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Abstract

PCA can be smarter and makes more sensible pro-
jections. In this paper, we propose smart PCA, an
extension to standard PCA to regularize and incor-
porate external knowledge into model estimation.
Based on the probabilistic interpretation of PCA,
the inverse Wishart distribution can be used as the
informative conjugate prior for the population co-
variance, and useful knowledge is carried by the
prior hyperparameters. We design the hyperparam-
eters to smoothly combine the information from
both the domain knowledge and the data itself. The
Bayesian point estimation of principal components
is in closed form. In empirical studies, smart PCA
shows clear improvement on three different criteria:
image reconstruction errors, the perceptual quality
of the reconstructed images, and the pattern recog-
nition performance.

1 Introduction
Principal components analysis (PCA)[Jolliffe, 2002] is a
standard technique for dimensionality reduction and feature
extraction. It is widely used in multivariate statistics, ma-
chine learning, image processing and computer vision, where
hundreds or even thousands of features are confronted. Given
infinite data, PCA discovers optimal principal components
in terms of variance maximization, or equivalently, recon-
struction error minimization[Jolliffe, 2002]. However, in
situations with large numbers of features and only a lim-
ited amount of observations, covariance estimation is dif-
ficult and PCA will inevitably overfit the sample covari-
ance. Another way to understand this problem is the prob-
abilistic interpretation of PCA[Tipping and Bishop, 1999;
Roweis, 1997], where principal components corresponds to
the maximum likelihood estimation (MLE) of parameters in
a latent variable model, and thus tend to overfit limited obser-
vations in high-dimensional space.

To tackle this problem, we propose to regularize and incor-
porate external knowledge into PCA via the inverse Wishart
prior, and as a result, PCA can be smarter, make more sensi-
ble projections, and construct more useful features. The basis
of our work includes the probabilistic interpretation of PCA
[Tipping and Bishop, 1999; Roweis, 1997], which views PCA

as a specific case of factor analysis with isotropic Gaussian
noise, and the use of the inverse Wishart distribution as the
natural conjugate prior for the covariance matrix in multivari-
ate normal distribution[Gelmanet al., 2003], which has been
recently investigated by researchers in statistics[Brown et
al., 2000; Press, 2005], machine learning[Klami and Kaski,
2007], image processing and computer vision[Smidl et al.,
2001; Woodet al., 2006]. Based on previous work, a natu-
ral way to improve PCA is to incorporate external knowledge
through the prior distribution on model parameters, which is
the concern of this paper. External knowledge can be em-
bedded into PCA through the inverse Wishart distribution,
and the result of using such a conjugate prior is a straight-
forward Bayesian point estimation of principal components.
Given external knowledge in terms of feature relevance or
distance, we design the prior hyperparameters to include the
information from both external knowledge and the data itself,
so that the resulting prior is informative and robust. We dis-
cuss the choice of feature distance for image processing. We
hope this will encourage domain experts to design feature dis-
tance or relevance functions suitable for their own domains.
Empirical studies of smart PCA show promising results on
overfitting control and feature construction, in terms of image
reconstruction errors, the perceptual quality of reconstructed
images, and pattern recognition performance.

2 Smart PCA
With large numbers of features and only limited amount of
data, PCA will overfit the sample covariance as an estima-
tion of the population covariance. To address this problem,a
natural way is to regularize and incorporate external knowl-
edge through a prior based on the probabilistic interpretation
of PCA [Tipping and Bishop, 1999; Roweis, 1997]. In this
section, we introduce smart PCA. Section 2.1 reviews proba-
bilistic PCA. Section 2.2 discusses the use of inverse Wishart
distribution as the conjugate prior of probabilistic PCA and
the Bayesian point estimation of principal components. Sec-
tion 2.3 focuses on using external knowledge in forms of fea-
ture distance to construct the hyperparameters of the prior.

