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Abstract

In this paper, we study the combination of compression
and /l-norm regularization in a machine learning
context: learning compressible models. By including a
compression operation into the ¢1 regularization, the
assumption on model sparsity is relaxed to compress-
ibility: model coefficients are compressed before being
penalized, and sparsity is achieved in a compressed
domain rather than the original space. We focus on the
design of different compression operations, by which
we can encode various compressibility assumptions
and inductive biases, e.g., piecewise local smoothness,
compacted energy in the frequency domain, and se-
mantic correlation. We show that use of a compression
operation provides an opportunity to leverage auxiliary
information from various sources, e.g., domain knowl-
edge, coding theories, unlabeled data. We conduct
extensive experiments on brain-computer interfacing,
handwritten character recognition and text classifica-
tion. Empirical results show clear improvements in
prediction performance by including compression in ¢1
regularization. We also analyze the learned model coef-
ficients under appropriate compressibility assumptions,
which further demonstrate the advantages of learning
compressible models instead of sparse models.

Keywords: linear models, /1 regularization, sparse
models, compressible models, compression, inductive
bias.

1 Learning Compressible Models

Since the introduction of lasso [21], £1-regularization has
become very popular for learning in high-dimensional
spaces. A fundamental assumption of ¢1-regularization
is the sparsity of model parameters, i.e., a large fraction
of coefficients are zeros. Sparse models have the advan-
tage of being easy to interpret and good generalization
ability in very high-dimensional problems. However,
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the sparsity assumption on model coefficients might be
too restrictive and not necessarily appropriate in many
application domains. Indeed, many signals in the real
world (e.g., images, audio, videos, time series) are found
to be compressible (i.e., sparse in certain compressed
domain) but not directly sparse in the observed space.
Naturally, the assumption of sparsity can be relaxed to
compressibility. Inspired by the recent development of
compressive sampling (or compressed sensing) [5, 9], we
study learning compressible models: a compression on
model coefficients can be included in the ¢1 penalty, and
model is assumed to be sparse after compression.

The rest of this paper is organized as follows. In sec-
tion 1.1, we will briefly introduce learning sparse models
with /1-norm regularization. In Section 1.2 we discuss
the definition, computation issues and potential bene-
fits of learning compressible models. In Sections 24,
we propose three classes of model compressibility as-
sumptions and corresponding compression operations:
piecewise local smoothness, energy compaction in the
frequency domain, and semantic correlation. In Sec-
tions 5-7, we empirically study several real-world prob-
lems: brain-human interfacing, handwritten digit recog-
nition and text classification, using compressibility as a
more appropriate inductive bias than sparsity. Exper-
imental results demonstrate the advantages of learning
compressible models. Section 8 discusses related work
and Section 9 concludes and mentions future work.

1.1 Learning Sparse Models with /-Norm Reg-
ularization. Regularization was initially proposed to
solve ill-posed problems [23]. In statistical learning,
regularization is widely used to control model complex-
ity and prevent overfitting [11]. Regularization seeks a
trade-off between fitting the observations and reducing
the model complexity, which is justified by the minimum
description length (MDL) principle in information the-
ory [18] and the bias-variance dilemma in statistics [20].

Lasso [21] is a specific example of ¢1-norm regular-
ization, which is formulated as:

(1) minlly - 1o - XBJ3+ A8l

where the n X p matrix X contains n examples and p ex-
planatory variables (i.e., features), and the nx1 vector y



is the response variable (or 0/1 labels) of training exam-
ples. The sum of squares error || ||3 is an instantiation of
the empirical loss function on observations. Also, 1 is a
column of 1s, and the intercept « and p x 1 vector 3 are
model parameters. The intercept « is usually separated
from B3 and not penalized in regularization. The regu-
larization parameter A is a balance between minimizing
the empirical loss and controlling the model complexity
[|8]]1, and is usually determined by cross-validation.

A notable part of lasso is the use of ¢1 norm ||3||1
as the regularization term. As the closest convex re-
laxation of £0-norm, ¢1-norm in regularization not only
controls model complexity but also leads to sparse esti-
mation [21]. This provides both interpretable model co-
efficients and generalization ability. Analytical results
also show that /1 regularization is capable of consis-
tently recovering the true signal from noisy measure-
ments [25, 30], given that the true signal is sparse.

