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Abstract

Current SMT systems usually decode with
single translation models and cannot ben-
efit from the strengths of other models in
decoding phase. We instead proposejoint
decoding, a method that combines multi-
ple translation models in one decoder. Our
joint decoder draws connections among
multiple models by integrating the trans-
lation hypergraphs they produce individu-
ally. Therefore, one model can share trans-
lations and even derivations with other
models. Comparable to the state-of-the-art
system combination technique, joint de-
coding achieves an absolute improvement
of 1.5 BLEU points over individual decod-
ing.

1 Introduction

System combination aims to find consensus trans-
lations among different machine translation sys-
tems. It proves that such consensus translations
are usually better than the output of individual sys-
tems (Frederking and Nirenburg, 1994).

Recent several years have witnessed the rapid
development of system combination methods
based on confusion networks (e.g., (Rosti et al.,
2007; He et al., 2008)), which show state-of-the-
art performance in MT benchmarks. A confusion
network consists of a sequence of sets of candidate
words. Each candidate word is associated with a
score. The optimal consensus translation can be
obtained by selecting one word from each set of
candidates to maximizing the overall score. While
it is easy and efficient to manipulate strings, cur-
rent methods usually have no access to most infor-
mation available in decoding phase, which might
be useful for obtaining further improvements.

In this paper, we propose a framework for com-
bining multiple translation models directly in de-

coding phase.1 Based on max-translation decod-
ing and max-derivation decoding used in conven-
tional individual decoders (Section 2), we go fur-
ther to develop ajoint decoder that integrates mul-
tiple models on a firm basis:

• Structuring the search space of each model
as a translation hypergraph(Section 3.1),
our joint decoder packs individual translation
hypergraphs together by merging nodes that
have identical partial translations (Section
3.2). Although suchtranslation-level combi-
nation will not produce new translations, it
does change the way of selecting promising
candidates.

• Two models could even share derivations
with each other if they produce the same
structures on the target side (Section 3.3),
which we refer to asderivation-level com-
bination. This method enlarges the search
space by allowing for mixing different types
of translation rules within one derivation.

• As multiple derivations are used for finding
optimal translations, we extend the minimum
error rate training (MERT) algorithm (Och,
2003) to tune feature weights with respect
to BLEU score for max-translation decoding
(Section 4).

We evaluated our joint decoder that integrated
a hierarchical phrase-based model (Chiang, 2005;
Chiang, 2007) and a tree-to-string model (Liu et
al., 2006) on the NIST 2005 Chinese-English test-
set. Experimental results show that joint decod-

1It might be controversial to use the term “model”, which
usually has a very precise definition in the field. Some
researchers prefer to saying “phrase-based approaches” or
“phrase-based systems”. On the other hand, other authors
(e.g., (Och and Ney, 2004; Koehn et al., 2003; Chiang, 2007))
do use the expression “phrase-based models”. In this paper,
we use the term “model” to emphasize that we integrate dif-
ferent approaches directly in decoding phase rather than post-
processing system outputs.



S → 〈X1,X1〉

X → 〈fabiaoX1, give aX1〉

X → 〈yanjiang, talk〉

Figure 1: A derivation composed of SCFG rules
that translates a Chinese sentence “fabiao yan-
jiang” into an English sentence “give a talk”.

ing with multiple models achieves an absolute im-
provement of 1.5 BLEU points over individual de-
coding with single models (Section 5).

2 Background

Statistical machine translation is a decision prob-
lem where we need decide on the best of target
sentence matching a source sentence. The process
of searching for the best translation is convention-
ally called decoding, which usually involves se-
quences of decisions that translate a source sen-
tence into a target sentence step by step.

