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Biological processes are always carried out through large numbers of genes (and their products) and these activities are often organized into 
different cellular pathways: sets of genes that cooperate to finish specific biological functions. Owing to the development of microarray 
technology and its ability to simultaneously measure the expression of thousands of genes, effective algorithms to reveal biologically significant 
pathways are possible. However, some open problems such as large amount of noise in microarrays and the fact that most biological processes 
are overlapping and active only on partial conditions pose great challenges to researchers. In this paper, we proposed a novel approach to 
identify overlapping pathways via extracting partial expression profiles from coherent cliques of clusters scattered on different conditions. We 
firstly decompose gene expression data into highly overlapping segments and partition genes into clusters in each segment; then we organize all 
the resulting clusters as a cluster graph and search coherent cliques of clusters; finally we extract expression profiles from coherent cliques and 
shape biological pathways as genes consistent with these profiles. We compare our algorithm with several recent models and the experimental 
results justify the superiorities of our approach: robustly identifying overlapping pathways in arbitrary set of conditions and consequently 
discovering more biologically significant pathways in terms of enrichment of gene functions. 
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1.   INTRODUCTION 
The rapid development of high-throughput techniques 
such as Oligonucleotide and cDNA microarrays [5] 
enable measuring the expression of thousands of genes 
simultaneously. This possibility offers an unprecedented 
opportunity to characterize the underlying mechanisms 
of a living cell. Activities of a living cell are so complex 
that different sets of genes participate in diverse 
biological processes to perform various cell functions. 
In this sense, identifying cellular pathways, sets of 
coherent genes that coordinate in biological processes to 
achieve specific functions, plays a considerable role in 
gaining an insight into the cell’s activities. 

Recently, researchers have made tremendous 
efforts to identify coherent gene groups [10]. Pioneering 
work includes agglomerative algorithm for hierarchical 
clustering [7], K-Means clustering of genes [17] and 
some graph-theoretical approaches for gene-based 
clustering [15]. Admittedly, applying traditional 
clustering algorithms on gene expression data can 
provide us with new perspectives on cellular processes. 
However, several problems in this process should be 
highlighted: (1) biological processes are active only on 
partial conditions. This fact renders clustering genes on 
entire conditions ineffective. (2) Extremely high noise 
exists in microarrays, which calls for robust models for 

pathway identification. (3) Partitioning genes into 
mutually exclusive clusters is unreasonable in that 
biological pathways are always overlapping. 

Biclustering algorithms [14] are designed to capture 
biological processes active on part conditions. Different 
from traditional clustering methods, these models 
perform simultaneous clustering on both rows and 
columns and thus finally discover coherent submatrices 
where rows refer to genes and columns correspond to 
relevant conditions. One challenge to biclustering is that 
all the possible combinations of various genes and 
conditions are almost infinite. 

Furthermore, overlapping property of cellular 
pathways is also mentioned by recent work. On one 

one after another and thus naturally yield non-exclusive 
biclusters. For instance, Cheng et al [6] mask the 
previous biclusters with random numbers and find other 
ones. Similarily, in [12] each bicluster merely deals 
with the “residual” expression of previous biclusters. 
On the other hand, algorithms aim to discover 
overlapping pathways simultaneously also existed. 
Battle et al [4] proposed a probabilistic model to 
discover overlapping biological processes concurrently. 

Managing high noise in gene expression data is 
also indispensable for successfully determining 

hand, some biclustering algorithms discover submatrices
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coherent genes. In [2], the author engages robust 
similarity measure based on the rank of expression in 
each condition, rather than the accurate expression level, 
to model the similarity between expression profiles of 
genes. This sort of measures is robust in the sense that 
they mainly focus on the rough shape of expression 
profile and will not be affected by disturbances on 
accurate expression level. The consensus clustering 
algorithm in [9] combine different clustering results to 
form a clustering ensemble. The underlying idea of this 
ensemble learning approach is that integrating opinions 
of different “experts” can yield a robust estimation. 

In fact, an algorithm address all of these open 
problems is highly desirable. In this paper, we propose a 
strategy that satisfies all these demands: robustly 
discovering overlapping pathways on partial conditions. 
Other than traditional approaches that directly seek 
grouping over genes, our algorithm identifies cellular 
pathways by robustly searching expression profiles over 
arbitrary set of conditions. The key ideas of our 
approach are: (1) decompose the entire conditions into 
highly overlapping segments and clustering genes over 
each segment; (2) manage all resultant clusters into a 
cluster graph and discover coherent cliques on cluster 
graph; (3) extract expression profiles over coherent 
cliques and shape overlapping pathways according to 
the these profiles. As a result, this algorithm is capable 
of robustly recognizing overlapping molecular 
pathways on partial conditions and thus furnishing 
biologically significant sets of genes in terms of 
enrichment of gene functions. 

2.   METHOD 
Our pathway discovery algorithm consists of three steps: 
(1) decomposing conditions into overlapping segments 
and performing gene clustering on each segment; (2) 
construct a cluster graph from the resulting clusters over 
all segments and discovering coherent cliques on the 
graph; (3) extracting expression profile from each 
coherent clique and identifying biological pathway 
according to each profile. In the rest of this section, we 
examine these steps in section 2.1~2.3 and analyze the 
properties of this algorithm in section 2.4. 

