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Abstract

Many problems in information extraction, text mining,
natural language processing and other fields exhibit the
same property: multiple prediction tasks are related in
the sense that their outputs (labels) satisfy certain con-
straints. In this paper, we propose an active learning
framework exploiting such relations among tasks. Intu-
itively, with task outputs coupled by constraints, active
learning can utilize not only the uncertainty of the pre-
diction in a single task but also the inconsistency of pre-
dictions across tasks. We formalize this idea as a cross-
task value of information criteria, in which the reward
of a labeling assignment is propagated and measured
over all relevant tasks reachable through constraints. A
specific example of our framework leads to the cross
entropy measure on the predictions of coupled tasks,
which generalizes the entropy in the classical single-
task uncertain sampling. We conduct experiments on
two real-world problems: web information extraction
and document classification. Empirical results demon-
strate the effectiveness of our framework in actively col-
lecting labeled examples for multiple related tasks.

1 Introduction
Many real-world problems exhibit the same property: multi-
ple prediction tasks are related in the sense that their outputs
need to satisfy certain constraints. In information retrieval
and text mining, classifying documents and web pages into
a set of predefined categories are treated as multiple tasks,
but these categories are usually defined by a taxonomy of in-
heritance semantics. In information extraction, recognizing
different entities and relations are separate prediction tasks,
but their outputs are often related, e.g.,x is the mayor of a
city tells thatx is also a politician, a person, but not food.

These constraints couple the task outputs and provide
valuable information. As a result, researchers have recently
proposed to leverage constraints of task outputs to improve
supervised and semi-supervised learning (Chang, Ratinov,
and Roth 2007; Chang et al. 2008; Carlson et al. 2010),
where constraints are used to regularize either the estima-
tion of model parameters or the inference on unlabeled data.

In this paper, we study active learning on multiple tasks
when their outputs are coupled by constraints. Intuitively,
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with tasks coupled by a set of constraints, active learning
can utilize not only the uncertainty of the prediction in a
single task but also the inconsistency of predictions across
tasks. For example, if two models classify an object as posi-
tive examples for two mutually exclusive classes, we can be
certain that at least one model is making an incorrect predic-
tion. This kind of certainty can not be achieved in traditional
single-task active learning due to the lack of true labels.

The value of information in decision theory offers a sys-
tematic treatment for active learning and observation selec-
tion problems (Kapoor, Horvitz, and Basu 2007; Krause and
Guestrin 2009), where different choices of reward functions
give different active learning heuristics. We formalize our
idea of constraint-driven active learning across tasks as a
value of information framework, in which each possible la-
beling assignment for a task is first propagated to all relevant
tasks reachable through constraints and the reward is mea-
sured over all relevant tasks. A specific choice of reward
function in our framework leads to the cross entropy mea-
sure on the predictions of coupled tasks, which generalizes
the entropy measure used in the classical single-task uncer-
tainty sampling and also highlights the role of task inconsis-
tency in multi-task active learning.

We conduct experiments on two real-world problems:
web information extraction and document classification. Re-
gardless of the choice of reward functions, our multi-task
active learning approaches with constraints consistentlyout-
perform the corresponding single-task selection methods.In
this sense, we suggest that the proposed framework should
be considered as a standard procedure for actively collecting
labeled examples for large numbers of coupled tasks, e.g.,
classification for a taxonomy of categories.

The rest of the paper is organized as follows. In Section 2,
we review the notion of value of information for active learn-
ing. In Section 3 we propose our framework of constraint-
driven multi-task active learning. Empirical studies are pre-
sented in Section 4. We discuss related work in Section 5.
In Section 6 we conclude the paper and discuss future work.