1.2 Learning Compressible Models: Assuming
the model to be sparse and shrinking model coefficients
to exactly zero might not be the most appropriate induc-
tive bias in many problems. For example, real-world sig-
nals (such as audio, images, videos and time series) are
usually compressible but not directly sparse in the ob-
servation domain. Interestingly, compressive sampling
[5] or compressed sensing [9] was recently developed in
signal acquisition, which is also based on ¢1 penalized
optimization framework but assumes that the target sig-
nal is compressible, i.e., sparse after being compressed.

The compressibility can also be used as an inductive
bias in a machine learning context, which relaxes the
sparse assumption used by lasso and provides a more
appropriate assumption. We consider the problem of
learning compressible models as follows:

(12)  minL(y.1a+X8) + WOl

The loss function L depends on the prediction model,
e.g., sum of squares loss for linear regression, log-
likelihood loss for logistic regression, hinge loss for
SVMs, and so forth. The compression operation W()
encodes our assumption on compressibility: model coef-
ficients are compressed by W() before being penalized,
and thus tend to follow the compression pattern (i.e.,
sparse in the compressed domain) rather than simply
shrink to zero.

For simplicity, we restrict our attention to linear
compression. Given that the compression operation is a
linear and invertible! transform, learning compressible

TA compression transform needs to be invertible, so that the

compressed signal can be decompressed.

models is represented by:

(1.3)  min L(y, 1o +XB) + AWl

a,

The p X p matrix W denotes the linear and invertible
compression transform, where p is the dimensionality
of model coefficients as in (1.1). The optimization of
eq. (1.3) can be achieved by applying the inverse com-
pression transform (i.e., the decompression operation)
to the feature space and solving the standard ¢1 regular-
ization in the transformed space [14]. First, transform
the training examples by

(1.4) X =XW!

Second, solve the following standard ¢1-regularized
model (e.g., lasso or sparse logistic regression):

(1.5) min L(y, 1o + XB) + A|Bh

a,B

Finally, the solution for eq. (1.3) is obtained by:

(1.6) Jé; w3
1.7)

a = «

This equivalence is derived from X3 = XW~! B =Xz
and [WBl11 = [[WW~3]|; = |||

Why do we want to learn compressible models,
which are not necessarily sparse in the original space?
Compressible models are useful in several aspects. The
first is model fitting and prediction accuracy. The in-
ductive bias of model compressibility might be more
appropriate than model sparsity, especially if an infor-
mative compression operation is specified based on ad-
ditional information from domain knowledge, unlabeled
data or related problems. The second reason, as claimed
for standard sparse models, is interpretability. Model
coefficients that are sparse in a compressed domain can
still be insightful in the original space in many prob-
lems, as later shown by our empirical studies on brain-
computer interface (in Section 5) and handwritten digit
recognition (in Section 6). The third reason is that,
when the compression operation is known in advance,
compressible models are very efficient for storage and
transmission in the compressed domain. This advan-
tage has been widely recognized in compressive sensing
[5, 9] for general signals and thus also valid when signals
are model coefficients.

2 Model Compression: Local Smoothness

In this section, we discuss compression operations
related to local smoothness assumptions on models.
Smoothness characterizes the properties of derivatives
of a function. For example, a constant (or piecewise



constant) function has zero first-order derivatives at all
(or most) locations, and a quadratic function has zero
third-order derivatives at all locations. Here we will
show that use of a compression transform is very flexi-
ble and can represent various smoothness assumptions
on model coefficients.

2.1 Order-1 Smoothness: Suppose we have a natu-
ral order over model coefficients {3; }521, e.g., in tempo-
ral domains where each dimension corresponds to a time
point, or spectral domains where each dimension corre-
sponds to a frequency. Order-1 smoothness assumes the
coefficients “do not change very often” along the natu-
ral order. Such an assumption characterizes the first-
order derivatives. It has been studied in fused lasso [22]
where absolute values of the difference of successive co-
efficients, i.e., E?:z |B; — Bj—1|, are penalized®. This
idea was also explored in total variation minimization
for noise removal and image enhancement [19]. As a mo-
tivating example, we show that the fused lasso penalty
can be approximated by a linear and invertible compres-
sion in the /1 penalty.

The p X p matrix W for model compression based
on order-1 smoothness can be defined as:

S =Y
=
en)

o OB

(28) W=8, =

o o ... ... 1 =1
Model coefficients in the compressed domain W3 =
(8,51 — B2, ..., Bp—1 — Bp] tend to be sparse due to ¢1
regularization, which achieves the order-1 smoothness.
The averaging operation in the first row of W makes
the transform invertible. Note that if the first row of W
is multiplied by a small constant (e.g., 0.001), ||[W23||
approximates the fused lasso penalty. In our study, we
will use the compression in eq. (2.8) without scaling
the averaging operation. Also, we keep the compression
operation invertible to make the optimization efficient,
as discussed in eq. (1.4) - eq. (1.6).