For example, Figure1 shows a sequence of
SCFG rules (Chiang, 2005; Chiang, 2007) that
translates a Chinese sentence “fabiao yanjiang”
into an English sentence “give a talk”. Such se-
quence of decisions is called aderivation. In
phrase-based models, a decision can be translating
a source phrase into a target phrase or reordering
the target phrases. In syntax-based models, deci-
sions usually correspond to transduction rules. Of-
ten, there are many derivations that are distinct yet
produce the same translation.

Blunsom et al. (2008) present a latent vari-
able model that describes the relationship between
translation and derivation clearly. Given a source
sentencef , the probability of a target sentencee
being its translation is the sum over all possible
derivations:

Pr(e|f) =
∑

d∈∆(e,f)

Pr(d, e|f) (1)

where∆(e, f) is the set of all possible derivations
that translatef into e andd is one such derivation.

They use a log-linear model to define the con-
ditional probability of a derivationd and corre-
sponding translatione conditioned on a source
sentencef :

Pr(d, e|f) =
exp

∑

m λmhm(d, e, f)

Z(f)
(2)

wherehm is a feature function,λm is the asso-
ciated feature weight, andZ(f) is a constant for
normalization:

Z(f) =
∑

e

∑

d∈∆(e,f)

exp
∑

m

λmhm(d, e, f) (3)

A feature value is usually decomposed as the
product of decision probabilities:2

h(d, e, f) =
∏

d∈d

p(d) (4)

whered is a decision in the derivationd.
Although originally proposed for supporting

large sets of non-independent and overlapping fea-
tures, the latent variable model is actually a more
general form of conventional linear model (Och
and Ney, 2002).

Accordingly, decoding for the latent variable
model can be formalized as

ê = argmax
e

{

∑

d∈∆(e,f)

exp
∑

m

λmhm(d, e, f)

}

(5)

whereZ(f) is not needed in decoding because it
is independent ofe.

Most SMT systems approximate the summa-
tion over all possible derivations by using1-best
derivation for efficiency. They search for the1-
best derivation and take its target yield as the best
translation:

ê ≈ argmax
e,d

{

∑

m

λmhm(d, e, f)

}

(6)

We refer to Eq. (5) asmax-translation decoding
and Eq. (6) asmax-derivation decoding, which are
first termed by Blunsom et al. (2008).

By now, most current SMT systems, adopting
either max-derivation decoding or max-translation
decoding, have only used single models in decod-
ing phase. We refer to them asindividual de-
coders. In the following section, we will present
a new method calledjoint decodingthat includes
multiple models in one decoder.

3 Joint Decoding

There are two major challenges for combining
multiple models directly in decoding phase. First,
they rely on different kinds of knowledge sources

2There are also features independent of derivations, such
as language model and word penalty.
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Figure 2: (a) A translation hypergraph produced by one model; (b) a translation hypergraph produced by
another model; (c) the packed translation hypergraph basedon (a) and (b). Solid and dashed lines denote
the translation rules of the two models, respectively. Shaded nodes occur in both (a) and (b), indicating
that the two models produce the same translations.

and thus need to collect different information dur-
ing decoding. For example, taking a source parse
as input, a tree-to-string decoder (e.g., (Liu et al.,
2006)) pattern-matches the source parse with tree-
to-string rules and produces a string on the tar-
get side. On the contrary, a string-to-tree decoder
(e.g., (Galley et al., 2006; Shen et al., 2008)) is a
parser that applies string-to-tree rules to obtain a
target parse for the source string. As a result, the
hypothesis structures of the two models are funda-
mentally different.

Second, translation models differ in decoding
algorithms. Depending on the generating order
of a target sentence, we distinguish between two
major categories:left-to-right andbottom-up. De-
coders that use rules with flat structures (e.g.,
phrase pairs) usually generate target sentences
from left to right while those using rules with hier-
archical structures (e.g., SCFG rules) often run in
a bottom-up style.

