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Abstract— Inspired by the universal laws governing different of hundreds or thousands of internal neurons. This very
kinds of complex networks, we propose a scale-free highly- promising RNN model reflects some features of biological

clustered echo state network (SHESN). Different from echotate ; ; ; ; ;
network (ESN), the state reservoir of the SHESN is generated br(?ur.] and the resulting learning algorithm is computatigna
efficient and easy to use.

by natural growth rules and eventually forms a complex net- . . .
work with small-world, scale-free properties, and hierarchically Inspired by both complex network theory and biological
distributed structure. We implemented a large-scale SHESN neuronal system, this paper proposes an extended ESN model

with 3,000 internal neurons and applied it to modeling the pH  that contains a naturally evolving state reservoir, whiels h
neutralization process. Simulation results showed the sugrior scale-free property, small-world effect, and hierarchjca

performance of SHESN. Furthermore, we analyzed the natural . . L
characteristics of the SHESN and discussed our growth rules distributed structure. The new state reservoir is increiaiign

and the new state reservoir from a brain functional network ~generated using our natural growth rules and eventually
perspective. comprises a collection of domains where a large number

of local internal neurons are sparsely interconnected. Es-
|. INTRODUCTION sentially, such a scale-free highly-clustered echo state n

Recently, complex network theory is fascinatingly advancork (SHESN) interpolates between a completely regular
ing. In a large number of real-world natural and artificialElman network and a completely random ESN. In our
complex networks, such as the neural networoElegans €Xperiment, we have implemented the SHESN that contains
cellular and metabolic networks, food web, the World-Widé!P to 3,000 internal neurons. Experimental results showed
Web, the BBS, the Internet backbone, power grid, citatiofat our SHESN is capable of accurately approximating the
network, and many social networks, small-world phenomerigverse dynamic model of the pH-neutralization process.
and scale-free properties have ubiquitously been disedverFurthermore, the collective behavior of the proposed RNN
in the past few years [1], [2], [6], [11], [18]-[20]. The srhal model was empirically analyzed and discussed. We revealed
world network first introduced by Watts and Strogatz [20] ighat the SHESN has many interesting natural charactevistic
defined as a highly clustered network with a short averagBat were extensively present in a variety of artificial and
characteristic path length, and was conceptually origihat hatural complex networks, e.g., power law distribution for
from Milgram’s work in the late 1960s, or the so-calléix network degree, short average characteristic path length,
degrees of separativprinciple [15]. The scale-free network high clustering coefficient, and spatially hierarchicaldan
has a power law form that is independent of the networflistributed structure.
scale [1]. The small-world effect and scale-free property, The rest of the paper is organized as follows. In Section
which are viewed as universal laws governing differentl, we proposed our SHESN, including the network structure,
kinds of complex networks, including biological networksthe incremental growth rules used for producing a naturally
[2] and brain functional networks [4], [20], has led drarnati €volving state reservoir, and the one-step learning afyori
advances in exploring large-scale complex networks. In Section Ill, we applied the SHESN to modeling the

On the other hand, biological neuronal system, which tyghverse dynamic system of the pH-neutralization process.
ically has a massive number of neurons, recurrent pathwayd}€ high nonlinearity and sensitivity of the pH-neutratiaa
and sparse connectivity [8], [9], are very different frompProblem was analyzed, experimental results were achieved,
most of the existing artificial neural networks such as BNd comparative study was done. In Section IV, we em-
networks [17], Hopfield networks [7], and Elman networkdirically analyzed a small-world feature and a scale-free
[5]. Interestingly, H. Jaeger and his co-authors proposé;jh’;lracteristic of the naturally evolving state reservaird
a new recurrent neural network (RNN), called echo statdiscussed the relationship between our new state reservoir
networks (ESNs), for function approximation, chaotic timémd brain functional network. In Section V, we concluded
series prediction, and modeling nonlinear dynamic systentdis paper.

