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Abstract coding phase! Based on max-translation decod-
' ing and max-derivation decoding used in conven-
Current SMT systems usually decode with  tional individual decoders (Section 2), we go fur-

single translation models and cannot ben-  ther to develop joint decoder that integrates mul-
efit from the strengths of other models in  tiple models on a firm basis:

decoding phase. We instead propgsat

decoding a method that combines multi- e Structuring the search space of each model

ple translation models in one decoder. Our
joint decoder draws connections among
multiple models by integrating the trans-
lation hypergraphs they produce individu-
ally. Therefore, one model can share trans-
lations and even derivations with other
models. Comparable to the state-of-the-art
system combination technique, joint de-
coding achieves an absolute improvement
of 1.5 BLEU points over individual decod-

ing.

1 Introduction

as atranslation hypergraph(Section 3.1),
our joint decoder packs individual translation
hypergraphs together by merging nodes that
have identical partial translations (Section
3.2). Although suchiranslation-level combi-
nation will not produce new translations, it
does change the way of selecting promising
candidates.

Two models could even share derivations
with each other if they produce the same
structures on the target side (Section 3.3),
which we refer to aglerivation-level com-

bination This method enlarges the search

System combination aims to find consensus trans-  SPace by allowing for mixing different types
lations among different machine translation sys-  ©f translation rules within one derivation.
tems. It proves that such consensus translations e As multiple derivations are used for finding
are usually better than the output of individual sys- ~ optimal translations, we extend the minimum
tems (Frederking and Nirenburg, 1994). error rate training (MERT) algorithm (Och,
Recent several years have witnessed the rapid 2003) to tune feature weights with respect
development of system combination methods  to BLEU score for max-translation decoding
based on confusion networks (e.g., (Rosti et al.,  (Section 4).
2007; He et al., 2008)), which show state-of-the-
art performance in MT benchmarks. A confusion " | ]
network consists of a sequence of sets of candidaf® Niérarchical phrase-based model (Chiang, 2005;
words. Each candidate word is associated with &11ang. 2007) and a tree-to-string model (Liu et
score. The optimal consensus translation can &l 2006) on the NIST 2005 Chinese-English test-

obtained by selecting one word from each set ofet: Experimental results show that joint decod-

candidates to maximizing the overall score. While 1 might be controversial to use the term “model”, which
it is easy and efficient to manipulate strings, cur-usually has a very precise definition in the field. Some

: ‘esearchers prefer to saying “phrase-based approaches” or
rent methods usually have no access to most Ir]f()t{phrase-based systems”. On the other hand, other authors

mation available in decoding phase, which mighte.g., (Och and Ney, 2004; Koehn et al., 2003; Chiang, 2007))
be useful for obtaining further improvements. do use the expression “phrase-based models”. In this paper,

In thi f K f we use the term “model” to emphasize that we integrate dif-
n this paper, we propose a Iramework 10r COM-¢g e approaches directly in decoding phase rather thsta po

bining multiple translation models directly in de- processing system outputs.

We evaluated our joint decoder that integrated
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Figure 1: A derivation composed of SCFG rules
that translates a Chinese sentenéabiao yan-
jiang” into an English sentencegive a talk.

A feature value is usually decomposed as the
product of decision probabilities:

h(d,e,f) = [] p(d) (4)
ing with multiple models achieves an absolute im- ded
provement of 1.5 BLEU points over individual de-

; L . whered is a decision in the derivatiod.
coding with single models (Section 5).

Although originally proposed for supporting
large sets of non-independent and overlapping fea-
tures, the latent variable model is actually a more
Statistical machine translation is a decision probgeneral form of conventional linear model (Och
lem where we need decide on the best of targeand Ney, 2002).
sentence matching a source sentence. The processAccordingly, decoding for the latent variable
of searching for the best translation is conventionimodel can be formalized as
ally called decoding which usually involves se-
quences of decisions that translate a source sep-_ argmax{ Z epo)\mhm(d,e, f)} (5)
tence into a target sentence step by step. e deA(e.f) po

For example, Figurel shows a sequence of
SCFG rules (Chiang, 2005; Chiang, 2007) thatwhere Z(f) is not needed in decoding because it
translates a Chinese sentendabfao yanjiang is independent oé.
into an English sentencegive a talk. Such se- Most SMT systems approximate the summa-
guence of decisions is called derivation In  tion over all possible derivations by usiigbest
phrase-based models, a decision can be translatirgrivation for efficiency. They search for the
a source phrase into a target phrase or reorderinigest derivation and take its target yield as the best
the target phrases. In syntax-based models, dedranslation:
sions usually correspond to transduction rules. Of-
ten, there are many derivations that are distinct yet & ~ argmax { Z Amhm(d, e, f)} (6)
produce the same translation. ed m

