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Abstract. In this paper, we propose a method to parse human motion in uncon-
strained Internet videos without labeling any videos for training. We use the train-
ing samples from a public image pose dataset to avoid the tediousness of labeling
video streams. There are two main problems confronted. First, the distribution
of images and videos are different. Second, no temporal information is available
in the training images. To smooth the inconsistency between the labeled images
and unlabeled videos, our algorithm iteratively incorporates the pose knowledge
harvested from the testing videos into the image pose detector via an adjust-and-
refine method. During this process, continuity and tracking constraints are im-
posed to leverage the spatio-temporal information only available in videos. For
our experiments, we have collected two datasets from YouTube and experiments
show that our method achieves good performance for parsing human motions.
Furthermore, we found that our method achieves better performance by using
unlabeled video than adding more labeled pose images into the training set.

Keywords: Unsupervised Video Pose Estimation, Image to Video Adaptation,
Unconstrained Internet Videos.

1 Introduction

1In this paper, we focus on articulated pose estimation in unconstrained Internet videos.
While limited research efforts have been made to pose detection in videos [7,25,9,16],
they only consider clean video data (e.g., TV shows) rather than Internet videos which
are much more noisy. Furthermore, the performance largely relies on the selection of
training data and the accuracy may drop dramatically if the distributions of training and
testing data are quite different. As such, the existing work have constrained the training
and testing video to be similar. For example, in [7] and [25], researchers collected both
the training and testing data from the TV shows ”Friends” and ”Lost”. In that way,
the scene, the person and apparel of both training and testing data are consistent. Pose
detection in those videos is simplified.

1 The code and datasets will be available upon request.
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Fig. 1. The framework of our algorithm

The main unsolved challenge in current work is that Internet videos generally have
huge apparel variations with different levels of occlusions and cluttered body parts. It is
not reasonable to directly apply the model trained from clean TV shows to predict the
poses in Internet videos, especially for articulated pose detection. To achieve reliable
pose detection performance, it is necessary to have a large amount of training videos
covering a variety of apparels, backgrounds (scenes) and poses. Yet it is very time con-
suming to label the poses and computationally intensive to train the models as a single
video clip contains many frames in real cases. Compared to videos, it is much easier to
label still images without the tediousness of reviewing the video streams. For example,
the effort of labeling 100 images is much less than that of labeling 100 video clips. In
addition, there are some image datasets, e.g., PARSE [17], with labeled body parts that
contain a variety of articulated poses. In this paper, we propose to leverage such free
data to estimate poses in Internet quality videos. To the best of our knowledge, this is
the first work on articulated pose detection without any labeled videos. The merit of our
algorithms is that no human supervision is required.

As shown in Fig. 1, our algorithm starts with training an image pose estimator us-
ing an external pre-labeled image dataset. These pose estimators can be used as good
initializations for Internet videos, since labeled images have relatively larger variations
although less than Internet videos. We then propose a self-refining approach to adapt
the pose knowledge from the testing videos, and incorporate the information into the
next round of learning, during which both spatial and temporal constraints are utilized.
More specifically, we first apply a self-adjustment approach to the results of image pose
detection by tracking the trajectory of each body part across multiple frames with spa-
tial smoothing constraints. Then, we use a scoring strategy to pick the frames with high
confidence in the testing data, while preserving the diversity of selected key-frames and
adding them as extra labeled poses to the training process.

Our contributions are summarized as follows:

1. We address the limitations of previous work, which are unable to deal with Internet
videos with large variations and heavy clutters. We propose a self-refining approach
to adapt the pose knowledge from static images to Internet videos.

2. We introduce a self-adjustment method to improve accuracy by tracking the trajec-
tory of each body part across multiple frames with spatial smoothing constraints.
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3. We collect a challenging pose detection dataset consisting of full-body and half-
body dancing clips from Internet videos, which have large variations in terms of
scene, person, apparel, etc.