[8], [9]. The ESN model contains a completely random

. . . Il. SCALE-FREEHIGHLY-CLUSTERED ECHO STATE
state reservoir as a hidden layer, which is usually composed
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nputiayer State Resenvolr Lo where v(k) is a noise (threshold) that is added to the

activation functions of internal neurons.
B. Natural Growth Rules: Generating a New State Reservoir
U — of the SHESN

Ua . ﬁ Our natural-growth rules of generating a new state reser-
voir roughly involve the following six steps:

> : Y a) Initialize anL x L grid plane of a state reservoir.
o N b) Put backbone neurons on the grid plane and then
H O / generate synaptic connections among the backbone neurons.
¢) Add one new local neuron to the grid plane.
Uy — d) Produce synaptic connections for the newly added local

neuron using local preferential attachment rules.

e) Repeat steps c¢) and d) for each new local neuron.
Fig. 1. Network Architecture of the SHESN. It consists of apit layer, f) Generate a reservoir weight matrix**such that the
a new state reservoir, and an output layer. The generateireervoir has €ChO State property holds [8].

a collection of naturally evolving features. We will describe the above natural-growth rules in detail
below.

1) Initialization of an L x L Grid Plane of a State
by our natural growth rules. All the internal neurons in théReservoir: Let the number of internal neurons in a new state
resulting state reservoir are geographically scattereda onreservoir be:, wheren < L x L. Using a stochastic dynamic
grid plane and eventually form a hierarchical and disteldut growth model like that proposed by [14], the internal nesron

structure. with a size ofn are incrementally assigned on a grid plane
of state reservoir divided intd x L squares. Thd. x L grid
A. Network Architecture of the SHESN plane or the reservoir with a capacity bfx L is required to

be large enough in order to contain all thénternal neurons

At time stepk, the input layer receives ardimensional (n <« L x L). Note that different internal neurons gradually
input vectoru(k) = [uy(k),uz(k),- - ,ur(k)]" and passes generated can not be placed at the same location on the grid
it to all the internal neurons in the new state reservoirdlgfo  plane of the reservoir and are not allowed beyond the grid
ann x r input weight matrix/¥*". The ith neuron in this plane.
layer is directly connected to th#gh componentu;(k) of 2) Generation of Backbone Neurons and Synaptic Con-
input vectoru (k). The output of theth input neuron simply nections Associatedin the process of generating a new
equals to its corresponding inpuf (k). In our new state state reservoir, we classified all the internal neurons into
reservoir, alln internal neurons are sparsely interconnectetivo categories: backbone neurons and local neurons. ysuall
using ann x n reservoir weight matrix/’"**. The output the number of backbone neurons must be much less than
of each internal neuron is called a state, and all the outhat of local neurons. In our experiment to be described

puts are denoted by(k) = [z1(k), z2(k), -+ ,zn(k)]T. In  later, for example, about one percent of internal neurons in
order to produce amn-dimensional output vectog(k) = the new state reservoir were backbone ones. Specifically,
[y1(k), y2(k), - ,ym(k)]", the neurons in the output layer we randomly generated the x- and y-coordinates [ys]
collect all the states;(k) (i = 1,2,--- ,n) in the preceding of each backbone neuron on the grid plane. A fixed set
new state reservoir along with all the inpuis(k) (¢ = of backbone neurons was then assigned at different geo-
1,2,---,r) in the first layer, through ann x (n 4+ 7) graphical locations on thé x L grid plane, which roughly

output weight matrixiw°*, which will be discussed later. determined the geographical distribution of allinternal
Meanwhile, the network output vectgi(k) is fed back to neurons. Furthermore, we defined a domain as the set of
all the internal neurons through anx m feedback weight internal neurons that comprises one backbone neuron and a
matrix /b, The activation functions in the last two layersnumber of local neurons around this backbone. A collection
are all set totanh( - ). Just like that of [9], input and of domains constituted our new state reservoir from a higher
feedback weights oft/* and W/ are randomly assigned level perspective.
with uniform distribution, and the output weight matrix The geographical distribution ofi, backbone neurons,
Weut is adjusted using supervised learning. But the reservdifowever, must satisfy two restrictions. One is that differe
weight 7" is produced according to our naturally evolvingbackbone neurons generated are not allowed to be at the
rules, rather than completely random approaches in [8], [%ame location on the grid plane of the reservoir. The other
The forward propagation of the SHESN is given below: is that the minimum distance between any two backbone
- neurons must be greater than a certain threshold such that th
2(k1) = tanh (W2 (k)+ W u(k-+1)+ W'y (k) +v(k)) resulting domains could be separated from each other. For
instance, we set this threshold to be 30 in our experiment.
After that, the backbone neuronswof were fully connected

y(k) = tanh (W [ zgg })



to each other through synaptic connection weights that wetiee density of connections generated in the current domain.