2.2 Order-2 Smoothness and Higher-Order
Smoothness: Smoothness of higher orders is also com-
mon. For example, a piecewise linear function has piece-
wise constant first-order derivatives, indicating zero
second-order derivatives at most locations. This is de-
fined as order-2 smoothness. In this case, the p x p

?In fused lasso, standard ¢1-norm Z§:1 |85] and Z?:z |85 —
Bj—1| are penalized together to pursue both sparsity and smooth-
ness. We focus on smoothness part (Z?:z |8;—Bj—1]) as a specific
case of compressibility.

compression transform W can be:

10T}

. Ql
0 S, , S

(2.9) !

W =8, = {
where 0 is a (p—1) x 1 column vector. By this definition,
model coefficients in the compressed domain are WS =
(B, AB,AB12 — APz, APaz — APz a,...,ABp2p 1 —
ABp_1,p], where AB; ;11 = i —Bit1. In this sense, spar-
sity of the compressed model coefficients corresponds to
order-2 smoothness assumption in the original space.
Also, S% is invertible since both S;1971 and S}D are in-
vertible. Finally, model compression for higher-order
smoothness can be defined recursively.

2.3 Hybrid Smoothness: Sometimes features un-
der consideration do not follow an universal order, but
can be divided into groups, where each group of fea-
tures has an order or at least some groups of features
are ordered. The compression operation can be defined
as a block matrix to handle the use of different groups of
features. For example, suppose features can be divided
into three groups. We assume p; model coefficients on
the first group of features satisfy order-1 smoothness,
p2 coeflicients on the second group of features satisfy
order-2 smoothness, and we have no knowledge about
the third group of ps features. In this case, model com-
pression is defined as:

sl 0 o
(2.10) W=| 0 S2 0
0 0 I,

3 Model Compression: Energy Compaction

In this section, we discuss another important compress-
ibility assumption, energy compaction in the frequency
domain, to compress model coefficients in regularized
learning. The energy of many real-world signals can be
compacted by transforming signals to a frequency do-
main where most of their energy is concentrated in a few
frequencies, e.g., images are compressed this way [26, §].
If the target model is applied to classify objects (e.g.,
images) with compacted energy in a frequency domain,
it is reasonable to assume that the model only needs to
operate on a few relevant frequencies and thus also has
compacted energy in the same frequency domain. Oth-
erwise, most energy of the model is wasted. Naturally,
we can include an appropriate compression transform
in the /1 penalty when learning model coefficients 3 in
order to emphasize energy compaction in a frequency
domain.

The discrete cosine transform (DCT) is used in the
JPEG standard [26], which compresses an object (e.g.,
an image) by representing it as a sum of cosine functions



at various frequencies, and as a result, small coefficients
can be discarded. The 2D discrete cosine transform for
an m X n object is:

(3.11)
2 m—1n—1
! —
G'(u,v) = WA(U)A(’U) ; IZZO
(2z + Dum (2y + 1)um
G(z,y) cos o cos -
where u=0,1,...,n—1

v=0,1,....m—1
oy 27T ift=0
A(t)_{ 1 otherwise

The above formula is a linear operation on m x n matri-
ces, and can be rewritten as a linear operation on p x 1
vectors, where p = mn is the dimension of linear models
on images. This gives a p X p matrix W. Combining
such a compression operation with ¢1-norm regulariza-
tion will lead to sparse models in an appropriate fre-
quency domain, representing the compacted energy as-
sumption on model coefficients. Note that transforms in
real-world image compression protocols are more sophis-
ticated [26, 8], but studying sophisticated image codings
is not the focus of this paper.

4 Model Compression: Correlation

Another common situation is that model coefficients
are likely to be correlated. For example, in text
classification problems, a document is represented by
a bag of words, where each feature is a binary or count
variable indicating the occurrence of a word. In this
case, a true model 3 (intercept « omitted) for a problem
is a linear function defined on the vocabulary, and each
dimension ; indicates the effect of the jth word in
the decision. In any language, there exists a semantic
structure among words, which leads to the correlation
of words in constituting the meaning in an expression,
and more specifically, the correlation of their roles in
a natural function 3. This structure has been studied
as the semantic correlation of words [17, 29, 16] in a
machine learning context.

