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Abstract

Multilingual deep neural networks (DNNs) can act as deep
feature extractors and have been applied successfully to cross-
language acoustic modeling. Learning these feature extractors
becomes an expensive task, because of the enlarged multi-
lingual training data and the sequential nature of stochastic
gradient descent (SGD). This paper investigates strategies to
accelerate the learning process over multiple GPU cards. We
propose the DistModel and DistLang frameworks which
distribute feature extractor learning by models and languages
respectively. The time-synchronous DistModel has the nice
property of tolerating infrequent model averaging. With 3
GPUs, DistModel achieves 2.6 x speed-up and causes no loss
on word error rates. When using DistLang, we observe better
acceleration but worse recognition performance. Further eva-
luations are conducted to scale DistModel to more languages
and GPU cards.

Index Terms: Deep neural networks, distributed learning,
automatic speech recognition

1. Introduction

DNNs are evolving into the state of the art for acoustic
modeling on large vocabulary continuous speech recognition
(LVCSR) [1, 2] tasks. In DNN-HMM hybrid systems, neural
networks with multiple hidden layers are trained to estimate
the posterior probabilities of HMM context-dependent states.
Likelihoods of speech frames are derived from these posteriors
and state priors to replace Gaussian mixture model (GMM)
likelihoods [1]. Compared with GMMs, DNN acoustic models
tend to have more parameters and higher complexity. With
adequate training data, DNNs have shown superior
performance than GMMs [1, 2, 3]. However, when transcribed
speech becomes highly limited (e.g., only several hours), the
large parameter space of DNNs may lead to degradation on
unseen testing data. Thus, we are likely to observe drastically
different recognition performance between rich-resource and
low-resource languages [4, 5].

Speech recognition on a low-resource target language can
be enhanced by taking advantage of external rich-resource
languages. For example, [6, 7] realize cross-language
knowledge transfer either through pre-training the target-
language DNN with the source languages, or through
initializing its parameters with a network fine-tuned on
another language. An alternative proposal is motivated by the
feature learning formulation about DNNs [8]: hidden layers
are treated as a series of nonlinear transformations that convert
the original input features to high-level representations; a
softmax layer is finally added to perform classification with
respect to HMM states. Following this idea, multilingual
DNNs are trained collaboratively over the source languages,
with their hidden layers shared across languages [9]. On the
target language, these shared layers are taken as a feature
extractor which is intrinsically language-independent.

Previous work [5, 9] has reported the effectiveness of
aforementioned feature extractors in addressing low-resource
acoustic modeling. Training such feature extractors relies on
the sequential SGD algorithm. When multiple rich-resource
source languages (e.g., English and Mandarin) are available,
feature extractor learning can be prohibitive even with GPU-
based implementations. In this paper, we focus on accelerating
the learning process. Our goal is to scale feature extractor
learning to large datasets and diverse languages. We propose
two distribution schemes to parallelize the learning task over
multiple GPUs. In the first scheme DistModel, each GPU
trains an instance of the feature extractor over a portion of the
whole training data. The parallel model instances are averaged
periodically after a predefined number of mini-batches. The
second scheme DistLang distributes learning by languages.
Separate feature extractors are trained on individual languages
without any communication between GPUs. On the target
language, outputs from these language-specific extractors are
fused into the final feature representation.

Parallelized training of DNN acoustic models has been
investigated thoroughly under monolingual settings [10, 11, 12,
13]. In [14], the authors parallelize multilingual DNN training
over CPUs based on the DistBelief framework [15, 16]. We
concentrate on multi-GPU training, and are particularly
interested to analyze how parallelism affects the quality of the
learned feature extractors. Both DistModel and DistLang are
evaluated on the multilingual BABEL corpus. The perfor-
mance of feature extractors is measured by WERs on the
target language. A salient observation from the experiments is
that DistModel can tolerate fairly infrequent model averaging,
e.g., 2000 mini-batches between two consecutive averaging
operations. As a result, the synchronizing delay is alleviated
greatly, despite the fact that DistModel is time-synchronous.
With DistModel deployed over 3 GPUs, feature extractor
learning becomes 2.6 faster than using a single GPU, while
giving the identical WER as single-thread training. In
comparison with DistModel, DistLang achieves better speed-
up but worse WER. Larger-scale evaluations further reveal the
scalability of DistModel to more languages and GPUs.

2. DNN Feature Extractors

Figure 1(a) depicts the learning of DNN-based feature
extractors over a group of source languages [4, 5, 17]. The
hidden layers of the multilingual DNNs are shared across all
the languages. Each language has its own output layer to
classify context-dependent states. Fine-tuning of the DNNs is
carried out using the standard mini-batch based SGD. The
difference is that each epoch traverses data from all the source
languages, instead of one single language. The SGD estimator
loops over languages iteratively, each time picking one mini-
batch from a language. Also, it switches to the softmax layers
and class labels corresponding to the language from which the
current mini-batch comes. Parameters of the shared layers are
updated with gradients accumulated from all the languages.
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Figure 1. (a) Learning of feature extractors over source
languages; (b) applying this extractor to the target language
for cross-language hybrid system building.