randomly set to be a real value between [-1, 1]. Additionally, let n; and np be the number of neurons,
3) Incremental Growth of New Local Neurongs de- respectively, in the current domain and in the candidate

scribed above, we initially built a small fully connectedneighborhood of a new local neuron;(> ns).

backbone network, which consistedsaf backbone neurons.  Our local preferential attachment rules are given as fol-

Other (local) neurons were then generated so as to foraws:

an entire naturally evolving state reservoir. In this psxe  (a) If n. > nq, a new local neuron is fully connected to

for each local neuron, we randomly selected one of thall the existing neurons in the current domain.

backbone neurons and put the local neuron into the domain(b) If ny < n. < n;, the candidate neighborhood is

associated with this backbone. Suppose that the location réldefined as the set of all the neurons in the current domain,

this backbone neuron iscf, y;]. We then produce the x- instead of just those neurons in the circle specified above. A

and y-coordinates of local neurons around the backbone onew local neuron is connected to all the candidate neighbors

[xs, 5] ON the grid plane according to the bounded Paretgsing the following probability [14]:

heavy-tailed distribution [3]: d;
P(v) = %v’“”’ k<v<Q. 2jecds
— (k/Q) whered; is the current outdegree of neurgnand C the
wherea denotes the shape parameter 40@) the minimum candidate neighborhood of the new local neuron.
(maximum) value. (c) If n. < ng, the probability that is used to attach a

If a local neuron is farther from its own backbone neuromew local neuron to a candidate neighbor is the same as the
than one of the other backbone neurons, we assume thisove.
local neuron is located in another domain dominated by In general, local preferential attachment rules contebut
the nearest backbone neuron, which enables the incremeritathe scale-free property of generated networks. The chose
growth of new local neurons to avoid collisions. But thisesas candidate neighbors of a new local neuron, of which the
fortunately, happens rarely in the procedure presented herew local neuron itself is usually in the center, should help
due to the fact that the bounded Pareto distribution seldoimprove the clustering coefficient of the network.
generates a high value [3]. 5) Spatially Hierarchical and Distributed StructureAs
As a result, it causes a popular and natural effect that 8hown in Fig. 2, the 3,000 internal neurons are incremgntall
the same domain, or equivalent cortex in a sense, most pficed on the 500500 grid plane, resulting in 30 clear
the local neurons are geographically near to their backbor@gusters or domains. Each domain contains one backbone
while a few of them are far away from it. Such a geographicaleuron, and a collection of local neurons around the back-
distribution of internal neurons bears a resemblance tb thaone one. It is readily evident that the network topology
present in the human brain network [4]. of our naturally evolving reservoir has a geographically
4) Generation of Synaptic Connections for New Locadhierarchical and distributed structure at different levet
Neuron Using Local Preferential Attachment Rulédased has several unique features as follows:
on preferential attachment rules [1], any newly added local (&) The new dynamic state reservoir comprises several
neurons always prefer to connect to neurons that already halomains. The domains are fully connected to each other
many synaptic connections. More precisely, the probgbilithrough backbone neurons and can be regarded as top level
that a new local neuron is connected to an existing neuronfigacro-neurons in the reservoir network hierarchy.
proportional to the outdegree of the existing neuron. Gbnsi  (b) In each domain or at a low level, local neurons are
ering the domain concept introduced here, we present a n@aly connected to the neurons located in the same domain.
strategy, henceforth called a local preferential attacitme In most cases, the number of intra-domain connections is
For convenience, we refer to the domain that contaif®uch greater than that of inter-domain ones.
a new local neuron as the current domain. The candidate(c) According to (a) and (b), dynamic behaviors for each
neighborhood of a new local neuron is defined as the s@pmain are relatively independent.
of neurons to which this new local neuron is allowed tq: Supervised Learning
be connected. Specifically, assume that there exists @ circl . . . L
. ; As mentioned above, the reservoir weight matrix, i.e.,
whose center is the location of the new local neuron and t

