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Multimedia Event Detection Using A
Classifier-specific Intermediate Representation

Zhigang Ma, Yi Yang, Nicu Sebe, Kai Zheng, and Alexander G. Hauptmann

Abstract—Multimedia event detection (MED) plays an important role in many applications such as video indexing and retrieval. Current
event detection works mainly focus on sports and news event detection or abnormality detection in surveillance videos. Differently, our
research aims to detect more complicated and generic events within a longer video sequence. In the past, researchers have proposed
using intermediate concept classifiers with concept lexica to help understand the videos. Yet it is difficult to judge how many and what
concepts would be sufficient for the particular video analysis task. Additionally, obtaining robust semantic concept classifiers requires
a large number of positive training examples, which in turn has high human annotation cost. In this paper, we propose an approach
that exploits the external concepts-based videos and event-based videos simultaneously to learn an intermediate representation from
video features. Our algorithm integrates the classifier inference and latent intermediate representation into a joint framework. The
joint optimization of the intermediate representation and the classifier makes them mutually beneficial and reciprocal. Effectively, the
intermediate representation and the classifier are tightly correlated. The classifier dependent intermediate representation not only
accurately reflects the task semantics but is also more suitable for the specific classifier. Thus we have created a discriminative
semantic analysis framework based on a tightly coupled intermediate representation. Extensive experiments on multimedia event
detection using real-world videos demonstrate the effectiveness of the proposed approach.

Index Terms—Intermediate Representation, Multimedia Event Detection, p-norm.
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1 INTRODUCTION

R ESEARCH on video indexing and retrieval has long been
faced with the challenge of semantic gap between low-

level features and high-level semantic content description of
videos [1][2]. To bridge the semantic gap, various approaches
have been proposed to help analyze the semantic content of
videos, either at concept level or at event level.

According to [3], a “concept” means an abstract or general
idea inferred from specific instances of objects, scenes and
actions such as fish, outdoor and boxing. Concepts are lower
level descriptions of multimedia data which usually can be
inferred with a single image or a few video frames. An
“event” refers to an observable occurrence that interests users.
Compared with concepts, events are higher level descriptions
of multimedia data. A meaningful event builds upon many
concepts and is unlikely to be inferred with a single image
or a few video frames. For example, the event landing a
fish includes many concepts such as people, fish, fishing rod
together with the action landing, and it usually happens in a
longer video sequence. We cannot tell if it is a landing a fish
event if we only see a person sitting on a boat in one image
or a few frames.
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Annotation and detection are two different topics of both
concept and event analysis [3]. Multimedia annotation, also
known as recognition, aims to associate a datum with one
or multiple semantic labels (tags) [3]. Many approaches have
been proposed to improve annotation accuracy for both images
and videos [6]. Detection identifies the occurrence of a class
of interest in a large pool of data. In contrast with annotation
for which both the training and testing data are from a fixed
number of classes, the training and testing data in detection
can be from an infinite number of classes [3]. Hence, detection
is a more challenging problem.

The TREC Video Retrieval Evaluation (TRECVID) com-
munity has notably contributed to the research of video
concept or event detection [7][8][9]. In the field of multimedia,
many other works have also focused on concept detection,
e.g., [4][10][11]. However, the research on video event de-
tection is still in its infancy. Most existing research on event
detection is limited to the sport events, news events, events
with repetitive patterns like running or unusual events in
surveillance videos [12][5] [13][14]. The “Event detection in
Internet multimedia (MED)1” launched by TRECVID aims to
encourage new technologies for detecting more complicated
events, e.g., feeding an animal. Ma et al. have made the
first attempt on Ad Hoc detection of this type of events, for
which only 10 positive example are available for training [3].
For this kind of events, there are huge intra-class variation.
For example, an event “feeding an animal” can be either
feeding a cat at home with cat food in a small container, or
feeding a horse in a farm with a bundle of grass. Besides,
they are usually characterized by long video sequences, which
necessitates the exploration of all the sequences for analysis.