2.1.   Phase Decomposition 
In order to capture biological processes in partial 
conditions, we divide the entire conditions (i.e. columns) 

into highly overlapping segments. Each segment 
contains all the rows and a few columns in gene 
expression matrix. Then we discover co-expressed 
genes by gene-based clustering on each segment. 
Finally, large clusters are retained for later processing. 

The first step is to decompose gene expression 
matrix into many segments. The goal of this 
decomposition is to ensure that biological process active 
on any partial conditions can be discovered by 
combining some segments. Note the term “segment” 
refers to a submatrix in gene expression matrix where 
all rows and a subset of columns are included. The 
decomposition strategy is shown in figure 1. Each 
segment covers fixed amount of conditions and 
advances a small step based on the previous segment. 
For instance, s1 covers {c1, c2, c3, c4} and s2 contains {c2, 
c3, c4, c5}. Two parameters are involved: (1) segment 
length L: the number of conditions covered by a 
segment. Note that using too large L loses the 
possibility to discover pathways active on short period; 
while engaging too small L makes clustering on each 
segment ineffective: co-expression on very short period 
always appears by chance. We set L = 4 in figure 1 only 
for illustration; such short segments will not be used in 
experiments. (2) step length △L: in figure 1, we set △L 
= 1, thus any biological process whose life-span is 
larger than L can be obtained from combining certain 
segments. For instance, period c2 ~ c6 can be captured 
by integrating two segments s2 and s3. One may choose 
larger step length in order to reduce the total number of 
segments. But fortunately, combinations of different 
segments can approximately represent any period larger 
than L, as long as segments are highly overlapping. 

The second procedure is gene-based clustering on 
each segment so as to obtain the co-expression group. 
Here we use hierarchical clustering, with average link 
and Pearson correlation, to group genes on each 
segment. On each segment, cutting the hierarchical tree 
at specific threshold 1-c will produce many sets of co-

Fig. 1.  Phase Decomposition 
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expressed genes. Note c is a key parameter of our 
algorithm: two gene expression profiles are considered 
coherent when their Pearson correlation is larger than c, 
i.e. their distance is smaller than 1-c. 

At last, clusters which contain less than 5 genes are 
discarded in that too small clusters are considered 
outliers or biologically insignificant groups. 

2.2.   Coherent Clique on Cluster Graph 
After clustering on each segment as discussed in section 
2.1, we obtain many co-expression gene clusters. 
Clusters on the same segment are mutually exclusive 
while clusters computed from different segments may 
be highly overlapping, especially when step length is 
small and thus adjacent segments may present similar 
structure on gene expression. In this section, we address 
the problem of how to utilize these clusters to discover 
biological processes that active on arbitrary period. For 
this purpose, we propose the concepts of cluster graph 
and coherent clique; then we focus on how to discover 
coherent cliques on cluster graph. Note that searching 
coherent cliques is to find possible biological processes. 

Firstly, given two gene clusters C and C’, we 
define the overlapping degree, and use this definition to 
offer a distance measure between clusters. Note that |C| 
is the amount of genes in cluster C. 

 Overlap(C, C’) = 
|'|
|'|

CC
CC

∪
∩

 

 Distance(C, C’) = 1 – Overlap(C, C’) 
Secondly, after defining the distance between 

clusters, all clusters obtained from the procedures 
discussed in section 2.1 constitute a large cluster graph, 
which furnishes us with a global view of relationships 
among genes over different segments. Cluster graph 
G(V, E) is a complete graph where each node Vv∈  
refers to a cluster C and the weight of an edge 

Evve ∈= ),( 21 is the distance between two clusters 
corresponding to v1 and v2. 

Thirdly, the concept of β-coherent clique is 
proposed as following: a β-coherent clique Q(V’, E’) in 
a cluster graph G(V, E) is a complete subgraph in G, 
satisfying that (1) any edge in E’ has an weight less than 
β. (2) V’ contains at least two nodes. Note that a β-
coherent clique is biologically meaningful: (1) any two 
clusters in a coherent clique has a distance smaller than 
β, i.e. an overlapping degree larger than 1-β; (2) clusters 
in a β-coherent clique must come from different 

segments, since clusters from same segment are 
mutually exclusive; (3) The fact that several clusters 
from diverse segments share a large proportion of 
common co-expressioned genes indicates the existence 
of a biological process which is active on the period 
composed of these segments. 

Finally, given a cluster graph, we want to discover 
β-coherent cliques on this graph. An effective algorithm 
to attain such goal is the hierarchical clustering with 
complete link [11]. Using this algorithm, we can get a 
hierarchical tree, and then cut the tree into many β-
coherent cliques according to certain choice of β. The 
definition of complete link ensures that the resulting 
clusters on cluster graph are β-coherent cliques. 