o . . res must be carefully chosen in order to ensure that

radius is the Euclidean distance from the new local neuro . . .
) ; cho state property holds [8]. Meanwhile, the input weight

to the backbone neuron in the current domain. Consequentrxatrix Wi and the feedback weight matrid’/> could

we chpo;e al those_ neurons in the gurrent dpmam that g(g arbitrarily assigned within the range of possibilitiBsit

just within such a circle as the candidate neighborhood He output weight matrixivo*t must be adjusted using

the new local neuron. Apparently, the backbone neuron s . :
Supervised learning.

always one OT the candidate ne|g_hbors farthest from the NEWEor instance, the training dataset of 1,001 length is defined
local neuron in the current domain. as follows:

Let n. represent the number of synaptic connections for
a newly added local neuron. The parameter controls {u1);ya(1)}, {u(2);v4(2)},- -+, {u(1001); y4(1001)}
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Ce, Fs
. . Ca, Fa :;2:
whereu(k) denotes the input vector of SHESN at tirke -—
andyy(k) the desired output. — ||
After discarding the first 50 steps or going through the
transient time [9], we must find the output weight matrix
Weut such that the training mean-square erfdiSg): —= —

]

Fig. 4. Schematic diagram of the pH-neutralization process

wse = gz 0 (o -wer [ 20 1)

is minimized. Note thati(k) = (tanh)™!(yq(k)), (k) =
[ 1(k) x2(k) zn(k) ], andn indicates the num-
ber of echo state variables.

Apparently, this is a classical linear regression problgm. o o
is easy to directly solve it using a generalized inverse atr  AS Shown in Fig. 4, the pH-neutralization process neutral-

approach. Therefore the<{n+1) dimensional output matrix 12€S strong acid with strong base in a continuous stirrekl tan
Weut is derived as follows: reactor. The control objective is to keep the value at the

point of neutrality pH = 7) in the outlet stream from the
wes = (M~'D)" tank using the control of the flow of base. This process has
widely been found in many fields such as chemical industry
and waste water treatment.
In fact, the pH-neutralization process is quite difficult to

A. Problem Description

whereT represents the transpose. The 2%&+1) dimen-
sional matrixM is given by

z1(51) zn(51)  u(51) fulfill an exact modeling and control. First, the process is
o | 02 zn(52)  u(52) highly nonlinear. Second, it is very sensitive to disturt@n
near the point of neutrality. Finally, it is difficult to for-

21(1001) zn(1001) w(1001) mulate and to identify a mathematical model for the pH-

neutralization process because even a small amount of pol-

luting elements, e.g., carbonate or phosphate with bufferi

capability, leads to a considerable change in dynamicseof th
In our experiment, calculations of a generalized inversgrocess.

matrix of M were done by using th@inv pseudoinverse  Under an ideal condition, i.e., no polluting elements oc-

function in MATLAB. curred in the reactor, the nonlinear state equation of the pH

neutralization process is described by a quasi-lineartequa

as follows [12]:

and

D=[d@1) ds2) - doon) |

IIl. APPLICATIONS TO THE FH-NEUTRALIZATION

PROCESS
The modeling and control of the pH-neutralization process Vﬂ = —(Fs+Fg)Q+CaFs — CpFg,
is a challenging problem [13]. In order to validate perfor- dt

mance of the proposed network model, we apply the SHEShMhere Q = [H*]—[OH ~] is the difference between two ion
to building the inverse model of this highly nonlinear ancconcentrations, which indicates a deviation from neutrali
quite sensitive dynamic system. The structure scheme Apparently, equals to zero at the neutrality popml = 7.
the inverse dynamic modeling used in this paper is show@is(F4) and Cg(Fp) denote a concentration (a flow) of
in Fig. 3, where the output and the input of the pH-acid and base, respectively, afd a tank volume. In our
neutralization process are used as the input and the desiegeriment, we selected parameters@s: = Cgz = 1073
output of the SHESN, respectively. (mol/ ), F4a = 0.110 (I/min), andV = 2.0 (l).



