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Abstract— Inspired by the universal laws governing different
kinds of complex networks, we propose a scale-free highly-
clustered echo state network (SHESN). Different from echo state
network (ESN), the state reservoir of the SHESN is generated
by natural growth rules and eventually forms a complex net-
work with small-world, scale-free properties, and hierarchically
distributed structure. We implemented a large-scale SHESN
with 3,000 internal neurons and applied it to modeling the pH-
neutralization process. Simulation results showed the superior
performance of SHESN. Furthermore, we analyzed the natural
characteristics of the SHESN and discussed our growth rules
and the new state reservoir from a brain functional network
perspective.

I. I NTRODUCTION

Recently, complex network theory is fascinatingly advanc-
ing. In a large number of real-world natural and artificial
complex networks, such as the neural network ofC. Elegans,
cellular and metabolic networks, food web, the World-Wide
Web, the BBS, the Internet backbone, power grid, citation
network, and many social networks, small-world phenomena
and scale-free properties have ubiquitously been discovered
in the past few years [1], [2], [6], [11], [18]–[20]. The small-
world network first introduced by Watts and Strogatz [20] is
defined as a highly clustered network with a short average
characteristic path length, and was conceptually originated
from Milgram’s work in the late 1960s, or the so-called”six
degrees of separation” principle [15]. The scale-free network
has a power law form that is independent of the network
scale [1]. The small-world effect and scale-free property,
which are viewed as universal laws governing different
kinds of complex networks, including biological networks
[2] and brain functional networks [4], [20], has led dramatic
advances in exploring large-scale complex networks.

On the other hand, biological neuronal system, which typ-
ically has a massive number of neurons, recurrent pathways,
and sparse connectivity [8], [9], are very different from
most of the existing artificial neural networks such as BP
networks [17], Hopfield networks [7], and Elman networks
[5]. Interestingly, H. Jaeger and his co-authors proposed
a new recurrent neural network (RNN), called echo state
networks (ESNs), for function approximation, chaotic time
series prediction, and modeling nonlinear dynamic systems
[8], [9]. The ESN model contains a completely random
state reservoir as a hidden layer, which is usually composed
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of hundreds or thousands of internal neurons. This very
promising RNN model reflects some features of biological
brain and the resulting learning algorithm is computationally
efficient and easy to use.

Inspired by both complex network theory and biological
neuronal system, this paper proposes an extended ESN model
that contains a naturally evolving state reservoir, which has
scale-free property, small-world effect, and hierarchically
distributed structure. The new state reservoir is incrementally
generated using our natural growth rules and eventually
comprises a collection of domains where a large number
of local internal neurons are sparsely interconnected. Es-
sentially, such a scale-free highly-clustered echo state net-
work (SHESN) interpolates between a completely regular
Elman network and a completely random ESN. In our
experiment, we have implemented the SHESN that contains
up to 3,000 internal neurons. Experimental results showed
that our SHESN is capable of accurately approximating the
inverse dynamic model of the pH-neutralization process.
Furthermore, the collective behavior of the proposed RNN
model was empirically analyzed and discussed. We revealed
that the SHESN has many interesting natural characteristics
that were extensively present in a variety of artificial and
natural complex networks, e.g., power law distribution for
network degree, short average characteristic path length,
high clustering coefficient, and spatially hierarchical and
distributed structure.

The rest of the paper is organized as follows. In Section
II, we proposed our SHESN, including the network structure,
the incremental growth rules used for producing a naturally
evolving state reservoir, and the one-step learning algorithm.
In Section III, we applied the SHESN to modeling the
inverse dynamic system of the pH-neutralization process.
The high nonlinearity and sensitivity of the pH-neutralization
problem was analyzed, experimental results were achieved,
and comparative study was done. In Section IV, we em-
pirically analyzed a small-world feature and a scale-free
characteristic of the naturally evolving state reservoir,and
discussed the relationship between our new state reservoir
and brain functional network. In Section V, we concluded
this paper.

