


simple set of information could calibrate the sensors to spe-

cifically performed actions in a manner that is similar to its

usage goals in the field, e.g. take 10 steps to calibrate the

sensors for level-ground walking.

As was observed in isolated sensor tests where the sen-

sor characteristics were consistent for over a thousand

cycles, the sensors also exhibited consistent performance

when worn on the body. This can be observed in the results

of the soft sensors compared with optical motion capture,

where the six anatomical joints of a single participant

(number 3) were analyzed at three speeds. A subset of the

total trials are presented in Figure 12 to serve as a visual

example of the sensor behavior. Each shaded line in Figure

12 is centered at the mean, with the width indicating one

standard deviation about the mean (i.e. a thicker line indi-

cates greater variability in the signal). These data shows

that the sensors had low variability in their signals, and we

found the average standard deviation across all participants

to range from 1.7� for walking up to 2.7� for running

(Table 3). It is important to note that the variability of the

sensor measurements was confounded by the participant’s

natural variability. As a comparison, we calculated that the

optical motion capture gave average standard deviations

across all participants from 1.7� for walking up to 2.2� for

running. After confirming normality of the data through

Lillefor’s test and rejecting homogeneity of variance

through Levene’s test, we tested for statistical difference

between the soft sensor and optical motion standard devia-

tions using the non-parametric Mann–Whitney U-test. The

results of the U-test indicated that there was no statistical

difference between the soft and optical standard deviations

under a 5% significance analysis (Table 3, bottom row).

Future work will address this confounding factor by char-

acterizing the sensors on an anthropomorphically correct

robotic leg model to control for variability. Even so, we see

similar degrees of variability in the soft sensors and the

optical motion capture.

From the evaluation comparing soft sensors with optical

motion capture, it is clear that the sensors can record the

actual joint angles more accurately at slower speeds when

the participant is walking compared to running at higher

Fig. 11. The soft strain sensors were calibrated with anatomical joint angle information processed from optical motion analysis. From

left to right: the raw digital signals from the sensors (in counts) were collected synchronously with the joint angle (the right hip in this

case). The raw sensor signal from the entire 60 second trial was fitted to the joint angle to calibrate the sensor.

Fig. 12. The angles of all six lower limb joints as tracked by the

soft sensors (in red) and optical motion capture (in blue). Each

shaded line is centered at the mean, with the width indicating one

standard deviation about the mean; a thicker line indicates greater

variability in the signal. Note the gait pattern change in joint

angles between walking (1.8 m/s) and running (2.7 m/s).
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speeds (Figure 13). At the worst case, the maximum RMS

error was nearly 15� for the knee sensors on participants 1

and 2 when running at 2.7 m/s. Despite the drop in accu-

racy, we found that the soft sensors’ signals were as precise

as the optical motion capture, i.e. the sensor had the same

variability for the same gait pattern. Interestingly, the error

of the hip sensors decreased slightly between fast walking

and running due to the decrease in hip motion after the

change in gait.

Observations of the participants while walking and run-

ning revealed that the sensors have particular dynamics as

a result of rate-dependent viscoelastic effects. The

linear-fitting of the sensor signal to optical motion capture

does not account for the nonlinearity and hysteresis of the

sensor, nor does it account for the natural variability in gait.

These effects lead to reductions in accuracy, particularly

with increased locomotion speeds. Judging from the kine-

matic recreation in Figure 14, the sensors also have a cer-

tain amount of phase lead versus the optical motion

capture. It appears that there is a maximum phase lead of

approximately 10–15� for each sensor, but at slightly differ-

ent parts of the gait cycle (between 45% and 65% for the

knee, and between 60% and 75% for both the hip and

ankle). It is likely that the sensor signals appear to lead the

actual joint angles because of limitations in our linear fit-

ting approach. Specifically, we fitted the sensors by apply-

ing a linear fit of the sensor data to that from the optical

motion capture system in the time domain (Figure 11).

This fitting does not consider the changing dynamics of

the sensor itself with increasing extension rates. Future

work will seek to improve fitting by characterizing and

modeling the changing behavior of the sensors as related to

extension rate and by applying fits to the signals in the fre-

quency domain.

5.3. Sources of error for soft wearable sensing

This overall behavior of the soft wearable sensors is of poor

accuracy but good precision. We must address the sources

of error to indicate limitations, potential uses, and future

efforts to optimize the soft sensing suit. Possible approaches

to improving accuracy include improving garment integra-

tion by increasing stiffness of the sensors or direct bonding

of sensors fully onto garments along their entire length

(which would be different from Mengücx et al. (2013) and

this work, where the sensors were only attached at their

ends). Some error may be coming from the garment base

sliding on the skin, however, one simple solution could be

to add thin non-slippery pads inside of the tights at the sen-

sor attachment location along with simple straps that

tighten the sensor attachments to the skin. Even without

problems of slip, any skin-mounted sensor will suffer from

soft-tissue artifacts, which must be solved with compensa-

tion algorithms (Gabiccini et al., 2013).

A possible source of error is the nonlinearity of the soft

sensor response under compression. One of our efforts in

this work was to avoid the compression of the sensors by

moving their locations from directly on top of joints and

bony landmarks to more soft and flat areas of the body.

Although this does not completely solve the problem, it

reduced the possibility of unnecessary compression events.

A possible future effort is adding pressure-sensing elements

on top of the strain-sensing element in each sensor, so that

each sensor itself has the capability to detect compression

in addition to strain (Park et al., 2012; Vogt et al., 2013).