2.1 Probabilistic PCA
The probabilistic interpretation of PCA[Tipping and Bishop,
1999; Roweis, 1997] considers PCA as a special case of fac-
tor analysis with isotropic Gaussian noise. In this section



we briefly review this probabilistic framework. It is assumed
that each observedp-dimensional vectory was transformed
from k-dimensional latent variablesx wherek ≤ p. This
transformation is determined by ap × k matrix W and ap-
dimensional isotropic Gaussian noiseǫ:

y = Wx + ǫ (1)

x ∼ N (0, I) (2)

ǫ ∼ N (0, σ2I) (3)

Note that latent variablesx follow standardk-d normal distri-
butionN (0, I) and isotropic noiseǫ isp-d normal distribution
N (0, σ2I). This formula also omits the population meanµ1.
Sincex andǫ are independent Gaussian, observed variables
y also obeys multivariate normal distribution:

y ∼ N (0,WWT + σ2I) (4)

To obtain standard PCA, we take the limitσ2 → 0+:

y ∼ N (0,Σ) (5)

Σ = lim
σ2

→0+
WWT + σ2I

whereΣ = limσ2
→0+ WWT + σ2I is the population co-

variance. By limitingσ2 → 0+, we rely onW to explain the
observed variablesy (i.e.,Σ = WWT). GivenN observa-
tionsY = {y1,y2, . . . ,yN}, the log-likelihood is:

L(Σ|Y) ∝ −
N

2
{ln |Σ| + tr(Σ−1S)} (6)

whereS is thesamplecovariance matrix:

S =
1

N

N∑

i=1

yiy
T
i (7)

This log-likelihood is defined onΣ = limσ2
→0+ WWT +

σ2I and is maximized when[Tipping and Bishop, 1999]:

WML = lim
σ2

→0+
Uk(Λk − σ2I)

1
2 (8)

where the columns ofp×k matrixUk arek eigenvectors (i.e.,
principal components) of the sample covarianceS which cor-
respond to thek largest eigenvalues, andΛk is the k × k
diagonal matrix containing thesek eigenvalues. In this sense,
principal components of standard PCA are recovered, and
the corresponding projection and reconstruction get a reason-
able probabilistic interpretation[Tipping and Bishop, 1999;
Roweis, 1997]. More specifically, given an observedp-d vec-
tor y, its orthogonal projection into thek-d latent space can
be explained as the conditional expectation ofx giveny:

E(x|y) = lim
σ2

→0+
(WTW + σ2I)−1WTy (9)

Also, the reconstruction from ak-d latent variablex to the
p-d space corresponds to the conditional expectation ofy:

E(y|x) = Wx (10)

1The factor analysis usually includes the population meanµ:
y = Wx + µ + ǫ. The optimal estimation forµ is the sample
mean. In practice, people firstly subtract the sample mean from the
observations and then assume zero mean[Roweis, 1997].

2.2 Inverse-Wishart distribution and smart PCA
In this section we discuss the inverse Wishart distribution
[Gelmanet al., 2003] as the prior for the population covari-
ance in probabilistic PCA and the resulting Bayesian point
estimation of principal components.

Consider thep × p population covarianceΣ in (5). We
say thatΣ follows an inverse Wishart distributionIWp(G, ν)
with positive definite scale matrixG and degree of freedom
ν > 2p if [Press, 2005; Gelmanet al., 2003]:

p(Σ|G, ν) =
c0|G|(ν−p−1)/2

|Σ|ν/2
exp(−

1

2
tr(Σ−1G)) (11)

wherec0 is a normalization constant.
The mode of an inverse Wishart distribution is given by:

Mode(Σ|G, ν) = G/ν (12)

Adopted from[Chen, 1979], we reparametrize the inverse
Wishart distribution as:

Σ|Ω, ν ∼ IWp(νΩ, ν) (13)

whereν is also the degree of freedom, andΩ represents the
prespecified structural informationaboutΣ in that:

Mode(Σ|Ω, ν) = νΩ/ν = Ω (14)

Inverse Wishart distribution is the conjugate prior of the
population covariance in multivariate normal distribution
[Press, 2005; Gelmanet al., 2003]. SupposeN observations
Y = {y1,y2, . . . ,yN} with N (0,Σ), whereΣ is assumed
to follow an inverse Wishart priorIWp(νΩ, ν). The posterior
distribution ofΣ still follows an inverse Wishart:

Σ|Ω, ν,Y ∼ IWp(ν
⋆Ω⋆, ν⋆) (15)

where the parameters of the posterior distribution are:

ν⋆ = ν + N (16)

Ω⋆ = (
N

N + ν
)S + (

ν

N + ν
)Ω (17)

Note thatΩ⋆ is a weighted combination of the prior hyperpa-
rameterΩ and the sample covarianceS, and is also the mode
of the posterior (inverse Wishart) distribution.