2 Value of Information for Active Learning
In this section we review the notion of value of information
for active learning. Suppose our goal is to build a prediction
modelp̂ = p̂(Y |x): given an examplex from the input space
X , we can predict the conditional probability of its labelY ,



i.e., p(Y = y|x), y ∈ Dom(Y ). In traditional pool-based
active learning (for a single task), we have a set of unlabeled
samplesU. We want to actively choose unlabeled samples
from this pool for labeling requests, so that the prediction
performance of the model learned from labeled examples
is maximized. The key is to measure how useful labeling
a samplex ∈ U will be for improving the current model
p̂ = p̂(Y |x). This can be viewed as measuring the value of
information (Krause and Guestrin 2009) for requesting the
unknown labelY on each unlabeled samplex ∈ U:

V OI(Y,x) =
∑

y

P (Y = y|x)R(p̂, Y = y,x) (1)

This formula shows that the value of information for a label-
ing request(Y,x) is the sum of thereward of each possible
labeling outcomeY = y for the current model̂p, denoted
asR(p̂, Y = y,x), weighted by the probability of this out-
comeP (Y = y|x). The true label probabilityP (Y = y|x)
is unknown, and in most cases1, it is replaced by the estimate
from the current model̂p:

V OI(Y,x) =
∑

y

p̂(Y = y|x)R(p̂, Y = y,x) (2)

The reward function is the key part of value of informa-
tion in eq. (2). A reasonable heuristic is to measure how
surprising is the labeling outcome(Y = y,x) given current
modelp̂. Two reward functions following this heuristic are:

R(p̂, Y = y,x) = − log
2
p̂(Y = y|x) (3)

R(p̂, Y = y,x) = 1− δ(y, argmax
y′

p̂(Y = y′|x))(4)

The function in eq. (3) is the optimal code length of the out-
come if the distribution is given by the current modelp̂. In
this case, an impossible outcome (withp̂ = 0) has an infinite
reward, and an already known outcome (withp̂ = 1) has no
value. The second function in eq. (4) takes the value0 if the
labeling outcomey coincides with the most likely predicty′

(i.e., no surprise and no reward) and1 otherwise. We can
view eq. (3) as the log reward for̂p(Y |x) if the true label is
y, and eq. (4) as the0/1 reward (Roy and Mccallum 2001).

Incorporating the reward eq. (3) into eq. (2), we have:

V OI(Y,x) = −
∑

y

p̂(Y = y|x) log
2
p̂(Y = y|x) (5)

which is the entropy of the predicted distribution used in
uncertain sampling. Similarly, the reward in eq. (4) leads to:

V OI(Y,x) = 1−max
y

p̂(Y = y|x) (6)

which is the criteria used in least-confident sampling (Settles
2009). Many active learning heuristics are equal to maxi-
mizing the value of information with different reward func-
tionsR(p̂, Y = y,x), e.g., estimated error reduction on the
whole unlabeled set (Roy and Mccallum 2001).

1There are exceptions: Guo and Greiner (2007) replace the true
label probability with anoptimistic guess maximizing the reward.

3 Multi-Task Active Learning with
Constraints

In this section, we propose our framework for multi-task ac-
tive learning with output constraints. In Section 3.1 we
introduce the key component of our method: the notion of
cross-task value of information. In Section 3.2 we analyze
the proposed criteria and show how inconsistency of predic-
tions among tasks is captured. In Section 3.3 we discuss
a few extensions to our framework, e.g., launch new tasks,
manage supplementary tasks and handle tasks with different
input spaces. In Section 3.4 we give the complete algo-
rithm.

3.1 Cross-Task Value of Information
Consider a set ofT tasks, each with a (categorical) response
variableYi, i = 1, 2, . . . , T . Our goal is to learn a classifier
for each task:̂pi = p̂i(Yi|x), i = 1, 2, . . . , T . Each sample
in our training setx ∈ U is associated withT labels. For
each sample, we might know some (or none) of itsT labels.
We useUL(x) to denote the set of unknown labels on a
samplex: UL(x) = {Yi : Yi is unknown forx}.

In multi-task active learning, we need to choose both the
sample and the task for labeling. We measure the value of
information for the sample-task pair(Yi,x) as follows:

V OI(Yi,x) =
∑

yi

p̂i(Yi = yi|x)R(Yi = yi,x) (7)

wherex ∈ U is a sample from our training set,Yi ∈ UL(x)
is an unknown label onx, andR(Yi = yi,x) is the reward
function for a possible labeling outcome for(Yi = yi,x).
As in eq. (2), the true label probabilityP (Yi = yi|x) is
unknown and replaced by the estimate from the currentith
modelp̂i(Yi = yi|x). Note that we will discuss managing
completely new tasks (i.e.,̂pi not available) in Section 3.3 .

