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Abstract

Many problems in information extraction, text mining,
natural language processing and other fields exhibit the
same property: multiple prediction tasks are related in
the sense that their outputs (labels) satisfy certain con-
straints. In this paper, we propose an active learning
framework exploiting such relations among tasks. Intu-
itively, with task outputs coupled by constraints, active
learning can utilize not only the uncertainty of the pre-
diction in a single task but also the inconsistency of pre-
dictions across tasks. We formalize this idea as a cross-
task value of information criteria, in which the reward
of a labeling assignment is propagated and measured
over all relevant tasks reachable through constraints. A
specific example of our framework leads to the cross
entropy measure on the predictions of coupled tasks,
which generalizes the entropy in the classical single-
task uncertain sampling. We conduct experiments on
two real-world problems: web information extraction
and document classification. Empirical results demon-
strate the effectiveness of our framework in actively col-
lecting labeled examples for multiple related tasks.

1 Introduction

with tasks coupled by a set of constraints, active learning
can utilize not only the uncertainty of the prediction in a
single task but also the inconsistency of predictions acros
tasks. For example, if two models classify an object as posi-
tive examples for two mutually exclusive classes, we can be
certain that at least one model is making an incorrect predic
tion. This kind of certainty can not be achieved in traditibn
single-task active learning due to the lack of true labels.

The value of information in decision theory offers a sys-
tematic treatment for active learning and observationcsele
tion problems (Kapoor, Horvitz, and Basu 2007; Krause and
Guestrin 2009), where different choices of reward funcion
give different active learning heuristics. We formalize ou
idea of constraint-driven active learning across tasks as a
value of information framework, in which each possible la-
beling assignment for a task is first propagated to all releva
tasks reachable through constraints and the reward is mea-
sured over all relevant tasks. A specific choice of reward
function in our framework leads to the cross entropy mea-
sure on the predictions of coupled tasks, which generalizes
the entropy measure used in the classical single-task-uncer
tainty sampling and also highlights the role of task incensi
tency in multi-task active learning.

Many real-world problems exhibit the same property: multi- We conduct experiments on two real-world problems:
ple prediction tasks are related in the sense that theiutsitp ~ web information extraction and document classification. Re
need to satisfy certain constraints. In information retile gardless of the choice of reward functions, our multi-task
and text mining, classifying documents and web pages into active learning approaches with constraints consistenty
a set of predefined categories are treated as multiple tasks,perform the corresponding single-task selection methiods.
but these categories are usually defined by a taxonomy of in- this sense, we suggest that the proposed framework should
heritance semantics. In information extraction, recoiggiz be considered as a standard procedure for actively coitgcti
different entities and relations are separate predictiskg, labeled examples for large numbers of coupled tasks, e.g.,
but their outputs are often related, e.g.is the mayor of a classification for a taxonomy of categories.
city tells thatx is also a politician, a person, but not food. The rest of the paper is organized as follows. In Section 2,
These constraints couple the task outputs and provide we review the notion of value of information for active learn
valuable information. As a result, researchers have rgcent ing. In Section 3 we propose our framework of constraint-
proposed to leverage constraints of task outputs to improve driven multi-task active learning. Empirical studies are-p
supervised and semi-supervised learning (Chang, Ratinov, sented in Section 4. We discuss related work in Section 5.
and Roth 2007; Chang et al. 2008; Carlson et al. 2010), In Section 6 we conclude the paper and discuss future work.
where constraints are used to regularize either the estima-
tion of model parameters or the inference on unlabeled data. 2 Value of Information for Active Learning
In this paper, we study active learning on multiple tasks |, this section we review the notion of value of information
when their outputs are coupled by constraints. Intuitively o active learning. Suppose our goal is to build a predictio
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ie,p(Y = y|x),y € Dom(Y). In traditional pool-based
active learning (for a single task), we have a set of unlabele
samplesU. We want to actively choose unlabeled samples
from this pool for labeling requests, so that the prediction
performance of the model learned from labeled examples
is maximized. The key is to measure how useful labeling
a samplex € U will be for improving the current model