Given a correlation structure on model coefficients,
assuming model sparsity and imposing an ¢1-norm
penalty are no longer appropriate. It is easy to under-
stand the problem from the Bayesian perspective. Im-
posing an /1 penalty is equivalent to assuming indepen-
dent Laplacian priors on model coefficients [11, 24]. But
the independence assumption clearly contradicts the ex-
istence of a semantic correlation structure. Also, from
the frequentist perspective, the true model is unlikely
to be very sparse if coefficients are highly correlated:

nonzero coefficients on a few words suggest nonzeros on
many other semantically correlated words.

A simple solution is to decorrelate (i.e., compress)
model coefficients before penalization. Given a correla-
tion structure X (e.g., semantic correlation of words) on
coefficients, we set W = X2 and eq. (1.3) becomes:

(412)  min L(y, 1o +X) + A[|=7* 4]

Model coefficients in the compressed domain E_%ﬁ are
more likely to be sparse since they have a correlation
structure 3 = £-2¥3~2 = I. From the Bayesian
perspective, eq. (4.12) assumes that it is »-283 that
actually follows Laplacian priors on coefficients, and 3
is generated by first sampling 2 3 from the Laplacian
priors and then applying a transform 2 on the sample.
This explains the correlation structure 3 on 3.

Optimizing eq. (4.12) leads to sparse coefficients
in the compressed domain Zf%ﬁ. In the original
space, the penalty on 3 corresponds to applying a
large cost for choosing significantly different coefficients
on semantically correlated words. To actually solve
eq. (4.12), we follow eq. (1.4) to “decompress” the data
space (5( = XW ! = XE%) and solve the standard
(1 regularization in the new space X as eq. (1.5). It is
interesting to note that we actually further correlate the
data space (X = XX2) to decorrelate the model space.

For eq. (4.12) to be useful, the last question is how
can we obtain the correlation structure X, e.g., the
semantic correlation of words. Indeed, the correlation X
is even harder to estimate than the linear model 3 itself,
since the correlation matrix generally has more degrees
of freedom. However, in text learning problems, the
semantic correlation of words is considered an intrinsic
structure of a language and can be learned from other
problems on text [17] or even from seemingly irrelevant
unlabeled text [29] in the same language.

5 Empirical Study: Brain-Computer Interface

In this section, we report our empirical study on brain-
computer interface data [2]: classifying single-trial Elec-
troencephalography (EEG) signals. The EEG signals
contain important information from human brains. Be-
ing able to read and understand those signals is a criti-
cal step for human-computer interaction. An EEG sig-
nal contains multiple channels (i.e., multiple scalp po-
sitions), and each channel is sampled over time to pro-
duce sequential measurements. As a result, an EEG
signal is a multivariate time series. If we assume local
smoothness over time on a univariate time series, the hy-
brid smoothness assumption introduced in Section 2.3
is suitable for multivariate EEG classifiers.
Descriptions of the Data Set. We use data



Table 1: Classification errors on classifying EEG brain
signals: means (standard errors) over 50 random runs

means (standard errors) over 50 runs
Lasso 30.22%(0.34%)
LassoCP 25.98%(0.29%)
SLgr 30.00%(0%)
SLgrCP 20.92%(0.16%)

set IV, self-paced tapping, of BCI Competition 2003
[2], which is a binary classification task. The task
contains a training set of 316 examples and a testing
set of 100 examples. Each example has 1400 features,
corresponding to 28 channels and 50 measurements from
each channel. The number of features is much larger
than the number of training examples, indicating the
importance of regularization. Each example is measured
when a healthy subject, sitting in a chair with fingers
in the standard typing position, tries to press the keys
using either the left hand or right hand. The objective is
to classify an EEG signal to either a left-hand movement
or right-hand movement.

Experimental Procedures. The data set con-
tains a fixed training and testing set for competition.
For standard ¢1 regularized models, we train lasso and
sparse logistic regression. For compressible models, we
train compressible lasso, compressible logistic regres-
sion, where the compression operation is discuss later
in “model and implementation details” part. We learn
the four models from the training set and measure their
classification errors on the testing set. Note that there
is still randomness in the procedure: cross-validation is
used to determine the optimal regularization parameter
A. Therefore, we have 50 random runs on each model.