2.3.   Profile and Pathway Extraction 
In section 2.2, we partition the entire cluster graph into 
many β-coherent cliques. In this section, we discuss 
how to robustly extract expression profile of the 
biological process underlying each coherent clique. We 
also address how to discover cellular pathways, i.e. set 
of coordinated genes, from expression profiles. 

To begin with, recall that a coherent clique is 
composed of a set of nodes in cluster graph and each 
node refers to a cluster from a segment. Since each 
cluster covers certain conditions: the conditions covered 
by the segment where this cluster is generated, thus we 
can define the active period of a coherent clique: 

 The active period P(Q) of a coherent clique Q 
is all the conditions that covered by at least one 
cluster in Q. 

See figure 1 for an illustration: Supposed that 
coherent clique Q is composed of three clusters, which 
are generated on segment s1, s2 and s4, respectively. 
Then, the active period of Q is {c1, c2, c3, c4, c5, c6, c7}. 

Another important notion is the core genes: 
 Gene g is the core gene of coherent clique Q if 

and only if g is the member of all clusters in Q. 
Furthermore, the expression profile involving the 

underlying biological process of coherent cluster Q is: 
 The expression profile of coherent cluster Q is 

defined on Q’s active period and computed as 
the mean expression of all the core genes of Q. 

Finally, we identify the cellular pathway 
corresponding to Q based on its expression profile: 

 A gene g belongs to the cellular pathway of 
coherent clique Q if and only if the Pearson 
correlation between g’s expression and Q’s 
expression profile on Q’s active period exceeds 
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c, the coherence parameter mentioned in 
section 2.1. Note that g’s expression outside 
Q’s active period is not considered. 

2.4.   Further Analysis 
In this section we mainly discuss three properties: (1) 
ability to discover pathways on partial conditions; (2) 
identifying overlapping pathways; (3) robustness. 

Firstly, if the active period of a biological process P 
can be obtained by combining different segments 
produced in section 2.1, a corresponding coherent 
clique should be identified from cluster graph. This is 
based on two assumptions: (1) segment is defined in 
suitable granularity and highly overlapping; (2) genes 
cooperating in P should co-express in P’s active period. 

Secondly, the overlapping property of pathways is 
ensured: (1) the active periods of diverse coherent 
cliques Q1 and Q2 differ, thus a gene g can be consistent 
with both Q1’s expression profile in Q1’s active period 
and Q2’s expression profile in Q2’s active period. (2) 
Even on same period, expression level of gene g can be 
consistent with different expression profiles. 

Thirdly, the algorithm in this paper is robust, from 
four perspectives: (1) The definition of coherent clique 
is robust in that any two clusters in the clique have high 
overlapping degree and thus it is unlikely that an 

computation of active period of each coherent clique is 
robust. See figure 1 for an illustration: supposed a 
biological process P is active on conditions c1~c7, then 
the corresponding coherent clique Q should have an 
active period as c1~c7. Ideally speaking Q ought to 
consist of four clusters which are located in segments s1, 
s2, s3 and s4, respectively, because P is active on these 
segments and genes participate in P should co-express 
on these segments. However, owing to high noise in 
microarrays, some clusters may be missed. As a result, 
Q may consist of only three clusters on s1, s2 and s4, 
respectively. Even in this case, the active period of Q 
will be judged properly as c1~c7, based on s1, s2 and s4. 
In short, segment overlapping ensures the robustness of 
active period estimation. (3) The choice of core genes in 
a coherent clique Q is robust in that each core gene 
must belong to all the clusters in Q. Since these clusters 
are located in different segments and obtained by 
clustering on each segment independently, it is unlikely 
that an outlier gene will belong to all these clusters. 
Admittedly, this selection strategy is so “cautious” that 

it may miss some core genes. However, only a subset of 
core genes is still sufficient to extract expression profile 
of the underlying biological process, because core genes 
are supposed to co-express well in their biological 
process. (4) At last, the quality of core gene selection 
and active period estimation ensures the quality of 
expression profile extraction and the resultant pathway. 

3.   EXPERIMENTAL RESULTS 
In this section we present empirical results. Compared 
with several state-of-the-art models, our algorithm is 
more capable of identifying biologically significant 
pathways in terms of the enrichment of gene functions. 

3.1.   Dataset and Preprocessing 
Two well-know datasets used in our experiments are 
yeast cell cycle data [16] and yeast stress data [8]. For 
preprocessing, we remove genes with more than 5% 
missing values and estimate missing values by 
KNNimpute [18]; then genes with small variance are 
removed. These steps result in 526 genes in cell cycle 
dataset and 659 genes in stress condition dataset. 

3.2.   Rival Methods 
In this part, we introduce rival algorithms and their 

parameters: (1) HClust [7]: hierarchical clustering with 
average link and Pearson correlation. Finally 30 clusters 
are formed on both two datasets. (2) Plaid [12] is 
designed to discover biclusters one by one 
independently. The default parameters are used. We 
stop at 100 biclusters on both datasets. (3) OP [4] is a 
probabilistic model to search overlapping pathways 
simultaneously. The number of pathways is set as 30. (4) 
PIPE(Pathway Identification by Profile Extraction): our 
algorithm. The coherence threshold c mentioned in 
section 2.1 and 2.3 is 0.7; the parameter β used to define 
β-coherent clique is 0.7. On cell cycle dataset which 
contains 76 conditions, we set segment length L as 10 
and step length △L = 2; for yeast stress dataset contains 
173 conditions, L is engaged as 20 and △L is set as 3. 