= p(Y'|x). This can be viewed as measuring the value of
information (Krause and Guestrin 2009) for requesting the
unknown label” on each unlabeled samptec U:

ZP Y =y,x)

This formula shows that the value of information for a label-
ing requestY’, x) is the sum of theeward of each possible
labeling outcom&” = y for the current modeb, denoted
asR(p,Y = y,x), weighted by the probability of this out-
comeP (Y = y|x). The true label probabilit’ (Y = y|x)

is unknown, and in most casde# is replaced by the estimate
from the current moded:

Zp

The reward function is the key part of value of informa-
tion in eq. (2). A reasonable heuristic is to measure how
surprising is the labeling outcon{& = y, x) given current
modelp. Two reward functions following this heuristic are:

R(ﬁa Y = y,x) 3
R(p,Y =y,x) =y'[x))(4)

VOI(Y,x) = y|x)R(p, 1)

VOI(Y,x) =y|x)R(,Y =y,x) (2)

—logy (Y = ylx)
1 —0(y,argmaxp(Y
y/

The function in eq. (3) is the optimal code length of the out-
come if the distribution is given by the current mogelin
this case, an impossible outcome (with= 0) has an infinite
reward, and an already known outcome (witk= 1) has no
value. The second function in eq. (4) takes the valifehe
labeling outcome coincides with the most likely predigt
(i.e., no surprise and no reward) ahatherwise. We can
view eqg. (3) as the log reward fg(Y |x) if the true label is
y, and eq. (4) as th@/1 reward (Roy and Mccallum 2001).
Incorporating the reward eq. (3) into eq. (2), we have:

Z pY ()

which is the entropy of the predicted distribution used in
uncertain sampling. Similarly, the reward in eq. (4) leads t

(6)

VOI(Y,x) = y[x)log, p(Y = yl|x)

VOI(Y,x) =1—maxp(Y = y|x)
Yy

which is the criteria used in least-confident sampling (&ett

2009). Many active learning heuristics are equal to maxi-

mizing the value of information with different reward func-

tionsR(p,Y = y,x), e.g., estimated error reduction on the

whole unlabeled set (Roy and Mccallum 2001).

There are exceptions: Guo and Greiner (2007) replace the tru
label probability with aroptimistic guess maximizing the reward.

3 Multi-Task Active Learning with
Constraints

In this section, we propose our framework for multi-task ac-
tive learning with output constraints. In Section 3.1 we
introduce the key component of our method: the notion of
cross-task value of information. In Section 3.2 we analyze
the proposed criteria and show how inconsistency of predic-
tions among tasks is captured. In Section 3.3 we discuss
a few extensions to our framework, e.g., launch new tasks,
manage supplementary tasks and handle tasks with different
input spaces. In Section 3.4 we give the complete algo-
rithm.

3.1 Cross-Task Value of Information

Consider a set df’ tasks, each with a (categorical) response
variableY;,« = 1,2,...,T. Our goal is to learn a classifier
for each taskp; = p;(Y;|x),i = 1,2,...,T. Each sample
in our training setx € U is associated witl" labels. For
each sample, we might know some (or none) of itabels.
We useU L(x) to denote the set of unknown labels on a
samplex: UL(x) = {Y; : Y; is unknown forx}.