Model and Implementation Details. We con-
sider lasso with labels as {+1,—1} (denoted as Lasso
in our discussions), sparse logistic regression (denoted
as SLgr), compressible lasso (denoted as lassoCP), and
compressible logistic regression (denoted as SLgrCP).
Following eq. (2.10), the compression operation W for
learning two compressible models is a 1400 x 1400 block
matrix, with 28 blocks and each block is an order-1
smoothness matrix S}, defined as in eq. (2.8). Lasso
is implemented using the spgll Matlab solver?, and ¢1-
regularized logistic regression is implemented as [15] us-
ing lasso. The regularization parameter is chosen from
1077 to 107 (step 10°®) by 5-fold cross-validation.

Experimental Results and Analysis. Classi-
fication errors are shown in Table 1, with both means
and standard errors (of means) over 50 random runs. By

Shttp://www.cs.ubc.ca/labs/scl/spgll/
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Figure 1: Model coefficients of sparse and compressible
(i.e., piecewise smooth) logistic regression on brain-
computer interfacing (EEG signal classification)

learning compressible models instead of learning sparse
models, the testing error is reduced from 30.22% to
25.98% for lasso (Lasso vs. LassoCP), and from 30%
to 20.92% for logistic regression (SLgr vs. SLgrCP).
During the competition, 15 submissions were received
[2]. The best submission achieves 16% error, using
features “based on Bereitschaftspotential and event-
related desynchronization” [27]. The 2nd best sub-
mission achieved 19% using 188 time-based, frequency-
based, and correlational features “compiled by hand”
[2]. For the other 13 submissions, six attained errors
between 23% and 29%, and the other seven were worse.
In our study, compressible logistic regression using 1400
raw features are comparable to the two best submissions
with domain-specific features.

We also plot the model coefficients learned by a
sparse logistic regression and a compressible logistic re-
gression in Figure 1. From the plot we have several
interesting observations. 1) Sparse logistic regression
learns sparse coefficients, and compressible LGR. leads



to (piecewise) smooth coefficients. These two different
patterns represent the inductive biases we incorporate
into the learning process (via different regularization
penalties). 2) Although in the compressible logistic re-
gression we mainly penalize the difference of successive
coeflicients, most learned coefficients are actually close
to zero. The proposed regularization (piecewise local
smoothness) effectively controls the model complexity
not only in terms of smoothness but also in terms of
the norm of coefficients. 3) In the compressible logistic
regression, there still exist a few large coeflicient jumps
over successive dimensions (within the same channel):
we plot in Fig. 1b the boundaries (vertical dashed lines)
of three selected channels that contain large coeflicient
jumps. These jumps correspond to large coefficients
in the compressed domain (recall that the compressed
domain defined by our compression operation is com-
posed of the difference of successive coefficients within
the same channel in the original space). The existence
of a few large coefficients in the compressed domain is
consistent with the notation of compressibility: most in-
formation of the original signal is concentrated on a few
components after being compressed. Mathematically,
this is achieved by performing /1 regularization? in the
compressed domain rather than the original domain.

6 Empirical Study: Handwritten Character
Recognition

In this section, we study handwritten character recog-
nition on images. As discussed in Section 3, compacted
energy in the frequency domain can be used as the in-
ductive bias for regularization, assuming that the model
only needs to operate on a few frequencies to classify
images.

Descriptions of the Data Set. We use the
MNIST handwritten digits data set®, which has 70000
images for 10 digits (from 0 to 9). Images are repre-
sented by pixels (in grayscale). The number of features
is p = 784, corresponding to 28 x 28 pixels of an image.

Experimental Procedures. We construct 45
binary classification tasks, each to classify two digits.
For each task, a few labeled examples of the two digits
are selected from the training set (e.g., 10, 20, or 50
images per class in our experiments). As a result,
we aim to learn classifiers in a high-dimensional space
(784 dimensions) using only a few training examples.
Performance for each task is averaged from 20 random
runs, with training data randomly selected. For each
task, the testing data are fixed as all the images of the

Tdeally, £0 norm is the best candidate for allowing a few large
coefficients, while ¢1 norm is the closest convex relaxation.

Shttp://yann.lecun.com/exdb/mnist/

Table 2: Classification errors over 45 tasks on MNIST,
10 training examples per class: means (and standard
errors) over tasks

10 training examples per class

Lasso 9.96%
LassoCP 7.80%
SLgr 9.79%
SLarCP 7.46%

(Lasso - LassoCP)
(SLgr - SLgrCP)

2.16%(0.23%)
2.33%(0.21%)

Table 3: Classification errors over 45 tasks on MNIST,
20 training examples per class: means (and standard
errors) over tasks

20 training examples per class

Lasso 6.94%
LassoCP 5.30%
SLgr 6.24%
SLgrCP 4.99%

(Lasso - LassoCP)
(SLgr - SLgrCP)

1.64%(0.18%)
1.25%(0.16%)

Table 4: Classification errors over 45 tasks on MNIST,
50 training examples per class: means (and standard
errors) over tasks

50 training examples per class

Lasso 4.91%
LassoCP 3.45%
SLar 3.91%
SLgrCP 3.26%

(Lasso - LassoCP)
(SLgr - SLgrCP)

1.46%(0.12%)
0.65%(0.09%)

two target digits in the testing set.