Blunsom et al. (2_008) presenF a Igtent vari- We refer to Eq. (5) amax-translation decoding
able model that describes the relationship betweep, , Eq. (6) asnax-derivation decodingvhich are

translation and derivation clearly. Given a SOUrCE; <t termed by Blunsom et al. (2008)

senten_cef, the prpbaplllty of a target sentene(_a By now, most current SMT systems, adopting
being its translation is the sum over all possible

2 either max-derivation decoding or max-translation
derivations: decoding, have only used single models in decod-
ing phase. We refer to them asdividual de-
coders In the following section, we will present
a new method callegbint decodingthat includes
whereA (e, f) is the set of all possible derivations multiple models in one decoder.
that translatef into e andd is one such derivation. _ i

They use a log-linear model to define the con-3 Joint Decoding

ditional probability of a derivatiord and corre-  There are two major challenges for combining
sponding translatiore conditioned on a source myltiple models directly in decoding phase. First,
sentencd they rely on different kinds of knowledge sources

2 Background

Pr(elf)= Y  Pr(d,e|f) 1)
deA(ef)

Pr(d e\f) _ eXp > m Amhim (d7 €, f) ) 2There are also features independent of derivations, such
’ - Z(f) as language model and word penalty.
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Figure 2: (a) A translation hypergraph produced by one mdgbeh translation hypergraph produced by
another model; (c) the packed translation hypergraph bars¢d) and (b). Solid and dashed lines denote
the translation rules of the two models, respectively. 8datbdes occur in both (a) and (b), indicating
that the two models produce the same translations.

and thus need to collect different information dur-tion 3.3).
ing decoding. For example, taking a source parse ,
as input, a tree-to-string decoder (e.g., (Liu et al.,3'1 Trandation Hypergraph
2006)) pattern-matches the source parse with tred>espite the diversity of translation models, they all
to-string rules and produces a string on the tarhave to produce partial translations for substrings
get side. On the contrary, a string-to-tree decode®f input sentences. Therefore, we represent the
(e.g., (Galley et al., 2006; Shen et al., 2008)) is &earch space of a translation model as a structure
parser that applies string-to-tree rules to obtain &alledtranslation hypergraph
target parse for the source string. As a result, the Figure 2(a) demonstrates a translation hyper-
hypothesis structures of the two models are fundagraph for one model, for example, a hierarchical
mentally different. phrase-based model. #odein a hypergraph de-
Second, translation models differ in OIeCOCIingnotes a partial translation for a source substring,

algorithms. Depending on the generating Ordelexcepthfor the s;[artlng node °S”. For example,
of a target sentence, we distinguish between qw@'ven the example source sentence

major categoriesleft-to-right andbottom-up De- o fabiao; yanjiangs

coders tha_t use rules with flat structures (e.g.the node (“give talkg, [0,2]) in Figure 2(a) de-
phrase pairs) usually generate target sentenc%s

¢ left to riaht while th ) | ith hi otes that give talk$ is one translation of the
rom left to right while those using rules with hier- stringf2 — “fabiao yanjiang”

artc)h:[:al structturles (e.g., SCFG rules) often run in Thehyperedgesetween nodes denote the deci-
a bottom-up style. _ sion steps that produce head nodes from tail nodes.
In response to the two challenges, we first arfor example, the incoming hyperedge of the node

gue that the search space of an arbitrary model cangive talkg, [0,2]) could correspond to an SCFG
be structured as a translation hypergraph, whichyle:

makes each model connectable to others (Section
3.1). Then, we show that a packed translation hy-
pergraph that integrates the hypergraphs of indi- Each hyperedge is associated with a number of
vidual models can be generated in a bottom-upveights, which are the feature values of the corre-
topological order, either integrated at the translasponding translation rules. A path of hyperedges
tion level (Section 3.2) or the derivation level (Sec-constitutes a derivation.