II. SCALE-FREE HIGHLY-CLUSTEREDECHO STATE

NETWORK

The architecture of scale-free highly-clustered echo state
network (SHESN) is shown in Fig. 1, which is composed of
three layers: an input layer, a new state reservoir (or a hidden
layer), and an output layer. The state reservoir is generated



Fig. 1. Network Architecture of the SHESN. It consists of an input layer,
a new state reservoir, and an output layer. The generated state reservoir has
a collection of naturally evolving features.

by our natural growth rules. All the internal neurons in the
resulting state reservoir are geographically scattered ona
grid plane and eventually form a hierarchical and distributed
structure.

A. Network Architecture of the SHESN

At time stepk, the input layer receives anr-dimensional
input vectoru(k) = [u1(k), u2(k), · · · , ur(k)]T and passes
it to all the internal neurons in the new state reservoir through
an n × r input weight matrixW in. The ith neuron in this
layer is directly connected to theith componentui(k) of
input vectoru(k). The output of theith input neuron simply
equals to its corresponding inputui(k). In our new state
reservoir, alln internal neurons are sparsely interconnected
using ann × n reservoir weight matrixW res. The output
of each internal neuron is called a state, and all the out-
puts are denoted byx(k) = [x1(k), x2(k), · · · , xn(k)]T . In
order to produce anm-dimensional output vectory(k) =
[y1(k), y2(k), · · · , ym(k)]T , the neurons in the output layer
collect all the statesxi(k) (i = 1, 2, · · · , n) in the preceding
new state reservoir along with all the inputsui(k) (i =
1, 2, · · · , r) in the first layer, through anm × (n + r)
output weight matrixW out, which will be discussed later.
Meanwhile, the network output vectory(k) is fed back to
all the internal neurons through ann × m feedback weight
matrix W fb. The activation functions in the last two layers
are all set totanh( · ). Just like that of [9], input and
feedback weights ofW in and W fb are randomly assigned
with uniform distribution, and the output weight matrix
W out is adjusted using supervised learning. But the reservoir
weightW res is produced according to our naturally evolving
rules, rather than completely random approaches in [8], [9].

The forward propagation of the SHESN is given below:

x(k+1) = tanh(W resx(k)+W inu(k+1)+W fby(k)+v(k))

y(k) = tanh(W out

[

x(k)
u(k)

]

)

where v(k) is a noise (threshold) that is added to the
activation functions of internal neurons.

B. Natural Growth Rules: Generating a New State Reservoir
of the SHESN

Our natural-growth rules of generating a new state reser-
voir roughly involve the following six steps:

a) Initialize anL × L grid plane of a state reservoir.
b) Put backbone neurons on the grid plane and then

generate synaptic connections among the backbone neurons.
c) Add one new local neuron to the grid plane.
d) Produce synaptic connections for the newly added local

neuron using local preferential attachment rules.
e) Repeat steps c) and d) for each new local neuron.
f) Generate a reservoir weight matrixW ressuch that the

echo state property holds [8].
We will describe the above natural-growth rules in detail

below.
1) Initialization of an L × L Grid Plane of a State

Reservoir:Let the number of internal neurons in a new state
reservoir ben, wheren ≪ L×L. Using a stochastic dynamic
growth model like that proposed by [14], the internal neurons
with a size ofn are incrementally assigned on a grid plane
of state reservoir divided intoL×L squares. TheL×L grid
plane or the reservoir with a capacity ofL×L is required to
be large enough in order to contain all then internal neurons
(n ≪ L × L). Note that different internal neurons gradually
generated can not be placed at the same location on the grid
plane of the reservoir and are not allowed beyond the grid
plane.