2 Related Work

Pose detection is a very valuable but tough task in computer vision. Researchers have
addressed the problem of pose detection in video dating back to the classic model-based
approaches [15,8,21]. The difficulties are summarized as follows:

1. Huge variations of human poses on Internet videos, as depicted in Fig. 8 and Fig.
9: For example, human limbs are stretched and foreshortened. Left and right limbs
reverse regularly due to rotation and self-occlusion. Appearances including skin
color, clothing, body shape differ from one person to another. In some scenarios,
multiple persons are seen simultaneously and occlude each other.

2. Poor quality of most Internet videos: Uploaded videos often have low resolution
and serious motion blur.

3. Lack of generalizability. In fact, most of the existing methods are training-data-
driven: When we detect poses in Internet videos which consist of more varied body
shapes, apparel, backgrounds, etc, existing models generally cannot adapt well to
the new domain.

Recent work has examined this problem for static images, assuming that techniques
for static images will be needed in video-based articulated trackers. Other than the
techniques exploring the tradeoff between generative and discriminative models from
an overall perspective [11,28,23], multiple approaches advocate strong body models.
The graph-based and tree-structured models are the two main approaches for this task.
Loopy models [20,13,26,1,30] (graph-based models) have stricter constraints of dif-
ferent body parts and usually lead to good performance. But they are also harder to
optimize and more time consuming. Other approaches are tree models, which allow
for efficient inference, but are often plagued by the well-known phenomena of double
counting [3,19,22]. In addition, researchers [24] also extend the single model to multi-
ple model scenario and use model selection to improve performance. Recently, a novel
tree structured framework [32,31] has received much attention. It extends the classic
pictorial structure [3,6] and parameterizes body parts by both pixel locations and la-
tent variable “orientations”. This model realizes a good balance between performance
and efficiency, which achieves state-of-the-art performance for static images and can
be efficiently implemented when Structural SVM [5] and Dynamic Programming are
applied.

There are also some research efforts to pose detection in video streams [7,25,9,16].
For example, a segmentation-based pose and flow framework is proposed in [7], which
is similar to [9,10]. In [14], Ma et. al. proposed an algorithm to adapt the knowledge
from clean lab-generated videos for action recognition in the real world videos, e.g., the
YouTube videos. In [25], researchers approximate the full, intractable spatio-temporal
loopy model of pose detection by decomposing it into an ensemble of tree models.
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Other pose detectors use labeled videos as training data and train pose detectors by ap-
plying both spatial and temporal constraints [2,16]. Several recent papers [27,12,18,4],
enhance performance by using tracking methods. However, all of these use video data
from TV shows or lab recorded videos which are cleaner than Internet video data. Fur-
thermore, the performance largely relies on the selection of training data and the ac-
curacy may drop dramatically if the distributions of training and testing data are quite
different. To handle Internet videos well, in this paper, we propose a self-refining ap-
proach to uncover the pose knowledge of Internet videos.

3 Framework

The framework of our method is shown in Fig. 1. Specifically, we first initialize our
model with a small number of labeled images. Then, we apply a self-refining approach
to adapt the pose knowledge to the testing videos. This approach can be summarized
as:

1. Detect human pose on every frame of the test videos using [32,31], which is a
state-of-the-art image pose detector (Section 3.1).

2. Adjust pose detection results by using continuity and tracking constraints for the
testing videos (Section 3.2).

3. Gradually add high confidence frames automatically found in the testing videos to
the training set for the next round of learning (Section 3.3). Repeat step 1.

In the following sections, we introduce our three main implementation procedures in
detail.

3.1 Pose Detection

For each iteration in the self-refining process, we first generate an image pose detector.
In the initialization stage, only labeled images are used as training data. After that,
additional high-confidence frames in the testing videos are automatically selected for
use in training. Here we follow the tree-structured model [32,31] and write the score
function of a candidate pose as follows:

maxp,t
∑

i∈vertex b
ti
i +

∑
ij∈edge b

ti,tj
ij

+
∑

i∈vertex w
ti
i · φ(f, pi)

+
∑

ij∈edge w
ti,tj
ij · ψ(pi − pj)

(1)