X — (X yanjiang X; talks)



\ Hypergraph\ Decoding \ model first parse$ to obtain a source tre€(f)

node translation and then transform§’(f) to the target sentence
hyperedge rule e. Conversely, a string-to-tree model first parses
path derivation f into a target tred’(e) and then takes the surface

stringe as the translation. Despite different inside,
Table 1: Correspondence between translation hytheir derivations must begin withand end withe.
pergraph and decoding. This situation remains the same for derivations
between a source substrigiﬁ and its partial trans-

More formally, a hypergraph (Klein and Man- lation ¢ during joint decoding:

ning., 2001; Huang and Chiang, 2005) is a tuple ; j

(V,E,R), whereV is a set of nodesF is a set Pr(tlff) = Z , Pr(d,t|f]) (7)
of hyperedges, an® is a set of weights. For a deAts)

given source sentende= fi' = f;... f,, each
nodev € V is in the form of(¢, [z, 7]), which de-
notes the recognition dfas one translation of the
source substring spanning froitthrough; (that

1S, fit1 o fj)- Bach hyperedge € E'is a tuple Graphically speaking, joint decoding creates a
°= <tml$(e)’h6ad(6)’w(e)>’. wherehead(g) < packedtranslation hypergraph that combines in-
v s the corls_equenf[ node in the deductive StYividual hypergraphs by merging nodes that have
tmls(.e) < V. s the “St of ante(‘:igse(g)t‘ nodes, andidentical translations. For example, Figure 2 (a)
w(e) is a weight function fronR OR. and (b) demonstrate two translation hypergraphs

As a general representation, a translation hypergenerated by two models respectively and Fig-

graphis cgpable of characterizing the search spaggea » (c) is the resulting packed hypergraph. The
of an arbitrary translation model. Furthermore, g i |ines denote the hyperedges of the first model
it offers a graphic interpretation of decoding pro- 5 the dashed lines denote those of the second
cess. Anode in ahypergraph denotes a translation, ,je| The shaded nodes are shared by both mod-
a hyperedge denotes a decision step, and a paffl Therefore, the two models are combined at the
of hyperedges denotes a derivation. A translation,q|ation level Intuitively, shared nodes should
hypergraph is formally a semiring as the weighty,g ¢5y0red in decoding because they offer consen-
of a path is the product of hyperedge weights and s yansations among different models.

the weight of a node is the sum of path weights. Now the question is how to decode with multi-

Wh'le max-derivation decoding only retam_s thepIe models jointly in just one decoder. We believe
smgle best path at (_aach npde, max-translation dep ¢ bty left-to-right and bottom-up strategies can
cod|_ng sums up a” '”C‘?m'”g paths. Table 1 SUMye ysed for joint decoding. Although phrase-based
marizes the relatlon.shlp between translation hyblecoders usually produce translations from left to
pergraph and decoding. right, they can adopt bottom-up decoding in prin-
ciple. Xiong et al. (2006) develop a bottom-up de-
coder for BTG (Wu, 1997) that uses only phrase
The conventional interpretation of Eq. (1) is thatpairs. They treat reordering of phrases as a binary
the probability of a translation is the sum over allclassification problem. On the other hand, it is
possible derivations coming from tsamemodel.  possible for syntax-based models to decode from
Alternatively, we interpret Eq. (1) as that the left to right. Watanabe et al. (2006) propose left-
derivations could come frondifferent models®  to-right target generation for hierarchical phrase-
This forms the theoretical basis of joint decoding. based translation. Although left-to-right decod-
Although the information inside a derivation ing might enable a more efficient use of language
differs widely among translation models, the be-models and hopefully produce better translations,
ginning and end points (i.ef,ande, respectively) we adopt bottom-up decoding in this paper just for
must be identical. For example, a tree-to-stringconvenience.
— . _ ) Figure 3 demonstrates the search algorithm of
The same for all occurrences in Section 2. For exam-

ple, A(e, f) might include derivations from various models our joint decoder. The input is a spurce language
now. Note that we still us¢ for normalization. sentencef{’, and a set of translation modeld

whered might come from multiple models. In
other words, derivations from multiple models
could be brought together for computing the prob-
ability of one partial translation.

3.2 Trandation-Level Combination



1: procedure JOINTDECODING(f]*, M)

2 G0 IP@:VV, 22NN)  — 2 79

3 forl 1 el do. . X — (fabiag give)

4 foralli,jst.j—i=1do .

5. for all m & M do X — (yanjiang a talk)

6 ADD(G, i, j,m)

7 endfor Figure 4: A derivation composed of both SCFG
8 PRUNE(G, 4, ) and tree-to-string rules.