When the multilingual DNNs are trained, the shared
hidden layers serve as a language-universal feature extractor
[9]. On the target language, as shown in Figure 1 (b), a hybrid
system is built using features generated from this extractor,
instead of the raw acoustic features (e.g., MFCCs). The DNN
in this hybrid system is trained to estimate posterior
probabilities of the target-language HMM states. This cross-
language acoustic modeling approach enables knowledge
transfer across languages and thus improves the recognition
performance on the target language, especially when the target
language has limited transcribed speech [5, 18]. This differs
from [9] in that on the target language, we are building a fully-
connected DNN model, while [9] re-estimates a single softmax
layer over the extracted features.

3. Distributed Feature Extractor Learning

Ideally, feature extractors introduced in Section 2 are trained
over rich-resource languages with adequate data. However,

training based on SGD is sequential and hard to be parallelized.

This makes feature extractor learning an expensive task, even
with the powerful GPU cards. We aim at distributing
computation over multiple GPUs, and two parallelization
schemes are presented to accomplish this.

3.1. DistModel: Distribution by Models

Model averaging [10, 19, 20] has been exploited on distributed
learning problems, for both convex and non-convex models.
We port this idea to distributed training of multilingual DNN
feature extractors on GPUs. The implementation is
straightforward. Training data of each language is partitioned
evenly across all the GPU threads. Suppose that sources
include 3 languages each of which contains 100 hours of
training data. When distributing training to 4 GPUs, we assign
to each GPU 75 hours of data, i.e., 25 hours from each source
language. Different GPUs have no overlapping on their data.
Then, each GPU trains the feature extractor as described in
Section 2. After a specified number of mini-batches, feature
extractor instances from the individual GPUs are averaged into
a unified model. We refer to the number of mini-batches
between two consecutive averaging operations as averaging
interval. Note that both the language independent (shared
hidden layers) and the language specific (softmax layer)

parameters are averaged. The averaged parameters are sent
back to each GPU as the new starting model for the
subsequent training.

DistModel is inherently time synchronous in that the
parallel threads have to wait for each other to perform model
averaging. This tends to cause delay, especially when the
frequency of model averaging is high or some computing
nodes run slowly. Compared with the more popular
asynchronous methods [11, 13, 14, 15, 16, 21], time
synchronous methods generally achieve worse acceleration.
However, we discover that on this particular feature learning
task, DistModel is robust to large averaging interval up to
2000 mini-batches. This is partly because multitask learning
performed by each GPU prevents local optima on the
multilingual DNN models. The averaged feature extractor still
provides unbiased feature representations, even after SGD has
processed many mini-batches of training examples on each
GPU. Because of this, delay resulting from model averaging
ends up to be a tiny fraction of the entire training time. We are
confident to think that DistModel has comparable efficiency
with asynchronous implementations. This is also demonstrated
in Section 5 by comparing DistModel with previously reported
results [12, 13].

3.2. DistLang: Distribution by Languages

Another way for distributed learning is to train the feature
extractors independently on individual source languages. Each
GPU uses the complete data from one language and trains the
normal DNN model. Figure 2 depicts the idea of DistLang by
showing N source languages which translate to N separate
feature extractors after DNN training. On the target language,
each speech frame is fed into these extractors. The N separate
feature representations are fused to form the input into the
target-language hybrid DNN. We apply two methods for this
feature fusion.

Assume that the feature dimension emitted from each
extractor is D. Our first method FeatConcat borrows the idea
of MLP feature merging proposed in [22, 23, 24]. We
concatenate outputs from the language-specific feature
extractors into a single vector which has the dimension of
NXD. In the second method FeatMix, we fuse the feature
representations via a linear weighted combination. More
formally, given the target-language input feature Ot, the feature
representation from the n-th feature extractor is denoted as
fn(ot). The combined feature vector can be computed as

] - [

GPU #1 GPU #N

LANG #1

—»| [ Target DNN

LANG #N

Figure 2. DistLang for distributed feature extractor learning.
Top: each GPU trains a feature extractor on each language.
Bottom: on the target language, outputs from individual
extractors are fused into a unified feature representation.
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where the D-dimensional vector an contains the mixture
weights for the n-th extractor, b is a D-dimensional bias vector,
and ® represents element-wise product. We do not define the

values of an and b in advance. Instead, they can be learned
during training of the target-language DNN through back-
propagation (BP). If each hidden layer of the target-language
DNN has M units, then the sizes of the input layer weight
matrix are NDM and (N+1+M)D for FeatConcat and FeatMix
respectively. Therefore, this FeatMix method helps to shrink
the parameter space of the target-language DNN model. We
expect FeatMix to be particularly advantageous when we have
many source languages (i.e., a large N) and the target language
has highly limited training data.

