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Abstract. Integrating gamification features in ITSs has become a popular theme 

in ITSs research. This work focuses on gamification of shared student/system 

control over problem selection in a linear equation tutor, where the system 

adaptively selects the problem type while the students select the individual 

problems. In a 2x2+1+1 classroom experiment with 267 middle school students, 

we studied the effect, on learning and enjoyment, of two ways of gamifying 

shared problem selection: performance-based rewards and the possibility to re-

do completed problems, both common design patterns in games. We also in-

cluded two ecological control conditions: a standard ITS and a popular algebra 

game, DragonBox 12+. A novel finding was that of the students who had the 

freedom to re-practice problems, those who were not given rewards performed 

significantly better on the post-tests than their counterparts who received re-

wards. Also, we found that the students who used the tutors learned significant-

ly more than students who used DragonBox 12+. In fact, the latter students did 

not improve significantly from pre- to post-tests on solving linear equations. 

Thus, in this study the ITS was more effective than a commercial educational 

game, even one with great popular acclaim. The results suggest that encourag-

ing re-practice of previously solved problems through rewards is detrimental to 

student learning, compared to solving new problems. It also produces design 

recommendations for incorporating gamification features in ITSs.  

Keywords: DragonBox, educational games, student control, shared control, in-

telligent tutoring systems, algebra, classroom evaluation, rewards 

1 Introduction 

In recent years, Intelligent Tutoring System (ITS) researchers have started to investi-

gate how to integrate game elements within a tutoring environment. The goal is typi-

cally to make the system more engaging for students, while maintaining its effective-

ness in supporting learning. Empirical studies have been conducted to evaluate the 

effects of gamifying tutors on students’ learning and motivation, as well as to explore 

the best design to incorporate game elements in tutors. Some studies have found that 

game-based learning environments can significantly enhance students’ learning out-

comes [3, 10] and can produce the same learning effects as nongame tutors [7].  How-
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ever, gamification of ITSs is not always successful. For example, one study [5] found 

that tutor-like assistance led to better learning and interest as compared to game-like 

assistance in an educational game of policy argument. Therefore, gamification of ITSs 

should be done with care, where possible informed by empirical studies.  

Student control over problem selection may be an interesting area for gamification. 

Full student control over problem selection tends to be detrimental for learning (see 

e.g., [2]). However, shared control between student and system has shown some 

promise. Simple forms of shared control, in which the system and the students share 

the responsibilities to select problems in the system, had led to comparable learning as 

full system control [4, 9]. However, these simple techniques may not be as engaging 

as they could be, nor do they take full advantage of ITSs’ ability to make good prob-

lem selection decisions. In the current work, we focus on a form of shared control in 

which the system selects problem types and decides when students have mastered 

each problem type and may go on to the next, while the student selects individual 

problems from a certain problem type. We try to improve on this form of shared con-

trol by adding gamification features, and investigate whether the gamified shared 

control leads to higher engagement and better learning. 

Commercial games provide plenty of ideas for gamification of problem selection. 

A feature found in many popular games (e.g., Angry Birds, DragonBox) is the possi-

bility to re-do problems after they have been completed. This feature is often com-

bined with rewards (such as a number of stars) that reflect performance on the given 

problem. One reason players may elect to re-do a problem is to increase the rewards. 

According to theories of autonomy in learning [6], allowing re-practice gives students 

more freedom, which could possibly enhance their engagement in learning. Moreover, 

re-practicing could lead to more efficient acquisition of problem-solving skills, alt-

hough to the best of our knowledge that has not been established definitively in the 

cognitive science literature. On the other hand, frequent re-practice may reduce prob-

lem variability and therefore be detrimental for learning [11]. Empirical investigation 

of the effectiveness of these gamification features is therefore warranted. 

