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Abstract

PCA can be smarter and makes more sensible pro-
jections. In this paper, we propose smart PCA, an
extension to standard PCA to regularize and incor-
porate external knowledge into model estimation.
Based on the probabilistic interpretation of PCA,
the inverse Wishart distribution can be used as the
informative conjugate prior for the population co-
variance, and useful knowledge is carried by the
prior hyperparameters. We design the hyperparam-
eters to smoothly combine the information from
both the domain knowledge and the data itself. The
Bayesian point estimation of principal components
is in closed form. In empirical studies, smart PCA
shows clear improvement on three different criteria:
image reconstruction errors, the perceptual quality
of the reconstructed images, and the pattern recog-
nition performance.

I ntroduction

Principal components analysis (PCAJolliffe, 2007 is a

as a specific case of factor analysis with isotropic Gaussian
noise, and the use of the inverse Wishart distribution as the
natural conjugate prior for the covariance matrix in mualtiv

ate normal distributiofGelmanet al,, 2003, which has been
recently investigated by researchers in statisi@own et

al., 2000; Press, 2005machine learningKlami and Kaski,
2007, image processing and computer visi®@midl et al,,
2001; Woodet al, 2004. Based on previous work, a natu-
ral way to improve PCA is to incorporate external knowledge
through the prior distribution on model parameters, which i
the concern of this paper. External knowledge can be em-
bedded into PCA through the inverse Wishart distribution,
and the result of using such a conjugate prior is a straight-
forward Bayesian point estimation of principal components
Given external knowledge in terms of feature relevance or
distance, we design the prior hyperparameters to inclugle th
information from both external knowledge and the datafitsel
so that the resulting prior is informative and robust. We dis
cuss the choice of feature distance for image processing. We
hope this will encourage domain experts to design featgre di
tance or relevance functions suitable for their own domains
Empirical studies of smart PCA show promising results on
overfitting control and feature construction, in terms caga

standard technique for dimensionality reduction and featu

extraction. It is widely used in multivariate statisticsam . o

chine learning, image processing and computervision,wher'mages' and pattern recognition performance.

hundreds or even thousands of features are confrontedn Giv

infinite data, PCA discovers optimal principal component Smart PCA

in terms of variance maximization, or equivalently, recon-With large numbers of features and only limited amount of

struction error minimizatiofJolliffe, 2004. However, in  data, PCA will overfit the sample covariance as an estima-

situations with large numbers of features and only a lim-tion of the population covariance. To address this probkem,

ited amount of observations, covariance estimation is difnatural way is to regularize and incorporate external knowl

ficult and PCA will inevitably overfit the sample covari- edge through a prior based on the probabilistic interpmtat

ance. Another way to understand this problem is the probef PCA [Tipping and Bishop, 1999; Roweis, 1997n this

abilistic interpretation of PCATipping and Bishop, 1999; section, we introduce smart PCA. Section 2.1 reviews proba-

Roweis, 199F, where principal components corresponds tobilistic PCA. Section 2.2 discusses the use of inverse Wisha

the maximum likelihood estimation (MLE) of parameters in distribution as the conjugate prior of probabilistic PCAdan

a latent variable model, and thus tend to overfit limited obse the Bayesian point estimation of principal components- Sec

vations in high-dimensional space. tion 2.3 focuses on using external knowledge in forms of fea-
To tackle this problem, we propose to regularize and incorture distance to construct the hyperparameters of the. prior

porate external knowledge into PCA via the inverse Wishart L

prior, and as a result, PCA can be smarter, make more seng-1 Probabilistic PCA

ble projections, and construct more useful features. Thisba The probabilistic interpretation of PC[Xipping and Bishop,

of our work includes the probabilistic interpretation of #C 1999; Roweis, 1997considers PCA as a special case of fac-