2) Generation of Backbone Neurons and Synaptic Con-
nections Associated:In the process of generating a new
state reservoir, we classified all the internal neurons into
two categories: backbone neurons and local neurons. Usually,
the number of backbone neurons must be much less than
that of local neurons. In our experiment to be described
later, for example, about one percent of internal neurons in
the new state reservoir were backbone ones. Specifically,
we randomly generated the x- and y-coordinates [xb, yb]
of each backbone neuron on the grid plane. A fixed set
of backbone neurons was then assigned at different geo-
graphical locations on theL × L grid plane, which roughly
determined the geographical distribution of alln internal
neurons. Furthermore, we defined a domain as the set of
internal neurons that comprises one backbone neuron and a
number of local neurons around this backbone. A collection
of domains constituted our new state reservoir from a higher
level perspective.

The geographical distribution ofnb backbone neurons,
however, must satisfy two restrictions. One is that different
backbone neurons generated are not allowed to be at the
same location on the grid plane of the reservoir. The other
is that the minimum distance between any two backbone
neurons must be greater than a certain threshold such that the
resulting domains could be separated from each other. For
instance, we set this threshold to be 30 in our experiment.
After that, the backbone neurons ofnb were fully connected



to each other through synaptic connection weights that were
randomly set to be a real value between [-1, 1].

3) Incremental Growth of New Local Neurons:As de-
scribed above, we initially built a small fully connected
backbone network, which consisted ofnb backbone neurons.
Other (local) neurons were then generated so as to form
an entire naturally evolving state reservoir. In this process,
for each local neuron, we randomly selected one of the
backbone neurons and put the local neuron into the domain
associated with this backbone. Suppose that the location of
this backbone neuron is [xb, yb]. We then produce the x-
and y-coordinates of local neurons around the backbone one
[xb, yb] on the grid plane according to the bounded Pareto
heavy-tailed distribution [3]:

P (v) =
aka

1 − (k/Q)a
v−a−1, k ≤ v ≤ Q.

wherea denotes the shape parameter andk(Q) the minimum
(maximum) value.

If a local neuron is farther from its own backbone neuron
than one of the other backbone neurons, we assume this
local neuron is located in another domain dominated by
the nearest backbone neuron, which enables the incremental
growth of new local neurons to avoid collisions. But this case,
fortunately, happens rarely in the procedure presented here
due to the fact that the bounded Pareto distribution seldom
generates a high value [3].

As a result, it causes a popular and natural effect that in
the same domain, or equivalent cortex in a sense, most of
the local neurons are geographically near to their backbone,
while a few of them are far away from it. Such a geographical
distribution of internal neurons bears a resemblance to that
present in the human brain network [4].

4) Generation of Synaptic Connections for New Local
Neuron Using Local Preferential Attachment Rules:Based
on preferential attachment rules [1], any newly added local
neurons always prefer to connect to neurons that already have
many synaptic connections. More precisely, the probability
that a new local neuron is connected to an existing neuron is
proportional to the outdegree of the existing neuron. Consid-
ering the domain concept introduced here, we present a new
strategy, henceforth called a local preferential attachment.

For convenience, we refer to the domain that contains
a new local neuron as the current domain. The candidate
neighborhood of a new local neuron is defined as the set
of neurons to which this new local neuron is allowed to
be connected. Specifically, assume that there exists a circle
whose center is the location of the new local neuron and the
radius is the Euclidean distance from the new local neuron
to the backbone neuron in the current domain. Consequently,
we choose all those neurons in the current domain that are
just within such a circle as the candidate neighborhood of
the new local neuron. Apparently, the backbone neuron is
always one of the candidate neighbors farthest from the new
local neuron in the current domain.

Let nc represent the number of synaptic connections for
a newly added local neuron. The parameternc controls

the density of connections generated in the current domain.
Additionally, let n1 and n2 be the number of neurons,
respectively, in the current domain and in the candidate
neighborhood of a new local neuron (n1 ≥ n2).