9 end for

10: end for

11: end procedure pairs and tree-to-string rules. Hierarchical phrase

pairs are used for translating smaller units and

Figure 3: Search algorithm for joint decoding.  tree-to-string rules for bigger ones. It is appealing
to combine them in such a way because the hierar-
chical phrase-based model provides excellent rule
_coverage while the tree-to-string model offers lin-
guistically motivated non-local reordering. Sim-
ilarly, Blunsom and Osborne (2008) use both hi-
erarchical phrase pairs and tree-to-string rules in
decoding, where source parse trees serve as condi-
Glioning context rather than hard constraints.

(line 1). After initializing the translation hyper-
graphG (line 2), the decoder runs in a bottom
up style, adding nodes for each sgary] and for
each modeln. For each spafi, j] (lines 3-5),
the procedure AD(G, 1,7, m) add nodes gener-
ated by the model: to the hypergrapld- (line 6).
Each model searches for partial translations ind
pendently: it uses its own knowledge sources and Depending on the target side output, we dis-
visits its own antecedent nodes, just running likelinguish betweestring-targetedandtree-targeted

a bottom-up individual decoder. After all mod- Models. String-targeted models include phrase-
els finishes adding nodes for spénj], the pro- ba_sed, hierarchical phrase-based, and _ tree-to-
cedure RUNE(G, 4, j) merges identical nodes and string models. Tree-targeted models include
removes less promising nodes to control the searcfi’ing-to-tree and tree-to-tree models. All models
space (line 8). The pruning strategy is similar to€an be combined at the translation level. Models
that of individual decoders, except that we requirdhat share with same target output structure can be
there must exist at least one node for each modd¥rther combined at the derivation level.
to ensure further inference. The joint decoder usually runs as max-
Although translation-level combination will not translation decoding because multiple derivations
offer new translations as compared to single modfrom various models are used. However, if all
els, it changes the way of selecting promising canmodels involved belong to the same category, a
didates in a combined search space and might pdint decoder can also adopt the max-derivation
tentially produce better translations than individ-fashion because all nodes and hyperedges are ac-

ual decoding. cessible now (Section 5.2).
Allowing derivations for comprising rules from
3.3 Derivation-Level Combination different models and integrating their strengths,

In translation-level combination, different models genvanon-le\:je:)combmatlcl)n could hopefully %ro-_ .
interact with each other only at the nodes. ThelUCe NEW and better translations as compared wit

derivations of one model are unaccessible to othe?Ingle models.
models. However, if two models produce the same
structures on the target side, it is possible to com4 Extended Minimum Error Rate
bine two models within one derivation, which we  Training
refer to aglerivation-level combinatian

For example, although different on the sourceMinimum error rate training (Och, 2003) is widely
side, both hierarchical phrase-based and tree-tassed to optimize feature weights for a linear model
string models produce strings of terminals andOch and Ney, 2002). The key idea of MERT is
nonterminals on the target side. Figure 4 showso tune one feature weight to minimize error rate
a derivation composed of both hierarchical phraseach time while keep others fixed. Therefore, each



we need only to find théeftmostintersection of

a curve with other curves that have greater values
after the intersection as a candidate critical inter-
section.

Figure 5 demonstrates three curves:t,, and
t3. Suppose that the left bound ofis 0, we com-
pute the function values fds, t5, andts atz = 0
and find thats has the greatest value. As a result,
we chooser = 0 as the first critical intersection.
Then, we compute the leftmost intersectiongf
with ¢; andt, and choose the intersection closest
tox = 0, that isz1, as our new critical intersec-

Figure 5: Calculation of critical intersections.  tion. Similarly, we start fromr; and findz, as the

next critical intersection. This iteration continues
candidate translation can be represented as a lin!ntil itreaches the right bound. The bold curve de-

notes the translations we will choose over different

flx)=axxz+b (8) ranges. For example, we will always choagdor

the ranggz, 3.
wherea is the feature value of current dimension, To compute the leftmost intersection of two
x is the feature weight being tuned, ahds the curves, we divide the range from current critical
dotproduct of other dimensions. The intersectionintersection to the right bound into many bins (i.e.,
of two lines is where the candidate translation willsmaller ranges) and search the bins one by one
change. Instead of computing all intersectionsfrom left to right. We assume that there is at most
Och (2003) only computesritical intersections one intersection in each bin. As a result, we can
where highest-score translations will change. Thisise the Bisection method for finding the intersec-
method reduces the computational overhead sigion in each bin. The search process ends immedi-
nificantly. ately once an intersection is found.