In the current work, we investigate the effects of gamifying shared student/system 

control in our linear equation tutor, Lynnette. We investigated two gamification fea-

tures: giving students the freedom to re-practice previously completed problems (not 

allowed e.g., in standard Cognitive Tutors) and rewards (stars) for each problem 

based on students’ performance. These features are similar to Angry Birds’ or Drag-

onBox’ problem selection and rewards systems. We hypothesize that 1) the possibility 

to re-practice problems, added to shared control over problem selection will enhance 

students’ learning and engagement; 2) rewards based on students’ performance on 

individual problems will also lead to better learning and engagement. Consequently, 

we created four experimental versions of Lynnette to evaluate the effects of the two 

gamification features. Moreover, we included two ecological control conditions in the 

study: a standard ITS and a commercial algebra game. The standard ITS is a control 

version of Lynnette without any gamification features and with full system control 

over problem selection (as is common in e.g. Cognitive Tutors). The algebra game is 

DragonBox, which has attracted substantial public attention for allegedly helping 

young children learn algebra in a very short period of time [8, 12]. Although Drag-



onBox has been the subject of at least one research study [1], we are not aware of any 

studies that empirically investigated its effectiveness in teaching algebra. Given the 

publicity surrounding the game, it would be good to know how educationally effec-

tive and engaging it is, compared to technology proven to be effective in helping stu-

dents learn (i.e., an ITS). We conducted a classroom experiment with 267 middle 

school students to investigate our hypotheses.   

2 Methods 

2.1 Lynnette and DragonBox 12+ 

 

Fig. 1. The problem solving interface of Lynnette on a Samsung Galaxy Tablet 

Lynnette – Web-based Linear Equation Tutor on Android Tablet. Lynnette is a 

tutor for basic equation solving practice. It comprises five levels with increasingly 

difficult equations, starting with equations of the form x + a = b and their variations at 

Level 1 and ending with equations of the form a(bx + c) + d = e and their variations at 

Level 5. Students are required to explain some of their steps by indicating the main 

transformation (see Fig. 1). The problems in Lynnette do not require fractions and the 

tutor does not allow strategies that involve fractions along the way. Otherwise, it is 

flexible in the major and minor strategy variants that it recognizes. It also allows some 

suboptimal strategies, while warning students about them in the hint window (see Fig. 

1), on the assumption that students can learn from seeing and being explicitly remind-

ed of suboptimal strategies. It does not allow mathematically correct but useless trans-

formations. Lynnette was designed to run on Android tablets but also runs on regular 

desktop computers. It was implemented as a rule-based Cognitive Tutor using the 

Cognitive Tutor Authoring Tools (http://ctat.pact.cs.cmu.edu/). Its cognitive model 

comprises 73 rules.  Lynnette is the first CTAT-built tutor that runs on Android tablets 

and the first elaborate CTAT-built rule-based tutor used in classrooms. 



    DragonBox 12+. We used the Android version of DragonBox 12+ in the study, 

which is one of the two DragonBox games that targets middle and high school alge-

bra. It has 10 progressive chapters, each with 20 problems, covering 24 algebraic 

rules [13]. The two sides of the screen represent the two sides of an equation. The 

game provides immediate step-by-step feedback. It starts by hiding the algebraic ex-

pressions and the players have to isolate a box on one side of the screen through mov-

ing cards (Fig. 2, leftmost). It gradually transitions to algebraic problems as the stu-

dents progress in the game (Fig. 2, middle and rightmost). As claimed on its official 

site, students can learn basic algebra in one hour with DragonBox. 

 

Fig. 2. Screenshots of DragonBox from its official site (©WeWantToKnow) 

2.2 Experimental Design, Participants, Procedure and Measurements 

We conducted an experiment with a 2x2+1+1 design with a total of six conditions. 

The 2x2 design varies two factors: 1) whether or not the students are able to access 

and re-practice completed problems; and 2) whether or not the tutor shows rewards to 

the students. The two “+1” conditions are a popular algebra game, DragonBox 12+, 

and a standard ITS.  

Table 1. Experimental conditions in the study. RePr stands for Re-Practice, NoRePr stands for 

no Re-Practice, Rwd stands for Rewards, and noRwd stands for no Rewards. 