Model and Implementation Details. The stan-
dard /1 regularized models: lasso and sparse logistic re-
gression are the same as in Section 5. The model com-
pression operation used for learning compressible lasso
and compressible logistic regression is the DCT opera-
tion in eq. (3.11). By using a DCT operation in the ¢1
penalty, we impose the assumption that model coeffi-
cients should be sparse in the DCT frequency domain,
implying that the model only needs to operate in a few
frequencies. Others implementation details are the same
as in Section 5.

Experimental Results and Analysis. Empirical
results are shown in Table 2-Table 7 and Figure 2.

Table 2 has two parts. The first part shows aver-
age classification errors over 45 tasks of lasso (Lasso),



Table 5: Performance comparison on individual tasks
between compressible and sparse models on MNIST, 10
training examples per class: #win/#loss over 45 tasks

10 training examples per class
41/4
43/2

LassoCP vs. Lasso
SLgrCP vs. SLgr

Table 6: Performance comparison on individual tasks
between compressible and sparse models on MNIST, 20
training examples per class: #win/#loss over 45 tasks

20 training examples per class
42/3
42/3

LassoCP vs. Lasso
SLgrCP vs. SLgr

Table 7: Performance comparison on individual tasks
between compressible and sparse models on MNIST, 50
training examples per class: #win/#loss over 45 tasks

50 training examples per class
44/1
40/5

LassoCP vs. Lasso
SLgrCP vs. SLgr

compressible Lasso (LassoCP), sparse logistic regression
(SLgr) and compressible logistic regression (SLgrCP),
where models are learned using 10 training examples
per class in each task. We omit standard errors (of clas-
sification errors) over 45 tasks since they correspond to
the variation of the difficulty of different tasks, which
is not of interest. The second part (the last two rows)
of Table 2 are means (and also standard errors) over
45 tasks for the paired difference of classification errors
between a sparse and a compressible model. Table 3
and Table 4 show similar results as in Table 2, with 20
and 50 training examples per class in each task, respec-
tively. Table 2-Table 4 show that compressible lasso
and compressible logistic regression generally outper-
form their sparse counterparts. The less the training ex-
amples available for learning, the more obvious the ad-
vantage of compressible models over sparse models. We
also compare classification performance of compressible
and sparse models on each individual task in Table 5-
Table 7. The results shows that the majority of tasks
benefit from learning compressible models.

In addition, we plot in Figure 2 the model coeffi-
cients of a compressible logistic regression from a ran-
dom run, where the task is to classify “1” (negative
class) and “8” (positive class). As shown in Fig. 2a,
model coefficients in the original space (which corre-
spond to image pixels) are mainly changing in a few
frequencies and indicate that the model is sparse in the
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Figure 2: Model coefficients of a compressible logistic
regression on MNIST. Task: classifying “17 vs. “8”.

compressed (DCT) space, i.e., has compacted energy in
the frequency domain. Interestingly, when we plot the
model coefficients as a 28 x 28 image in Fig. 2b, the dif-
ference between the negative class “1” and the positive
class “8” is well emphasized. The model coefficients, al-
though sparse in the frequency domain induced by the
DCT operation, are not sparse in the original pixel space
and can represent meaningful patterns for a classifica-
tion task. This should not be a surprise: DCT is the
compression operation in the JPEG standard for com-
pressing images, and information in an image tends to
be sparse in the DCT domain.

7 Empirical Study: Text Classification

In this section, we study text classification. As men-
tioned in Section 4, we include a decorrelation transform
W = 272 as the compression operation. The seman-
tic word correlation X is estimated from unlabeled text
[29], and thus learning compressible models offers an
approach for semi-supervised learning.