[Tipping and Bishop, 1999; Roweis, 199Which views PCA  tor analysis with isotropic Gaussian noise. In this section

reconstruction errors, the perceptual quality of recarcséd



we briefly review this probabilistic framework. Itis asswie 2.2 Inverse-Wishart distribution and smart PCA
that each observegtdimensional vectoy was transformed | this section we discuss the inverse Wishart distribution

from k-dimensional latent variables wherek < p. This  [Gelmanet al, 2003 as the prior for the population covari-
transformation is determined byyax k matrix W and ap-  ance in probabilistic PCA and the resulting Bayesian point

dimensional isotropic Gaussian noise estimation of principal components.
y=Wx +¢ 1) Consider thep x p populatiqn cova_riancE_ in (5). We
~ N(0,1) 2 say thaf follows an inverse Wishart distributiafiv, (G, v)
X ’ with positive definite scale matri& and degree of freedom
€ ~ N(0,0°T) (3) v > 2pif [Press, 2005; Gelmaet al,, 2003:
Note that latent variablesfollow standardi-d normal distri- co|G|v—P=1)/2 1 .
bution A/ (0, T) and isotropic noiseis p-d normal distribution p(ZIG,v) = m—u/ge‘rp(_§tr(2 G)) (11)

N (0, o%T). This formula also omits the population meah _ -
Sincex ande are independent Gaussian, observed variablewherec, is a normalization constant.

y also obeys multivariate normal distribution: The mode of an inverse Wishart distribution is given by:
y ~ N0, WWT 4 521) (4) Mode(3|G,v) = G/v (12)
To obtain standard PCA, we take the limt — 0% Adopted from[Chen, 1978 we reparametrize the inverse
Wishart distribution as:
y~N(0,%) (5)
S — lim WWT & 21 Qv ~ IW, (v, v) (13)

020t

wherev is also the degree of freedom, afidrepresents the
whereX = lim,2_o+ WWT + 21 is the population co- prespecified structural informaticabout: in that:

variance. By limitings? — 0%, we rely onW to explain the _ _
observed variableg (i.e., X = WWT). Given N observa- Mode(%|Q, v) = vQ/v = © (14)
tionsY = {y1,y2,...,yn}, the log-likelihood is: Inverse Wishart distribution is the conjugate prior of the
N population covariance in multivariate normal distributio
LZY) x ——={In|Z| + tr(Z7'S)} (6) [Press, 2005; Gelmaet al, 2003. SupposeV observations
2 Y = {y1,y2,...,yn} with N(0, %), whereX is assumed
whereS is thesamplecovariance matrix: to follow an inverse Wishart priafW, (v€2, v). The posterior
L distribution of3: still follows an inverse Wishart:
S=+ Zyiy? 7) |, v, Y ~ IW, (1" Q% v*) (15)
=1 where the parameters of the posterior distribution are:
This log-likelihood is defined o = lim,2_,o+ WWT + N
021 and is maximized whe[Tipping and Bishop, 1999 N vVi=v+N (16)
* 14
WA,ILZGJ%+U,€(A,€_U2I)% (8) Q :(N+V)S+(N+V)Q (17)

Note that2* is a weighted combination of the prior hyperpa-
rameter2 and the sample covarian8eand is also the mode
of the posterior (inverse Wishart) distribution.

Recall in (8) that the solution to standard PCA is found

y maximizing the log-likelihood (6) with respect tW.

iven an informative priod W,(v2,v) on X, it is natural
that maximum likelihood estimation (MLE) is replaced by
the maximum a posteriori (MAP) estimation. In other words,
the Bayesian point estimation of principal componentseorr
sponds to maximizing the posterior densitydin (15) with
respect toW (X = lim,>_,o+ WWT +521). Based on (11),
E(xy) = 0211_1)%+ (WTW + o°1)"'WTy (9)  the log-posterior-density of (15) can be written as:

where the columns gfx & matrix U, arek eigenvectors (i.e.,
principal components) of the sample covariaSaghich cor-
respond to the: largest eigenvalues, amlly, is the k x k
diagonal matrix containing thegeeigenvalues. In this sense,
principal components of standard PCA are recovered, an
the corresponding projection and reconstruction get areas
able probabilistic interpretatiolTipping and Bishop, 1999;
Roweis, 1997. More specifically, given an observeet vec-

tor y, its orthogonal projection into the-d latent space can
be explained as the conditional expectatiox @fiveny:

Also, the reconstruction from &-d latent variablex to the LP(Z|Q*, ") x _%{111 |=] + tr(zfln*)} (18)

p-d space corresponds to the conditional expectatign of
- Note that this log-posterior-density is exactly the sanrenfo
B(ylx) = Wx (10)  asthe log-likelihood in (6), except thdtand N are replaced
The factor analysis usually includes the population mean PY §2* andv*. In this sense, maximum a posteriori (MAP)
y = Wx + u + e. The optimal estimation fop is the sample ~ €stimation of the) x k matrix W is given by:

mean. In practice, people firstly subtract the sample mean the . gy 1
observations and then assume zero ni&oweis, 1997. Waap = O_glf%+ UL (A —o7T)> (19)



This is the same form as (8), but hdig andA; are the first  limited observations, the estimation of standard devetio-

k principal eigenvectors and eigenvalue€tfin (17) rather  volves onlyp parameters and is much more stable.

than sample covarian& To this end, thé principal compo- The third step is to estimaté, the prespecified correlation
nents are discovered in a Bayesian setting and this pragessstructure. Adapted fron{Yaglom, 1987, a general form of
the basic framework ddmart PCA. Also, as in (9) and (10), the correlation function given the feature distardds:

the projection and reconstruction under smart PCA stilehav A6

reasonable probabilistic interpretations. Cyj = eap(— 102 i)y (22)

2.3 Hyperparameter design . o

. . . wherea > 0 is a parameter. Similar forms have been used
This section focuses on the hyperparameters of the inversg, covariance estimatiofBrown et al, 2000; Krupka and
Wishart prior in (13). In smart PCA, principal components Tishhy, 2007, but this class of functions are more suitable
are extracted from2*, which is defined in (17). Itis a o egtimating correlation since their outputs are in thegea

weighted combination of the sample covariait@nd the g 1] Note thaix needs to be appropriately specified accord-
hyperparametef2, where{2 represents the prespecified C0- j,q g the scale of functiod. For example, ifa is several

variance structure. The strength of this combination is-conqers of magnitude larger than the maximum value of fea-
tr_oIIed byv, the deg_ree of freedom of _the prior. For the de”'ture distancel, all the elements irC will be closed tol,
sity of (13) to be validy need to be an integer larger tham —\ith oyt regard to the information containeddn To specify

But in practice, there is no reason for follow this restaati a, we compute the following two Statistics: R).edian: the

In smart PCAy represents how much we trust the hyperpa-negian element in the samperrelation matrix, which can

rameter(2, and it can be set empirically as any non-negativeye reagily obtained from the sample covariance marig)
real number. When it is set as zef®; is exactly the sample ;' - “iha median element of the feature distance matrix,

covariances, and smart PCA is equal to standard PCA. which is computed using distance functiénBased on these
A central problem of smart PCA is the construction of hy- .o statisticsp is set to meet the following criteria:

perparameteR2, which represents prespecific structural infor-
mation about covariance. Domain knowledge can be incor- Amedian
porated inta so that smart PCA can extract more sensible Pmedian = €LP (_T) (23)
principal components. In this section, we assume the gener
form of the external knowledge is some feature distance (o
relevance) function:

ote thatp,,.cqiqn IS @ robust statistic on sample, character-
1zing the typical level of observed feature correlations@|l
d(f;, ) (20) dmedian 1S @ robust statistic on external knowledge, describ-

. . . . . ing the typical level of feature distance. In this sense,dhe
wheref; andf; are theith and;th features (i.e., dimensions) connecting these two statistics is a reliable choice.

in the observation space. The design of domain-dependent
feature distance will be mentioned in Section 3. . .