In multi-task active learning, we need to choose both the
sample and the task for labeling. We measure the value of
information for the sample-task pdiY;, x) as follows:

Zpl R(Y; = yi,x)

wherex € U is a sample from our training sét; € U L(x)
is an unknown label ox, andR(Y; = y;,x) is the reward
function for a possible labeling outcome fo¥; = y;,x).
As in eq. (2), the true label probabilit)?(V; = y;|x) is
unknown and replaced by the estimate from the curigmt
modelp;(Y; = y;|x). Note that we will discuss managing
completely new tasks (i.ep; not available) in Section 3.3 .
The key question is to decide the reward functify; =
yi, x) for each possible labeling outcon(E;, = y;,x). The
set of constraints among task outputs, denote@agro-
vides important information on what other facts we can in-
fer from a given outcom¢Y; = y;,x). To formalize this,
we define the set gfropagated outcomes Prop (Y; = ;)
as the labeling outcomes we canfier from the assignment
Y; = y; based on the set of constraids

Propo(Yi =yi) ={Y; =y; | Yi=yi —-

VOI(Y;,x) = (7)

Y = yilx)

o Y= yj}

(8)
Inference of outcomes is based on the rules provided by con-
straints. For example, the inheritance constraifti$ a de-
rived class ofY;” providestwo rulesY; = 0 — Y, = 0"
and'Y; = 1 — Y; = 1”. The mutual exclusion constramt
“Y; andY are mutually exclusive classes” gives two rules
“YVi=1->Y, =0and"y;,; =1 — Y = 0". The
agreement constrain; andY; must agree”, which is com-
mon when we use multiple V|ews to predict the same tar-
get variable, brings the rules} = y — Yj y” and
‘Y; = y — Y; = y". Note that even without any rule,
i.e.,C = 0, we still haveProp, (Y; = v;) = {(Y; = vi)}
since a labeling outcome at least indicates itself. Alse, th
--» in eg. (8) means that we also include the outcomes we



indirectly infer fromY; = y;, i.e., by sequentially applying
available rules multiple times.

The criteria in eq. (11) can be viewed as the sum of cross
entropy measures between the mogleand other coupled

Based on the notion of propagated outcomes, we define modelsp;. Recall that the cross entropy of two distributions

the reward functiomR(Y; = y;, x) in eq. (7) as follows:

> R(p;,Y; = y;,%) (9)
Yj=y;EProps (Yi=y;)
Y; €U L(x)

whereR(p;,Y; = y;,x) is the single-task reward function

discussed in Section 2, two examples of which are given as

eg. (3) and eq. (4). Also, we only consider inferred labeling

outcomes’; that are unknown on sample Y; € UL(x).
Computationally, the set of propagated outcomes

Prop. (Y; = y;) for each labeling outcom®&; = y; can

be pre-computed and cached for efficiently access during
active learning. To pre-compute this set, we can construct

a directed graph, where each label assignnént= y;
(yi € Dom(Y;),i = 1,2,...,T)is a node and each prop-

agation rule is a directed edge. Computing the set of proro-

gated outcomes from an outcoriie = y; is equivalent to

P;(y) andP;(y) is defined as:

H(P;, P;) == Pi(y)log, P;(y) (12)

which is the average coding length of a variapl@ith dis-
tribution P; when using an optimal code for another distribu-
tion P;. Intuitively, this coding length increases with the dis-
crepancy ofP; from P;, so it captures the inconsistency of
two distributions. Note thaP; andP; in eq. (12) are defined
on the same quantity, but any two predicted distributions
p; andp; in eq. (11) are defined on different target variables.
The constraint€ plays a key part in eq. (11): coupling pre-
dicted distributions on different variables. As a resulbss-
task value of information in eq. (11) is essentially the sum
of cross entropy measures between the predicted distsibuti
p; and other coupled predicted distributions.

finding the set of reachable nodes from the corresponding 33 Extensions

node in the graph. The size of the graph only depends on the

number of taskd” and the cardinality of response variables
|Dom(Y7;) JT:1. Thus this computation is often tractable.