 RePr 

+Rwd 

NoRePr

+Rwd 

RePr 

+noRwd 

NoRePr

+noRwd 

DragonBox 

12+ 

Control 

Lynnette 

Re-practice Yes No Yes No  

Rewards Yes Yes No No 

 

We created four experimental versions of Lynnette and a control version (as listed 

in Table 1). The five Lynnette tutors all used the same interface for problem solving, 

shown in Figure 1. Also, all five tutor versions employed Bayesian Knowledge Trac-

ing and Cognitive Mastery as part of their problem selection methods. The control 

version used it for full system control, as is customary in Cognitive Tutors. That is, in 

this version the tutor always selected the next problem for the student from level 1 to 

level 5. The four experimental versions used Bayesian Knowledge Tracing and Cog-

nitive Mastery for shared control. In these versions, the students also had to do the 

levels in order. Within a level, they could select which problem to do next. The tutor 

decided when a level was complete (namely, when all skills were mastered). The 

system presented one or two screens in-between problems, which vary according to 



the two experimental factors. All four experimental tutor versions had a problem se-

lection screen, which lists the problems within the current level. On this screen, the 

student selected the next problem (Fig. 3, right). In the two Re-Practice conditions, 

the system “recommended” problems on this screen by displaying a flag next to them. 

These problems had unmastered skills, according to the tutor’s Bayesian Knowledge-

Tracing method, and had not been practiced yet by the given student. However, stu-

dents were free to select a problem with or without a flag. Also in the two Re-Practice 

conditions, students could select any problem available on the given level, regardless 

of whether they had completed them previously. By contrast, in the No Re-Practice 

conditions, the previously-practiced problems were grayed out so they could not be 

selected again. In the two Rewards conditions, students saw an additional screen be-

tween problems (Fig. 3, left), a problem summary screen showing earned stars after 

completing each problem, based on the number of steps, hints and errors. A trophy 

could be earned for perfect performance. Further, in these conditions, the problem 

selection screen listed the rewards earned (see Fig. 3, right). After re-practice, the 

number of rewards would be updated.  

 

Fig. 3. Problem summary screen with rewards (left) and problem selection screen (right) 

    267 7th and 8th grade students participated in this study. They were from 15 classes 

of 3 local public middle schools, taught by 6 teachers. Students from each class were 

randomly assigned to one of the six conditions. All students completed a 20-minute 

paper pre-test on the first day of the study. They then worked for 5 42-minute class 

periods on consecutive school days either with one of the Lynnette versions or Drag-

onBox 12+ using Samsung Galaxy tablet PCs. All students took an immediate paper 

post-test after the five class periods. The pre- and post-tests were in the same format, 

which consisted of 6 equations that measured students’ procedural skills of solving 

linear equations1. Lynnette only provides practice for a subset of problem types that 

are practiced in DragonBox 12+. Therefore, among the 6 equations, 4 were shared 

types of equations between Lynnette and DragonBox 12+, while 2 were types of 

equations practiced in DragonBox 12+ only. Documentation of DragonBox 12+ indi-

cates that the algebraic rules that are needed to solve the 6 procedural items could be 

practiced by Level 6 in the game [13]. We created two sets of equivalent test forms 

                                                           
1  The test forms also included items testing basic conceptual knowledge of algebra. However, 

because there was no improvement from pre-test to post-test on these items in any of the 

conditions (similar to what we saw in past studies), we do not report the results separately. 



and administered them in counterbalanced order. We also included a 7-question ques-

tionnaire to measure students’ enjoyment of using Lynnette or DragonBox along with 

the post-test. The questions were adapted from the interest/enjoyment subscale of the 

Intrinsic Motivation Inventory, and were all based on a 7-point Likert scale.  