Our local preferential attachment rules are given as fol-
lows:

(a) If nc ≥ n1, a new local neuron is fully connected to
all the existing neurons in the current domain.

(b) If n2 ≤ nc < n1, the candidate neighborhood is
redefined as the set of all the neurons in the current domain,
instead of just those neurons in the circle specified above. A
new local neuron is connected to all the candidate neighbors
using the following probability [14]:

di
∑

j∈C dj

,

wheredj is the current outdegree of neuronj, and C the
candidate neighborhood of the new local neuron.

(c) If nc < n2, the probability that is used to attach a
new local neuron to a candidate neighbor is the same as the
above.

In general, local preferential attachment rules contribute
to the scale-free property of generated networks. The chosen
candidate neighbors of a new local neuron, of which the
new local neuron itself is usually in the center, should help
improve the clustering coefficient of the network.

5) Spatially Hierarchical and Distributed Structure:As
shown in Fig. 2, the 3,000 internal neurons are incrementally
placed on the 500×500 grid plane, resulting in 30 clear
clusters or domains. Each domain contains one backbone
neuron, and a collection of local neurons around the back-
bone one. It is readily evident that the network topology
of our naturally evolving reservoir has a geographically
hierarchical and distributed structure at different levels. It
has several unique features as follows:

(a) The new dynamic state reservoir comprises several
domains. The domains are fully connected to each other
through backbone neurons and can be regarded as top level
macro-neurons in the reservoir network hierarchy.

(b) In each domain or at a low level, local neurons are
only connected to the neurons located in the same domain.
In most cases, the number of intra-domain connections is
much greater than that of inter-domain ones.

(c) According to (a) and (b), dynamic behaviors for each
domain are relatively independent.

C. Supervised Learning

As mentioned above, the reservoir weight matrix, i.e.,
W res, must be carefully chosen in order to ensure that
echo state property holds [8]. Meanwhile, the input weight
matrix W in and the feedback weight matrixW fb could
be arbitrarily assigned within the range of possibilities.But
the output weight matrixW out must be adjusted using
supervised learning.

For instance, the training dataset of 1,001 length is defined
as follows:

{u(1); yd(1)} , {u(2); yd(2)} , · · · , {u(1001); yd(1001)}



Fig. 2. The 3,000 internal neurons in a naturally evolving state reservoir
are geographically distributed on an 500×500 grid plane.

whereu(k) denotes the input vector of SHESN at timek
andyd(k) the desired output.

After discarding the first 50 steps or going through the
transient time [9], we must find the output weight matrix
W out such that the training mean-square error (MSE):

MSE =
1

951

∑1001

k=51

(

d(k) − W out

[

x(k)
u(k)

]) 2

is minimized. Note thatd(k) = (tanh)−1(yd(k)), x(k) =
[

x1(k) x2(k) · · · xn(k)
] T

, andn indicates the num-
ber of echo state variables.

Apparently, this is a classical linear regression problem.It
is easy to directly solve it using a generalized inverse matrix
approach. Therefore the 1×(n+1) dimensional output matrix
W out is derived as follows:

W out = (M−1D)T

whereT represents the transpose. The 951×(n+1) dimen-
sional matrixM is given by

M =









x1(51) · · · xn(51) u(51)
x1(52) · · · xn(52) u(52)
· · · · · · · · · · · ·

x1(1001) · · · xn(1001) u(1001)









and
D =

[

d(51) d(52) · · · d(1001)
] T

In our experiment, calculations of a generalized inverse
matrix of M were done by using thepinv pseudoinverse
function in MATLAB.

III. A PPLICATIONS TO THE PH-NEUTRALIZATION

PROCESS

The modeling and control of the pH-neutralization process
is a challenging problem [13]. In order to validate perfor-
mance of the proposed network model, we apply the SHESN
to building the inverse model of this highly nonlinear and
quite sensitive dynamic system. The structure scheme of
the inverse dynamic modeling used in this paper is shown
in Fig. 3, where the output and the input of the pH-
neutralization process are used as the input and the desired
output of the SHESN, respectively.