A notable difference between DistModel and DistLang is
that the parallel GPU jobs in DistLang are completely
independent without any mutual communication. DistLang
incurs no delay cost from thread synchronization. Also, when
a new source language becomes available, we only need to
train the language-specific feature extractor on this new
language. However, in order for inclusion of a new source
language, DistModel has to retrain the entire feature extractor
from scratch. One caveat of DistLang lies in the limitation that
the number of GPUs is hardcoded by the number of source
languages. In comparison, DistModel is more flexible and can
make use of an arbitrary number of GPUs.

4. Experiments

4.1. Experimental Setup

Our experiments are conducted on the multilingual BABEL
corpus collected under the BABEL research program [5, 25,
26, 27, 28]. The corpus has covered a wide range of languages
including Tagalog, Pashto, Bengali, etc. The full language
pack (FullLP) of each language contains around 80 hours of
telephone conversational speech for training and 10 hours for
decoding. On each language, there is also a low-resource
10HrLP condition under which only 10 hours of transcribed
speech are allowed to be used for system building. We take the
10HrLP condition of Tagalog (IARPA-babel106-v0.2f) as the
target language. The source languages include the FullLP sets
of Cantonese (IARPA-babel101-v0.4c), Turkish (IARPA-
babel105b-v0.4) and Pashto (IARPA-babel104b-v0.4aY). We
measure the quality of multilingual DNN feature extractors
based on WERs of hybrid systems on the target language. For
fast turnarounds, we select 2 hours of speech from the 10-hour
decoding data as the testing set. Decoding runs use a trigram
language model built from the 10-hour training transcripts.

On each language, we build the GMM-HMM system with
the same recipe. An initial maximum likelihood model is first
trained using PLP+delta+acceleration features with mean
normalization. Then 9 frames of PLPs are spliced together and
projected down to 40 dimensions by linear discriminant
analysis (LDA). A maximum likelihood linear transform
(MLLT) is applied on the LDA features and generates the
LDA+MLLT model. Finally, to deal with speaker variability,
speaker adaptive training (SAT) is performed using feature-
space maximum likelihood linear regression (fFMLLR) [29].
On each language, class labels for speech frames are generated
by its SAT GMM-HMM through forced alignment.

4.2. Results of Baseline Feature Extractors

Both monolingual and multilingual DNN training follows the
similar configuration as [5] and is performed using the
Kaldi+PDNN framework [30]. DNN inputs are 11 consecutive
frames of 30-dimensional log-scale filterbanks with per-
speaker mean and variance normalization. Fine-tuning starts
from an initial learning rate (e.g., 0.08) which keeps
unchanged for 15 epochs. Then the learning rate is halved at
each epoch until the frame accuracy on a held-out validation
set stops to improve. It’s worth pointing out that we are
experimenting with a highly low-resource condition. Also, the
data collection covers a variety of environments, speaking
styles and dialects. All these factors render speech recognition
on Tagalog 10HrLP a very challenging task [5, 25, 26]. With
10HrLP, the monolingual DNN hybrid system has the WER of
65.8% on the 2-hour testing set. With the baseline feature
extractor trained on a single GPU, we are able to reduce the
WER down to 59.6%. That is, cross-language acoustic
modeling described in Section 2 brings 9.4% relative
improvement. This feature extractor has hidden layers with
1024 units and thus generates 1024-dimensional high-level
feature representations.

4.3. Results of DistModel

Now that we have 3 source languages, 3 GPUs are employed
for fair comparison between DistModel and DistLang. On the
target language, we use the identical DNN topology, i.e., 4
hidden layers each with 1024 units, for hybrid system building
over various feature extractors. A key variable in the
DistModel scheme is the averaging interval (Section 3.1).
Figure 3(a) shows the target-language WERS when DistModel
adopts various averaging interval values. In Figure 3(b),
acceleration coming from parallelization is quantified by the
speed-up, that is, the ratio of the training time taken using a
single GPU to the time using 3 GPUs. As expected, with larger
averaging interval, we obtain monotonically better speed-up
because of less model averagings. The change of WER
displays more fluctuation, especially for averaging interval
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Figure 3. Impact of averaging interval on (a) recognition
performance and (b) training speed-up. WER(%) is reported
on the Tagalog 2-hour testing set. “Epoch” means that
averaging happens when each epoch ends.



below 2000. When averaging interval equals 2000, feature
extractor learning with 3 GPUs is 2.6 X faster than using a
single GPU, with the WER of 59.7% on the target language.
This corresponds to 0.1% absolute degradation which can be
considered negligible given the baseline 59.6%. Continuing to
increase averaging interval gives further speed-up but signifi-
cantly worse WERSs. Thus, setting averaging interval to 2000
seems to be a good balance between training efficiency and
recognition performance. A contrast experiment is to train the
feature extractor with a single GPU and only one third of the
data. In this case, we can get perfectly 3x speed-up. However,
the WER on the target language goes up to 62.2%.