3 Results 

A total of 190 students were present on each day of the study and completed the pre- 

and post-tests. Given that the sample was nested in 15 classes, 6 teachers, and 3 

schools, Hierarchical Linear Modeling (HLM) was used to analyze the test data. We 

constructed 3-level models in which students (level 1) were nested in classes (level 2), 

and classes were nested in teachers (level 3; 4-level models indicated little variance 

on the school level, so we built 3-level models). Specifically, for the learning effects 

from pre- to post-tests, we used both pre- and post-test scores as dependent variables 

to fit this model: scoreij = testj + student(class)i + class(teacher)i + teacheri,  where 

scoreij was studentij’s  score on testj, and student(class)i, class(teacher)i and teacheri 

indicated the nested sources of variability in the hierarchical model. To evaluate the 

main effects and interaction effect across the conditions on the post-test, we modified 

the model and used studenti’s pre-test score prei as co-variate:  post-scorei = prei + 

tutorj + rewardsk + re-practicel + rewardsk*re-practicel + student(class)i + 

class(teacher)i + teacheri, with tutorj being whether the condition learned with a tutor 

or DragonBox 12+, rewardsk being whether the tutor condition received rewards,  re-

practicel being whether the condition allowed re-practice, and rewardsk*re-practicel 

being the interaction between the two factors. We report Cohen’s d for effect sizes. 

An effect size d of .20 is typically deemed a small effect, .50 a medium effect, and .80 

a large effect. 

Table 2. Means and SDs of all conditions on pre- and post-tests for the shared procedural 

items, game (DragonBox) only procedural items, and the overall test scores 

 RePr+Rwd NoRePr+ 

Rwd 

RePr+ 

noRwd 

NoRePr+ 

noRwd 

DragonBox 

12+ 

Control 

Lynnette 

Pre-shared .364 (.249) .327 (.279) .327 (.257) .364 (.313) .321 (.209) .386 (.277) 

Post-shared .467 (.291) .491 (.276) .497 (.364) .471 (.311) .366 (.289) .538 (.347) 

Pre-game .324 (.345) .266 (.359) .318 (.350) .318 (.344) .331 (.382) .288 (.330) 

Post-game  .352 (.320) .281 (.358) .313 (.307) .300 (.323) .310 (.410) .297 (.356) 

Pre-overall2 .439 (.178) .413 (.142) .403 (.183) .477 (.172) .422 (.133) .418 (.155) 

Post-overall .463 (.160) .491 (.173) .520 (.203) .503 (.167) .438 (.161) .477 (.190) 

 

Learning Effects of Lynnette and DragonBox. Table 2 shows the average test 

scores for all conditions on the 4 shared procedural items, the 2 DragonBox/game 

only procedural items, and the overall test scores including the conceptual items. Stu-

                                                           
2  Pre-overall and Post-overall include the conceptual items along with the 6 procedural items.  



dents in the DragonBox condition completed an average of 140 equations in the game 

by the end of the 5th period, which is equivalent to finishing Level 7. Students from all 

five Lynnette conditions completed an average of 36 equations. All five Lynnette con-

ditions together improved significantly on the shared procedural items (t(300)=4.543, 

p<.001, d=.52) as well as the overall test scores (t(300)=3.305, p=.001, d=.38), but 

did not improve on the game only items. The best tutor condition, RePr+noRwd also 

improved significantly on the shared items (t(41)=2.392, p=.021, d=.75), and the 

overall test scores (t(41)=3.088, p=.004, d=.96). By contrast, the DragonBox students 

did not show significant improvement on any of the three categories of test items 

from pre- to post-test. When comparing the post-test scores between the Lynnette 

conditions and DragonBox, the five Lynnette conditions together significantly outper-

formed the DragonBox condition on both the shared items (t(167)=2.118, p=.036, 

d=.33) and all 6 procedural items together (i.e. shared items + game-only items, 

t(167)=1.986, p=.049, d=.31). The RePr+noRwd condition also significantly outper-

formed the DragonBox condition (shared items: t(37)=2.214, p=.033, d=.73; all 6 

procedural items: t(37)=2.295, p=.027, d=.75). We also compared students’ post-test 

scores between the control Lynnette and the experimental Lynnette tutors. There were 

no significant differences on any of the categories of test items.   