In Eq. (1), vertex and edge are the nodes and edges of the pose tree. pi, ti stand
for the pixel location and orientation of part i. The parameter btii favors a particular
type of assignment for part i, while the pairwise parameter bti,tjij favors particular co-
occurrences of part types. φ(f, pi) is the feature vector extracted from pi. The third
term can be viewed as the loss when part i is placed at location pi with the orientation
ti. wti is a template learned from Structural SVM by taking orientation ti as a latent
variable [32,31]. The last term stands for the loss of a “switching” spring which is the
dot product of spring parameter wti,tj

ij and pixel difference of parts. Following [32,31],
we solve Eq. (1) by using Dynamic Programming (DP).
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3.2 Pose Adjustment

Continuity Constraint. One important property of pose detection on videos is that the
positions of human joints in consecutive frames will not change dramatically. We call
this property Continuity Constraint. In this step, we adjust the pose detection results by
using this continuity property. We denote V and f as video and frame. next(f) is the
frame after f . vertex is the nodes of the tree models. pfi and p̃fi are the location for
part i in frame f before and after the adjustment process. Our adjustment process can
be converted into optimizing the following objective:

minp̃

∑
f∈V

∑
i∈vertex

(
||p̃fi − pfi ||22 + α||p̃next(f)i − p̃fi ||22

)
(2)

In Eq. (2), the first term restricts the adjusted results to be similar to the original
ones. The second term is the temporal constraint that joints in adjacent frames won’t
change much. α parameterizes the weight of the continuity constraint. By doing this,
our insight is that wrong results will cause a big discontinuity to adjacent frames with
high confidence score, resulting in a big loss to the second temporal term, which can
be reduced in the optimization step. Fig. 2 shows two examples of pose adjustment
using the continuity constraint, from which we can see a visible improvement after the
adjustment.

Fig. 2. Pose detection results before (rows 1 & 3) and after (rows 2 & 4) adjustment with conti-
nuity constraint

Tracking Constraint. A tracking rectification algorithm, which tracks each body part
across multiple frames, is used to rectify incorrect body parts. Given the pose detection
results for a source frame f , one could track each body part forward or backward in time
and produce hypotheses of part locations for neighboring frames. Inversely, neighboring
frames of f will also produce body part location hypotheses for frame f . As shown in
Fig. 4, to rectify the pose detection results for frame f , we perform a weighted fusion of
all the hypotheses provided by the neighboring frames. The weight of each hypothesis
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Fig. 3. Pose refinement using tracking cues. Frame f ′ is the frame 1 second after frame f . a) Pose
detection results of frame f according to Eq. (1). b) Trajectory keypoints of the right arm in frame
f . c) Wrong pose detection results of frame f ′ according to Eq. (1). d) Refined pose according to
the arm trajectory key point of frame f ′.

Fig. 4. Procedure to generate tracking results

is determined by the pose detection score in the source frame. Our insight is that high-
scoring poses have more accurate predictions of body part locations, thus making the
hypotheses generated by these detections also more reliable.

Specifically, as shown in Fig. 3, suppose that we want to use the results of the frame
f to generate the tracking results after 25 frames (1 second). Taking the right wrist as
an example, firstly, we can cover every joint with a box. Then, we detect all the dense
trajectory keypoints in each box and track these trajectory keypoints by using [29].
Finally, the prediction results are generated by averaging the tracking points. Similarly,
we can apply this method to other parts to generate the tracking results for the full
human skeleton. In fact, the tracking results can be very good in practice as shown in
Fig. 3.

We denote the fused tracking results of the i-th part in f as Of
i and rewrite the Eq.

(2) as the following:

minp̃
∑

f∈V

∑
i∈vertex

(
||p̃fi − pfi ||22

+α||p̃next(f)i − p̃fi ||22 + β||p̃fi −Of
i ||22

) (3)

In Eq. (3), other than what we have discussed before, the last term restricts the ad-
justed results to be similar with the tracking results. β parameterizes the degree that we
trust the tracking results. As shown in Fig. 3, there often exists a situation where the
pose detection results are wrong but the tracking results are correct. This will cause a
big tracking error, which can be optimized by balancing the tracking error with other
constraints.