To investigate DistModel more closely, we apply
DistModel to the Tagalog FullLP set for the normal
monolingual DNN training. The resulting DNN model is used
directly for hybrid system decoding, rather than for feature
extraction. Table 1 shows that in this scenario, DistModel
achieves similar speed-up as for multilingual DNN training.
However, WER degradation caused by parallelization
becomes more obvious compared with Figure 3. This
demonstrates that DistModel is particularly suitable for
multilingual feature extractor learning.

4.4, Results of DistLang

When switching to DistLang, we train the DNN feature
extractor on each of the 3 source languages. Since these
monolingual extractors are trained independently, this
approach has approximately 3x speed-up. These extractors
can adopt the same hidden layer structure as the multilingual
extractors. In this case, feature representations from
FeatConcat have the dimension of 1024 x3, while FeatMix
still generates 1024-dimensional features. An alternative
setting is to insert a bottleneck-like layer, which has 341 units,
in each monolingual extractor. Then, feature dimensionality of

FeatConcat remains consistent with the multilingual extractors.

Table 2 compares FeatConcat and FeatMix in terms of WER
on the target language. Both FeatConcat and FeatMix perform
worse than DistModel. Under the two dimension settings, the
FeatConcat method outperforms FeatMix, even though the
improvement is minor. We think the reason is that the linear
combination in FeatMix limits the power of the transform
applied to input features. As discussed in Section 3.2, we
expect more gains to be achieved by FeatMix when the target
language has even less training data (e.g., only 1 hour).

5. Larger-Scale Evaluations

In this section, we extend DistModel to larger-scale
evaluations by adding Tagalog (IARPA-babel106-v0.2f) and
Vietnamese (IARPA-babel101-v0.4c) into the source

Table 1. Performance of DistModel on Tagalog FullLP DNN
training. We increase averaging interval from 300 to 3000.
Parallelization uses 3 GPUs, and WER(%) is reported on the
Tagalog 2-hour testing set.

Method WER(%) Training speed-up
Single GPU (baseline) 49.3
DistModel — 300 50.1 15
DistModel — 600 50.5 1.9
DistModel — 1000 50.5 2.2
DistModel — 2000 50.3 25
DistModel — 3000 50.8 2.7

Table 2. Comparison of FeatConcat and FeatMix within
DistLang. WER(%) is reported on the 2-hour testing set.

Method Feature dimension | WER(%)
DistLang - FeatConcat 1024 61.4
DistLang — FeatMix 1024 61.6
DistLang - FeatConcat 341 60.3
DistLang — FeatMix 341 60.7

languages. This finally gives us 460 hours of speech data for
feature extractor training. Our target language now is the
10HrLP condition of Bengali (IARPA-babel103b-v0.4b). Also,
2 hours of speech from the Bengali decoding data are selected
as the testing set. DistModel adopts the optimal configuration
found in Section 4.3. Table 3 shows how DistModel performs
when we scale it up to 5 GPUs. We observe consistent
acceleration, although the speed-up fails to improve linearly
with the number of GPUs. Meanwhile, pooling more GPUs
into distributed learning causes WER degradation, which is
likely to be mitigated by further optimization (e.g., learning
rate, feature dimension) on DistModel.

Table 3. Performance of DistModel with 5 source languages.
Distributed training uses 3, 4 and 5 GPUs respectively.
WER(%) is reported on the Bengali 2-hour testing set.

| Method | WER(%) | Training speed-up
Monolingual DNN 725
Single GPU (baseline) 65.7
DistModel with 3 GPUs 66.2 2.4
DistModel with 4 GPUs 66.7 31
DistModel with 5 GPUs 66.8 3.4
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7. Conclusions and Future Work

In this paper, we present two effective schemes, DistModel
and DistLang, to train multilingual DNN feature extractors in
a distributed manner. These two strategies distribute
computation by models and languages respectively. In our
experiments with the BABEL corpus, DistModel is robust to
infrequent model averaging and shows nice training speed-up.
In comparison, the DistLang scheme is characterized by better
acceleration but worse WER on the target language. In our
future work, we will further examine FeatConcat and FeatMix
by adding more languages as the sources and reducing the
target-language training data. Also, we are interested to extend
DistModel to deep convolutional networks (DCNs) [17, 31,
32], and study the efficient training of multilingual feature
extractors with convolution layers.
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