" neutralization process. Specifically, we set a stepsizeQff 0
10 for the integration method and selected the initial state as
s Qo = 0.0001. Consequently, one training dataset and two
different test datasets were constructed, respectivglysing
the ode45function in MATLAB when we forced different
input signals upon the pH-neutralization process. The-sinu
soid input signal used for the training dataset was given by
Fp(t) = 0.105sin(7t/2) + 0.105 (0 < ¢ < 20), which was
strictly restricted to be within the allowable range of qoht
2 input change specified by practical pH-neutralization pssc
(i.e., Fip(t) € [0.000, 0.210]). As we selected a sampling
period of Ts = 0.02 (min), a total of 1,001 input-output
Fig. 5. Neutralization curve a4 = Cg = 10~3 (mol/ I) pairs 0 < ¢ < 20) were produced and then used as our
training dataset (Fig. 6(a) and (b)).
To generate test datasets, we used the following two
In industrial practice, unfortunately, direct measuretsengjfferent functions ass(t):

are normally on the@H value rather thaid). For this reason,  (a) Test 1: yy(t) = 0.04sin(37¢/5)cos(mt) +
@ can be calculated from the measuneld value. But the (.06 cos(37t/5) +0.105, 0 <t < 20.

procedure might require the great accuracy of computation (b) Test 2:y,(t) = 0.06sin(27t/5) + 0.02sin(4nt) +
becauser) is very small near the point of neutrality [12]. (.02 cos(rt) +0.105, 0 <t < 20.
In addition, the state equation described above is nonlinea Then the PH-value is obtained by MATLAB. As a perfor-

with respect to the flow of base or the control inptit.  mance measure, the mean-square error (MSE) was used for
Therefore, the dynamic characteristic of the nonlineaequevaluating the trained SHESN in our experiment.

tion is sensitive to any change of the control input, and the
amount of sampling periods chosen will affect the dynamics- Simulation Results
of system through the control inpit. Based on the incremental growth model presented above,
According to the definition ofpH value, we have we first generated a naturally evolving state reservoir@9G,
pH = —log,o[H]. internal neurons and then establishe_d the whole SHESN
10 network applicable to the pH-neutralization process. The
In chemical equilibrium, the ion-product of water is ap-network topology parameters used here were given below:
proximately equal to a constant, i.e., the capacity of reservoif. x L= 500x500 = 250,000, the
(HH[OH] = Ko, E;Q(%irné)fn;njregzgl Ee;(;ons = 3,000, the number _of
» = 30, and the number of connections

° 0.5

1
Fa/Fe

where K,, = 10~ (mol/ )2 is quite accurate at the for each local neurom. = 10. In addition, we took the
temperatur@5°C as quoted by Jutila [10]. parameters of the bounded Pareto heavy-tailed distributio
So we readily derive the output equation below as follows:a = 1,k = 1, and @ = 250, 000. Accordingly,
we produced an 3,0008,000 dimensional reservoir matrix
pH = —log;o(Q + v/ Q? +4K,,) + log;, 2. Wres that had the spectral radius of 0.10 and the sparse