Recall in (8) that the solution to standard PCA is found
by maximizing the log-likelihood (6) with respect toW.
Given an informative priorIWp(νΩ, ν) on Σ, it is natural
that maximum likelihood estimation (MLE) is replaced by
the maximum a posteriori (MAP) estimation. In other words,
the Bayesian point estimation of principal components corre-
sponds to maximizing the posterior density ofΣ in (15) with
respect toW (Σ = limσ2

→0+ WWT+σ2I). Based on (11),
the log-posterior-density of (15) can be written as:

LP(Σ|Ω⋆, ν⋆) ∝ −
ν⋆

2
{ln |Σ| + tr(Σ−1Ω⋆)} (18)

Note that this log-posterior-density is exactly the same form
as the log-likelihood in (6), except thatS andN are replaced
by Ω⋆ andν⋆. In this sense, maximum a posteriori (MAP)
estimation of thep × k matrixW is given by:

WMAP = lim
σ2

→0+
U⋆

k(Λ⋆
k − σ2I)

1
2 (19)



This is the same form as (8), but hereU⋆
k andΛ⋆

k are the first
k principal eigenvectors and eigenvalues ofΩ⋆ in (17) rather
than sample covarianceS. To this end, thek principal compo-
nents are discovered in a Bayesian setting and this process is
the basic framework ofSmart PCA. Also, as in (9) and (10),
the projection and reconstruction under smart PCA still have
reasonable probabilistic interpretations.

2.3 Hyperparameter design
This section focuses on the hyperparameters of the inverse
Wishart prior in (13). In smart PCA, principal components
are extracted fromΩ⋆, which is defined in (17). It is a
weighted combination of the sample covarianceS and the
hyperparameterΩ, whereΩ represents the prespecified co-
variance structure. The strength of this combination is con-
trolled byν, the degree of freedom of the prior. For the den-
sity of (13) to be valid,ν need to be an integer larger than2p.
But in practice, there is no reason for follow this restriction.
In smart PCA,ν represents how much we trust the hyperpa-
rameterΩ, and it can be set empirically as any non-negative
real number. When it is set as zero,Ω⋆ is exactly the sample
covarianceS, and smart PCA is equal to standard PCA.

A central problem of smart PCA is the construction of hy-
perparameterΩ, which represents prespecific structural infor-
mation about covariance. Domain knowledge can be incor-
porated intoΩ so that smart PCA can extract more sensible
principal components. In this section, we assume the general
form of the external knowledge is some feature distance (or
relevance) function:

d(fi, fj) (20)

wherefi andfj are theith andjth features (i.e., dimensions)
in the observation space. The design of domain-dependent
feature distance will be mentioned in Section 3.

It is challenging to find a direct mapping from a given fea-
ture distance functiond() to the covariance structureΩ. The
feature distance can be in any scale, and covariance is also a
scale-free measure. For example, simply scaling up the value
of each feature will increase the covariance, but the feature
distance based on domain knowledge will not change since
the features themselves don’t change. To overcome this prob-
lem, we combine both knowledge from the feature distance
function and information from the data itself to constructΩ.

Firstly, a covariance matrix can be decomposed into stan-
dard deviation and correlation[Gelmanet al., 2003]. Inspired
by this, thep × p covariance structureΩ can be written as:

Ω = VCV (21)

whereV = Diag(σ1, σ2, . . . , σp) is ap× p diagonal matrix,
andC is ap × p positive definite matrix sinceΩ is required
to be definite positive as in inverse Wishart distribution. The
intuition of this decomposition is: the diagonal elements of
V contain information about standard deviation andC repre-
sents the prespecifiedcorrelationstructure. In this sense, the
construction ofΩ consists of two parts:V andC.

Secondly,V = Diag(σ1, σ2, . . . , σp) is estimated from
data, i.e., it is set as the maximum likelihood estimation of
the standard deviation in each dimension. Although the MLE
estimation of the population covariance inp-dimensional fea-
ture space involvesO(p2) parameters and tends to overfit the

limited observations, the estimation of standard deviations in-
volves onlyp parameters and is much more stable.