Since (3) is a convex optimization problem, we can calculate the derivative for every
variable p̃i and solve it using an iterative method by setting the derivative to be zero.
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3.3 Pose Detector Refinement

In the refinement process, we automatically select the frames with top scores in the test-
ing videos and use them as extra training data in the next round of learning. Denote R
as the pose detection results. SS and ST are the pose detection and the pose adjustment
scores. We define the score of results R on frame f as follows:

S(f,R) = SS(f,R) + ST (f,R) (4)

Where, similar to Eq. (1) and (3), we write the spatial and temporal scores as follows:

SS(f,R) =
∑

i∈vertex b
ti
i +

∑
ij∈edge b

ti,tj
ij

+
∑

i∈vertex w
ti
i · φ(f, p̃i)

+
∑

ij∈edge w
ti,tj
ij · ψ(p̃i − p̃j)

(5)

ST (f, R) = −γ∑i∈vertex

(
||p̃next(f)i − p̃fi ||22+

||p̃prev(f)i − p̃fi ||22
)
− θ

∑
i∈vertex ||p̃fi −Of

i ||22
(6)

In Eq. (5), the spatial score SS reflects both the confidence of every body part and
the matching rate of every adjacent body part. In Eq. (6), the temporal score ST is the
negative loss in the adjustment procedure, in which the first and second terms stand for
the location differences of every body part to adjacent two frames, and the third term
stands for the error compared to the tracking results. Here, γ and θ parameterize the
degree of punishment on frame discontinuity and tracking mismatch.

Note that even though Eq. (5) and (6) have the similar forms as Eq. (1) and (3), their
purposes are different. For Eq. (1) and (3), they are used during optimization, whereas
Eq. (5) and (6) are only used to compute scores. No optimization is done using Eq. (5)
ans (6).

In our refinement process, to keep both the quality and diversity of added testing
key-frames, we only select the frames which have scores above 0.4 in Eq. (4) and we
select at most 4 frames from each video per iteration.

4 Experiments

Datasets: We have constructed one full-body and one upper-body dataset for testing
purposes from the dancing videos of Youtube, which we call Full-body Youtube Danc-
ing Pose (FYDP) dataset and Upper-body Youtube Dancing Pose (UYDP) dataset, re-
spectively. Each of the FYDP and UYDP dataset contains 20 video clips. Each video
clip lasts around 4 seconds and consists of around 100 consecutive annotated video
frames. Specifically, our FYDP dataset contains dancing videos with fast and slow
movements, rotating and split-leg positions, stretched and forshortened limbs. In the
UYDP dataset, more intricate upper-body motions are included. Some typical frames
in FYDP and UYDP are depicted in Fig. 8 and Fig.9, respectively. In addition to FYDP
and UYDP, we also used the VideoPose2 dataset collected in [25] to evaluate the per-
formance of the proposed algorithm.
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Fig. 5. A comparison between our model and that of [32]. This figure shows the aggregated frames
sampled from dancing video clips of two seconds and the pose skeletons obtained by our model
and [32], respectively.

In our experiments, the labeled images for initialization are selected from the PARSE
dataset [17] and the BUFFY dataset [4], respectively. PARSE dataset contains 305
pose-annotated images of highly-articulated full body images of human poses, and the
BUFFY dataset contains 748 upper-body-annotated images extracted from 5 episodes
of a TV show. Both datasets have specified the training and testing sets [32,31]. In
each of our full-body and upper-body experiments, we respectively use three settings of
PARSE and BUFFY images as initialization to test how sensitive our method is to the
number of labeled data: half of the images from the training set, all the images from the
training set, all images of the training and testing sets.

To train our image pose detector, we follow the experiment settings in [32,31] and
use the negative training images from the INRIAPerson database [33]. These images
tend to be outdoor scenes which do not contain people.