Fig. 3. The modeling structure scheme of the pH-neutralization processes.

Fig. 4. Schematic diagram of the pH-neutralization process.

A. Problem Description

As shown in Fig. 4, the pH-neutralization process neutral-
izes strong acid with strong base in a continuous stirred tank
reactor. The control objective is to keep thepH value at the
point of neutrality (pH = 7) in the outlet stream from the
tank using the control of the flow of base. This process has
widely been found in many fields such as chemical industry
and waste water treatment.

In fact, the pH-neutralization process is quite difficult to
fulfill an exact modeling and control. First, the process is
highly nonlinear. Second, it is very sensitive to disturbance
near the point of neutrality. Finally, it is difficult to for-
mulate and to identify a mathematical model for the pH-
neutralization process because even a small amount of pol-
luting elements, e.g., carbonate or phosphate with buffering
capability, leads to a considerable change in dynamics of the
process.

Under an ideal condition, i.e., no polluting elements oc-
curred in the reactor, the nonlinear state equation of the pH-
neutralization process is described by a quasi-linear equation
as follows [12]:

V
dQ

dt
= − (FA + FB)Q + CAFA − CBFB ,

whereQ = [H+]−[OH−] is the difference between two ion
concentrations, which indicates a deviation from neutrality.
Apparently,Q equals to zero at the neutrality pointpH = 7.
CA(FA) and CB(FB) denote a concentration (a flow) of
acid and base, respectively, andV a tank volume. In our
experiment, we selected parameters as:CA = CB = 10−3

(mol/ l), FA = 0.110 (l/min), andV = 2.0 (l).



Fig. 5. Neutralization curve asCA = CB = 10
−3 (mol/ l)

In industrial practice, unfortunately, direct measurements
are normally on thepH value rather thanQ. For this reason,
Q can be calculated from the measuredpH value. But the
procedure might require the great accuracy of computation
becauseQ is very small near the point of neutrality [12].
In addition, the state equation described above is nonlinear
with respect to the flow of base or the control inputFB.
Therefore, the dynamic characteristic of the nonlinear equa-
tion is sensitive to any change of the control input, and the
amount of sampling periods chosen will affect the dynamics
of system through the control inputFB .

According to the definition ofpH value, we have

pH = − log10[H
+].

In chemical equilibrium, the ion-product of water is ap-
proximately equal to a constant, i.e.,

[H+][OH−] = Kw,

where Kw = 10−14 (mol/ l)2 is quite accurate at the
temperature25oC as quoted by Jutila [10].

So we readily derive the output equation below

pH = − log10(Q +
√

Q2 + 4Kw) + log10 2.

Note that there exists the high nonlinearity between a
measuredpH value and a state variableQ. Fig. 5 gives
the curve for the neutralization of strong acid (CA = 10−3

mol/ l) with strong base (CB = 10−3 mol/ l), where the term
FB/FA is the ratio of the flow of baseFB to the flow of
acidFA. Observations indicate that near the neutrality point
(pH = 7), even a small deviation between the flows of acid
and base result in great variations in thepH value, whereas
the pH value smoothly changes aspH < 5 or pH > 9. In the
pH-neutralization process, such a serious sensitivity ofpH
values to the control inputFB makes it difficult to establish
a sufficiently accurate analytical model. Therefore it is hard
to know what the system order should exactly be chosen,
if the nonlinear state space representation is expressed asa
difference equation called NARMA model.