Unfortunately, minimum error rate training can-  We divide max-translation decoding into three
not be directly used to optimize feature weights ofphases: (1) build the translation hypergraphs, (2)
max-translation decoding because Eq. (5) is not generaten-best translations, and (3) generate
linear model. However, if we also tune one dimen-best derivations. We apply Algorithm 3 of Huang
sion each time and keep other dimensions fixedand Chiang (2005) fon-best list generation. Ex-

f (@)

(0,0 Towr @

we obtain a monotonic curve as follows: tended MERT runs on-best translations plus’-
x best derivations to optimize the feature weights.
f(z) = Z ok X@+by 9) Note that feature weights of various models are
e tuned jointly in extended MERT.

where K is the number of derivations for a can-5 Experiments
didate translationg, is the feature value of cur-
rent dimension on théth derivation andy, is the
dotproduct of other dimensions on thth deriva- Our experiments were on Chinese-to-English
tion. If we restrict that, is always non-negative, translation. We used the FBIS corpus (6.9M +
the curve shown in Eg. (9) will be a monotoni- 8.9M words) as the training corpus. For lan-
cally increasing function. Therefore, it is possibleguage model, we used the SRI Language Mod-
to extend the MERT algorithm to handle situationseling Toolkit (Stolcke, 2002) to train a 4-gram
where multiple derivations are taken into accountmodel on the Xinhua portion of GIGAWORD cor-
for decoding. pus. We used the NIST 2002 MT Evaluation test
The key difference is the calculation of criti- set as our development set, and used the NIST
cal intersections. The major challenge is that twa2005 test set as test set. We evaluated the trans-
curves might have multiple intersections whilelation quality usingcase-insensitiv8LEU metric
two lines have at most one intersection. Fortu{Papineni et al., 2002).
nately, as the curve is monotonically increasing, Our joint decoder included two models. The

5.1 Data Preparation



Model Combination M_ax-derivation M_ax-translation
Time | BLEU | Time | BLEU

hierarchical N/A 40.53| 30.11 | 44.87| 29.82
tree-to-string N/A 6.13 | 27.23 | 6.69 | 27.11
both tran_sla?ion N/A N/A | 55.89| 30.79
derivation | 48.45| 31.63 | 54.91| 31.49

Table 2: Comparison of individual decoding and joint deogdion average decoding time (sec-
onds/sentence) and BLEU score (case-insensitive).

first model was the hierarchical phrase-based 1.0 ———— 11—
model (Chiang, 2005; Chiang, 2007). We obtained 09 .
word alignments of training data by first running 08 - iy
GIZA++ (Och and Ney, 2003) and then applying 5, oo | i
the refinement rule “grow-diag-final-and” (Koehn % 05 L i
etal., 2003). About 2.6M hierarchical phrase pairs § 04 | -
extracted from the training corpus were used on 03 7
the test set. gf i |
Another model was the tree-to-string model 00 1 ] P
(Liu et al., 2006; Liu et al., 2007). Based on 0123456789101

the same word-aligned training corpus, we ran a span width

Chinese parser on the source side to obtain 1-best

parses. For 15,157 sentences we failed to obtaifigure 6: Node sharing in max-translation de-
1-best parses. Therefore, only 93.7% of the trainc0ding with varying span widths. We retain at
ing corpus were used by the tree-to-string modelMost 100 nodes for each source substring for each
About 578K tree-to-string rules extracted from themodel.

training corpus were used on the test set.

derivations in max-translation decoding failed to
bring benefits for the tree-to-string model (from
Table 2 shows the results of comparing individ-27.23 to 27.11).
ual decoding and joint decoding on the test set. When combining the two models at the trans-
With conventional max-derivation decoding, thelation level, the joint decoder achieved a BLEU
hierarchical phrase-based model achieved a BLEWYcore of 30.79 that outperformed the best result
score of 30.11 on the test set, with an average ddi.e., 30.11) of individual decoding significantly
coding time of 40.53 seconds/sentence. We founfp < 0.05). This suggests that accounting for
that accounting for all possible derivations in max-all possible derivations from multiple models will
translation decoding resulted in a small negativéhelp discriminate among candidate translations.
effect on BLEU score (from 30.11 to 29.82), even Figure 6 demonstrates the percentages of nodes
though the feature weights were tuned with respecthared by the two models over various span widths
to BLEU score. One possible reason is that wen packed translation hypergraphs during max-
only usedn-best derivations instead of all possi- translation decoding. For one-word source strings,
ble derivations for minimum error rate training.  89.33% nodes in the hypergrpah were shared by
Max-derivation decoding with the tree-to-string both models. With the increase of span width, the
model yielded much lower BLEU score (i.e., percentage decreased dramatically due to the di-
27.23) than the hierarchical phrase-based modevVersity of the two models. However, there still ex-
One reason is that the tree-to-string model failgst nodes shared by two models even for source
to capture a large amount of linguistically unmo- substrings that contain 33 words.
tivated mappings due to syntactic constraints. An- When combining the two models at the deriva-
other reason is that the tree-to-string model onlytion level using max-derivation decoding, the joint
used part of the training data because of parsdecoder achieved a BLEU score of 31.63 that out-
ing failure. Similarly, accounting for all possible performed the best result (i.e., 30.11) of individ-