A more optimal (Bianchi et al., 2013a) or redundant pla-

cement on the body may improve measurement of the

body’s natural degrees of freedom. Alternatively, by better

characterizing the sensor’s relationship between hysteresis

and strain rate, it may be possible to compensate for the

observed deviation with increasing velocity. Currently, the

low variability of the sensor signal is apparent in its small

standard deviations (Table 3), but presenting this data in

visual models derived by forward kinematics also reveals

large instantaneous errors in joint angles (up to 20� on

the knee) that make absolute position measurements dif-

ficult (Figure 14). As covered above, such observed

errors likely emerge from unaccounted slippage, defor-

mation, or other mechanics of soft materials. Accounting

for such soft mechanics might be achieved through meth-

ods that have embedded models or constraints of body

kinematics, such as Kalman filters or particle filters. To

develop such model-based filters, we will have to identify

the mechanics of soft tissues as well as the interaction of

Fig. 13. Taking the optical motion capture system as the true

signal, the sensor response was evaluated for its RMS error. All

signal data from each sensor on each participant during a total of

three trials at each speed is represented here. The individual

participants had slightly varying magnitudes of error, but all

sensors showed increasing error with increasing locomotion

speed of the individual.
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the worn garments with the wearer. Even so, without

additional modeling, the sensor signals still provide suffi-

cient gross motion measurement capability that could be

useful in understanding the general state and behavior of

the wearer. In this way, the sensory information could be

used in pattern tracking to identify between walking and

running gaits or other pre-trained states, such as stair-

climbing, squatting, etc.

6. Conclusions

Soft wearable robots require the development of soft-

material technologies analogous to rigid actuators and sen-

sors currently available for traditional robotic systems. The

development of such soft devices requires new approaches

to design and fabrication in addition to bench top and

human subjects experiments to quantify and document

their performance. In this paper we presented soft strain

sensors and their integration into a soft wearable garment

for measuring human hip, knee, and ankle joint angles in

the sagittal plane. The development of soft sensing technol-

ogy requires careful consideration of the interface between

them and inextensible components such as electronics, fab-

rics, and host garments.

Expanding on our previous liquid metal in elastomer

sensors (Mengücx et al., 2013; Park et al., 2012), in this

work we presented a discretized stiffness gradient design

that addresses the imperative need for a mechanical inter-

face between low and high Young’s modulus materials. Our

interface design highlighted the need for a systematic study

of interface mechanics for soft materials similar to what

exists for metals and ceramics (Messler, 2004). Even so,

the soft strain sensors presented here are the only ones in

the literature, to the authors’ knowledge, that are suffi-

ciently robust to withstand thousands of repeated loading

cycles to hundreds of percent strain and be useful in an

integrated wearable suit.

This work also introduces extensive characterization of

a wearable soft sensing suit, expanding on our previous

work (Mengücx et al., 2013) by now instrumenting both

legs, including multiple participants, and increasing the

speeds of locomotion. In terms of performance, the nonli-

nearity and hysteresis of these hyper-elastic sensors and

their mechanical interface to a host garment affects the

accuracy (although not precision) that can be obtained

when making joint angle measurements. We found that

sensor readings varied depending on the specific operating

condition that affected the strain and strain rate experienced

by the sensor. With regards to motion tracking, we found

the sensors to be reliable both mechanically and electri-

cally, but that their measured joint angle would deviate with

increasing locomotion speed. Importantly, the sensor varia-

bility remained low, even when the participant was run-

ning. The difficulty of maintaining accurate measures of

joint angles, but relative stability of the sensor signal, sug-

gests that it would be more useful for higher-level control

(e.g. a state machine to detect walking versus running) as

opposed to direct control over the absolute position of the

joints. It is also possible that the soft sensors may serve an

important role for sensor fusion of different sensors on

wearable robot applications. The high spatial and temporal

resolution of IMUs may eventually complement the

Fig. 14. A small sample of data from participant 2 walking at 1.8 m/s. Still images from the experiment are presented at the top with

the anatomical kinematic model recreated for each instance in frames below it. The entire sequence of images is taken from a single

gait cycle and shows how qualitatively similar the soft sensor signal is to optical motion capture.
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physically compliant and drift-resistant soft sensors to cre-

ate a new human sensing system.

Future work is required on the anatomical, mechanical,

biocompatible, and computational aspects of our soft sen-

sor to improve its reliability and breadth of applications.

Anatomically, it will be important to consider the relation-

ship of sensing to anthropometry by performing in-depth

analysis of individuals’ limb dimensions as well as includ-

ing both genders. Mechanically, protecting the sensors from

inadvertent and/or redundant sensing will enable robust

measurements in field settings. Biocompatibility can be

improved through the use of ionic liquids as an alternative

to liquid metal, which may also enable applications within

the body. Computationally, we plan to explore other uses

for the rich information that the sensors provide. Pattern

recognition, machine learning, and morphological compu-

tation may make better use of the sensor signals and are

more sophisticated than our off-line linear fitting approach

that we have thus far used. Ultimately, a robust calibration

procedure must be established to realize the potential for

using soft sensors as a new motion capture system.

With further refinement of the system presented here,

we can imagine single-piece garments with integrated sen-

sors that can be worn under normal clothing. Such instru-

mented garments could capture the motion of the wearer’s

body throughout the day in a low profile and unobtrusive

manner. Collecting such a rich set of data could be useful

for doctors monitoring an elderly person’s daily motion as a

means of predicting and preventing the onset of gait pathol-

ogy or it could be used by professional trainers as a means

to assess the motions of athletes during training and recov-

ery. In addition, instrumented garments could be a part of

future soft wearable robots that assist the wearer during

locomotion or other activities.
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