1. http://www.nist.gov/itl/iad/mig/med11.cfm
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Recent research has shown that the performance of multime-
dia semantic analysis can be improved through proper machine
learning approaches [16][17][18]. Therefore, it is reasonable to
leverage good low-level features as well as effective machine
learning algorithms on video data for MED. We propose a
new algorithm for MED, which is extended from our previous
work [19]. Our method has the following attributes:

1) Our algorithm learns an intermediate representation of
videos by exploiting the target videos and external video
archives together. In this paper, the target videos are the videos
depicting the event to be detected. The external videos are the
auxiliary labeled video archives that are used to help learn the
intermediate representation. The intermediate representation
is a compact vector representation derived from the Bag-of-
Words features of the videos through a transformation, during
which the discriminative information is encoded.

2) Our algorithm integrates representation inference and
classifier training into a joint framework. In this way, the
intermediate representation is tightly coupled with the loss
function used for the classifier.

3) A robust loss function is used in our objective function,
making the performance more robust to outliers.

We name our method Semantic Analysis via Intermedi-
ate Representation (SAIR). The intermediate representation
is dependent on the classifier while the classifier training
benefits from the representation. The mutual benefit and
reciprocality between the intermediate representation and the
classifier endows the classification framework good capability
for multimedia event detection.

2 RELATED WORK

In this section, we briefly review some related works, which
cover multimedia representation and semantics understanding.

2.1 Multimedia Low-level Feature Representation
A common approach for low-level feature representation is to
extract the key frames of videos and then generate features
based on these frames. For example, traditional features in-
clude Color Correlogram, Edge Direction Histogram, Wavelet
Texture, etc. Newly designed features, e.g., SIFT draw more
research interest for their discriminating capability [20]. Some
other features can capture the spatial-temporal information,
e.g., STIP feature [21] and MoSIFT feature [22], and have
shown promising performance in video semantic analysis.

Apart from visual features, some other modalities, which
provide different yet complementary information, can also be
used to represent videos. For example, textual representation
based on Automatic Speech Recognition (ASR) and Optical
Character Recognition (OCR), and auditory features based on
Mel-frequency Cepstral Coefficients (MFCC) have also been
frequently used to represent videos [23].

2.2 Learning to Refine Multimedia Representation
Multimedia representation refinement aims to obtain a more
compact as well as accurate feature representation of multime-
dia data [15][5][24][17][25]. Shyu et al. propose a subspace

based data mining framework for video concept/event detec-
tion [5]. To exploit the semantic relatedness among multiple
modalities, Yang et al. propose a manifold learning based
algorithm to infer a unified representation of different media
types for cross media retrieval [24]. Based on users’ feedbacks,
a long term relevance feedback algorithm is proposed in [17]
to refine the multimedia representation for better retrieval per-
formance. In [25], a sparse projection method is proposed to
infer a sparse representation for videos, by which the efficiency
of video classification is improved. These research efforts have
shown that multimedia data can be refined by proper machine
learning algorithms, thus resulting in better performance for
multimedia analysis. However, in most of these works, the re-
finement and the classifier training are independent from each
other. As it is uncertain which classifiers benefit the most from
these refinement algorithms, the performance improvement
could be limited. Instead, we propose an integrated framework
which learns a refined representation and a classifier jointly. As
the refined representation is correlated with the loss function
used in the classifier, the classifier dependent intermediate
representation not only accurately reflects the task semantics
but is also more suitable for the specific classifier, thus
resulting in boosted classification accuracy.