B. Dataset Preparation

We employed the Runge-Kutta-Fehlberg integration
method to solve the differential equation of the pH-

neutralization process. Specifically, we set a stepsize of 0.01
for the integration method and selected the initial state as
Q0 = 0.0001. Consequently, one training dataset and two
different test datasets were constructed, respectively, by using
the ode45function in MATLAB when we forced different
input signals upon the pH-neutralization process. The sinu-
soid input signal used for the training dataset was given by
FB(t) = 0.105 sin(πt/2) + 0.105 (0 ≤ t ≤ 20), which was
strictly restricted to be within the allowable range of control
input change specified by practical pH-neutralization process
(i.e., FB(t) ∈ [0.000, 0.210]). As we selected a sampling
period of TS = 0.02 (min), a total of 1,001 input-output
pairs (0 ≤ t ≤ 20) were produced and then used as our
training dataset (Fig. 6(a) and (b)).

To generate test datasets, we used the following two
different functions asFB(t):

(a) Test 1: yd(t) = 0.04 sin(3πt/5) cos(πt) +
0.06 cos(3πt/5) + 0.105, 0 ≤ t ≤ 20.

(b) Test 2: yd(t) = 0.06 sin(2πt/5) + 0.02 sin(4πt) +
0.02 cos(πt) + 0.105, 0 ≤ t ≤ 20.

Then the PH-value is obtained by MATLAB. As a perfor-
mance measure, the mean-square error (MSE) was used for
evaluating the trained SHESN in our experiment.

C. Simulation Results

Based on the incremental growth model presented above,
we first generated a naturally evolving state reservoir of 3,000
internal neurons and then established the whole SHESN
network applicable to the pH-neutralization process. The
network topology parameters used here were given below:
the capacity of reservoirL × L= 500×500 = 250,000, the
number of internal neuronsn = 3, 000, the number of
backbone neuronsnb = 30, and the number of connections
for each local neuronnc = 10. In addition, we took the
parameters of the bounded Pareto heavy-tailed distribution
as follows:a = 1,k = 1, and Q = 250, 000. Accordingly,
we produced an 3,000×3,000 dimensional reservoir matrix
W res that had the spectral radius of 0.10 and the sparse
connectivity of 0.64%. Furthermore, the noisev(k) forced
to the activation function of internal neurons was randomly
produced with uniform distribution over [-0.0001, 0.0001].
The input and feedback weight matrices, i.e.,W in and
W fb, were randomly set with uniform distribution over [-
1, 1]. In particular, the output weight matrixW out, based
on the given training dataset, was derived using the one-
step learning algorithm. Note that although the SHESN
designed here had really a large-scale state reservoir, in
which the total number of the internal neurons reached up to
3,000, the learning process can be done only with one step
through calculations of a generalized inverse matrix. After
the training phase terminated, we began to benchmark the
well-trained SHESN using the two test datasets generated.
The goal was to examine capabilities of the SHESN in
approximating highly nonlinear and quite sensitive dynamic
systems. For comparison, we also investigated application
of the ESN to the inverse dynamic modeling of the pH-
neutralization process. For the ESN, we employed identical



(a) (b)

Fig. 6. Input-output pairs of the pH-neutralization process used for constituting one training dataset. (a) pH-value is used as the input of SHESN. (b)
Control inputFB as the desired output of SHESN.

training and test datasets generated above and took the same
network parameters as the SHESN. Specifically, we set the
equal spectral radius of 0.10 for the completely random state
reservoir of ESN.

The output errors of both the SHESN and the ESN
achieved using the two test datasets are shown in Fig. 7(a)
and (b), respectively. In the first test, theMSE test er-
rors of the SHESN and the ESN were calculated to be
2.0828e-008 and 9.2824e-008, respectively. In the second
test, theMSE test errors were 4.9838e-007 and 1.6225e-
006, respectively. All the experimental results showed that
the proposed SHESN had significantly stronger capabilities
of approximating nonlinear dynamic systems than the ESN.
In particular, our other comparative study also illustrated that
the SHESN outperformed even much better than the previous
dynamic fuzzy neural network approach presented in [12],
where theMSE test error was surprisingly improved by a
factor of about103 to 104.