Evaluation Criteria. Following [32], in which researchers have discussed the limita-
tions of PCP (Probability of a Correct Pose) [4], we use APK (Average Precision of
Keypoints) and PCK (Percent of Correct Keypoints) [32] in our experiments with the
threshold to be 0.1 for FYDP dataset and 0.2 for UYDP and VideoPose2 [25] datasets.
When the bounding boxes of every person is given, PCK evaluates the percentage of
correct keypoints. For comparison, APK is stricter, in that both missed-detections and
false-positives are penalized.

Structure. We use 26 parts and 18 parts tree-structured models in our full-body and
upper-body experiments, respectively, in which both joint positions and some mid-
way points between limbs are included. For each part, we use 4(8) mixtures for full-
body(upper-body) detector, which has shown to be a good tradeoff between perfor-
mance and efficiency in [32].

Parameters. In our experiments, we iterate 3 times to adapt the domain knowledge of
testing videos, which is demonstrated by our experiments to be a good balance between
efficiency and performance. In our refining process, there are two parameters γ and θ.
We empirically set γ = 0.5, θ = 1, for which our method can consistently perform
well. For α and β in Eq. (3), our experiments verify that the proposed framework is not
sensitive to both parameters. We empirically set α = 5, β = 1.
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Table 1. Full-body pose detection results on FYDP dataset, when different number of training
images from PARSE dataset are used

50% randomly sampled images from the training set of PARSE are used for training
Criteria Method Head Shou Elbo Wris Hip Knee Ankle Total

Yang et. al. [32] 92.9 85.7 57.0 27.1 73.2 70.2 71.3 68.2
APK

Our Model 95.0 88.5 65.2 32.3 78.1 78.2 79.8 73.9
Yang et. al. [32] 94.4 89.3 69.9 48.7 80.8 75.0 73.4 75.9

PCK
Our Model 95.5 91.2 74.6 50.8 82.4 81.6 77.2 79.0

All images from the training set of PARSE are used for training
Criteria Method Head Shou Elbo Wris Hip Knee Ankle Total

Yang et. al. [32] 94.4 86.7 58.2 33.3 68.6 73.4 76.4 70.2
APK

Our Model 95.9 88.8 67.3 35.4 79.7 79.3 79.3 75.1
Yang et. al. [32] 95.2 89.9 69.0 53.1 78.1 78.2 77.7 77.3

PCK
Our Model 96.1 91.0 74.8 54.5 83.6 81.7 78.8 80.0

All images of PARSE are used for training
Criteria Method Head Shou Elbo Wris Hip Knee Ankle Total

Yang et. al. [32] 95.3 86.9 66.2 41.1 73.8 75.2 76.8 73.6
APK

Our Model 95.7 89.6 73.6 43.5 82.4 82.9 78.2 78.0
Yang et. al. [32] 95.8 89.9 73.7 58.5 80.1 79.8 78.1 79.4

PCK
Our Model 96.2 91.7 78.4 60.3 85.4 83.8 79.2 82.1

(a) Full-body pose detection results on
FYDP dataset, when different number of
training images from PARSE dataset are
used

(b) Upper-body pose detection results on
UYDP dataset, when different number of
training images from BUFFY dataset are
used

Fig. 6. Full-body and upper-body pose detection results

Compared Algorithms. In the experiments, we compare our method to [32,24], which
are state-of-the-art pose detectors on static images. As the algorithm proposed in [24] is
only able to detect three body parts, i.e. shoulder, elbow and wrist, we do not report the
results of [24] on the full-body dataset FYDP. Note that we aim to parse human motion
without labeling any videos for training. We are unable to compare our algorithm to
[7,25] because both [7] and [25] require labeled video clips for training, which are
unavailable in our experiments. Other than [32], which achieves both state-of-the-art
results and high time efficiency, we could extend any image pose detector to the video
scenario by simply replacing the pose detection process.
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Table 2. Upper-body pose detection results on UYDP dataset, when different number of training
images from BUFFY dataset are used

50% randomly sampled images from the training set of BUFFY are used for training
Criteria Method Head Shou Elbo Wris Hip S. E. W. Avg All Avg