The third step is to estimateC, the prespecified correlation
structure. Adapted from[Yaglom, 1987], a general form of
the correlation function given the feature distanced is:

Cij = exp(−
d(fi, fj)

α
) (22)

whereα > 0 is a parameter. Similar forms have been used
for covariance estimation[Brown et al., 2000; Krupka and
Tishby, 2007], but this class of functions are more suitable
for estimating correlation since their outputs are in the range
[0, 1]. Note thatα needs to be appropriately specified accord-
ing to the scale of functiond. For example, ifα is several
orders of magnitude larger than the maximum value of fea-
ture distanced, all the elements inC will be closed to1,
without regard to the information contained ind. To specify
α, we compute the following two statistics: 1)ρmedian: the
median element in the samplecorrelationmatrix, which can
be readily obtained from the sample covariance matrixS. 2)
dmedian: the median element of the feature distance matrix,
which is computed using distance functiond. Based on these
two statistics,α is set to meet the following criteria:

ρmedian = exp(−
dmedian

α
) (23)

Note thatρmedian is a robust statistic on sample, character-
izing the typical level of observed feature correlation. Also,
dmedian is a robust statistic on external knowledge, describ-
ing the typical level of feature distance. In this sense, theα
connecting these two statistics is a reliable choice.

3 Feature Distance Functions for Image
Processing

Section 2 proposes the general framework of smart PCA. The
last problem left is to design domain-dependent feature dis-
tances with external knowledge. This section provides two
examples for image precessing and computer vision.

3.1 Spatial distance of pixels
Krupkaet al. [Krupka and Tishby, 2007] propose a general
function to measure feature distance. Given a vector of meta-
features describing each feature, feature distance can be adis-
tance function on meta-features. This is suitable for computer
vision tasks where features are pixels and meta-features are
the location of pixels. In our experiments, we use the Euclid-
ian distance of the location of pixels as the feature distance.

3.2 Geodesic distance of pixels
Intuitively, pixels in the same stroke are highly relevant and
likely to be more correlated. On the other hand, pixels depict-
ing two distinct entities in an image tend to be independent.
Inspired by Isomap[Tenenbaumet al., 2000], we propose a
feature distance to capture this information. The proposed
distance measure makes use of both meta-features (location
of pixels) and value of features (e.g., grayscale value), and
is computed as the following steps.1) Define neighborhood:



the neighborhoodof a pixel is defined as the immediate neigh-
bors in eight possible directions. For pixels not in the bound-
ary of the image, the eight surrounding pixels are neighbors.
For pixels in the boundary, only three or five neighbors ex-
ist. 2) Compute local metric: given an image, the distance
between two neighboring pixels is computed as the differ-
ence of their grayscale values. Given a collection of images,
the local distance of two neighboring pixels is averaged over
each image.3) Construct neighborhood graph: construct a
graph where each node denotes a pixel. Connect neighboring
pixels by undirected edges and set the weight of each edge
as the local distance of two pixels.4) Compute shortest path
distance: shortest path distance is computed by efficient algo-
rithms[Tenenbaumet al., 2000]. 5) Regularization: a small
quantity is added to the diagonal elements to make the dis-
tance matrix definite positive if necessary. Finally, the dis-
tance of two features (pixels) is their shortest path distance.

4 Empirical Study
Based on a benchmark data set in computer vision, we study
the performance of smart PCA as a tool for dimensionality
reduction and feature construction. We evaluate the perfor-
mance using three criteria: 1) image reconstruction errors; 2)
the perceptual quality of the reconstructed images; 3) pattern
recognition (i.e., classification) performance using principal
components. With moderate external knowledge as men-
tioned in section 3, smart PCA shows clear improvement over
standard PCA on all these criteria.

4.1 Experimental Settings
The benchmark dataset used in this paper is the Yale face
database, which includes165 image for15 people and thus11
images for each person. Images are resized to32× 32 pixels,
indicating a feature space of1024 dimensions. The result of
each experiment is average over10 random runs. In each run,
training and testing examples are selected as follows: ran-
domly selecting6 images for each individual as training data
and the rest as testing data, which leads to totally90 training
and75 testing examples in each random run. In each run,
both the population mean and principal components are esti-
mated from training examples and applied to each previously
unseen testing example.

The two parameters of smart PCA areΩ andν, which are
the hyperparameters for the inverse Wishart prior as shown
in (13). TheΩ is automatically determined as stated in Sec-
tion 2.3, andν is empirically determined. Recall in (17) that
ν control the strength of covariance priorΩ when it is com-
bined with the sample covarianceS. To gain a comprehensive
understanding of the effect ofν, we test different choices.
Given the number of observations (i.e, training examples)N ,
we test differentν by choosing differentνN (i.e., “relative
prior strength” w.r.t. the number of training examples) from
the following range:{0, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.4, 0.5, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, 5.0, 6.0, 7.0, 8.0, 10.0,
12.0, 15.0}. The results will indicate the impact ofν on smart
PCA. For example, whenν is set as1.0N (i.e., ν

N = 1.0), the
posterior hyperparameterΩ⋆ in (17) is exactly the average of
sample covarianceS and the priorΩ. Principal components
are extracted based on the resultingΩ⋆, as shown in (19).
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Figure 1: Reconstruction error using20 principal compo-
nents. Left: spatial distance used in Smart PCA; right:
geodesic distance used in Smart PCA.
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Figure 2: Reconstruction error using50 principal compo-
nents. Left: spatial distance used in Smart PCA; right:
geodesic distance used in Smart PCA.