The key question is to decide the reward functionR(Yi =
yi,x) for each possible labeling outcome(Yi = yi,x). The
set of constraints among task outputs, denoted asC, pro-
vides important information on what other facts we can in-
fer from a given outcome(Yi = yi,x). To formalize this,
we define the set ofpropagated outcomes Prop

C
(Yi = yi)

as the labeling outcomes we caninfer from the assignment
Yi = yi based on the set of constraintsC:

Prop
C
(Yi = yi) = {Yj = yj | Yi = yi 99KC

Yj = yj}
(8)

Inference of outcomes is based on the rules provided by con-
straints. For example, the inheritance constraint “Yj is a de-
rived class ofYi” provides two rules “Yi = 0 → Yj = 0”
and “Yj = 1 → Yi = 1”. The mutual exclusion constraint
“Yi andYj are mutually exclusive classes” gives two rules
“Yi = 1 → Yj = 0” and “Yj = 1 → Yi = 0”. The
agreement constraint “Yi andYj must agree”, which is com-
mon when we use multiple views to predict the same tar-
get variable, brings the rules “Yi = y → Yj = y” and
“Yj = y → Yi = y”. Note that even without any rule,
i.e.,C = ∅, we still haveProp

C
(Yi = yi) = {(Yi = yi)}

since a labeling outcome at least indicates itself. Also, the
99K in eq. (8) means that we also include the outcomes we



indirectly infer fromYi = yi, i.e., by sequentially applying
available rules multiple times.

Based on the notion of propagated outcomes, we define
the reward functionR(Yi = yi,x) in eq. (7) as follows:

R(Yi = yi,x) =
∑

Yj=yj∈Prop
C

(Yi=yi)

Yj∈UL(x)

R(p̂j , Yj = yj ,x) (9)

whereR(p̂j, Yj = yj,x) is the single-task reward function
discussed in Section 2, two examples of which are given as
eq. (3) and eq. (4). Also, we only consider inferred labeling
outcomesYj that are unknown on samplex: Yj ∈ UL(x).

Computationally, the set of propagated outcomes
Prop

C
(Yi = yi) for each labeling outcomeYi = yi can

be pre-computed and cached for efficiently access during
active learning. To pre-compute this set, we can construct
a directed graph, where each label assignmentYi = yi
(yi ∈ Dom(Yi), i = 1, 2, . . . , T ) is a node and each prop-
agation rule is a directed edge. Computing the set of proro-
gated outcomes from an outcomeYi = yi is equivalent to
finding the set of reachable nodes from the corresponding
node in the graph. The size of the graph only depends on the
number of tasksT and the cardinality of response variables
|Dom(Yj)|Tj=1

. Thus this computation is often tractable.
Incorporating eq. (9) into eq. (7), we define the cross-task

value of information for a sample-task pair as:

V OI(Yi,x) =∑

yi

p̂i(Yi = yi|x)
∑

Yj=yj∈Prop
C

(Yi=yi)

Yj∈UL(x)

R(p̂j, Yj = yj ,x)

(10)

3.2 Analysis
In this section we analyze the cross-task value of informa-
tion in eq. (10). We choose the single-task reward function
as eq. (3). Analysis is similar for other reward functions.

Including the reward eq. (3) into eq. (10), we have:

V OI(Yi,x) =∑

yi

p̂i(Yi = yi|x)
∑

Yj=yj∈Prop
C

(Yi=yi)

Yj∈UL(x)

− log
2
p̂j(Yj = yj |x)

(11)

For a given unlabeled sample-task pair(Yi,x), the value
of information in eq. (11) is determined by: 1) the modelp̂i
predicting the probability of each possible assignment(Yi =
yi|x); 2) propagated facts(Yj = yj) ∈ Prop

C
(Yi = yi) in-

ferred from each assignmentYi = yi; 3) other models pre-
dicting the probabilitŷpj(Yj = yj |x) of each inferred out-
comeYj = yj . In particular,V OI(Yi,x) tends to be high
if some assignmentYi = yi is highly probable according
to p̂i, but the inferred outcomeYj = yj is unlikely accord-
ing to another model̂pj . In this case, botĥpi(Yi = yi|x)
and− log

2
p̂j(Yj = yj |x) will be high and the total value of

informationV OI(Yi,x) is significantly increased. In this
sense, maximizing the value of information tends to select
the sample-task pair on which the current models are con-
tradicting each other given the set of constraints.