2.3 Concepts-based Representation

Recently, some researchers suggest using concepts-based rep-
resentation for video semantic understanding. A number of
researchers have been building a variety of semantic concept
detectors, such as those related to people (face, anchor), acous-
tic (speech, music), genre (weather, financial, sports), scene,
etc. [1], and a series of concept lexica have been established,
e.g., LSCOM [26] and MediaMill [4]. 346 concepts have been
defined for the TRECVID 2011 semantic indexing task. With
these annotation corpora, different concept detectors can be
trained. Therefore, videos can be represented by the concept
detection results of those detectors [27]. If sufficient con-
cept detectors are properly trained and appropriately applied,
the concepts-based representation of videos, which is a set
of textual descriptors, is more capable of reflecting video
semantics. However, such approach is still confronted with
some problems. First, it requires many labeled data to train
intermediate concept classifiers, which costs much human
labor. For example, while the full LSCOM set contains over
2600 concepts, many of them are unannotated or contain no
positive instances [26]. Second, only concept-based archives
have been used to infer representation so far. In recent years,
several event-based video archives have been presented in the
community. Effective usage of these event-based videos could
be another potential solution for improving multimedia event
detection.

3 THE PROPOSED ALGORITHM

In this section, our algorithm is presented in details followed
by an algorithm for solving the objective function. Classifier-
specific in our method means being tightly coupled with the
particular loss function used by the classifier.
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3.1 Learning An Intermediate Representation
We first illustrate the traditional approach of concepts-based
representation for multimedia analysis. Then we formulate our
method which goes beyond the traditional approach.

3.1.1 Traditional Approach
Suppose there are n example videos, whose low-level features
are {x1, ..., xn}. Here xi ∈ Rd denotes the low-level feature of
the video and d is the dimension of the feature. xi (1 ≤ i ≤ n)
can be either positive or negative examples. Let yi be the label
of xi, indicating whether the video xi is a positive one. A
general approach to train a multimedia event detector f can
be formulated as minimizing the following objective function

min
f

n∑
i=1

` (f(xi), yi) + αΩ(f), (1)

where `(·, ·) is a loss function and Ω(f) is a regularization
function on f with α as a regularization parameter. Once f is
obtained, we can use it for event detection. Clearly, there are
three main components needed to be properly designed, which
are the feature representation xi, the loss function `(·, ·), and
the regularization function Ω(·).

Using the concepts-based representation as in [27][1] for
multimedia event detection, we need another m annotated
videos {xn+1, ..., xn+m} from c classes with groundtruth la-
bels {yn+1, ..., yn+m}. For the k-th class there are mk positive
examples. The videos {xn+1, ..., xn+m} are used to pre-train
c classifiers gk|ck=1, one for each intermediate concept. For
each training or testing video xi(1 ≤ i ≤ n), the classifiers
gk|ck=1 are applied to detect the intermediate concepts. In this
way, xi(1 ≤ i ≤ n) is represented by a c dimensional vector,
with each dimension corresponding to an intermediate concept.
More specifically, the following two steps are taken. In the
first step, c classifiers {g1, ..., gc} are trained by minimizing
the following objective function

min
g1,...,gc

c∑
k=1

m∑
j=1

˜̀(gk(xn+j), yn+j) + αΩ̃(gk), (2)

where ˜̀(·, ·) and Ω̃(f) are the loss function and the regular-
ization function respectively and α is a parameter. Once the
c classifiers {g1, ..., gc} are obtained, we convert the original
feature representation xi(1 ≤ i ≤ n) to the concepts-based
representation zi = [z1i, ..., zci] ∈ Rc by zki = gk(xi)
(1 ≤ k ≤ c). In the second step, the event detector f can
be trained based on the new representation zi (1 ≤ i ≤ n) in
the same way of (1), i.e.,

min
f

n∑
i=1

` (f(zi), yi) + αΩ(f)

⇒ min
f

n∑
i=1

` (f(g(xi)), yi) + αΩ(f), (3)

where g(xi) = [g1(xi), ..., gc(xi)]. For each testing video xte,
the decision score ste indicating whether the event occurs in
the video xte is given by

ste = f (g(xte)) . (4)

Although the traditional concepts-based representa-
tion [1][27] is expected to be more precise than low-level
features, this kind of approach suffers from some practical
problems in implementation. First, it is time-consuming to
find and annotate a large amount of positive examples to train
many concept classifiers. Second, the number of concepts is
limited and it remains unclear how many concepts (and what
concepts as well) would be sufficient for some applications,
e.g., multimedia event detection. Third, the pre-trained
concept classifiers are yet to be sufficiently reliable. Fourth,
given a particular event to detect, only some concepts are
discriminative while others are comparatively useless or even
noisy. Taking “landing a fish” event as an example, some
concepts like “fish” and “boat” are very discriminative, while
“clouds” and “face” are less informative. It is a nontrivial
task to define the ontology for different events, which are
dynamic and diverse.