Effects of Re-Practice and Rewards. We tested the main effects and interaction 

of the two factors with the four experimental Lynnette tutors. Neither re-practice nor 

rewards showed a significant main effect. The interaction between the two was signif-

icant for the overall test scores (t(104)=-2.287, p=.024). Post-hoc analysis revealed 

that for the two Re-Practice conditions, students who did not see rewards (i.e., 

RePr+noRwd) performed significantly better than students who received rewards (i.e., 

RePr+Rwd, t(41)=-2.311, p=.026, d=.72). On the other hand, there was no significant 

difference between the two No-Re-Practice conditions (i.e., NoRePr+Rwd and 

NoRePr+noRwd). To explore the mechanism behind the difference between the two 

Re-Practice conditions, we investigated how often the students re-practiced the com-

pleted problems. Seven out of 31 (22.58%) students in RePr+noRwd re-practiced a 

total of 9 problems start-to-finish, whereas 16 out of 33 (48.48%) students in 

RePr+Rwd re-practiced 37 problems start-to-finish. We also investigated the number 

of times students re-started a problem they had solved before, regardless of whether 

they actually finished it. Specifically, we calculated the ratio of (number of re-

starts)/(number of total problem visits) for each student in the two Re-Practice condi-

tions. The average ratio was .196 (SD=.172) for RePr+Rwd and .115 (SD=.074) for 

RePr+noRwd, with a significant difference between the two (t(42)=2.858, p=.007, 

d=.88). In other words, students in RePr+Rwd re-started significantly more problems 

than students in RePr+noRwd. Moreover, the correlation between the ratio of re-starts 

and students’ post-test performance was -.277 (p=.028), controlling for the overall 

pre-test score. The more times the students re-started problems, the less they learned. 

    Enjoyment. Table 3 shows the average ratings of enjoyment from the intrinsic 

motivation questionnaire handed out with post-test. The DragonBox students provid-

ed significantly higher ratings of enjoyment while playing with the game, as com-

pared to all the Lynnette conditions taken together (t(168)=-3.315, p=.001, d=.51). No 

significant main effects or interaction effect of re-practice and rewards were found for 



enjoyment among the experimental Lynnette tutors. The difference between the exper-

imental Lynnette tutors and the control Lynnette was not significant either.   

Table 3. Means and SDs of the enjoyment ratings across all 7 questions for all conditions 

 RePr+ 

Rwd 

NoRePr+ 

Rwd 

RePr+ 

noRwd 

NoRePr+ 

noRwd 

DragonBox 

12+ 

Control 

Lynnette 

Enjoy-

ment 

3.815 

(1.627) 

3.884 

(1.572) 

4.166 

(1.398) 

4.372 

(1.528) 

5.099  

(1.448) 

4.138 

(1.483) 

4 Discussion and Conclusion 

Gamifying ITSs to foster higher engagement and perhaps even better learning out-

comes has become a popular theme in the ITS community. However, what gamifica-

tion features are beneficial and how to integrate them with existing tutor features re-

mains a challenging question. Our study found that gamification of shared stu-

dent/system control was a partial success. The two gamification features held up well 

in the classroom but did not foster the expected higher enjoyment or learning gains. 

We did not find a significant difference between the experimental (gamified) Lynnette 

tutors and the control Lynnette with respect to enjoyment or learning. One of the gam-

ified conditions (RePr+noRwd) had the highest learning gains, with a greater pre/post 

effect size (d=.96) than that for all Lynnette tutors (d=.38), but was not reliably better 

on any measure than the control tutor. Thus, gamifying tutors by incorporating com-

mon game design patterns does not automatically make them more effective. This 

finding is not uncommon. As discussed in the introduction, efforts at gamifying tutors 

frequently do not result in greater learning gains. Nonetheless, our findings may have 

practical value: students may have come to expect the problem selection features they 

know from games. Our study shows they can be added to a tutor (though with the 

caveat noted below) with relatively low implementation cost while maintaining the 

tutor’s effectiveness. 