3.3.   Results on Cell Cycle 
Running our algorithm on 526 genes in 76 conditions 
results in 162 coherent cliques, thus finally we obtain 
162 cellular pathways. Note that these pathways are 
generated independently, thus the fact that 162 

“outlier” cluster can be accommodated. (2) The
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pathways are produced from 526 genes does not 
indicate that the average size of pathways is quite small. 
In reality, the smallest pathway contains 4 genes and the 
largest one includes 101 genes. The distribution of 
pathway size is shown in figure 2. The X-axis is 
pathway size; and the Y-axis is the proportion between 
pathways larger than specific size and all the pathways. 
From figure 2 we can observe that more than 80% 
pathways contain more than 10 genes, while only about 
20% pathways contains more than 40 genes. This result 
shows that the majority of pathways have moderate size. 

More interestingly, we measure the overlapping 
among pathways. HClust will certainly generate 30 
mutually exclusive pathways, and running OP model 
results in 30 slightly overlapping pathways; at last, plaid 
model find 100 biclusters one by one. Figure 3 shows 
the distribution of amount of pathways that each gene 
participates in. The X-axis is the number of pathways a 
gene joins; the Y-axis is the proportion between the 
genes which involve more than a specific amount of 
pathways and all the genes. Four algorithms present 

quite different properties in figure 3: (1) Since HClust 
merely produce mutually exclusive pathways, all genes 
take part in only one pathway. (2) For OP model, single 
gene takes part in at most 5 pathways, and only 19 out 
of 526 genes participate in more than three pathways. (3) 
In Plaid algorithm, pathways are excessively 
overlapping: almost all genes participate in more than 
30 pathways. (4) For our PIPE method, the result in 
figure 3 shows a natural distribution that only a few 
genes throw themselves into more than 15 pathways. 

According to many researches concentrating on 
scale-free topology of biological networks [3] and 
especially of genetic regulatory networks [13]: (1) there 
should be a few “hub” genes connected with many other 
genes and thus join a lot of biological processes; (2) 
most genes in network should not have large degrees 
and thus they participate in only a few biological 
processes. As shown in figure 3, only our algorithm 
generates results consistent with above conclusion. 
HClust and OP model can not produce “hub” gene, and 
Plaid produce too many “hubs”. 

At last, to justify the biological significance of the 
pathways generated by these models, we test the 
enrichment of gene functions in GO categories [1]. For 
any pathway, the enrichment of a GO category is 
represented by p-value: the smaller the p-value, the 
better the enrichment. The p-value is computed based 
on Genomica [19]. For each GO category, we focus on 
the p-value of the pathway with best enrichment. For 
comparison, enrichment of all four algorithms are 
computed and listed in Table 1. Note that p-value larger 
than 0.001 is considered as a failure to find enrichment 
and is labeled as “---” in the Table. Among 117 GO 
categories listed in Table 1: (1) PIPE won 70 times, 
while OP, HClust and Plaid models won 25, 21 and 1 
times, respectively. (2) PIPE failed 23 times, yet OP, 
HClust and Plaid failed 41, 58 and 90 times, 
respectively. Further examining the results listed in 
Table 1 will naturally yield to the conclusion that PIPE 
has identified more biologically significant pathways. 

3.4.   Results on Stress Condition 
To further justify the superiority of PIPE, we engage 
yeast stress condition dataset [8] for another experiment. 
Running our algorithm on 659 genes and 173 conditions 
brings about 174 pathways. Pathway size distribution of 
PIPE is demonstrated in figure 4, where a few pathways 
contain more than 100 genes and the majority are in 

Fig. 2.  Distribution of Pathway Size 

Fig. 3.  Distribution of Gene Participation 
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moderate size. In addition, figure 5 shows similar 
results as observed in figure 3: HClust and OP can not 
discover any “hub” gene while Plaid considers most 
659 genes as hubs that join a lot of pathways. 

We also test the enrichment of GO categories and 
list the results in Table 2. From table 2 we can 
summarize that over 128 GO categories listed in Table2: 
(1) PIPE find best enrichment for 84 categories, while 
OP, HClust and Plaid find 18, 13 and 19 times, 
respectively. (2) PIPE failed to find enrichment for 11 
GO terms, yet OP, HClust and Plaid failed 61, 81 and 
68 times, respectively. In a word, PIPE has its own 
advantage to discover biologically meaningful pathways. 

Another interesting fact is that Plaid algorithm 
performs much better on stress condition dataset than on 
cell cycle condition. One explanation for this result is 
the differences of regulation mechanism between 
endogenous phase (e.g. cell cycle and sporulation) and 
exogenous phase (e.g. stress condition, DNA damage 
and diauxic shift) [13]. In exogenous phase such as 
stress response, genes are often regulated by more 

transcriptional factor and participate in more processes 
than in endogenous phase such as cell cycle. Therefore, 
Plaid model, which tends to produce excessively 
overlapping pathways, results in more accurate results. 