It is challenging to find a direct mapping from a given fea- 3 Featurg Distance Functions for Image
ture distance functiod() to the covariance structuf@. The Processing

feature distance can be in any scale, and covariance is alsog.qtion 2 proposes the general framework of smart PCA. The

scale-free measure. For example, simply scaling up th@valyags pronlem left is to design domain-dependent feature dis

gf each f%aturg Wlll(;ncreasek thelccévarlar_}lce, bu':]the fea_turtances with external knowledge. This section provides two
Istance based on domain knowledge will not change sincg, o mpjes for image precessing and computer vision.
the features themselves don’t change. To overcome this prob

lem, we combine both knowledge from the feature distances { Spatial distance of pixels
function and information from the data itself to constrext

Firstly, a covariance matrix can be decomposed into starifupkaet al. [Krupka and Tishby, 20q7propose a general
dard deviation and correlatidelmanet al, 2004. Inspired function to measure feature distance. Given a vector of meta

by this, thep x p covariance structur® can be written as: features de.scribing each feature, fez?\tqre di_stance cadibe a
tance function on meta-features. This is suitable for campu
Q=VCV (21)  vision tasks where features are pixels and meta-featuees ar
whereV = Diag(o1, 03, ..., 0,) is ap x p diagonal matrix, the location of pixels. In our experiments, we use the Euclid

andC is ap x p positive definite matrix sinc is required ~ 1@n distance of the location of pixels as the feature distanc

to be definite positive as in inverse Wishart distributioheT . .
intuition of this decomposition is: the diagonal elemerits o 32 Geodesic distance of pixels
'V contain information about standard deviation &hdepre-  Intuitively, pixels in the same stroke are highly relevantia
sents the prespecifiemrrelationstructure. In this sense, the likely to be more correlated. On the other hand, pixels depic
construction of2 consists of two partsV andC. ing two distinct entities in an image tend to be independent.
Secondly,V = Diag(o1,09,...,0,) is estimated from Inspired by IsomapTenenbaunet al, 200d, we propose a
data, i.e., it is set as the maximum likelihood estimation offeature distance to capture this information. The proposed
the standard deviation in each dimension. Although the MLEdistance measure makes use of both meta-features (location
estimation of the population covariancemtlimensional fea-  of pixels) and value of features (e.g., grayscale valued, an
ture space involve®(p?) parameters and tends to overfit the is computed as the following stepk) Define neighborhoad



the neighborhood of a pixel is defined as the immediate |
bors in eight possible directions. For pixels not in the
ary of the image, the eight surrounding pixels are neigl
For pixels in the boundary, only three or five neighbor
ist. 2) Compute local metricgiven an image, the dista
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Reconstruction error
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between two neighboring pixels is computed as the ¢

. . . . ‘e On test data . n test data
ence of their grayscale values. Given a collection of i - _ | - n |
the local distance of two neighboring pixels is averagec ... Relative prior strengih vIN Relative prior strength: viN

each image.3) Construct neighborhood grapltonstruct a

graph where each node denotes a pixel. Connect neighborirpggure 1: Reconstruction error usirty principal compo-

pixels by undirected edges and set the weight of each edggents. Left: spatial distance used in Smart PCA; right:
as the local distance of two pixeld) Compute shortest path geodesic distance used in Smart PCA.

distance shortest path distance is computed by efficient alao-

rithms[Tenenbaunet al, 200d. 5) Regularizationa sme L S
quantity is added to the diagonal elements to make tr T i
tance matrix definite positive if necessary. Finally, the
tance of two features (pixels) is their shortest path distze