    An interesting finding was that the students who could re-practice completed prob-

lems and received rewards performed significantly worse than their counterparts who 

could re-practice problems but did not receive rewards. The same difference was not 

found between the two conditions that could not re-practice. To the best of our 

knowledge, this is a novel finding: we are not aware of studies showing a detrimental 

effect of re-practice in (tutored) problem solving. A possible explanation is that the 

urge to earn more stars pushed the students to re-practice, yet re-practicing previous-

ly-seen problems is not an optimal strategy for learning as compared to practicing 

new problems. (In standard ITSs, it is common practice that students practice new 

problems targeting the same skills, instead of re-practicing problems they have com-

pleted before.) Further data analysis supports this explanation: there were significant-

ly more re-starts of problems in the RePr+Rwd condition and there was a significant 

negative correlation between the re-start ratio and students’ post-test scores. This 

finding affirms that performance-based rewards can influence students’ study choices 

but it also highlights the need to ensure that students are guided in making optimal 



choices. Although the combination of re-practicing with performance-based rewards 

is a very common design pattern in games, its implementation in tutors should be 

handled with care. For example, instead of giving rewards for individual problems, 

one could consider adding to the tutor data visualizations that help students analyze 

and summarize their performance, and provide rewards on an aggregated level. Also, 

instead of allowing students to re-practice problems they have seen before, the system 

might afford them freedom to select remedial new problems to earn more rewards.       

Lastly, the experiment illustrated that an ITS can help students learn more effec-

tively than a commercial educational game, even one with high popular acclaim. The 

students in the tutor conditions had greater learning gains than students who worked 

with DragonBox, in spite of the fact that the DragonBox students solved, on average, 

four times as many problems. In fact, our results indicate that DragonBox is ineffec-

tive in helping students acquire skills in solving algebra equations, as measured by a 

typical test of equation solving. This test is a fair test of DragonBox’ effectiveness; on 

average, the students who worked with DragonBox reached Level 7 in the game, and 

thus covered the necessary algebraic rules to solve the equations on this test. Alt-

hough DragonBox was more engaging than the tutor, where it falls short may be in 

using a concrete context to hide equations during much of the game, without a clear 

connection to standard algebraic notation and transformation rules. To be fair, 

WeWantToKnow, the company that markets DragonBox has recognized the need for 

supplemental instruction outside of the game and provides a document that teachers 

can use to help transfer. It is not known how effective this additional instruction is. It 

is not that there is no learning in DragonBox - there is plenty of it, as evidenced by 

students’ progression through the game levels. However, the learning that happens in 

the game does not transfer out of the game, at least not to the standard equation solv-

ing format. Much of the publicity surrounding DragonBox seems to have focused on 

progression through the game levels as an indicator of learning, perhaps because this 

measure is so readily observable. This, in our opinion, is a profound mistake. What 

matters is not within-game learning, but out-of-game transfer of learning, and the two 

cannot be equated. We hope that our study will contribute to more careful considera-

tion in the popular media of out-of-game transfer of learning as a key criterion when 

judging the educational value of games. Incidentally, our study should not be inter-

preted as questioning the educational potential of games in general, just that of one 

game in particular. We see educational games and gamification of ITSs as promising 

approaches to developing effective and enjoyable advanced learning technologies. 

In sum, our study represents progress in our understanding of the value of gamifi-

cation in ITSs. We demonstrated ways of gamifying shared problem control in an ITS 

with no detrimental effects, though we would have liked to see gains at minimum in 

enjoyment and preferably also in learning. Further, we discovered that the combina-

tion of performance-based rewards and the freedom of re-practicing, both common 

game design patterns, is detrimental for learning when imported into an ITS. The 

comparison between the tutors and DragonBox affirms that an intelligent tutor can be 

highly effective in helping students learn. It illustrates also that an educational game 

can foster high enjoyment and gain great popularity without helping students learn. 