Table 8: Classification errors over 190 tasks, 2% docu-
ments in Dy, for training: means (and standard errors)

2% sampling from Dy,

Lasso 22.17%
ElasNet 19.97%
LassoCP 11.13%

SLgr 21.69%
SLarCP 9.31%

(Lasso - LassoCP)
(ElasNet - LassoCP)
(SLgr - SLgrCP)

11.05%(0.22%)
8.84%(0.28%)
12.38%(0.30%)

Table 9: Classification errors over 190 tasks, 5% docu-
ments in Dy, for training: means (and standard errors)

5% sampling from Dy,

Lasso 17.02%
ElasNet 12.87%
LassoCP 7.76%

SLgr 15.28%
SLgrCP 6.19%

(Lasso - LassoCP)
(ElasNet - LassoCP)
(SLgr - SLgrCP)

9.26%(0.21%)
5.11%(0.18%)
9.09%(0.22%)

Descriptions of the Data set. We use the 20-
Newsgroups data set®. It contains 11314 training and
7532 testing documents from 20 newsgroups. We denote
training and testing sets as Dy, and D, respectively.
Documents are represented as bags of words. We
select the vocabulary to include the most frequent 200
words in each newsgroups except the 20 most frequent
common words across all newsgroups. This leads to
p = 1443 features (words) in the vocabulary.

Experimental Procedures. Documents are from
20 newsgroups, so we construct 190 binary classification
tasks, each to classify a pair of two selected newsgroups.
For each task, we randomly sample 2% or 5% of
the relevant documents in Dy, as the labeled training
examples. Two newsgroups of a task are sampled
together to simulate imbalanced training examples for
text learning. Results of each task are averaged over 10
random runs. Testing documents for each task are fixed
to be all relevant documents in D;;,.

Model and Implementation Details. Sparse
lasso and sparse logistic regression are the same as
in previous experiments. For compressible models,
decorrelation is used for compression, as eq. (4.12). The
correlation X is estimated using all the documents in

Shttp://people.csail. mit.edu/jrennie/20newsgroups

Table 10: Performance comparison on individual tasks:
#win/#loss over 190 tasks

2% sampling | 5% sampling
LassoCP vs. Lasso 190/0 190/0
LassoCP vs. ElasNet 188/2 188/2
SLarCP vs. SLar 190/0 1900

Dy, as unlabeled data, as in [29], and then is used to
specify the decorrelation operation in all 190 tasks. In
addition to two sparse models and two compressible
models, we also test elastic net [33]. Elastic net is
designed to handle correlated model coeflicients, and as
a convex combination of /1 norm and ¢2 norm, provides
superior performance to regularization by either norm’.
For all models, the intercept « is added into the penalty
term, which slightly improves the performance. This is
possibly because a tends to overfit the imbalanced class
distribution in training examples. For lasso and logistic
regression, the regularization parameter for the 1 norm
is chosen from 1077 to 107 with a larger step 10! (for
computation efficiency). Other details are the same as
Section 5. For elastic net, the £1 norm bound is choose
in the same way, and the second parameter Ay [33] is
chosen from 104 to 10* with step 10.

Experimental Results and Analysis. Results
are shown in Table 8, Table 9 and Table 10.

The first part of Table 8 contains the means of clas-
sification errors over 190 different tasks, using lasso,
elastic net, compressible lasso, sparse logistic regres-
sion, compressible logistic regression, respectively. The
second part includes means and standard errors of the
paired difference of classification errors on each task be-
tween competitive models. For regression-based models
(i.e., lasso, compressible lasso and elastic net), elastic
net improves standard lasso by using a convex combina-
tion of /1 and ¢2 penalty. Elastic net is designed to ad-
dress correlated predictors [33], and its success confirms
that there exists correlations among model coefficients,
corresponding to the semantic correlation of words. Fur-
ther, compressible lasso shows significant improvements
over both lasso and elastic net. Compressible lasso is
superior to elastic net, because it explicitly includes ad-
ditional information (i.e., semantic correlation of words)
from unlabeled text in the form of compression opera-
tion in regularization. For logistic regression, compress-
ible logistic regression also show notable improvements
over sparse logistic regression.

Elastic net has two regularization parameters controlling ¢1

and £2 norm, respectively. With cross-validation to determine
both parameters, elastic net includes ¢1 regularization and ¢2
regularization as two specific cases.



Table 9 reports similar results as in Table 8, where
we sample 5% documents (instead of 2%) from Dy, as
the training data in each random run. Finally, Table 10
compares model performance on individual tasks. Com-
pressible models dominate other models in almost all
190 tasks, which shows the significance of the results
and indicates that learning compressible models is very
effective and reliable for text classification problems.