Incorporating eqg. (9) into eq. (7), we define the cross-task
value of information for a sample-task pair as:

VOI(Y;,x) =
>

> pi(Yi = yilx)
Yi Yj=yjEProps (Yi=y;)

Y; EUL(x)

R(ﬁijj = ijx)

(10)

3.2 Analysis

In this section we analyze the cross-task value of informa-

tion in eq. (10). We choose the single-task reward function

as eq. (3). Analysis is similar for other reward functions.
Including the reward eq. (3) into eq. (10), we have:

VOI(Y;,x) =
SohVi=ulx Y
vi Yj=y;jE€Props (Y;=y;)

Y; EUL(x)

—log, p;(Y; = y;[x)

(11)

For a given unlabeled sample-task p@it, x), the value
of information in eq. (11) is determined by: 1) the moggl
predicting the probability of each possible assignni&ht=
y;|x); 2) propagated fact&’; = y;) € Prop. (Y; = y;) in-
ferred from each assignment = y;; 3) other models pre-
dicting the probabilitys; (Y; = y;|x) of each inferred out-
comeY; = y;. In particular,VOI(Y;,x) tends to be high
if some assignment; = y; is highly probable according
to p;, but the inferred outcom¥; = y; is unlikely accord-
ing to another moded;. In this case, botlp;(Y; = v;|x)
and—log, p;(Y; = y;|x) will be high and the total value of
information VOI(Y;, x) is significantly increased. In this
sense, maximizing the value of information tends to select

the sample-task pair on which the current models are con-

tradicting each other given the set of constraints.

We discuss a few potential extensions to our framework that
are useful in some real-world systems: launch new tasks,
differentiate target and supplementary tasks, and couple p
diction models in different input spaces.

The first extension is to launch new tasks: we may start
collecting labeled examples for a few tasks on our taxonomy,
and new tasks (and constraints) can be continuously added
into the taxonomy later. When new tasks are added into the
system, we may prefer to collect more labels for them since
they have no (or few) labeled examples. This can be natu-
rally handled by our framework. For a completely new task
1 (without labeled example), we can specify ttle predic-
tion modelp; (Y;|x) in eq. (10) as random guessing (e.g.,, a
uniform distribution on all possible assignments). Thifl wi
lead to more frequent contradictions with other prediction
p; on propagated outcom&$ = y; € Prop,(Y; = y;) and
thus large value ofp; (Y; = y;|x) - —log, p;(Y; = y;|x)].
Similarly, the model for a task with few labeled examples
is inaccurate and tends to contradict with other models, and
thus the task is more likely to be chosen based on eq. (10).

The second extension is to enable us to specify a subset
of tasks agarget tasks (denoted b C {1,2,...,T})and
other tasks asupplementary tasks. Our goal is to improve
the prediction performance on target tasks. To achieve this
we redefine eq. (9) (and consequently eq. (10)) as:

>

Yj=yjEPropg (Y;=y;)
Y;EUL(x) A jEG

R(sz = Yi, X) = R(ﬁja Y] =Yy, X) (13)

in which the rewardR(Y; = y;, x) includes rewards from
propagated outcomé$ = y; only if j € G. As a result,
maximizing the VOI in eq. (10) (redefined withe G) will
select the sample-task pair which brings significant gains
on target tasks. A supplementary task will be chosen only
if it gives nontrivial rewards on target tasks. Note that
eg. (10) (redefined with € G) will contain the entropy
term) -, pi(Y; = yi[x) - —log, pi(Y: = yi[x) if i is atarget



task. If a completely new taskis a target task, this entropy
term will be large sincé; is a uniform distribution, i.e., we
will strongly prefer to label examples for a new target task.

The last extension is to handle tasks defined on different
input spaces. This is useful, e.g., for coupling entity geco
nition tasks and relation extraction tasks. To be more con-
crete, we may have three tasks: tdsls to recognize the
class “politician”, task is to recognize the class “city”, and
task 3 is to extract the relation “is the mayor of”. A con-
straint is that %, is the mayor ofrs only if 2, is a politician
andzx. is a city”. To handle these tasks, we need to redefine
the notion of propagated outcomes in eq. (8) to include not
only the transition of the output variable but also the cleang
of input variables. This part will be studied in future work.