Reconstruction error
Reconstruction error

4 Empirical Study

—— On training data

Based on a benchmark data set in computer vision, we ——

—— On training data
+= - On test data

1 2 3 4
Relative prior strength: v/N

1 2 3 4 5
Relative prior strength: v/N

the performance of smart PCA as a tool for dimensio .
reduction and feature construction. We evaluate the perfor

mance using three criteria: 1) image reconstruction ergrs Figure 2: Reconstruction error usirig principal compo-
the perceptual quality of the reconstructed images; 3ppalt nents. Left: spatial distance used in Smart PCA; right:

recognition (i.e., classification) performance using gipal geodesic distance used in Smart PCA.
components. With moderate external knowledge as men-

tioned in section 3, smart PCA shows clear improvement over

standard PCA on all these criteria. We have discussed two distance functions on pixels in Sec-
. ) tion 3. In our experiments, we study both of them: 1) the
4.1 Experimental Settings spatial (i.e., Euclidian) distance of pixel location (xig)the

The benchmark dataset used in this paper is the Yale fadenage; 2) the geodesic distance of pixels.
database, which includés5 image forl5 people and thusl .
images for each person. Images are resizé@to 32 pixels, 4.2 Empirical Results

indicating a feature space 0624 dimensions. The result of |, this section, we discuss empirical results based on tiriee
each experimentis average ow@random runs. In each run, teria: 1) image reconstruction errors; 2) the perceptualityu

training and testing examples are selected as follows: ransf the reconstructed images; 3) pattern recognition rates.
domly selectings images for each individual as training data

and the rest as testing data, which leads to totillyraining ~ Reconstruction errors
and 75 testing examples in each random run. In each runitis well known that the principal components found by stan-
both the population mean and principal components are estidard PCA is optimal in terms of reconstruction error mini-
mated from training examples and applied to each previouslynization. However, this optimality is true only on the train
unseen testing example. ing examples, i.e., on the data where the PCA is learned. In
The two parameters of smart PCA dReandv, which are  our empirical study, we construct PCA and smart PCA from
the hyperparameters for the inverse Wishart prior as showa set of training images, and measure the reconstruction er-
in (13). TheQ? is automatically determined as stated in Sec-rors on both the training images and a set of unseen testing
tion 2.3, andv is empirically determined. Recall in (17) that images. Experimental results show that standard PCA over-
v control the strength of covariance pri@when it is com- fits the training examples, and smart PCA corrects this bias.
bined with the sample covarianBe To gain a comprehensive We run experiments with different parameteand distance
understanding of the effect af, we test different choices. functions, and results are averaged oM&random runs.
Given the number of observations (i.e, training examplés) The reconstruction error on an image is defined as the root
we test differentv by choosing different (i.e., “relative ~ mean square error (RMSE) over the reconstruction error of
prior strength” w.r.t. the number of training examples)fro all pixels, and the reconstruction error on an set of images i
the following range:{0, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,  the average over all images in the set. The results on recon-
0.4, 0.5, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, 5.0, 6.0, 7.0, 8.0, 10.0,  struction errors are shown in Figure 1 and Figure 2, corre-
12.0,15.0}. The results will indicate the impact ofon smart ~ sponding to using the first0 and50 principal components,
PCA. For example, whenis setad .ON (i.e., - = 1.0),the  respectively.
posterior hyperparamet&* in (17) is exactly the average of  In the figures, the standard PCA corresponds to the choice
sample covarianc8 and the priof2. Principal components £ = 0. The reconstruction error is measured on both training
are extracted based on the resulting, as shown in (19). images and unseen testing images, and shown as the solid
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Per ceptual quality of reconstructed images