In response to the two challenges, we first ar-
gue that the search space of an arbitrary model can
be structured as a translation hypergraph, which
makes each model connectable to others (Section
3.1). Then, we show that a packed translation hy-
pergraph that integrates the hypergraphs of indi-
vidual models can be generated in a bottom-up
topological order, either integrated at the transla-
tion level (Section 3.2) or the derivation level (Sec-

tion 3.3).

3.1 Translation Hypergraph

Despite the diversity of translation models, they all
have to produce partial translations for substrings
of input sentences. Therefore, we represent the
search space of a translation model as a structure
calledtranslation hypergraph.

Figure 2(a) demonstrates a translation hyper-
graph for one model, for example, a hierarchical
phrase-based model. Anodein a hypergraph de-
notes a partial translation for a source substring,
except for the starting node “S”. For example,
given the example source sentence

0 fabiao1 yanjiang2

the node〈“give talks” , [0, 2]〉 in Figure 2(a) de-
notes that “give talks” is one translation of the
source stringf2

1 = “ fabiao yanjiang”.
Thehyperedgesbetween nodes denote the deci-

sion steps that produce head nodes from tail nodes.
For example, the incoming hyperedge of the node
〈“give talks” , [0, 2]〉 could correspond to an SCFG
rule:

X → 〈X1 yanjiang,X1 talks〉

Each hyperedge is associated with a number of
weights, which are the feature values of the corre-
sponding translation rules. A path of hyperedges
constitutes a derivation.



Hypergraph Decoding

node translation
hyperedge rule

path derivation

Table 1: Correspondence between translation hy-
pergraph and decoding.

More formally, a hypergraph (Klein and Man-
ning., 2001; Huang and Chiang, 2005) is a tuple
〈V,E,R〉, whereV is a set of nodes,E is a set
of hyperedges, andR is a set of weights. For a
given source sentencef = fn

1 = f1 . . . fn, each
nodev ∈ V is in the form of〈t, [i, j]〉, which de-
notes the recognition oft as one translation of the
source substring spanning fromi throughj (that
is, fi+1 . . . fj). Each hyperedgee ∈ E is a tuple
e = 〈tails(e), head(e), w(e)〉, wherehead(e) ∈
V is the consequent node in the deductive step,
tails(e) ∈ V ∗ is the list of antecedent nodes, and
w(e) is a weight function fromR|tails(e)| to R.

As a general representation, a translation hyper-
graph is capable of characterizing the search space
of an arbitrary translation model. Furthermore,
it offers a graphic interpretation of decoding pro-
cess. A node in a hypergraph denotes a translation,
a hyperedge denotes a decision step, and a path
of hyperedges denotes a derivation. A translation
hypergraph is formally a semiring as the weight
of a path is the product of hyperedge weights and
the weight of a node is the sum of path weights.
While max-derivation decoding only retains the
single best path at each node, max-translation de-
coding sums up all incoming paths. Table 1 sum-
marizes the relationship between translation hy-
pergraph and decoding.

3.2 Translation-Level Combination

The conventional interpretation of Eq. (1) is that
the probability of a translation is the sum over all
possible derivations coming from thesamemodel.
Alternatively, we interpret Eq. (1) as that the
derivations could come fromdifferent models.3

This forms the theoretical basis of joint decoding.
Although the information inside a derivation

differs widely among translation models, the be-
ginning and end points (i.e.,f ande, respectively)
must be identical. For example, a tree-to-string

3The same for alld occurrences in Section 2. For exam-
ple, ∆(e, f) might include derivations from various models
now. Note that we still useZ for normalization.

model first parsesf to obtain a source treeT (f)
and then transformsT (f) to the target sentence
e. Conversely, a string-to-tree model first parses
f into a target treeT (e) and then takes the surface
stringe as the translation. Despite different inside,
their derivations must begin withf and end withe.

This situation remains the same for derivations
between a source substringf

j
i and its partial trans-

lation t during joint decoding:

Pr(t|f j
i ) =

∑

d∈∆(t,fj

i
)

Pr(d, t|f j
i ) (7)

whered might come from multiple models. In
other words, derivations from multiple models
could be brought together for computing the prob-
ability of one partial translation.