We have discussed two distance functions on pixels in Sec-
tion 3. In our experiments, we study both of them: 1) the
spatial (i.e., Euclidian) distance of pixel location (x,y)in the
image; 2) the geodesic distance of pixels.

4.2 Empirical Results
In this section, we discuss empirical results based on threecri-
teria: 1) image reconstruction errors; 2) the perceptual quality
of the reconstructed images; 3) pattern recognition rates.

Reconstruction errors
It is well known that the principal components found by stan-
dard PCA is optimal in terms of reconstruction error mini-
mization. However, this optimality is true only on the train-
ing examples, i.e., on the data where the PCA is learned. In
our empirical study, we construct PCA and smart PCA from
a set of training images, and measure the reconstruction er-
rors on both the training images and a set of unseen testing
images. Experimental results show that standard PCA over-
fits the training examples, and smart PCA corrects this bias.
We run experiments with different parameterν and distance
functions, and results are averaged over10 random runs.

The reconstruction error on an image is defined as the root
mean square error (RMSE) over the reconstruction error of
all pixels, and the reconstruction error on an set of images is
the average over all images in the set. The results on recon-
struction errors are shown in Figure 1 and Figure 2, corre-
sponding to using the first20 and50 principal components,
respectively.

In the figures, the standard PCA corresponds to the choice
ν
N = 0. The reconstruction error is measured on both training
images and unseen testing images, and shown as the solid
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Figure 3: Original images vs. PCA reconstructions using150
PCs vs. Smart PCA reconstructions using150 PCs.
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Figure 4: Original images vs. PCA reconstructions using150
PCs vs. Smart PCA reconstructions using150 PCs.

curve and dotted curve, respectively. The black dots on each
curve is the choices ofνN as mentioned in Section 4.1. The
curve is interpolated from these dots. We don’t display the
entire range ofνN , since certain choices are lack of interest
and will change of scale of the plots.

The results of our experiments show that:1) Standard PCA
does overfit the training data, and smart PCA is able to cor-
rect this problem. In our experiments, the best reconstruction
error on training images is always given by standard PCA
( ν
N = 0), while the lowest reconstruction error on unseen

testing images is always obtained by smart PCA (ν
N > 0).

2) The need for regularization (i.e., Smart PCA) is more evi-
dence when more principal components are estimated. From
the figures it is clear that smart PCA provides more improve-
ment over PCA when we reconstruct images using50 prin-
cipal components. This is reasonable in that more principal
components indicates more coefficients to estimate, which is
more likely to suffer from overfitting.3) With moderate do-
main knowledge in the form of feature distance, smart PCA is
able to control overfitting and improve reconstruction perfor-
mance. Well-designed feature distance functions that contain
rich domain knowledge lead to better performance of smart
PCA. This is supported by our experiments where smart PCA
using the geodesic distance of pixels performs better than
smart PCA using the spatial distance of pixels.
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Figure 5: Recognition errors using50 principal components.

Perceptual quality of reconstructed images
The reconstruction error is not a comprehensive measure for
the performance of dimensionality reduction techniques: two
reconstructed images with same error can provide very differ-
ent perceptual qualities. A ”smart“ model is able to prevent
significant perceptual loss even if a considerable amount of
information is lost due to dimensionality reduction. There-
fore, we also study the perceptual quality of the reconstructed
(testing) images using standard PCA and smart PCA. We use
150 principal components to ensure an acceptable perceptual
quality for both models (i.e., dimensionality reduced from
1024 to 150). For smart PCA, we report the results using
geodesic pixel distance andνN = 1. Figure 3 and Figure 4
show a few examples of image reconstruction. Each figure
contains15 images: three images in a column corresponds to
a testing example, where the three images from the first row
to the third row are the original image, the standard PCA re-
construction, and the smart PCA reconstruction, respectively.