Sapp et. al. [24] NA 67.1 32.0 35.3 NA 44.8 NA
Yang et. al. [32] 84.2 74.2 22.5 44.3 41.9 47.0 53.4

APK
Our Model 88.3 80.1 22.6 47.5 45.5 50.1 56.8

Sapp et. al. [24] NA 81.3 38.8 35.6 NA 51.9 NA
Yang et. al. [32] 88.1 79.5 36.4 45.1 54.1 53.7 60.6

PCK
Our Model 89.8 87.4 38.9 48.8 55.7 58.4 64.1

All images from the training set of BUFFY are used for training
Criteria Method Head Shou Elbo Wris Hip S. E. W. Avg All Avg

Sapp et. al. [24] NA 69.5 33.7 37.3 NA 46.8 NA
Yang et. al. [32] 85.0 78.2 29.2 46.2 34.4 51.2 54.6

APK
Our Model 90.9 83.5 33.3 47.7 36.9 54.8 58.5

Sapp et. al. [24] NA 82.2 39.6 38.1 NA 53.3 NA
Yang et. al. [32] 90.9 84.9 43.6 51.4 57.7 59.9 65.7

PCK
Our Model 97.5 95.6 49.0 56.6 61.5 67.1 72.0

All images of BUFFY are used for training
Criteria Method Head Shou Elbo Wris Hip S. E. W. Avg All Avg

Sapp et. al. [24] NA 72.0 38.6 39.6 NA 50.1 NA
Yang et. al. [32] 88.0 81.3 33.9 50.7 39.1 55.3 58.6

APK
Our Model 91.6 84.8 37.2 51.0 39.8 57.7 60.9

Sapp et. al. [24] NA 83.5 42.4 40.8 NA 55.6 NA
Yang et. al. [32] 92.5 86.5 49.4 54.2 60.8 63.4 68.7

PCK
Our Model 97.7 94.8 53.8 55.6 63.4 68.1 73.1

(a) Pose detection results on UYDP dataset,
when different number of training images
from BUFFY dataset are used.

(b) Pose detection results on VideoPose2
dataset, when different number of training
images from BUFFY dataset are used.

Fig. 7. Three body parts (shoulder, elbow, wrist) pose detection results

Experimental Settings. In this paper, we have done three experiments separately to
demonstrate the effectiveness of our proposed framework. In order to see whether our
method is sensitive to the number of labeled training data, for each experiment, we
show the results under three different settings based on the number of labeled training
data to do initialization: half images of the training set (for either BUFFY or PARSE)
are used for training, all images of the training set are used for training, all images of
the training and testing set are used for training. The three experiments are as follows:
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Table 3. Upper-body pose detection results on VideoPose2 dataset, when different number of
training images from BUFFY dataset are used

50% randomly sampled images from the training set of BUFFY are used for training
Criteria Method Head Shou Elbo Wris Hip S. E. W. Avg All Avg

Sapp et. al. [24] NA 81.0 42.4 49.3 NA 57.6 NA
Yang et. al. [32] 92.3 90.1 40.1 60.5 46.5 63.6 65.9

APK
Our Model 92.3 92.5 58.3 63.5 49.6 71.4 71.2

Sapp et. al. [24] NA 90.8 61.3 59.3 NA 70.5 NA
Yang et. al. [32] 96.1 94.7 56.6 67.9 71.3 73.1 77.3

PCK
Our Model 96.6 97.2 78.6 69.8 74.5 81.9 83.3

All images from the training set of BUFFY are used for training
Criteria Method Head Shou Elbo Wris Hip S. E. W. Avg All Avg

Sapp et. al. [24] NA 84.6 57.1 52.0 NA 64.6 NA
Yang et. al. [32] 97.0 94.4 56.4 65.2 51.3 72.0 72.9

APK
Our Model 96.7 95.8 68.2 68.4 60.7 77.5 78.0

Sapp et. al. [24] NA 92.5 66.2 61.5 NA 73.4 NA
Yang et. al. [32] 97.2 94.6 67.0 70.1 74.0 77.2 80.6