3.1.2 Joint Learning of Classifier and Representation
with External Videos
In the traditional way of multimedia event detection using
concepts-based representation, the concept classifiers gk|ck=1

and multimedia event detector f are trained individually, as
shown in (2) and (3). There is no guarantee, however, that the
two are tightly correlated. Besides, training a large number
of gk|ck=1 is time consuming, while it remains unclear how
large c should be. A question then comes up: Can we learn
an intermediate representation closely related to a particular
multimedia event, and the event detector without requiring
many pre-labeled data? As demonstrated in [3], the classifier
of external concepts-based videos and the event detector have
shared components. Exploiting such information is beneficial
for multimedia event detection. Different from [3],we assume
that the external concepts-based videos and the event-based
videos have a common intermediate representation. Specifi-
cally, we propose to simultaneously learn f and an intermedi-
ate representation built upon gk|ck=1 from the external videos
and gc+1, gc+2 from the positive and negative examples of the
particular event to be detected:

min
f,{g1,...,gc+2}

n+m∑
i=1

` (f([g1(xi), ..., gc+2(xi)]), yi) + αΩ(f), (5)

where xi(1 ≤ i ≤ m + n) is either a positive or negative
example of a particular event, or an example of external
videos used to help learn the intermediate representation.
In (5) the classifier and the intermediate representation are
jointly optimized, which explicitly guarantees that the two are
correlated. Inspired by [28], we define f(xi) and g(xi) as
follows:

f(g(xi)) = WT g(xi), (6)

g(xi) = [θT1 xi, ..., θ
T
c+2xi] = ΘTxi. (7)

Then we rewrite (5) as

min
W,Θ

n+m∑
i=1

`
(
WT (ΘTxi), yi

)
+ α‖W‖2F . (8)
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In our previous work [19], we used the `2,1-norm based
loss function and obtained good performance for multimedia
understanding. In this extension, we apply the `2,p-norm (0 <
p < 2) based loss function as we can adjust the value of p
to search for the optimal loss. In this way, our previous work
is a special case of this new formula. For an arbitrary matrix
A ∈ Rd×c, ‖A‖2,p is defined as:

‖A‖2,p =

 d∑
i=1

(

c∑
j=1

|Aij |)
p
2

 1
p

. (9)

We propose our objective function as:

min
W,Θ,b

∥∥∥XΘW + 1n+mb
T − Y

∥∥∥
2,p

+ α ‖W‖2F .

s.t.ΘTΘ = I
(10)

In (10), X = [x1, x2, ..., xn, xn+1, ..., xn+m] ∈ R(n+m)×d is
the data matrix including the positive and negative examples
x1, x2, ..., xn of a particular event together with the external
videos xn+1, ..., xn+m. Y = [y1, y2, ..., yn, yn+1, ..., yn+m] ∈
R(n+m)×(c+2) indicate their labels. Note that the external
videos have c classes and the positive and negative examples
for an event are treated as two classes so we have c+2 classes
in total. 1n+m ∈ Rn+m is a column vector with all ones and
b ∈ Rc+2 is the bias. The bias is added for unbalanced data but
we can preprocess the data by centering them. The orthogonal
constraint ΘT Θ = I is added for two considerations: 1) to
avoid arbitrary scaling of the intermediate representation; 2)
to preserve as much information as possible [29]. Suppose the
data are centered, (10) becomes:

min
W,Θ
‖XΘW − Y ‖2,p + α ‖W‖2F .

s.t.ΘTΘ = I
(11)

Note that although (11) looks similar to the objective function
in [28], our proposed method is different from that of [28].
The primary difference is that the motivation of [28] is to
address multi-label classification whereas ours manages to
learn an intermediate representation coupled with the specific
loss function. When the loss function changes, the intermediate
representation, i.e., Θ changes accordingly. Another difference
is that we use an `2,p-norm based loss function which is more
robust.