4.   CONCLUSION 
In this paper, we presented a new approach to discover 
cellular pathways. We firstly decompose gene 
expression matrix into highly overlapping segments and 
partition genes into clusters on each segment; then we 
organize all the resulting clusters into a cluster graph 
and identify coherent cliques; finally we extract 
expression profiles of coherent cliques and shape 
biological pathways from these profiles. We compare 
our algorithm with several recent models and the 
experimental results justify the superiorities of our 
approach: robustly identifying overlapping pathways on 
partial conditions and consequently discovering 
biologically significant pathways. 
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Table 1.  GO Categories Enrichment based on Cell Cycle Dataset 

 
GO term HClust PIPE OP Plaid 
35S Primary Transcript Processing 4.01E-6 1.05E-7 3.55E-5 --- 
amine biosynthesis --- 1.91E-6 7.02E-6 --- 
amine metabolism  --- 2.48E-6 2.45E-6 --- 
amine transport 7.56E-5 --- --- --- 
aspartate family amino acid metabolism --- --- 1.10E-7 --- 
ATP dependent DNA helicase activity --- 2.49E-6 --- --- 
ATP dependent helicase activity --- 2.14E-5 --- --- 
beta-glucosidase activity --- --- 5.77E-6 --- 
bud neck --- 5.29E-6 --- --- 
carbohydrate metabolism --- 1.25E-4 --- --- 
carbohydrate transport 1.70E-7 3.20E-5 2.57E-6 6.88E-5 
carrier activity --- 2.58E-5 2.84E-4 --- 
cation transport --- 2.57E-4 --- 2.60E-5 
cation transporter activity --- 7.60E-5 2.16E-4 1.98E-4 
cell communication --- 2.79E-5 --- --- 
cell wall 7.94E-6 --- 2.89E-8 3.06E-5 
chromatin assembly or disassembly 4.66E-7 8.15E-11 3.49E-7 --- 
chromatin binding 3.95E-5 4.33E-7 3.95E-5 --- 
conjugation --- 4.17E-5 --- --- 
contractile ring 3.95E-5 8.45E-7 8.82E-5 --- 
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cyclin-dependent protein kinase regular activity --- 9.09E-5 --- --- 
cytokinesis 2.12E-4 4.59E-6 --- --- 
cytokinesis, completion of separation 1.30E-5 1.97E-5 1.11E-8 --- 
cytoplasmic vesicle --- --- 2.82E-5 --- 
cytoskeleton organization and biogenesis --- 1.05E-4 --- --- 
cytosolic large ribosomal subnit (sensu Eukaryota) 2.86E-10 1.18E-10 6.26E-10 --- 
cytosolic small ribosomal subnit (sensu Eukaryota) 2.19E-5 1.39E-5 3.29E-5 --- 
development --- 1.37E-4 --- --- 
DNA binding 1.77E-4 2.45E-8 2.26E-6 2.87E-6 
DNA helicase activity --- 1.04E-6 3.74E-5 --- 
DNA metabolism 4.36E-9 3.25E-8 2.82E-7 1.88E-5 
DNA packaging 3.74E-5 2.24E-8 1.80E-4 --- 
DNA recombination 7.99E-6 4.45E-10 5.84E-5 --- 
DNA repair 1.62E-6 8.37E-8 2.56E-5 1.98E-4 
DNA replication --- 1.18E-4 --- --- 
DNA replication initiation --- 2.14E-5 5.84E-5 --- 
DNA replication, synthesis, of RNA primer --- 2.71E-4 --- --- 
DNA strand elongation 1.21E-6 4.12E-6 1.20E-5 1.07E-4 
DNA unwinding 2.12E-4 2.49E-6 2.12E-4 --- 
DNA-dependent ATPase activity 2.12E-4 2.49E-6 2.12E-4 --- 
DNA-directed DNA polymerase activity 6.00E-5 9.86E-7 2.53E-4 --- 
electron transporter activity 2.26E-4 --- 1.36E-4 --- 
endoplasmic reticulum --- 1.96E-4 --- --- 
endosome --- --- 2.82E-5 --- 
energy pathways 2.84E-6 1.33E-4 3.05E-5 --- 
glucosidase activity --- --- 7.63E-7 --- 
glutamate metabolism 4.13E-6 9.92E-6 1.20E-4 --- 
glutamine family amino acid biosynthesis 4.13E-6 9.92E-6 1.20E-4 --- 
glutamine family amino acid metabolism 3.52E-5 8.28E-5 --- --- 
helicase activity --- 5.51E-6 --- --- 
hexose transport 2.10E-8 7.02E-6 3.26E-7 --- 
hydrolase activity --- --- 1.16E-4 --- 