3.4 TheComplete Algorithm
In this section we summarize the complete algorithm:

e 1. Choose the base learngrfor each of thel task. In
this work, we use multinomial Naive Bayes (McCallum
and Nigam 1998) for simplicity and training efficiency.

2. Choose the single-task reward, e.g., eq. (3) or (4).

3. Specify the set of constrain€ between task outputs,
construct the propagation rules and pre-compute the set of
propagated outcomd3rop, (Y; = y;) for each labeling
outcomeY; = y;, as discussed in Section 3.1 .

4. Choose between thmlance mode and théree mode.
In the balance mode, we require that edchabeling re-
quests must be uniformly froffi tasks. In the free mode
we do not add this restriction.

5. Train a model for each task using seed examples. Use
random prediction as the initial model if no seed available.

6. Compute the value of information for each unlabeled
sample-task paifY;, x) according to eq. (10).

7. Choose the sample-task pair that maximizes the VOI,
without violating the balance restriction (if specified).

8. Obtain the labeling outcome for the chosen sample-task
pair, and perform propagation according to eq. (8).

9. Retrain prediction models with new labeled examples.
10. Returnto step 6 if more labeling requests are allowed.

4 Empirical Studies

We conduct our empirical studies on two real-world prob-
lems: web information extraction and document classifica-
tion. In this section we discuss our experiments and results

4.1 Experimental Settings

The first experiment on web information extraction is based
the data collected from the CMU Reading the Web prgject
The project uses semi-supervised learning methods to ex-
tract symbolic knowledge (as instances of different entity
classes and relations) from the Web. We dsdasses of
708 named entities (noun phrases) extracted by the system,

2http://rtw.ml.cmu.edu/readtheweb.html

which include242 animals,107 mammals200 companiey

33 newspaper companiet/1 food and95 celebrities. Each
example is represented byv8400 dimensional vector, de-
scribing its co-occurrence frequencies with the most fre-
gquent99400 contexts on the Web. As a result, the data is
a708 x 99400 matrix. We definé tasks, each to recognize
an entity class. The constraints between tasks are: inher-
itance between “mammals” and “animals”, inheritance be-
tween “newspaper companies” and “companies”, and mu-
tual exclusion between other pairs of classes. We repeat
random runs. In each run, we randomly splis examples

into the training set and the rekt3 examples as the testing
set. In the training set, we randomly lat$l seed exam-
ples for each task to initialize the multinomial naive Bayes
model, and make sure that for each task at l@ased exam-
ples are positive. We test different active learning meshod
using the procedure described in Section 3.4 . Details of the
methods will be discussed later in this section. We test the
performance of each method on the testing set as more la-
bels are requested. We use the average AUC (area under the
ROC curve) score ovértasks as the performance measure,
and the results are further averaged dvesndom runs.

The second experiment on document classification is
based on the RCV1 corpus (Lewis et al. 2004), a benchmark
collection of over800,000 newswire stories from Reuters.

In this data set, each article is represented4®86 dimen-
sional TF-IDF weight vector, and labeled fob1 topics. In
the experiment, we use a subset of the colleétiavhich
contains3000 training examples an8D00 testing examples.
Some topics are very rare, so we selggtfrequent topics
with at leastl% positive examples. We studif classifica-
tion tasks, each to identify a topic. Constraints that ceupl
task outputs are defined by extracting the propagation rules
with 100% precision from the corpus. We use these rules to
construct sets of propagated outcomes in eg. (8). To strt th
experiment, we randomly providi® labels from the train-
ing set for each task to initialize the model. Other settings
are same as in the information extraction experiment.