D. Discussion

Two problems should be treated carefully. The first is
the possible over-fitting problem when such a large-scale
reservoir is applied. Here we carried out experiments on the
SHESNs with reservoir of 500 neurons and 1,000 neurons.
Using the first dataset, we had theMSE test errors of 1.4e-
6 and 7.2e-7, respectively. Based on the second dataset,
the resulting MSE test errors were 2.3e-5 and 3.9e-6,
respectively. Apparently, the SHESN with 3,000 internal
neurons outperforms all the two networks with 500 and 1,000
internal neurons. All these results indicates clearly thatour
SHESN has good generalization capability. The second issue
involves the computational efficiency of the proposed model.
Actually, both the SHESN and the ESN are very efficient
due to the fact that: (a) the training process of networks is
only a linear regression problem that can be found by the
pseudoinverse function, and (b) the feedforward propagation
of either the SHESN or the ESN just needs to do several
operations of matrix multiplication and summation in each
dynamic step.

IV. NATURAL CHARACTERISTICS ANDBIOLOGICAL

PLAUSIBILITY

A. Analysis of Natural Characteristics for the SHESN

1) Small-World Phenomenon: Average Characteristic
Path Length and Clustering Coefficient:The average char-
acteristic path lengthL(p) and the clustering coefficient
C(p) [20] are used to characterize the small-world phenom-
enon of complex network topology. As mentioned above,
our naturally evolving reservoir network was composed of
3,000 internal neurons. Accordingly, we had an 3,000×3,000
reservoir matrixW res, with a sparse connectivity of 0.64%.
Hence it was undoubtedly a large and sparse complex net-
work.

As a global property, the average characteristic path length
L(p) reflects the effective size of a complex network. It is
defined as the mean distance between two internal neurons,
averaged over all pairs of internal neurons. The clustering
coefficientC(p) is a local property measuring the probability
that two neurons neighboring an internal neuron are also
neighbors of each other [20]. More precisely, suppose that the
internal neuronv in the new state reservoir haskv neighbor
neurons that are connected to the neuronv. Let na(nt)
represent the actual (total possible) number of connections
among the neighbor neurons ofv. The clustering coefficient
Ci of the internal neuronv is defined asCi = na/nt =
2na/(kv(kv−1)) [20]. Hence the clustering coefficientC(p)
of the whole new reservoir network is the average ofCi over
all the internal neurons.

For the SHESN’s reservoir presented in this paper, the
average characteristic path length and the clustering coeffi-
cient were computed as follows:L(p) = 3.1411 andC(p)
= 0.4268, respectively. For comparison, we investigated a
completely random reservoir network with the same size of
3,000 internal neurons and a sparse connectivity of 0.8337%.
For this ESN reservoir network, we calculated the average
characteristic path length and the clustering coefficient,re-
spectively, i.e.,Lrandom = 2.8091 andCrandom = 0.0091.
These calculations indicated thatL(p) was almost as small
as Lrandom, and C(p) was much greater thanCrandom.



(a) (b)

Fig. 7. Predicted errors of ESN and SHESN. (a) Using the first test dataset. (b) Using the second test dataset.

In other words, the new reservoir of the SHESN had a
short average characteristic path length and a high clustering
coefficient. Therefore our new reservoir is a small-world
complex network.

2) Scale-Free Feature:It is well known that power laws
are free of any characteristic scale. Networks that have power
law degree distributions are called scale-free networks. In
recent years, empirical studies have unveiled that Internet
topologies exhibit power laws in the form ofy = x−α

[6], [14], [16]. Usually, the power law exponentα is em-
ployed to characterize some universal properties of network
topology. In order to find the exponentα, we first plotted
the relationship between two variablesx and y in a log-
log scale and the slope of the resulting linear plot was
then viewed as the power law exponentα. Furthermore, we
utilized Pearson’s correlation coefficients for the log-log plot
so as to judge whether power laws really exist. In fact, the
closer the absolute value of the correlation coefficient is to
one, the more closely the data obey a power law [14]. For
a good linear fit on a log-log plot, the correlation coefficient
should often be greater than 0.95 and the p-value should be
less than 0.05 as well. In general, if the p-value is small,
then the correlation is significant.