ion transporter activity --- 1.10E-4 3.16E-5 --- 
iron ion transport --- --- 2.82E-5 --- 
iron ion transporter activity --- --- 7.55E-7 --- 
iron-siderochrome transport --- --- 2.82E-5 --- 
kinase inhibitor activity --- --- 1.86E-4 --- 
lagging strand elongation --- 5.63E-6 --- --- 
large ribosomal subunit 1.26E-9 5.20E-10 2.75E-9 2.42E-4 
leading strand elongation --- 2.71E-4 --- --- 
main pathways of carbohydrate metabolism 2.84E-6 1.76E-4 4.63E-5 --- 
mannose transporter activity 2.10E-8 7.02E-6 3.26E-7 --- 
MCM complex 3.95E-5 4.33E-7 3.95E-5 --- 
metal ion transporter activity --- --- 2.49E-5 --- 
methionine metabolism 8.59E-5 --- 2.22E-8 --- 
mismatch repair 8.29E-6 1.42E-6 4.71E-5  
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mitochondrion --- 1.31E-4 --- 2.76E-4 
mitotic recombination 8.29E-6 8.34E-9 4.71E-5 --- 
nuclear organization and biogenesis --- 1.48E-7 --- --- 
nucleic acid binding --- 1.57E-7 4.52E-5 1.93E-6 
nucleolus 8.01E-23 7.10E-20 2.42E-18 4.90E-9 
nucleosome 5.46E-09 1.35E-13 3.90E-9 --- 
nucleotide-excision repair --- 1.66E-5 --- --- 
nucleotidyltransferase activity --- 4.76E-5 --- --- 
organic acid metabolism --- 9.04E-5 1.80E-5 --- 
polyamine transport --- 9.98E-6 --- --- 
pre-replicative complex --- 1.40E-7 3.13E-5 --- 
pre-replicative complex formation and maintenance --- 1.40E-7 3.13E-5 --- 
protein amino acid glycosylation 1.42E-4 --- --- --- 
protein binding 1.54E-5 4.69E-5 --- 1.63E-4 
protein biosynthesis 5.80E-13 1.13E-13 2.36E-12 8.46E-6 
protein folding 2.17E-12 2.16E-10 1.07E-10 --- 
pyrophosphatase activity --- 2.08E-4 --- --- 
regulation of cell cycle --- 3.51E-5 --- --- 
regulation of cyclin dependent protein kinase activity --- 1.18E-4 --- --- 
regulation of enzyme activity --- 1.18E-4 --- --- 
regulation of metabolism --- 3.46E-5 --- --- 
regulation of transcription --- 1.76E-5 --- --- 
regulation of transcription from Pol 2 promoter --- 3.06E-5 --- --- 
replication fork --- --- 4.71E-05 --- 
response to DNA damage stimulus 4.43E-9 7.21E-9 2.41E-7 2.12E-5 
response to stimulus 2.46E-5 8.37E-6 2.04E-4 --- 
response to stress 4.67E-5 1.15E-5 --- --- 
ribosomal large subunit biogenesis 9.54E-5 6.84E-6 --- --- 
ribosomal small subunit assemble and maintenance --- 1.86E-4 --- --- 
ribosomal subunit assembly --- 9.98E-6 --- --- 
RNA binding 2.46E-4 --- --- --- 
RNA metabolism 2.46E-12 2.61E-11 1.96E-9 1.07E-4 
RNA processing 2.10E-12 1.50E-12 8.62E-10 1.46E-6 
rRNA processing 8.54E-14 1.95E-13 3.73E-11 1.20E-5 
siderochrome transport 1.65E-6 9.94E-5 1.88E-8 --- 
site of polarized growth --- 2.36E-4 --- --- 
small ribosomal sununit 2.19E-5 1.39E-5 3.29E-5 --- 
structural constituent of ribosome 1.12E-14 2.15E-15 4.63E-14 8.24E-7 
sulfur amino acid biosynthesis 8.59E-5 --- 2.22E-8 --- 
sulfur amino acid metabolism 7.89E-6 --- 1.70E-10 --- 
sulfur metabolism 1.42E-4 --- 3.54E-9 --- 
telomerase-independent telomere maintenance 6.00E-5 5.18E-7 2.53E-4 --- 
telomere maintenance 6.00E-5 5.18E-7 2.53E-4 --- 
transcription regulator activity --- 2.78E-4 --- --- 
transferase activity and phosphorus-contain group --- 2.04E-4 --- --- 
transcription metal ion transporter activity --- --- 2.49E-5 --- 
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translational elongation 1.54E-6 9.70E-7 2.32E-6 --- 
tricarboxylic acid cycle 2.26E-4 --- 1.68E-4 --- 
tricarboxylic acid cycle intermediate metabolism 7.17E-7 1.23E-4 4.17E-5 --- 
unfolded protein binding 1.68E-9 4.21E-7 4.14E-8 2.94E-5 
vesicle-mediated transport --- 1.11E-4 --- --- 