PCK
Our Model 96.9 97.5 78.4 73.3 77.8 83.1 84.8

All images of BUFFY are used for training
Criteria Method Head Shou Elbo Wris Hip S. E. W. Avg All Avg

Sapp et. al. [24] NA 85.0 64.2 52.2 NA 67.1 NA
Yang et. al. [32] 95.3 95.2 64.1 60.5 52.3 73.3 73.5

APK
Our Model 96.6 95.9 74.5 68.2 61.7 79.5 79.4

Sapp et. al. [24] NA 93.3 69.3 61.3 NA 74.6 NA
Yang et. al. [32] 97.0 96.1 73.4 70.2 71.0 79.9 81.5

PCK
Our Model 97.3 97.1 82.4 73.4 77.5 84.3 85.5

1. We compare our full-body model to Yang et. al. [32] on FYDP by utilizing PARSE
[17] to do initialization as shown in Table 1 and Fig. 6 (a).

2. We compare our upper-body model to Yang et. al. [32] on UYDP by utilizing
BUFFY [4] to do initialization as shown in Table 2, Fig. 6 (b) and Fig. 7 (a).

3. We compare our upper-body model to Yang et. al. [32] and Sapp et. al. [24] on
VideoPose2 dataset [25] by utilizing BUFFY [4] to do initialization as shown in
Table 3 and Fig. 7 (b). We do not compare to video based method [7,25] since
video data are not available in the training process.

Experiment Results. From Table 1, Table 2 and Table 3, we can see that our method
achieves a significant improvement compared to the image pose detector. In addition,
if we look at the results in detail, in Table 1, when we use half of the training set
(50 images) to do training, we can obtain 73.9% APK and 79.0% PCK. If we instead
trained a state-of-the-art image pose detector [32] with 305 images, it only achieves
73.6% APK and 79.4% PCK. This shows that our method, with only 1

6 training data,
can still generate comparable results to the state-of-the-art image pose detector [32].

Furthermore, from Fig. 6, we observe that: 1) when the number of labeled training
images increases, both the performance of our method and [32] are improved. 2) our



358 H. Shen et al.

Fig. 8. Key frame results on FYDP dataset. We show different parts of full-body skeleton using
6 different colors. Other than the last three images of the last row, all images show successful
examples. By examining the failure cases, we find our model is still confused by foreshortened
limbs, horizontal people and the left/right limb.

Fig. 9. Key frame results on UYDP dataset. We show different parts of half-body skeleton using
4 different colors. Other than the last three images of the last row, all the images show successful
examples. We see our model still has difficulty to hidden parts, foreshortened limbs and self-
occlusion.

model is always better than [32] when the number of training data varies. 3) our model
is not very sensitive to the number of training data, and can generally get pretty good
results when only 50 images are used for training.

To vividly compare our pose detection results to a state-of-the-art image-based pose
detector [32], we visualize the human motion parsing results of a two-second video clip,
which are shown in Fig. 5. The comparison shows that our model is more robust to noise
and can clearly represent the movements. In addition, we also show some successful and
failed examples of our full-body and upper-body results in Fig. 8 and Fig. 9.
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5 Conclusion

We propose an unsupervised framework to adapt pose detector from images to uncon-
strained Internet videos. A novel adjustment strategy is proposed to iteratively exploit
the domain specific information in unconstrained videos, where no labeled videos are
available. Temporal smoothness and body part consistency are simultaneously satis-
fied to refine the pose detection model, which is initialized only by labeled images. The
merit of our work is that the pre-trained model does not have to fit the testing data, which
are unseen during initialization. Therefore, no human supervision is required when we
adapt the image model to videos. Our framework is a general one, which can be read-
ily extended to any other image pose detector for Internet videos. We demonstrate the
effectiveness and robustness of our framework through the full-body and upper-body
pose experiments based on a real world Internet video set. One limitation of the pro-
posed algorithm is that if the video resolution is low, the tracking results may not be
robust enough. In these cases, the improvement from tracking part will decrease. In the
future, we will improve the tracking method.
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