Next, we discuss how the proposed approach tackles the
four problems below (4) that are faced by the traditional
concepts-based representation methods. First, to obtain good
concept classifiers, it usually requires a large amount of labeled
training data. Our method, however, does not directly use the
concept classifiers but learns an intermediate representation
so not many data are required, which is also validated by our
experiment. To detect the event feeding an animal, traditional
methods would train the concept classifier of “animal.” How-
ever, it is hard to know what concepts else can be useful. If the
event happens indoor, concepts such as “floor” would help. If
the event happens outdoor, “grass land” is more informative. It
is tricky to decide what concepts should be trained in advance.
Differently, our method learns an intermediate representation,
which does not directly use the pre-defined concept classifiers

to perform MED. As can be seen, our method jointly optimizes
the loss function and the intermediate representation. In this
case, the loss function is optimized for feeding an animal. As
this learning process is coupled with the detector, it is able
to adjust g(x) for the event. When the event is changed, X
and Y in (11) will also be different. Consequently, the optimal
Θ will be different, which means that different intermediate
representations are learned for different events. However,
traditional approach uses the same concept detection results for
different events, and therefore the selection of concepts turns
to a critical problem for the traditional concepts-based rep-
resentation. Third, traditional methods directly use the output
from trained concept classifiers as input for event detection.
If the output of the pre-trained classifiers is not reliable,
the performance of MED degrades. Differently, our method
learns a discriminative intermediate representation, which dose
not directly use the output of concept clarifiers as input.
Fourth, if we use traditional pre-trained concept classifiers for
event detection, we have to decide in advance what concept
classifiers to use. In contrast, our method learns g and f jointly
with the assumption that concept classifiers and event detector
have an intermediate representation. Consequently, we do not
need to select the concepts for a particular event.

Algorithm 1: The SAIR algorithm.
Input:

The training data X and the label matrix Y ;
Parameter α.

Output:
Converged Θ and W .

1: Set t = 0 and initialize Θ0, W0 randomly;
2: repeat

Compute [z1
t , ..., z

n+m
t ]T = XΘtWt − Y ;

Compute the diagonal matrix D̃t as:

D̃t =


1

2
p‖z

1
t ‖

2−p
2

...
1

2
p‖zn+m

t ‖2−p

2

 ;

Compute Ut = XT D̃tX + αI;
Compute Vt = XT D̃tY Y

T D̃tX;
Obtain Θt+1 by the eigen-decomposition of U−1

t Vt;
Compute At = ΘT

t X
T D̃tXΘt + αI;

Update Wt+1 as Wt+1 = A−1
t ΘT

t X
T D̃tY ;

t = t+ 1.
until Convergence;

3: Return Θ and W .

3.2 Solution

The `2,p-norm in our framework is non-smooth which makes
(11) difficult to solve. To deal with this problem, we pro-
pose the following solution. By denoting XΘW − Y =
[z1, ..., zn+m]T , the objective of (11) is equivalent to:

min
W,Θ

Tr
(

(XΘW − Y )T D̃(XΘW − Y )
)

+ α ‖W‖2F ,

s.t. ΘTΘ = I
(12)
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where D̃ is a matrix with its diagonal elements D̃ii =
1

2
p‖zi‖2−p

2

. By setting the derivative w.r.t. W to 0, we have:

W = A−1ΘTXT D̃Y, (13)

where A = ΘTXT D̃XΘ + αI and I is an identity matrix.
The above procedure needs to calculate the inverse of A.
A = ΘTXT D̃XΘ + αI = (XΘ)T D̃(XΘ) + αI . As D is
semi-positive, (XΘ)T D̃(XΘ) is semi-positive. I is positive
definite. Thus, A is non-singular and invertible. Substituting
(13) into (12), it becomes:

min
Θ
Tr

(
Y T D̃XΘA−1(ΘTXT D̃XΘ− 2A+ αI)

A−1ΘTXT D̃Y
)
s.t. ΘTΘ = I

(14)

As A = ΘTXT D̃XΘ + αI , (14) becomes:

max
Θ

Tr
(

(ΘTUΘ)−1ΘTVΘ
)
,

s.t. ΘTΘ = I
(15)

where U = XT D̃X + αI and V = XT D̃Y Y T D̃X .
The objective function of (15) can be readily solved by

the eigen-decomposition of U−1V . However, the solving of
Θ requires the input of D̃ that is related to W , so it is not
handy to get Θ and W . Therefore, we propose an iterative
approach demonstrated in Algorithm 1. It can be proved that
the objective function value shown in (11) monotonically
decreases in each iteration until convergence using the iterative
approach in Algorithm 1. The complexity of calculating the
inverse of a few matrices is O(d3). To obtain Θ, we need to
conduct eigen-decomposition of U−1V , which is also O(d3)
in complexity.

3.3 Nonlinear SAIR
As nonlinear classifiers generally have better performance than
linear ones for event detection [23], we extend our algorithm
SAIR to a nonlinear classifier by utilizing kernel tricks.
Assuming that there is a transformation function φ : Rd → H.
Then, the objective function of the nonlinear SAIR can be
written as:

min
W,φ(Θ)

‖φ(X)φ(Θ)W − Y ‖2,p + α ‖W‖2F ,

s.t. φ(Θ)Tφ(Θ) = I
(16)

It has been proved in [31] that if we map the data into a
Hilbert space H by Kernelized Principal Component Analysis
(KPCA) [30], (16) can be solved in a similar way as (11) using
the representations in H.

4 EXPERIMENTS
In this section, we present the experimental results. We use the
nonlinear SAIR with χ2 kernel. Our method is compared to
the following algorithms: AdaBoost, TaylorBoost [32], SVM,
Linear Discriminant Analysis (LDA) [33] followed by ridge
regression and Semantic Concept Representation (SCR). For
SCR, we use the existing concept-based video corpus to learn
the representation of the event-based videos. Then SVM with
χ2 kernel is applied for classification.

4.1 Datasets
We use the TRECVID MED 2011 (MED11)2 development
set in our experiments, which includes 15 events. We perform
event detection for these 15 events.

Another two video sets, i.e., the TRECVID MED 2010
(MED10)3 and the development set from TRECVID 2011
semantic indexing task are used as external video sources.
We use them to help learn the intermediate representation
for MED11. MED10 includes 3 events. The video set for
semantic indexing task covers 346 concepts. We used 65
concepts suggested by [34]. These concepts are related to
human, environment and object. For convenience, we denote
the resulting dataset as Semantic Indexing dataset(SIN11).
Recall that in (11) Y ∈ R(n+m)×(c+2) where c = 3+65 = 68
in our setting. According to the task definition from NIST, each
event is detected independently. In our experiments, there are
15 individual detection tasks.

4.2 Setup
The training data comprise three parts. The first part consists
of 100 positive examples and 500 negative examples randomly
selected from MED11. The second part includes 309 positive
examples from MED10. The third part is SIN11 which has
2529 video frames. The remaining videos in MED11 are our
testing data.