Figure 3 and Figure 4 show that smart PCA leads to recon-
structed images with significantly better perceptual quality.
As mentioned in Section 3.2, geodesic distance of pixels rep-
resents the belief that pixels in the same stroke are relevant
and likely to be more correlated in the principal components.
As a result, images reconstructed by smart PCA tend to be
locally coherent (e.g., mouth, glasses, beard, eyes, etc.)due
to regularization on the estimation of principal components.

Pattern recognition errors
Another benefit of dimension reduction is to prevent the curse
of dimensionality on statistical modeling. We also include
a preliminary study on pattern recognition. The problem is
a very hard15-class recognition task. We train the Nearest-
Neighbor (NN) classifier on50 principal components of train-
ing examples, with differentνN . The experiment is repeated
and averaged over10 random runs. The results are shown in
Figure 5. Note thatνN = 0 corresponds to standard PCA, and
the dashed horizonal line is the performance of NN classifier
on raw pixels (i.e., baseline without dimension reduction).
The results indicate that PCA can construct useful features
(i.e., beat the baseline model) only after being regularized.

5 Conclusion
PCA can be smarter and makes more sensible projections. In
this paper, we propose to regularize and incorporate external
knowledge into PCA. Based on the probabilistic interpreta-
tion of PCA, the inverse Wishart distribution is used as the



conjugate prior for the population covariance in factor anal-
ysis, and domain knowledge can be transferred by the prior
hyperparameters. We design the hyperparameters to com-
bine the information from both the external knowledge and
the data itself, so that the prior is informative and robust.
The Bayesian point estimation of principal components is in
closed form. Empirical studies show clear improvement on
image reconstruction errors, the perceptual quality of there-
constructed images, and pattern recognition performance,in-
dicating that Smart PCA is a useful alternative to standard
PCA for dimensionality reduction and feature construction.

6 Related work
This paper is mainly built on probabilistic principal compo-
nent analysis (PPCA), which has been independently pro-
posed by different researchers[Tipping and Bishop, 1999;
Roweis, 1997]. Tipping et al. focused on the proba-
bilistic interpretation of PCA, while Roweis mainly concen-
trated on the resulting EM algorithm. In addition, P-PCA
has been extended to adaptively select the number of prin-
cipal components via Bayesian approaches[Bishop, 1998;
Minka, 2000]. In this paper, we deal with another problem,
that is, how to make PCA smarter and make more sensible
projections by incorporating external knowledge.

Another line of research that inspires our work is the use
of external knowledge in supervised learning[Hastieet al.,
1995; Krupka and Tishby, 2007]. Hastieet al. [Hastieet
al., 1995] proposed a penalized version of linear discriminant
analysis, where the penalty represents the spatial smoothness
of model parameters. Krupkaet al. [Krupka and Tishby,
2007] incorporated the prior information from meta-features
into SVM, where the similarity of meta-features indicates the
relevance of corresponding features, and the resulting covari-
ance matrix is directly embedded into SVM optimization.

Using the inverse Wishart distribution as the conjugate
prior of the population covariance in multivariate normal dis-
tribution has a long history in Bayesian statistics[Gelmanet
al., 2003]. In probabilistic PCA, the observations are ex-
plained by a multivariate normal distribution conditionalon
the population covariance (which is further determined by
principal components). In this sense, smart PCA is built on
the classic work on Bayesian estimation of covariance matrix
[Chen, 1979; Brownet al., 2000; Press, 2005], although the
goal of PCA is not to estimate the covariance but the principal
components responsible for the covariance.

Recently, the inverse Wishart distribution has been used
by researchers in machine learning, imaging processing and
computer vision[Klami and Kaski, 2007; Smidlet al., 2001;
Woodet al., 2006] as the conjugate prior for multivariate nor-
mal distribution in different models. In[Klami and Kaski,
2007], the authors extend probabilistic canonical correlation
analysis (PCCA) to enable a full Bayesian treatment via spec-
ifying conjugate priors for model parameters of PCCA, where
the inverse Wishart distribution is used as the prior for system
covariance. In[Woodet al., 2006], the inverse Wishart distri-
bution is used to extend Gaussian Mixture Models to encode
prior experience about the shape and position of the mixture
components. Researchers also use the inverse Wishart dis-

tribution to model the noise covariance in factor analysis for
data with a low signal-to-noise ratio, inhomogeneous, or cor-
related noise[Smidl et al., 2001]. In other words, the noiseǫ
in eq. (1) is not assumed to be isotropic or negligible in scale,
and thus eq. (3) is no longer valid and the covarianceσ2I is
replaced by a general covarianceC, which is modeled by an
inverse Wishart distribution.
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