The criteria in eq. (11) can be viewed as the sum of cross
entropy measures between the modelp̂i and other coupled
modelsp̂j . Recall that the cross entropy of two distributions
Pi(y) andPj(y) is defined as:

H(Pi, Pj) = −
∑

y

Pi(y) log2 Pj(y) (12)

which is the average coding length of a variabley with dis-
tributionPi when using an optimal code for another distribu-
tionPj . Intuitively, this coding length increases with the dis-
crepancy ofPj from Pi, so it captures the inconsistency of
two distributions. Note thatPi andPj in eq. (12) are defined
on the same quantityy, but any two predicted distributions
p̂i andp̂j in eq. (11) are defined on different target variables.
The constraintsC plays a key part in eq. (11): coupling pre-
dicted distributions on different variables. As a result, cross-
task value of information in eq. (11) is essentially the sum
of cross entropy measures between the predicted distribution
p̂i and other coupled predicted distributions.

3.3 Extensions
We discuss a few potential extensions to our framework that
are useful in some real-world systems: launch new tasks,
differentiate target and supplementary tasks, and couple pre-
diction models in different input spaces.

The first extension is to launch new tasks: we may start
collecting labeled examples for a few tasks on our taxonomy,
and new tasks (and constraints) can be continuously added
into the taxonomy later. When new tasks are added into the
system, we may prefer to collect more labels for them since
they have no (or few) labeled examples. This can be natu-
rally handled by our framework. For a completely new task
i (without labeled example), we can specify theith predic-
tion modelp̂i(Yi|x) in eq. (10) as random guessing (e.g.,, a
uniform distribution on all possible assignments). This will
lead to more frequent contradictions with other predictions
p̂j on propagated outcomesYj = yj ∈ Prop

C
(Yi = yi) and

thus large value of[p̂i(Yi = yi|x) · − log
2
p̂j(Yj = yj|x)].

Similarly, the model for a task with few labeled examples
is inaccurate and tends to contradict with other models, and
thus the task is more likely to be chosen based on eq. (10).

The second extension is to enable us to specify a subset
of tasks astarget tasks (denoted byG ⊆ {1, 2, . . . , T }) and
other tasks assupplementary tasks. Our goal is to improve
the prediction performance on target tasks. To achieve this,
we redefine eq. (9) (and consequently eq. (10)) as:

R(Yi = yi,x) =
∑

Yj=yj∈Prop
C

(Yi=yi)

Yj∈UL(x) ∧ j∈G

R(p̂j, Yj = yj ,x) (13)

in which the rewardR(Yi = yi,x) includes rewards from
propagated outcomesYj = yj only if j ∈ G. As a result,
maximizing the VOI in eq. (10) (redefined withj ∈ G) will
select the sample-task pair which brings significant gains
on target tasks. A supplementary task will be chosen only
if it gives nontrivial rewards on target tasks. Note that
eq. (10) (redefined withj ∈ G) will contain the entropy
term

∑
yi
p̂i(Yi = yi|x) ·− log

2
p̂i(Yi = yi|x) if i is a target



task. If a completely new taski is a target task, this entropy
term will be large sincêpi is a uniform distribution, i.e., we
will strongly prefer to label examples for a new target task.

The last extension is to handle tasks defined on different
input spaces. This is useful, e.g., for coupling entity recog-
nition tasks and relation extraction tasks. To be more con-
crete, we may have three tasks: task1 is to recognize the
class “politician”, task2 is to recognize the class “city”, and
task3 is to extract the relation “is the mayor of”. A con-
straint is that “x1 is the mayor ofx2 only if x1 is a politician
andx2 is a city”. To handle these tasks, we need to redefine
the notion of propagated outcomes in eq. (8) to include not
only the transition of the output variable but also the change
of input variables. This part will be studied in future work.