Graphically speaking, joint decoding creates a
packedtranslation hypergraph that combines in-
dividual hypergraphs by merging nodes that have
identical translations. For example, Figure 2 (a)
and (b) demonstrate two translation hypergraphs
generated by two models respectively and Fig-
ure 2 (c) is the resulting packed hypergraph. The
solid lines denote the hyperedges of the first model
and the dashed lines denote those of the second
model. The shaded nodes are shared by both mod-
els. Therefore, the two models are combined at the
translation level. Intuitively, shared nodes should
be favored in decoding because they offer consen-
sus translations among different models.

Now the question is how to decode with multi-
ple models jointly in just one decoder. We believe
that both left-to-right and bottom-up strategies can
be used for joint decoding. Although phrase-based
decoders usually produce translations from left to
right, they can adopt bottom-up decoding in prin-
ciple. Xiong et al. (2006) develop a bottom-up de-
coder for BTG (Wu, 1997) that uses only phrase
pairs. They treat reordering of phrases as a binary
classification problem. On the other hand, it is
possible for syntax-based models to decode from
left to right. Watanabe et al. (2006) propose left-
to-right target generation for hierarchical phrase-
based translation. Although left-to-right decod-
ing might enable a more efficient use of language
models and hopefully produce better translations,
we adopt bottom-up decoding in this paper just for
convenience.

Figure 3 demonstrates the search algorithm of
our joint decoder. The input is a source language
sentencefn

1 , and a set of translation modelsM



1: procedure JOINTDECODING(fn
1 , M )

2: G← ∅
3: for l ← 1 . . . n do
4: for all i, j s.t. j − i = l do
5: for all m ∈M do
6: ADD(G, i, j,m)
7: end for
8: PRUNE(G, i, j)
9: end for

10: end for
11: end procedure

Figure 3: Search algorithm for joint decoding.

(line 1). After initializing the translation hyper-
graphG (line 2), the decoder runs in a bottom-
up style, adding nodes for each span[i, j] and for
each modelm. For each span[i, j] (lines 3-5),
the procedure ADD(G, i, j,m) add nodes gener-
ated by the modelm to the hypergraphG (line 6).
Each model searches for partial translations inde-
pendently: it uses its own knowledge sources and
visits its own antecedent nodes, just running like
a bottom-up individual decoder. After all mod-
els finishes adding nodes for span[i, j], the pro-
cedure PRUNE(G, i, j) merges identical nodes and
removes less promising nodes to control the search
space (line 8). The pruning strategy is similar to
that of individual decoders, except that we require
there must exist at least one node for each model
to ensure further inference.

Although translation-level combination will not
offer new translations as compared to single mod-
els, it changes the way of selecting promising can-
didates in a combined search space and might po-
tentially produce better translations than individ-
ual decoding.

3.3 Derivation-Level Combination

In translation-level combination, different models
interact with each other only at the nodes. The
derivations of one model are unaccessible to other
models. However, if two models produce the same
structures on the target side, it is possible to com-
bine two models within one derivation, which we
refer to asderivation-level combination.

For example, although different on the source
side, both hierarchical phrase-based and tree-to-
string models produce strings of terminals and
nonterminals on the target side. Figure 4 shows
a derivation composed of both hierarchical phrase

IP(x1:VV, x2:NN) → x1 x2

X → 〈fabiao, give〉

X → 〈yanjiang, a talk〉

Figure 4: A derivation composed of both SCFG
and tree-to-string rules.

pairs and tree-to-string rules. Hierarchical phrase
pairs are used for translating smaller units and
tree-to-string rules for bigger ones. It is appealing
to combine them in such a way because the hierar-
chical phrase-based model provides excellent rule
coverage while the tree-to-string model offers lin-
guistically motivated non-local reordering. Sim-
ilarly, Blunsom and Osborne (2008) use both hi-
erarchical phrase pairs and tree-to-string rules in
decoding, where source parse trees serve as condi-
tioning context rather than hard constraints.