5.2 Individual Decoding Vs. Joint Decoding



\ Method |  Model |[BLEU | Training | Max-derivation| Max-translation
L .| hierarchical | 30.11 individual 30.70 29.95
individual decoding tree-to-string| 27.23 joint 31.63 30.79

‘ system combinatiodl both ‘ 31.50 ‘ Table 4: Comparison of individual training and

| joint decoding | both | 31.63|  joint training.

Table 3: Comparison of individual decoding, sys-

tem combination, and joint decoding. ) ) )
ferent perspective, we try to combine different ap-

_ o o proaches directly in decoding phase by using hy-
ual decoding significantlyy( < 0.01). This im-  pergraphs. While system combination techniques
provement resulted from the mixture of hlerarchl-manipu|ate only the final translations of each sys-

cal phrase pairs and tree-to-string rules. To protem, our method opens the possibility of exploit-
duce the result, the joint decoder made use Ofng much more information.

8,114 hierarchical phrase pairs learned from train-

ing data, 6,800 glue rules connecting partial trans- Blu dnsquet ald (203.8) flrstddlstlngtwsh Ib(;twegn
lations monotonically, and 16,554 tree-to-stringmax' erivation decoding and max-transiation de-

rules. While tree-to-string rules offer linguistically coding explicitly. They show that max-translation

motivated non-local reordering during decoding,oIeCOdIng outperforms max-derivation decoding

hierarchical phrase pairs ensure good rule coverOF the latent variable model. While they train the

. . e arameters using a maximuarposterioriestima-
age. Max-translation decoding still failed to sur-P .
pass max-derivation decoding in this case. tor, we extend the_ MERT glgorlthm (Och, 2003)
to take the evaluation metric into account.

5.3 Comparison with System Combination Hypergraphs have been successfully used in
We re-implemented a state-of-the-art system comparsing (Klein and Manning., 2001; Huang and
bination method (Rosti et al., 2007). As shownChiang, 2005; Huang, 2008) and machine trans-
in Table 3, taking the translations of the two indi- lation (Huang and Chiang, 2007; Mi et al., 2008;
vidual decoders as input, the system combinatioMi and Huang, 2008). Both Mi et al. (2008) and
method achieved a BLEU score of 31.50, slightlyBlunsom et al. (2008) use a translation hyper-
lower than that of joint decoding. But this differ- graph to represent search space. The difference is

ence is not significant statistically. that their hypergraphs are specifically designed for
o o . o the forest-based tree-to-string model and the hier-
54 Individual Training Vs. Joint Training archical phrase-based model, respectively, while

Table 4 shows the effects of individual training andours is more general and can be applied to arbi-
joint training. By individual, we mean that the two trary models.

models are trained independently. We concatenate

and normalize their feature weights for the joint

decoder. By joint, we mean that they are trained/ Conclusion

together by the extended MERT algorithm. We

found that joint training outperformed individual \ye have presented a framework for including mul-
trair_ling significantly for poth max-_derivation de- tiple translation models in one decoder. Repre-
coding and max-translation decoding. senting search space as a translation hypergraph,
6 Related Work ?ndividual models are accessible to others via shar-

ing nodes and even hyperedges. As our decoder
System combination has benefited various NLRaccounts for multiple derivations, we extend the
tasks in recent years, such as products-of-experfd ERT algorithm to tune feature weights with re-
(e.g., (Smith and Eisner, 2005)) and ensemblespect to BLEU score for max-translation decod-
based parsing (e.g., (Henderson and Brill, 1999))ing. In the future, we plan to optimize feature
In machine translation, confusion-network basedveights for max-translation decoding directly on
combination techniques (e.g., (Rosti et al., 2007the entire packed translation hypergraph rather
He et al., 2008)) have achieved the state-of-thethan onn-best derivations, following the lattice-
art performance in MT evaluations. From a dif- based MERT (Macherey et al., 2008).
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