3.4 The Complete Algorithm
In this section we summarize the complete algorithm:

• 1. Choose the base learnerp̂i for each of theT task. In
this work, we use multinomial Naive Bayes (McCallum
and Nigam 1998) for simplicity and training efficiency.

• 2. Choose the single-task reward, e.g., eq. (3) or (4).

• 3. Specify the set of constraintsC between task outputs,
construct the propagation rules and pre-compute the set of
propagated outcomesProp

C
(Yi = yi) for each labeling

outcomeYi = yi, as discussed in Section 3.1 .

• 4. Choose between thebalance mode and thefree mode.
In the balance mode, we require that eachT labeling re-
quests must be uniformly fromT tasks. In the free mode
we do not add this restriction.

• 5. Train a model for each task using seed examples. Use
random prediction as the initial model if no seed available.

• 6. Compute the value of information for each unlabeled
sample-task pair(Yi,x) according to eq. (10).

• 7. Choose the sample-task pair that maximizes the VOI,
without violating the balance restriction (if specified).

• 8. Obtain the labeling outcome for the chosen sample-task
pair, and perform propagation according to eq. (8).

• 9. Retrain prediction models with new labeled examples.

• 10. Return to step 6 if more labeling requests are allowed.

4 Empirical Studies
We conduct our empirical studies on two real-world prob-
lems: web information extraction and document classifica-
tion. In this section we discuss our experiments and results.

4.1 Experimental Settings
The first experiment on web information extraction is based
the data collected from the CMU Reading the Web project2.
The project uses semi-supervised learning methods to ex-
tract symbolic knowledge (as instances of different entity
classes and relations) from the Web. We use6 classes of
708 named entities (noun phrases) extracted by the system,

2http://rtw.ml.cmu.edu/readtheweb.html

which include242 animals,107 mammals,200 companies3,
33 newspaper companies,171 food and95 celebrities. Each
example is represented by a99400 dimensional vector, de-
scribing its co-occurrence frequencies with the most fre-
quent99400 contexts on the Web. As a result, the data is
a708× 99400 matrix. We define6 tasks, each to recognize
an entity class. The constraints between tasks are: inher-
itance between “mammals” and “animals”, inheritance be-
tween “newspaper companies” and “companies”, and mu-
tual exclusion between other pairs of classes. We repeat5
random runs. In each run, we randomly split2/3 examples
into the training set and the rest1/3 examples as the testing
set. In the training set, we randomly label30 seed exam-
ples for each task to initialize the multinomial naive Bayes
model, and make sure that for each task at least3 seed exam-
ples are positive. We test different active learning methods
using the procedure described in Section 3.4 . Details of the
methods will be discussed later in this section. We test the
performance of each method on the testing set as more la-
bels are requested. We use the average AUC (area under the
ROC curve) score over6 tasks as the performance measure,
and the results are further averaged over5 random runs.

The second experiment on document classification is
based on the RCV1 corpus (Lewis et al. 2004), a benchmark
collection of over800, 000 newswire stories from Reuters.
In this data set, each article is represented as a47236 dimen-
sional TF-IDF weight vector, and labeled for101 topics. In
the experiment, we use a subset of the collection4, which
contains3000 training examples and3000 testing examples.
Some topics are very rare, so we select36 frequent topics
with at least1% positive examples. We study36 classifica-
tion tasks, each to identify a topic. Constraints that couple
task outputs are defined by extracting the propagation rules
with 100% precision from the corpus. We use these rules to
construct sets of propagated outcomes in eq. (8). To start the
experiment, we randomly provide60 labels from the train-
ing set for each task to initialize the model. Other settings
are same as in the information extraction experiment.

We compare8 active learning strategies, which result
from different choices of three options:

• 1: the log reward in eq. (3) vs. the 0/1 reward in eq. (4).

• 2: the free mode vs. the balance mode (see Section 3.4 ).

• 3: without constraint vs. with constraints

Note that, without constraint to couple tasks (i.e,C = ∅), the
cross-task value of information in eq. (10) for a sample-task
pair(Yi,x) is equal to the value of information in eq. (2) for
taski. In this case, the balance mode is exactly to perform
active learning on each task iteratively, and the free mode
may continuously request labeling on the same task if the
reward computed as eq. (2) dominates other tasks.