8 Related Work and Discussion

Compressive sampling [5] or compressed sensing [9]
was recently developed for signal acquisition, and has
received considerable attention [1]. According to this
theory, one can successfully acquire a signal (e.g., an
image) from many fewer measurements than required
by Nyquist-Shannon sampling theory. The key is to
assume that the true signal is compressible, i.e., sparse
in a compressed domain. Under this assumption, signal
acquisition given a few linear measurements on the true
signal B* can be achieved by solving the problem:

IIW B[y
subject to ®B =y

(8.13)

min
B

Here 3 is a candidate signal. W is a known compression
operation. The matrix ® = [¢;,...,¢,]T is the sens-
ing (or projection) matrix [6, 9], whose rows correspond
to measuring or sensing operations conducted on the
true signal 8*. A common choice of ® is random pro-
jections. The vector y contains projections of the true
signal B* on predefined bases. Recently, compressive
sampling has drawn considerable attention from ma-
chine learning and data mining communities. In [13],
researchers suggest using sparse Bayesian regression and
active learning to solve the CS problem in eq. (8.13)
and adaptively “learn” the optimal projection matrix
®. Authors in [4, 31] consider classification and regres-
sion problems, respectively, where data are compressed
and not directly observable, e.g., only random projec-
tions of the data can be accessed. This paper is another
application of compressive sampling theory in a machine
learning context: model coefficients can be compressed
before being penalized, and model sparsity is only re-
quired in a compressed domain rather than the original
space. The focus of this paper to study the inclusion
of different compression operations in £1 regularization,
which incorporates additional information and imposes
more appropriate inductive bias in the learning process.

Researchers have proposed various improvements
based on /1 regularization and learning sparse models.
Fused lasso [22] includes a penalty on the absolute dif-
ference of successive coefficients, which, as shown in Sec-
tion 2.1, can be approximated by a compression opera-

tion in the £1 penalty. Elastic net [33] combines ¢1 and
£2 norms to address the issue of correlated coefficients,
which is also the focus of OSCAR [3]. Group lasso [28]
adds more restrictions on model sparsity: variables in
the same group tend to be eliminated together. Struc-
tured sparsity [12] generalizes group lasso and stud-
ies the case that we have additional structured con-
straints on model sparsity, i.e., not all sparse patterns
are equally likely and we prefer some of them to oth-
ers. In this paper, we generalize model sparsity from
another perspective: we relax the sparsity assumption
by including compression into ¢1 regularization. As a
result, model coefficients are only assumed to be sparse
after compression, which can be a more appropriate in-
ductive bias when model sparsity is too restrictive.

9 Conclusion and Future Work

By including a compression operation into ¢1 regular-
ized learning, model coefficients are compressed before
being penalized and sparsity is achieved in a compressed
domain. This relaxes the assumption on model sparsity
to compressibility, and provides an opportunity encode
more appropriate inductive biases, e.g., piecewise local
smoothness, compacted energy in the frequency domain,
and semantic correlation. We conduct extensive ex-
periments on brain-computer interfacing, handwritten
character recognition, and text classification. Empiri-
cal results show significant improvements in prediction
performance by including compression in the ¢1-norm
penalty. We also analyze the learned model coefficients
under different compressibility assumptions, which fur-
ther demonstrate the advantages of learning compress-
ible models instead of sparse models.

Future work will explore the possibility of combin-
ing compression with other penalty norms, e.g., 0 or
£2 norm. The ¢2 norm is easy to optimize and widely
used in regularization. However, the notion of compress-
ibility generally implies that most energy of the signal
will concentrate on a few components after compres-
sion. This may contradict the use of £2 norm, which will
heavily penalize large coeflicients (in the compressed
domain). For example, most information of the com-
pressible model in Fig. 2a is concentrated around a few
frequencies, and thus we expect to have some large co-
efficients in the frequency domain®. On the other hand,
£0 norm is a good candidate for imposing compressibil-
ity assumptions, but /0 regularization is combinatorial
in nature and difficult to solve.

8Some specific compression operation may work well under £2
norm penalty. For example, the decorrelation transform used in
eq. (4.12), when combined with ¢2 regularization, corresponds to

a Gaussian prior based on a correlation structure [17, 29].



Another direction is to automate the design of the
compression operation in learning compressible models.
Although optimal compression is undecidable [10], it is
possible to infer an effective (but not necessarily opti-
mal) compression transform from auxiliary information
(e.g., related tasks), to select a compression operation
from a finite set, or to adaptively adjust a given com-
pression transform. For example, we can use reweighted
£1 minimization [7] and adaptive lasso [32] in the com-
pressed domain to improve the compression matrix.
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