Note that there exists the high nonlinearity between gonnectivity of 0.64%. Furthermore, the noisgk) forced
measuredpH value and a state variabl@. Fig. 5 gives to the activation function of internal neurons was randomly

the curve for the neutralization of strong acid = 10~3 produced with uniform distribution over [-0.0001, 0.0001]
mol/ I) with strong base@s = 10~ mol/ I), where the term The input and feedback weight matrices, i.&"* and
F/Fy is the ratio of the flow of basé#'s to the flow of Wit were randomly set with uniform distribution over [-
acid 4. Observations indicate that near the neutrality poink: 1l- In particular, the output weight matrii’***, based
(vH = 7), even a small deviation between the flows of aci®" the given training dataset, was derived using the one-
and base result in great variations in e value, whereas Step learning algorithm. Note that although the SHESN
the pH value smoothly changes;adl < 5 or pH > 9. In the designed here had really a large-scale state reservoir, in
pH-neutralization process, such a serious sensitivitypldf which the total number of the internal neurons reached up to
values to the control inpuf; makes it difficult to establish 3,000, the learning process can be done only with one step
a sufficiently accurate analytical model. Therefore it ischa through calculations of a generalized inverse matrix. Afte
to know what the system order should exactly be chose{1e training phase terminated, we began to benchmark the
if the nonlinear state space representation is expressed a§ell-trained SHESN using the two test datasets generated.

difference equation called NARMA model. The goal was to examine capabilities of the SHESN in
) approximating highly nonlinear and quite sensitive dyrmami
B. Dataset Preparation systems. For comparison, we also investigated application

We employed the Runge-Kutta-Fehlberg integrationf the ESN to the inverse dynamic modeling of the pH-
method to solve the differential equation of the pH-eutralization process. For the ESN, we employed identical
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Fig. 6. Input-output pairs of the pH-neutralization pracesed for constituting one training dataset. (a) pH-vatuased as the input of SHESN. (b)
Control input Fz as the desired output of SHESN.

training and test datasets generated above and took the saméV. NATURAL CHARACTERISTICS ANDBIOLOGICAL

network parameters as the SHESN. Specifically, we set the PLAUSIBILITY

equal spectral radius of 0.10 for the completely randomasta})\_ Analysis of Natural Characteristics for the SHESN

reservoir of ESN.
The output errors of both the SHESN and the ESN 1) Small-World Phenomenon: Average Characteristic

achieved using the two test datasets are shown in Fig. 7@3th Length and Clustering CoefficienThe average char-

and (b), respectively. In the first test, tied SE test er- acteristic path lengthZ(p) and the clustering coefficient

rors of the SHESN and the ESN were calculated to b€'(p) [20] are used to characterize the small-world phenom-

2.0828e-008 and 9.2824e-008, respectively. In the secoffion of complex network topology. As mentioned above,

test, the M SE test errors were 4.9838e-007 and 1.6225eaur naturally evolving reservoir network was composed of

006, respectively. All the experimental results showed tha.,000 internal neurons. Accordingly, we had an 3,08(00

the proposed SHESN had significantly stronger capabilitiggservoir matrixi?’"**, with a sparse connectivity of 0.64%.

of approximating nonlinear dynamic systems than the ESNience it was undoubtedly a large and sparse complex net-

In particular, our other comparative study also illustdatteat  WOrk.

the SHESN outperformed even much better than the previousAs a global property, the average characteristic path kengt

dynamic fuzzy neural network approach presented in [12];(p) reflects the effective size of a complex network. It is
where theM SE test error was surprisingly improved by adefined as the mean distance between two internal neurons,