 
Table 2.  GO Categories Enrichment based on Stress Condition Dataset 

 
GO term HClust PIPE OP Plaid 
35S Primary Transcript Processing 3.11E-7 4.27E-10 6.35E-7 3.46E-9 
acid phosphatase activity --- 1.18E-6 4.21E-7 --- 
aerobic respiration --- 3.74E-6 --- --- 
alcohol metabolism 7.70E-5 1.48E-5 7.70E-5 8.57E-5 
amine biosynthesis --- 8.56E-10 2.54E-4 1.27E-9 
amine metabolism  4.94E-4 1.73E-12 4.93E-4 2.41E-15 
amine transport activity 2.01E-4 --- 3.17E-4 --- 
aspartate family amino acid biosynthesis --- 1.31E-5 --- 5.08E-4 
aspartate family amino acid metabolism 9.58E-6 3.02E-10 9.58E-6 3.44E-5 
ATP dependent DNA helicase activity --- 2.13E-5 --- 1.64E-4 
carbohydrate catabolism --- --- 2.41E-4 --- 
carbohydrate kinase activity --- 3.03E-5 --- --- 
carbohydrate metabolism 6.28E-10 5.67E-9 9.50E-7 2.71E-10 
carbohydrate transport --- 6.67E-7 2.10E-4 --- 
cell communication --- 2.06E-4 --- --- 
cell wall --- 1.72E-7 1.77E-6 4.95E-4 
cytosolic large ribosomal subnit (sensu Eukaryota) 1.65E-19 1.50E-32 1.35E-18 4.18E-20 
cytosolic small ribosomal subnit (sensu Eukaryota) 2.02E-11 2.36E-21 6.56E-11 4.33E-12 
disaccharide metabolism --- 4.26E-5 --- --- 
DNA binding --- 1.55E-4 --- --- 
DNA-directed RNA polymerase 1 complex --- 2.92E-4 --- --- 
endoplasmic reticulum --- 2.86E-5 2.34E-5 --- 
energy pathways 1.87E-12 1.64E-10 5.30E-14 9.49E-14 
energy reserve metabolism 9.12E-5 3.49E-6 3.03E-5 3.55E-4 
enzyme regulator activity --- 1.74E-4 --- --- 
galactose metabolism 2.11E-8 2.11E-7 2.11E-8 --- 
glucan metabolism --- 5.67E-5 6.53E-5 --- 
glucose metabolism --- --- --- 8.08E-5 
glucosyltransferase activity --- 3.42E-4 --- --- 
glutamate metabolism --- 9.34E-5 --- --- 
glutamine family amino acid biosynthesis --- 3.78E-7 --- 2.26E-4 
glutamine family amino acid metabolism --- 5.55E-6 --- --- 
glutathione peroxidase activity --- 1.38E-4 --- --- 
glycogen metabolism --- 5.67E-5 6.53E-5 --- 
helicase activity 4.26E-4 9.89E-7 --- 1.39E-4 
heterocycle metabolism 4.72E-4 1.43E-4 --- --- 
hexose metabolism 1.43E-5 1.39E-4 1.43E-5 --- 
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hexose transport --- 9.66E-7 6.53E-5 --- 
hexose transporter activity --- 1.46E-4 --- --- 
hydrolase activity acting on ester bonds --- --- 2.73E-4 --- 
ion transporter activity --- 2.37E-4 --- --- 
kinase activity 9.12E-5 9.79E-6 --- --- 
large ribosomal subunit 1.65E-19 1.50E-32 1.35E-18 4.18E-20 
ligase activity, forming carbon-nitrogen bonds --- --- --- 4.47E-4 
lipid metabolism --- --- --- 4.19E-4 
main pathways of carbohydrate metabolism 3.59E-4 2.51E-6 5.29E-8 7.70E-6 
mannose transporter activity --- 3.64E-4 --- --- 
methionine metabolism 1.18E-6 4.47E-7 1.18E-6 --- 
methyltransferase activity --- 1.24E-5 --- 8.48E-5 
mitochondrion --- 4.83E-5 4.40E-4 2.51E-7 
Noc complex --- 2.25E-4 --- --- 
non-membrane-bound organelle --- 1.73E-4 --- --- 
nucleic acid binding 9.82E-12 6.29E-8 6.44E-11 2.17E-11 
nucleolus 6.66E-21 7.55E-26 6.73E-20 1.51E-21 
nucleotide biosynthesis 1.74E-5 1.74E-5 2.76E-4 --- 
nucleotide metabolism 1.14E-4 1.14E-4 --- --- 
organic acid metabolism --- 1.72E-10 2.73E-4 1.33E-13 
oxidoreductase activity 4.65E-4 1.17E-5 2.73E-4 1.85E-6 
oridoreductase activity on CH-OH group of donors --- 6.02E-5 --- 3.33E-4 
pentose metabolism --- 1.93E-4 6.26E-5 --- 
peroxidase activity --- 1.16E-9 1.34E-7 7.03E-5 
peroxisomal matrix --- --- 3.76E-4 --- 
phosphoric ester hydrolase activity --- 3.18E-4 1.16E-4 --- 
polysaccharide metabolism --- 1.28E-4 2.10E-4 --- 
processing of 20S pre-rRNA 1.79E-9 7.70E-11 4.69E-9 4.39E-11 