Let us consider the following two scale-free distributions
[6]: outdegree of neuronsvs. rank and the number of neurons
vs. outdegree. Both of them were observed in our naturally
evolving reservoir.

Fig. 8 shows the relationship between the outdegree of
internal neurons and the rank of neurons on a log-log plot.
Using the corrcoef function in MATLAB, the correlation
coefficient was calculated to be 0.9798 with the p-value of
0. The rank exponentR, or the slope of the fitting linear
plot, was calculated as 0.56, which is in accordance with the
results for the Internet topology in [6].

Similarly, as shown in Fig. 9, we obtained the relationship
between the number of neurons and the outdegree. Note that
we eliminated the neurons that have outdegree outliers before
linearly fitting the log-log plot. The correlation coefficient
was calculated as 0.9746 and the p-value 0. In this case, we

Fig. 8. Log-log plot of outdegree of neurons vs. rank. The correlation
coefficient is 0.9798.

computed the outdegree exponent of reservoirO = 2.50. Ac-
tually, the outdegree exponents of 2.0 – 3.0 have frequently
been discovered in most of the natural complex networks
such as biological networks [1], [19]. This illustrates that our
SHESN expresses some biological characteristics at least in
power laws and local preferential attachments.

B. Discussion of Biological Plausibility

In fact, the structure of our natural evolving state reservoir
is quite consistent with the functional network of human
brain, which has the following features [4]:

a) Functional connections obey power-law distribution.
b) The characteristic path length is small and comparable

with that of equivalent random networks.
c) The clustering coefficient is orders of magnitude larger

than equivalent random networks.
d) The probability of finding a link between two nodes

decreases as their distance increases.
As discussed earlier, the network structure of our new state

reservoir retains the first three properties. More interestingly,
the fourth property implies that both the spatial information
for each neuron and the locality of connections, which
have been included in our local preferential attachment, are



Fig. 9. Log-log plot of the number of neurons vs. outdegree. The correlation
coefficient is 0.9746.

essential to producing a topology of small-world and scale-
free distribution.

In some sense, the structural characteristics of brain func-
tional network provide the biological plausibility of the
SHESN. We expect that such a highly plausible structure
plays a critical role in enhancing computational capabilities
of the SHESN. This hypothesis is worth being examined in
the future.

V. CONCLUSION

In this paper, we proposed a scale-free highly-clustered
echo state network (SHESN) for the inverse dynamic mod-
eling of the pH-neutralization process. The SHESN is an
extended echo state network that contains a naturally evolv-
ing state reservoir. Significantly, the new state reservoirof
the SHESN is incrementally generated according to dynamic
growth rules, instead of being constructively built, like most
of the existing neural network approaches. The design of
dynamic growth model took several natural features into
account: (1) short average characteristic path length, (2)high
clustering coefficient, (3) scale-free distribution for network
degree, and (4) spatially hierarchical and distributed struc-
ture. We implemented the SHESN that had up to 3,000 inter-
nal neurons, and applied it to modeling the PH-neutralization
process. Interestingly, neither difference equation nor system
order was required to provide in advance for the SHESN-
based modeling scheme. Empirical results illustrated that
our SHESN was capable of more accurately approximating
the inverse dynamic model of the pH-neutralization process
than the ESN and other previous traditional approaches
in [12]. Moreover, we empirically made analysis of the
generated naturally evolving state reservoir, and discussed
very interesting natural phenomena present in the new state
reservoir. The future work will focus on the relationship
between the biologically inspired structure and the enhanced
computational capabilities of the SHESN. Research along
these lines and practical applications to other complex dy-
namic systems are in progress.
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