factor of aboutl03 to 10%. averaged over all pairs of internal neurons. The clustering
coefficientC(p) is a local property measuring the probability
that two neurons neighboring an internal neuron are also
neighbors of each other [20]. More precisely, suppose ket t
Two problems should be treated carefully. The first isnternal neuromv in the new state reservoir has neighbor
the possible over-fitting problem when such a large-scafeeurons that are connected to the neutonLet n,(n:)
reservoir is applied. Here we carried out experiments on thiepresent the actual (total possible) number of connestion
SHESNSs with reservoir of 500 neurons and 1,000 neuronamong the neighbor neurons of The clustering coefficient
Using the first dataset, we had tAéS E test errors of 1.4e- C; of the internal neuror is defined asC; = nq/n, =
6 and 7.2e-7, respectively. Based on the second datasdt,/(k.,(k,—1)) [20]. Hence the clustering coefficieat(p)
the resulting M SE test errors were 2.3e-5 and 3.9e-6pf the whole new reservoir network is the averag€pbver
respectively. Apparently, the SHESN with 3,000 internaéll the internal neurons.
neurons outperforms all the two networks with 500 and 1,000 For the SHESN's reservoir presented in this paper, the
internal neurons. All these results indicates clearly thhat average characteristic path length and the clusteringficoef
SHESN has good generalization capability. The second issoient were computed as followd:(p) = 3.1411 andC(p)
involves the computational efficiency of the proposed modet 0.4268, respectively. For comparison, we investigated a
Actually, both the SHESN and the ESN are very efficientompletely random reservoir network with the same size of
due to the fact that: (a) the training process of networks 13,000 internal neurons and a sparse connectivity of 0.8337%
only a linear regression problem that can be found by theor this ESN reservoir network, we calculated the average
pseudoinverse function, and (b) the feedforward propagati characteristic path length and the clustering coefficies,
of either the SHESN or the ESN just needs to do severapectively, i.e.,L,qndom = 2.8091 andC,.qndom = 0.0091.
operations of matrix multiplication and summation in eacfThese calculations indicated thafp) was almost as small
dynamic step. as Lyandom, and C(p) was much greater that,,,qom.-

D. Discussion
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In other words, the new reservoir of the SHESN had a
short average characteristic path length and a high clogter
coefficient. Therefore our new reservoir is a small-world
complex network.

2) Scale-Free Featurelt is well known that power laws
are free of any characteristic scale. Networks that haveepow
law degree distributions are called scale-free networks. |
recent years, empirical studies have unveiled that Interne
topologies exhibit power laws in the form of = z=¢
[6], [14], [16]. Usually, the power law exponent is em-
ployed to characterize some universal properties of nétwor
topology. In order to find the exponent we first plotted
the relationship between two variablesand y in a log- _
log scale and the slope of the resulting linear plot Wacgé%fﬁgéientl_;g(_)l%%gzlft of outdegree of neurons vs. rank. Theraation
then viewed as the power law exponentFurthermore, we
utilized Pearson'’s correlation coefficients for the log-fulot
so as to judge whether power laws really exist. In fact, theomputed the outdegree exponent of reserg@oit 2.50. Ac-
closer the absolute value of the correlation coefficienbis tyally, the outdegree exponents of 2.0 — 3.0 have frequently
one, the more closely the data obey a power law [14]. Fajeen discovered in most of the natural complex networks
a good linear fit on a log-log plot, the correlation coeffitiensuch as biological networks [1], [19]. This illustratesttbar
should often be greater than 0.95 and the p-value should B&{ESN expresses some biological characteristics at least i
less than 0.05 as well. In general, if the p-value is Sma|bower laws and local preferential attachments.
then the correlation is significant. . _ S o

Let us consider the following two scale-free distributiond- Discussion of Biological Plausibility
[6]: outdegree of neuronss rank and the number of neurons In fact, the structure of our natural evolving state resirvo
vs outdegree. Both of them were observed in our naturallg quite consistent with the functional network of human
evolving reservoir. brain, which has the following features [4]:

Fig. 8 shows the relationship between the outdegree of a) Functional connections obey power-law distribution.
internal neurons and the rank of neurons on a log-log plot. b) The characteristic path length is small and comparable
Using the corrcoef function in MATLAB, the correlation with that of equivalent random networks.
coefficient was calculated to be 0.9798 with the p-value of c) The clustering coefficient is orders of magnitude larger
0. The rank exponenR, or the slope of the fitting linear than equivalent random networks.
plot, was calculated as 0.56, which is in accordance with the d) The probability of finding a link between two nodes
results for the Internet topology in [6]. decreases as their distance increases.

Similarly, as shown in Fig. 9, we obtained the relationship As discussed earlier, the network structure of our new state
between the number of neurons and the outdegree. Note theservoir retains the first three properties. More intanght,
we eliminated the neurons that have outdegree outliersdefdhe fourth property implies that both the spatial inforroati
linearly fitting the log-log plot. The correlation coefficie for each neuron and the locality of connections, which
was calculated as 0.9746 and the p-value 0. In this case, Wave been included in our local preferential attachmest, ar
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