Depending on the target side output, we dis-
tinguish betweenstring-targetedandtree-targeted
models. String-targeted models include phrase-
based, hierarchical phrase-based, and tree-to-
string models. Tree-targeted models include
string-to-tree and tree-to-tree models. All models
can be combined at the translation level. Models
that share with same target output structure can be
further combined at the derivation level.

The joint decoder usually runs as max-
translation decoding because multiple derivations
from various models are used. However, if all
models involved belong to the same category, a
joint decoder can also adopt the max-derivation
fashion because all nodes and hyperedges are ac-
cessible now (Section 5.2).

Allowing derivations for comprising rules from
different models and integrating their strengths,
derivation-level combination could hopefully pro-
duce new and better translations as compared with
single models.

4 Extended Minimum Error Rate
Training

Minimum error rate training (Och, 2003) is widely
used to optimize feature weights for a linear model
(Och and Ney, 2002). The key idea of MERT is
to tune one feature weight to minimize error rate
each time while keep others fixed. Therefore, each
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candidate translation can be represented as a line:

f(x) = a× x + b (8)

wherea is the feature value of current dimension,
x is the feature weight being tuned, andb is the
dotproduct of other dimensions. The intersection
of two lines is where the candidate translation will
change. Instead of computing all intersections,
Och (2003) only computescritical intersections
where highest-score translations will change. This
method reduces the computational overhead sig-
nificantly.

Unfortunately, minimum error rate training can-
not be directly used to optimize feature weights of
max-translation decoding because Eq. (5) is not a
linear model. However, if we also tune one dimen-
sion each time and keep other dimensions fixed,
we obtain a monotonic curve as follows:

f(x) =
K

∑

k=1

eak×x+bk (9)

whereK is the number of derivations for a can-
didate translation,ak is the feature value of cur-
rent dimension on thekth derivation andbk is the
dotproduct of other dimensions on thekth deriva-
tion. If we restrict thatak is always non-negative,
the curve shown in Eq. (9) will be a monotoni-
cally increasing function. Therefore, it is possible
to extend the MERT algorithm to handle situations
where multiple derivations are taken into account
for decoding.

The key difference is the calculation of criti-
cal intersections. The major challenge is that two
curves might have multiple intersections while
two lines have at most one intersection. Fortu-
nately, as the curve is monotonically increasing,

we need only to find theleftmostintersection of
a curve with other curves that have greater values
after the intersection as a candidate critical inter-
section.

Figure 5 demonstrates three curves:t1, t2, and
t3. Suppose that the left bound ofx is 0, we com-
pute the function values fort1, t2, andt3 atx = 0
and find thatt3 has the greatest value. As a result,
we choosex = 0 as the first critical intersection.
Then, we compute the leftmost intersections oft3
with t1 andt2 and choose the intersection closest
to x = 0, that isx1, as our new critical intersec-
tion. Similarly, we start fromx1 and findx2 as the
next critical intersection. This iteration continues
until it reaches the right bound. The bold curve de-
notes the translations we will choose over different
ranges. For example, we will always chooset2 for
the range[x1, x2].

To compute the leftmost intersection of two
curves, we divide the range from current critical
intersection to the right bound into many bins (i.e.,
smaller ranges) and search the bins one by one
from left to right. We assume that there is at most
one intersection in each bin. As a result, we can
use the Bisection method for finding the intersec-
tion in each bin. The search process ends immedi-
ately once an intersection is found.

We divide max-translation decoding into three
phases: (1) build the translation hypergraphs, (2)
generaten-best translations, and (3) generaten′-
best derivations. We apply Algorithm 3 of Huang
and Chiang (2005) forn-best list generation. Ex-
tended MERT runs onn-best translations plusn′-
best derivations to optimize the feature weights.
Note that feature weights of various models are
tuned jointly in extended MERT.

