrease the number of unit groups, the size of network
parameters is reduced accordingly. The optimal recognition
performance is achieved when the DMN has 400 unit
groups and the group size of 3. In this case, it has around
half as many parameters as its DNN counterpart which has 6
hidden layers and 1024 units at each layer. Continuing to
decrease the number of unit groups causes degradation on
the WER. This is partly because the aggressive reduction of
model parameters hurts DMN's modeling capacity. Further,
we verify whether similar gains can be achieved simply by
shrinking the size of DNNs. The parameters of the 6-hidden-
layer DNN are reduced by half, using 512 units at each
hidden layer. On the dev set, this smaller DNN gives the
WER of 70.0% with dropout, performing worse than both
the original DNN and the DMN.

4.4. Effectiveness of DMNs for BNF Extraction

Now we investigate the performance of DMNs in extracting
BNF features. In the DBNF architecture, totally 4 hidden
layers are inserted prior to the bottleneck layer. The softmax
output layer classifies context-dependent tied states. When
using a DNN as the building block of DBNF, the bottleneck
layer has 40 hidden units while each of the other hidden
layers has 1024 units. When a DMN is used, the group size
is set to 3 for every hidden layer and each non-bottleneck
layer has 400 unit groups as in hybrid systems. The
bottleneck layer consists of 40 unit groups to ensure the
same BNF dimensionality as the DNN. For both types of
networks, the 4 prior-to-bottleneck hidden layers are pre-
trained with SDAs.

When the DBNF network, either a DNN or DMN, has

Table 3. DMNs on the dev set with various settings of the number
of unit groups and the group size. Model size is measured by the
ratio of parameter size between the DMN and DNN.
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Fig. 2. WERs(%) for MMI-SGMM and hybrid systems on the dev set. DNN and
DNN-+dropout are pre-trained with SDAs while DMN is randomly initialized.
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Fig. 3. WERs(%) for LimitedLP BNF
systems on the dev set. Comparison is made
between DNNs and DMNs.

been trained, we build an LDA+MLLT tandem system using
the BNF front-end. We observe that a critical variable for
BNF system building is the size of the resulting LDA
features. We compare BNF systems with different LDA
feature dimensions in Figure 3 and show the results
corresponding to the best configurations in Table 4. In
generally, BNF systems get notable gains over the SAT
model built in Section 4.2. The BNF system based on DMN
achieves better WERs than the system based on DNN,
resulting in 1.2% and 0.9% absolute improvement on the
dev and eval sets respectively.

4.5. DMNs as Sparse Feature Extractors

Both DNNs and DMNs can be used to extract high-level
representations from the raw acoustic features. One
advantage of DMNSs is to naturally introduce sparsity in the
learned representations. Since our focus is on low-resource
tasks, we study feature extraction in the context of cross-
lingual speech recognition [12]. Our goal is to improve
speech recognition on LimitedLP Tagalog, with the
presence of auxiliary languages including LimitedLP
Cantonese, Turkish and Pashto also from the Babel corpus.
To achieve this, we firstly follow the recipe in [11, 12] to
learn a multilingual DNN or DMN. The hidden layers are
shared and collaboratively trained on all the auxiliary speech
data, while the softmax output layers are specific to
individual auxiliary languages. Training data for
multilingual networks should have minimum mismatch
across languages. As a result, no language-specific
transformations such as LDA and fMLLR can be applied to
the raw features [12]. In this subsection, our experiments
take the 30-dimensional log filter banks generated on each
frame as DNN and DMN inputs. Both types of networks in
this multilingual setting have 6 hidden layers. Each DNN
hidden layer contains 1024 units while each DMN layer has

Table 4. Comparison between DNNs and DMNs for BNF

# unit groups group size | Dev WER% | model size extraction. WERs (%) are reported on the dev and eval sets.
600 2 67.2 0.68 System Dev WER% Eval WER%
400 3 67.0 0.46 SAT GMM-HMM 71.1 73.8

300 4 67.6 0.36 DNN BNF tandem 67.7 70.8

240 5 68.4 0.30 DMN BNF tandem 66.5 69.9




Table 5. Comparison of hybrid systems built on various feature
types. WERs (%) are reported on the 2-hour dev set.

| Feature type (dimension) | Dev WER% |
[ log filter banks (330, £ 5 frame context) [71.3 |
Multilingual DNN (1024) 70.1
Multilingual DMN (400) 69.2
Sparse Multilingual DMN (1200) 68.8

400 unit groups with the group size of 3. Multilingual fine-
tuning of the DNN and DMN is performed in the same
manner as in the monolingual scenario. Each epoch needs to
traverse data from multiple languages instead of one single
language.

The shared layers are then applied to LimitedLP Tagalog
as a language-universal feature extractor. With the
multilingual DNN, 1024-dimensional features can be
generated from the last hidden layer. When using the
multilingual DMN, we can extract the maxout activations
from the last maxout layer into 400-dimensional features.
Alternatively, sparse features with 1200 dimensions are
generated in the way described in Section 3.2.

On LimitedLP Tagalog, we adopt the identical DNN
topology to build hybrid systems over various feature types.
This DNN has 4 hidden layers each of which has 1024 units
and is randomly initialized. Table 5 evaluates these feature
types by comparing the WERs of their hybrid systems. Note
that the numbers here are not in the same range as the ones
in Table 2 simply because we are switching to a different
base front-end (fMLLR vs. log filter banks). We can see that
deep features, either from the multilingual DNN or DMN,
outperform the original log filter banks. Among all the
feature types, sparse representations extracted from the
multilingual DMN achieve the best WER. This confirms the
effectiveness of DMNs acting as sparse feature extractors.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the use of deep maxout
networks (DMNs) for low-resource speech recognition.
Following experiments on the challenging Babel corpus, we
are able to draw the following principal conclusions: 1)
Compared with DNNs, DMNs can deal with limited training
data and improve the performance of both hybrid and BNF
systems under the LimitedLP condition; 2) SDAs based pre-
training performs effectively for DMNs initialization and
brings gains when the DMN architecture becomes really
deep; 3) DMNs can be used as sparse feature extractors
which generate hierarchical high-level representations for
further hybrid system building.

In this work, DMNs were pre-trained based on the SDAs
paradigm. For our future work, we are interested to study
RBMs for DMNs initialization in which probabilistic
pooling strategies are required to realize a fully generative
model. Also, we would like to extend the sparse feature
extraction idea to BNF and generate sparse bottleneck
features for tandem systems.
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