We continue to see great potential for incorporating gamification features in ITSs to 



enhance students’ learning and engagement, although as our study illustrates import-

ing popular game design patterns into ITSs needs to be done with care. There may be 

no substitute for careful evaluation studies. 

 

Acknowledgements. We thank Jonathan Sewall, Octav Popescu, Martin van Vel-

sen, Kristen Chon, Gail Kusbit and Kate Souza for their kind help with this work. We 

also thank the participating teachers and students. This work is funded by an NSF 

grant to the Pittsburgh Science of Learning Center (NSF Award SBE083612). 

5 References 

1. Andersen, E., Gulwani, S., Popovic, Z. A Trace-based Framework for Analyzing and Syn-

thesizing Educational Progressions. Proc. of the SIGCHI Conference on Human Factors in 

Comp Systems, 773-782, New York: ACM, (2013) 

2. Atkinson, R.C. Optimizing the Learning of a Second-Language Vocabulary. Journal of 

Experimental Psychology, 96, 124-129, (1972) 

3. Boyce, A., T. Barnes. BeadLoom Game: Using Game Elements to Increase Motivation and 

Learning.  Proc. of Foundations of Digital Games, FDG’10, 25-31, (2010) 

4. Corbalan, G., Kester, L., Van Merriënboer, J.J.G. Selecting Learning Tasks: Effects of Ad-

aptation and Shared Control on Efficiency and Task Involvement. Contemporary Educa-

tional Psychology, 33(4), 733-756, (2008) 

5. Easterday, M., Aleven, V., Scheines, R., Carver, M. S. Using Tutors to Improve Educa-

tional Games, Proc. of the 15th International Conference on Artificial Intelligence in Edu-

cation, 63-71, Berlin: Springer Verlag, (2011) 

6. Grolnick, W. S., Ryan, R. M. Autonomy in Children's Learning: An Experimental and In-

dividual Difference Investigation. Journal of Personality and Social Psychology, 52, 890-

898, (1987) 

7. Jackson, G., McNamara, D. Motivation and Performance in a Game- based Intelligent Tu-

toring System. Journal of Educational Psychology, 105 (4), 1036–1049, (2013)  

8. Liu, J. DragonBox: Algebra Beats Angry Birds, Wired, (2012), 

http://www.wired.com/geekdad/2012/06/dragonbox/all/ 

9. Long, Y., Aleven, V. Supporting Students’ Self-Regulated Learning with an Open Learner 

Model in a Linear Equation Tutor. Proc. of the 16th International Conference on Artificial 

Intelligence in Education, 219-228, Berlin: Springer Verlag, (2013) 

10. Meluso, A., Zheng, M., Spires, H. A., & Lester, J. Enhancing 5th Graders’ Science Con-

tent Knowledge and Self-Efficacy through Game-based Learning. Computers and Educa-

tion, 59(2), 497-504, (2012) 

11. Paas, F. G. W. C., & Van Merriënboer, J. J. G. Variability of Worked Examples and 

Transfer of Geometrical Problem-Solving Skills: A Cognitive-Load Approach. Journal of 

Educational Psychology, 86(1), 122-133, (1994) 

12. Shapiro, J. It Only Takes about 42 Minutes To Learn Algebra with Video Games,  Forbes, 

(2013) http://www.forbes.com/sites/jordanshapiro/2013/07/01/it-only-takes-about-42-

minutes-to-learn-algebra-with-video-games/  

13. Where Is the Math in DragonBox 12+? 

http://wewanttoknow.com/resources/DragonBox/Math_In_DragonBox.pdf 

http://www.wired.com/geekdad/2012/06/dragonbox/all/
http://www.forbes.com/sites/jordanshapiro/2013/07/01/it-only-takes-about-42-minutes-to-learn-algebra-with-video-games/
http://www.forbes.com/sites/jordanshapiro/2013/07/01/it-only-takes-about-42-minutes-to-learn-algebra-with-video-games/