protein binding --- 1.74E-7 3.44E-11 2.52E-4 
protein biosynthesis 2.82E-29 3.41E-60 1.64E-27 1.82E-27 
protein folding 2.36E-7 1.95E-15 6.67E-17 2.61E-8 
purine nucleotide metabolism 1.74E-5 1.74E-5 2.76E-4 --- 
pyrophosphatase activity --- 3.55E-4 --- 3.51E-5 
regulation of biosynthesis --- 2.85E-6 --- --- 
regulation of catabolism --- 1.38E-4 --- --- 
regulation of cell redox homeostasis --- 1.34E-7 --- --- 
regulation of cellular process --- 2.61E-7 --- --- 
regulation of translation --- 6.97E-8 --- --- 
regulation of translational fidelity --- 1.33E-6 --- --- 
respiratory chain complex 3 --- 4.72E-5 1.18E-4 --- 
response to biotic stimulus --- 8.64E-5 --- 5.28E-5 
response to osmotic stress --- --- 1.74E-5 --- 
response to stimulus --- 1.29E-5 4.22E-8 6.96E-11 
response to stress --- 2.62E-6 8.32E-9 6.39E-12 
ribonucleoprotein complex 3.74E-9 8.38E-8 1.14E-8 2.44E-8 
ribosomal large sununit assembly and maintenance 1.34E-6 1.24E-5 2.54E-6 8.76E-7 
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ribosomal large subunit biogenesis --- 4.22E-6 --- 4.92E-4 
ribosome --- 6.72E-5 --- --- 
ribosome biogenesis 4.97E-5 1.04E-4 3.65E-5 7.95E-5 
RNA binding 3.75E-14 5.21E-11 2.09E-13 2.54E-13 
RNA helicase activity 4.26E-4 9.89E-7 --- 1.38E-4 
RNA ligase activity 4.97E-5 8.23E-10 7.95E-5 2.22E-7 
RNA metabolism 5.78E-30 2.02E-20 5.09E-27 1.60E-28 
RNA methyltransferase activity --- 1.19E-4 --- --- 
RNA modification 7.88E-9 3.03E-8 1.92E-8 1.22E-7 
RNA polymerase complex --- 2.92E-4 --- --- 
RNA processing 2.59E-22 3.68E-22 2.92E-21 5.29E-23 
RNA-dependent ATPase activity --- 2.13E-5 --- 1.64E-4 
rRNA binding --- 2.89E-5 --- 1.64E-4 
rRNA modification --- 3.41E-6 --- --- 
rRNA processing 2.59E-22 3.68E-22 2.92E-21 5.29E-23 
S-adenosylmethionine-dependent methyltransferease --- --- --- 4.46E-4 
signal transduction --- 9.34E-5 --- --- 
small nuclear ribonucleoprotein complex --- 1.73E-4 --- --- 
small nucleolar ribonucleoprotein complex 1.50E-7 1.08E-7 3.17E-7 1.16E-9 
small ribosomal sununit 2.01E-11 2.32E-21 6.56E-11 4.33E-12 
snoRNA binding 3.11E-7 2.10E-8 6.53E-7 7.56E-11 
SRP-dependent protein-membrane target --- --- 5.48E-5 --- 
structural constituent of ribosome 2.29E-29 2.55E-61 7.00E-28 7.76E-31 
succinate dehydrogenase (ubiquinone) activity --- 7.03E-6 --- --- 
sulfur amino acid metabolism 3.48E-6 3.48E-6 3.48E-6 1.45E-4 
sulfur metabolism 7.67E-6 1.45E-5 7.67E-6 --- 
thioredoxin peroxidase activity --- 6.72E-6 --- --- 
transcription from Pol 1 promoter --- 2.92E-4 --- --- 
transcription regulator activity --- 1.55E-4 --- --- 
transcription, DNA-dependent --- 2.92E-4 --- --- 
transferase activity, transferase acyl groups --- 3.23E-5 --- --- 
transferase activity and phosphorus-contain group --- 3.60E-4 --- --- 
transcription factor activity, nucleic acid binding --- 5.01E-6 --- --- 
transcription initiation factor activity --- 1.44E-4 --- --- 
transcription regulator activity --- 5.01E-6 --- --- 
translational elongation --- 8.46E-7 --- --- 
trehalose metabolism --- 4.26E-5 --- --- 
tricarboxylic acid cycle --- 1.26E-8 2.77E-5 --- 
tricarboxylic acid cycle intermediate metabolism --- --- 7.61E-5 3.55E-4 
tRNA aminoacylation 2.09E-4 2.81E-8 3.12E-4 2.06E-6 
tRNA metabolism 2.76E-6 3.80E-8 5.08E-6 1.75E-5 
tRNA methyltransferase activity --- 6.85E-5 --- --- 
tRNA modification 2.76E-6 3.80E-8 5.08E-6 1.79E-5 
UDP-glycosyltransferase activity --- 3.42E-4 --- --- 
unfolded protein binding 3.66E-4 1.87E-7 1.05E-11 1.14E-4 
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