We compare8 active learning strategies, which result
from different choices of three options:

e 1: the log reward in eq. (3) vs. the 0/1 reward in eq. (4).
e 2: the free mode vs. the balance mode (see Section 3.4 ).
e 3: without constraint vs. with constraints

Note that, without constraint to couple tasks (Ce= (), the
cross-task value of information in eq. (10) for a sampléctas
pair (Y;, x) is equal to the value of information in eq. (2) for
taski. In this case, the balance mode is exactly to perform
active learning on each task iteratively, and the free mode
may continuously request labeling on the same task if the
reward computed as eq. (2) dominates other tasks.

4.2 Results

Empirical results of information extraction experiments a
shown in Fig. 1a — Fig. 1d, and results for document clas-
sification are presented in Fig. 2a — Fig. 2d. All figures

3We use a subset of companies to not overwhelm other classes.
“http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datésie



display the change of average AUC score as the number of

active learning strategies in any learning system where mul

requested labels increases. Each subfigure makes a compartiple prediction problems are coupled by output constsaint

ison between active learning with and without constraints.
Subfigures differ in the choice of reward functions (log re-
ward or 0/1 reward) and modes (free mode or balance mode).

Future work will concentrate on expanding or updating
the predefined set of output constraints during the learning
process. Itis also interesting to include more complexdype

From the results we can see that active learning based on of constraints into the proposed framework, e.g., consisai

cross-task value of information consistently outperfoats
tive learning using the single-task counterpart, regasité
the choice of reward functions and algorithm modes. Pre-
diction performance is improved significantly faster when

involving three or more labels. Another direction is to use
output constraints in modeling the joint predictive distri
tion of multiple tasks. The resulting joint label distribor
combines the information from both labeled examples and

labeling requests are chosen according to a cross-task se-domain knowledge, and can be used to either guide the ac-

lection criteria, and much less labeling requests are rikede
for the system to achieve good AUC scores. In addition,
the 0/1 reward function in eq. (4) is more effective than the
log reward function in eq. (3). Also, the balance mode and
the free mode perform comparably well. Overall speaking,
the combination of cross-task value of information, the 0/1
reward fucntion, and balance mode (Fig. 1d and Fig. 2d)
achieves top performance in both web information extrac-
tion and document classification experiments.

5 Redated Work

Co-testing (Muslea, Minton, and Knoblock 2006) is an ac-
tive learning method proposed for multi-view problems,
where examples receiving different predictions from mul-
tiple views are selected for labeling. Multi-view learning
can be viewed as a special case of multi-task learning with
output constraints, where tasks are to predict the same vari
able from different views, and constraints among tasks are
agreement constraints: predictions should agree. In this
sense, our work is a non-trivial extension from multi-view t
multi-task active learning. Multi-task (or multi-label}tae
learning has recently been studied. Reichart et al. (2008)
present some heuristics such as iteratively selecting sam-
ples from different tasks or aggregating the selectionescor
from tasks. Qi et al. (2008) propose to estimate the cor-
relation of labels directly from training examples and use
the resulting joint label distribution to guide active lear
ing. Another related direction is active learning for struc
tured prediction. Roth and Small (2006) study the tradeoff
between querying the labels for an entire structured icgtan
and querying the labels for subcomponents of instances.

6 Conclusion and Future Work

In this paper, we present a systematic framework to incor-
porate output constraints into the multi-task (-labeljvact
learning process. With task outputs coupled by constraints
a cross-task value of information criteria is designed tame
sure both the uncertainty and inconsistency of predictions
over tasks. A specific example of our framework leads to the
cross entropy measure on the predictions of coupled tasks,
which generalizes the single-task uncertain samplinggusin
entropy. We conduct experiments on two real-world prob-
lems: web information extraction and document classifica-
tion. Results on both problems demonstrate the effective-
ness of our framework in actively collecting labeled exam-
ples for multiple related tasks. The proposed framework

may be considered as a natural choice to replace standard

tive learning process or make more accurate predictions.
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Figure 2: Performance @&factive learning strategies in doc-
ument classification experiments.