5 Experiments

5.1 Data Preparation

Our experiments were on Chinese-to-English
translation. We used the FBIS corpus (6.9M +
8.9M words) as the training corpus. For lan-
guage model, we used the SRI Language Mod-
eling Toolkit (Stolcke, 2002) to train a 4-gram
model on the Xinhua portion of GIGAWORD cor-
pus. We used the NIST 2002 MT Evaluation test
set as our development set, and used the NIST
2005 test set as test set. We evaluated the trans-
lation quality usingcase-insensitiveBLEU metric
(Papineni et al., 2002).

Our joint decoder included two models. The



Max-derivation Max-translation
Model Combination

Time BLEU Time BLEU

hierarchical N/A 40.53 30.11 44.87 29.82
tree-to-string N/A 6.13 27.23 6.69 27.11

translation N/A N/A 55.89 30.79
both

derivation 48.45 31.63 54.91 31.49

Table 2: Comparison of individual decoding and joint decoding on average decoding time (sec-
onds/sentence) and BLEU score (case-insensitive).

first model was the hierarchical phrase-based
model (Chiang, 2005; Chiang, 2007). We obtained
word alignments of training data by first running
GIZA++ (Och and Ney, 2003) and then applying
the refinement rule “grow-diag-final-and” (Koehn
et al., 2003). About 2.6M hierarchical phrase pairs
extracted from the training corpus were used on
the test set.

Another model was the tree-to-string model
(Liu et al., 2006; Liu et al., 2007). Based on
the same word-aligned training corpus, we ran a
Chinese parser on the source side to obtain 1-best
parses. For 15,157 sentences we failed to obtain
1-best parses. Therefore, only 93.7% of the train-
ing corpus were used by the tree-to-string model.
About 578K tree-to-string rules extracted from the
training corpus were used on the test set.

5.2 Individual Decoding Vs. Joint Decoding

Table 2 shows the results of comparing individ-
ual decoding and joint decoding on the test set.
With conventional max-derivation decoding, the
hierarchical phrase-based model achieved a BLEU
score of 30.11 on the test set, with an average de-
coding time of 40.53 seconds/sentence. We found
that accounting for all possible derivations in max-
translation decoding resulted in a small negative
effect on BLEU score (from 30.11 to 29.82), even
though the feature weights were tuned with respect
to BLEU score. One possible reason is that we
only usedn-best derivations instead of all possi-
ble derivations for minimum error rate training.

Max-derivation decoding with the tree-to-string
model yielded much lower BLEU score (i.e.,
27.23) than the hierarchical phrase-based model.
One reason is that the tree-to-string model fails
to capture a large amount of linguistically unmo-
tivated mappings due to syntactic constraints. An-
other reason is that the tree-to-string model only
used part of the training data because of pars-
ing failure. Similarly, accounting for all possible
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Figure 6: Node sharing in max-translation de-
coding with varying span widths. We retain at
most 100 nodes for each source substring for each
model.

derivations in max-translation decoding failed to
bring benefits for the tree-to-string model (from
27.23 to 27.11).

When combining the two models at the trans-
lation level, the joint decoder achieved a BLEU
score of 30.79 that outperformed the best result
(i.e., 30.11) of individual decoding significantly
(p < 0.05). This suggests that accounting for
all possible derivations from multiple models will
help discriminate among candidate translations.

Figure 6 demonstrates the percentages of nodes
shared by the two models over various span widths
in packed translation hypergraphs during max-
translation decoding. For one-word source strings,
89.33% nodes in the hypergrpah were shared by
both models. With the increase of span width, the
percentage decreased dramatically due to the di-
versity of the two models. However, there still ex-
ist nodes shared by two models even for source
substrings that contain 33 words.