The reconstruction error is not a comprehensive measure for
the performance of dimensionality reduction techniques: t
reconstructed images with same error can provide veryrdiffe
ent perceptual qualities. A "smart“ model is able to prevent
significant perceptual loss even if a considerable amount of
information is lost due to dimensionality reduction. There
fore, we also study the perceptual quality of the recongtaic
(testing) images using standard PCA and smart PCA. We use
150 principal components to ensure an acceptable perceptual
quality for both models (i.e., dimensionality reduced from
1024 to 150). For smart PCA, we report the results using
geodesic pixel distance and = 1. Figure 3 and Figure 4
show a few examples of image reconstruction. Each figure
containsl5 images: three images in a column corresponds to

a testing example, where the three images from the first row
to the third row are the original image, the standard PCA re-
construction, and the smart PCA reconstruction, respelgtiv
Figure 3 and Figure 4 show that smart PCA leads to recon-
structed images with significantly better perceptual duali
As mentioned in Section 3.2, geodesic distance of pixels rep
dgsents the belief that pixels in the same stroke are refevan
and likely to be more correlated in the principal components
s a result, images reconstructed by smart PCA tend to be
ocally coherent (e.g., mouth, glasses, beard, eyes, éte)
to regularization on the estimation of principal composent

Figure 4: Original images vs. PCA reconstructions ugisg
PCs vs. Smart PCA reconstructions usifig§ PCs.

curve and dotted curve, respectively. The black dots on ea
curve is the choices of; as mentioned in Section 4.1. The
curve is interpolated from these dots. We don't display th
entire range ofg;, since certain choices are lack of interest
and will change of scale of the plots.

The results of our experiments show thBtStandard PCA  Pattern recognition errors

does overfit the training data, and smart PCA is able to coranother benefit of dimension reduction is to prevent theeurs
rect this problem. In our experiments, the best reconstmict of dimensionality on statistical modeling. We also include
error on training images is always given by standard PCAg preliminary study on pattern recognition. The problem is
(& = 0), while the lowest reconstruction error on unseena very hardl5-class recognition task. We train the Nearest-
testing images is always obtained by smart PGA & 0).  Neighbor (NN) classifier oa0 principal components of train-

2) The need for regularization (i.e., Smart PCA) is more evi-ing examples, with different.. The experiment is repeated
dence when more principal components are estimated. Froghd averaged ove) random runs. The results are shown in
the figures it is clear that smart PCA provides more improveigure 5. Note that. = 0 corresponds to standard PCA, and
ment over PCA when we reconstruct images usi@rin-  the dashed horizonal line is the performance of NN classifier
cipal components. This is reasonable in that more principabn raw pixels (i.e., baseline without dimension reduction)
components indicates more coefficients to estimate, wisich iThe results indicate that PCA can construct useful features

more likely to suffer from overfitting3) With moderate do- (j.e., beat the baseline model) only after being regulatize
main knowledge in the form of feature distance, smart PCA is

able to control overfitting and improve reconstruction perf :
mance. Well-designed feature distance functions thatdont 5 Conclusion
rich domain knowledge lead to better performance of smarPCA can be smarter and makes more sensible projections. In
PCA. This is supported by our experiments where smart PCAhis paper, we propose to regularize and incorporate eadtern
using the geodesic distance of pixels performs better thaknowledge into PCA. Based on the probabilistic interpreta-
smart PCA using the spatial distance of pixels. tion of PCA, the inverse Wishart distribution is used as the



conjugate prior for the population covariance in factorlana tribution to model the noise covariance in factor analysis f
ysis, and domain knowledge can be transferred by the priodata with a low signal-to-noise ratio, inhomogeneous, or co
hyperparameters. We design the hyperparameters to comrelated nois¢Smidlet al,, 2001. In other words, the noise
bine the information from both the external knowledge andin eq. (1) is not assumed to be isotropic or negligible inescal
the data itself, so that the prior is informative and robustand thus eq. (3) is no longer valid and the covariantkis
The Bayesian point estimation of principal components is inreplaced by a general covarianCe which is modeled by an
closed form. Empirical studies show clear improvement oninverse Wishart distribution.
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