4.2 Results
Empirical results of information extraction experiments are
shown in Fig. 1a – Fig. 1d, and results for document clas-
sification are presented in Fig. 2a – Fig. 2d. All figures

3We use a subset of companies to not overwhelm other classes.
4http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/



display the change of average AUC score as the number of
requested labels increases. Each subfigure makes a compar-
ison between active learning with and without constraints.
Subfigures differ in the choice of reward functions (log re-
ward or 0/1 reward) and modes (free mode or balance mode).
From the results we can see that active learning based on
cross-task value of information consistently outperformsac-
tive learning using the single-task counterpart, regardless of
the choice of reward functions and algorithm modes. Pre-
diction performance is improved significantly faster when
labeling requests are chosen according to a cross-task se-
lection criteria, and much less labeling requests are needed
for the system to achieve good AUC scores. In addition,
the 0/1 reward function in eq. (4) is more effective than the
log reward function in eq. (3). Also, the balance mode and
the free mode perform comparably well. Overall speaking,
the combination of cross-task value of information, the 0/1
reward fucntion, and balance mode (Fig. 1d and Fig. 2d)
achieves top performance in both web information extrac-
tion and document classification experiments.

5 Related Work
Co-testing (Muslea, Minton, and Knoblock 2006) is an ac-
tive learning method proposed for multi-view problems,
where examples receiving different predictions from mul-
tiple views are selected for labeling. Multi-view learning
can be viewed as a special case of multi-task learning with
output constraints, where tasks are to predict the same vari-
able from different views, and constraints among tasks are
agreement constraints: predictions should agree. In this
sense, our work is a non-trivial extension from multi-view to
multi-task active learning. Multi-task (or multi-label) active
learning has recently been studied. Reichart et al. (2008)
present some heuristics such as iteratively selecting sam-
ples from different tasks or aggregating the selection scores
from tasks. Qi et al. (2008) propose to estimate the cor-
relation of labels directly from training examples and use
the resulting joint label distribution to guide active learn-
ing. Another related direction is active learning for struc-
tured prediction. Roth and Small (2006) study the tradeoff
between querying the labels for an entire structured instance
and querying the labels for subcomponents of instances.

6 Conclusion and Future Work
In this paper, we present a systematic framework to incor-
porate output constraints into the multi-task (-label) active
learning process. With task outputs coupled by constraints,
a cross-task value of information criteria is designed to mea-
sure both the uncertainty and inconsistency of predictions
over tasks. A specific example of our framework leads to the
cross entropy measure on the predictions of coupled tasks,
which generalizes the single-task uncertain sampling using
entropy. We conduct experiments on two real-world prob-
lems: web information extraction and document classifica-
tion. Results on both problems demonstrate the effective-
ness of our framework in actively collecting labeled exam-
ples for multiple related tasks. The proposed framework
may be considered as a natural choice to replace standard

active learning strategies in any learning system where mul-
tiple prediction problems are coupled by output constraints.

Future work will concentrate on expanding or updating
the predefined set of output constraints during the learning
process. It is also interesting to include more complex types
of constraints into the proposed framework, e.g., constraints
involving three or more labels. Another direction is to use
output constraints in modeling the joint predictive distribu-
tion of multiple tasks. The resulting joint label distribution
combines the information from both labeled examples and
domain knowledge, and can be used to either guide the ac-
tive learning process or make more accurate predictions.
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(b) Free mode, 0/1 reward function

0 500 1000 1500 2000 2500 3000
0.82

0.84

0.86

0.88

0.9

0.92

0.94

# Requested Sample−Task Pairs

A
ve

ra
ge

 A
U

C
 S

co
re

 

 

Balance mode, log reward, without constraint
Balance mode, log reward, with constraints

(c) Balance mode, log reward function
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(d) Balance mode, 0/1 reward function

Figure 1: Performance of8 active learning strategies in web
information extraction experiments.
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(a) Free mode, log reward function
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(b) Free mode, 0/1 reward function
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(c) Balance mode, log reward function
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(d) Balance mode, 0/1 reward function

Figure 2: Performance of8 active learning strategies in doc-
ument classification experiments.