When combining the two models at the deriva-
tion level using max-derivation decoding, the joint
decoder achieved a BLEU score of 31.63 that out-
performed the best result (i.e., 30.11) of individ-



Method Model BLEU

hierarchical 30.11
individual decoding

tree-to-string 27.23

system combination both 31.50

joint decoding both 31.63

Table 3: Comparison of individual decoding, sys-
tem combination, and joint decoding.

ual decoding significantly (p < 0.01). This im-
provement resulted from the mixture of hierarchi-
cal phrase pairs and tree-to-string rules. To pro-
duce the result, the joint decoder made use of
8,114 hierarchical phrase pairs learned from train-
ing data, 6,800 glue rules connecting partial trans-
lations monotonically, and 16,554 tree-to-string
rules. While tree-to-string rules offer linguistically
motivated non-local reordering during decoding,
hierarchical phrase pairs ensure good rule cover-
age. Max-translation decoding still failed to sur-
pass max-derivation decoding in this case.

5.3 Comparison with System Combination

We re-implemented a state-of-the-art system com-
bination method (Rosti et al., 2007). As shown
in Table 3, taking the translations of the two indi-
vidual decoders as input, the system combination
method achieved a BLEU score of 31.50, slightly
lower than that of joint decoding. But this differ-
ence is not significant statistically.

5.4 Individual Training Vs. Joint Training

Table 4 shows the effects of individual training and
joint training. By individual, we mean that the two
models are trained independently. We concatenate
and normalize their feature weights for the joint
decoder. By joint, we mean that they are trained
together by the extended MERT algorithm. We
found that joint training outperformed individual
training significantly for both max-derivation de-
coding and max-translation decoding.

6 Related Work

System combination has benefited various NLP
tasks in recent years, such as products-of-experts
(e.g., (Smith and Eisner, 2005)) and ensemble-
based parsing (e.g., (Henderson and Brill, 1999)).
In machine translation, confusion-network based
combination techniques (e.g., (Rosti et al., 2007;
He et al., 2008)) have achieved the state-of-the-
art performance in MT evaluations. From a dif-

Training Max-derivation Max-translation
individual 30.70 29.95

joint 31.63 30.79

Table 4: Comparison of individual training and
joint training.

ferent perspective, we try to combine different ap-
proaches directly in decoding phase by using hy-
pergraphs. While system combination techniques
manipulate only the final translations of each sys-
tem, our method opens the possibility of exploit-
ing much more information.

Blunsom et al. (2008) first distinguish between
max-derivation decoding and max-translation de-
coding explicitly. They show that max-translation
decoding outperforms max-derivation decoding
for the latent variable model. While they train the
parameters using a maximuma posterioriestima-
tor, we extend the MERT algorithm (Och, 2003)
to take the evaluation metric into account.

Hypergraphs have been successfully used in
parsing (Klein and Manning., 2001; Huang and
Chiang, 2005; Huang, 2008) and machine trans-
lation (Huang and Chiang, 2007; Mi et al., 2008;
Mi and Huang, 2008). Both Mi et al. (2008) and
Blunsom et al. (2008) use a translation hyper-
graph to represent search space. The difference is
that their hypergraphs are specifically designed for
the forest-based tree-to-string model and the hier-
archical phrase-based model, respectively, while
ours is more general and can be applied to arbi-
trary models.

7 Conclusion

We have presented a framework for including mul-
tiple translation models in one decoder. Repre-
senting search space as a translation hypergraph,
individual models are accessible to others via shar-
ing nodes and even hyperedges. As our decoder
accounts for multiple derivations, we extend the
MERT algorithm to tune feature weights with re-
spect to BLEU score for max-translation decod-
ing. In the future, we plan to optimize feature
weights for max-translation decoding directly on
the entire packed translation hypergraph rather
than onn-best derivations, following the lattice-
based MERT (Macherey et al., 2008).
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