We use a 4096 dimension Bag-of-Words feature to represent
each video using SIFT, CSIFT [35] and MoSIFT separately.
The three feature types are further concatenated. We ran our
program on the Carnegie Mellon University Parallel Data Lab
cluster, which contains 300 cores, to extract features and
perform the bag-of-words mapping. The parameters of all
algorithms in our experiments are tuned by a “grid-search”
strategy from {10−3, 10−2, · · · , 102, 103}. We use two evalu-
ation metrics. The first one, Minimum NDC (MinNDC) [36],
is defined as follows:
MinNDC(S,E)

=
CMPM (S,E)PT + CFAPFA(S,E) (1− PFA(S,E))

MINUMUM (CMPT , CM (1− PT ))
,

(17)

where PM (S,E) is the missed detection probability for system
S, event E while PFA(S,E) is the false alarm probability for
system S, event E. CM = 80 is the cost for missed detection,
CFA = 1 is the cost for false alarm and PT = 0.001. Lower
MinNDC indicates better detection performance. The second
one is Average Precision (AP). Higher AP indicates better
performance.

4.3 MED Results
The MED results are displayed in Table 1 using the two
evaluation metrics. It can be seen that our method SAIR
is consistently competitive compared with other methods.
Zooming into details, we have the following observations: 1)
In terms of MinNDC, SAIR gains the best performance for 9
events and the second best performance for another 5 events.

2. http://www.nist.gov/itl/iad/mig/med11.cfm
3. http://nist.gov/itl/iad/mig/med10.cfm
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Table 1
MED performance comparison. Note that LOWER MinNDC / HIGHER AP indicates BETTER performance. The best

results are highlighted in bold.

Event Description Evaluation Metric AdaBoost TaylorBoost SVM LDA SCR SAIR

Attempting a board trick MinNDC
AP

1.218
0.086

0.995
0.094

0.826
0.225

0.998
0.131

0.742
0.274

0.775
0.248

Feeding an animal MinNDC
AP

1.343
0.037

1.001
0.043

0.963
0.087

1.001
0.045

0.981
0.079

0.964
0.089

Landing a fish MinNDC
AP

1.119
0.065

0.932
0.097

0.665
0.260

0.938
0.103

0.704
0.234

0.626
0.281

Wedding ceremony MinNDC
AP

1.015
0.084

1.001
0.067

0.466
0.483

1.001
0.073

0.582
0.322

0.441
0.493

Working on a woodworking project MinNDC
AP

1.203
0.055

1.001
0.046

0.726
0.294

1.001
0.096

0.940
0.091

0.711
0.283

Birthday party MinNDC
AP

1.211
0.030

1.001
0.019

0.885
0.079

1.001
0.021

0.939
0.051

0.882
0.076

Changing a vehicle tire MinNDC
AP

1.187
0.006

1.001
0.006

0.670
0.023

1.001
0.006

0.862
0.013

0.636
0.030

Flash mob gathering MinNDC
AP

1.139
0.050

1.001
0.042

0.629
0.198

1.001
0.059

0.509
0.291

0.568
0.228

Getting a vehicle unstuck MinNDC
AP

1.031
0.019

0.902
0.027

0.802
0.051

0.970
0.018

0.586
0.107

0.711
0.083

Grooming an animal MinNDC
AP

1.317
0.006

1.001
0.013

0.856
0.046

0.925
0.025

0.814
0.056

0.856
0.047

Making a sandwich MinNDC
AP

1.355
0.008

1.001
0.009

0.821
0.034

1.001
0.010

0.843
0.029

0.858
0.030

Parade MinNDC
AP

1.091
0.035

0.991
0.028

0.654
0.093

1.001
0.019

0.712
0.083

0.632
0.108

Parkour MinNDC
AP

1.156
0.014

0.955
0.005

0.570
0.047

1.001
0.009

0.566
0.050

0.449
0.055

Repairing an appliance MinNDC
AP

0.971
0.027

1.001
0.018

0.550
0.102

0.822
0.029

0.664
0.056

0.508
0.109

Working on a sewing project MinNDC
AP

1.188
0.012

1.001
0.008

0.706
0.037

0.974
0.016

0.833
0.027

0.612
0.054

Average MinNDC
AP

1.163
0.035

0.986
0.035

0.719
0.137

0.976
0.044

0.752
0.118

0.682
0.148

Table 2
Performance comparison between using 30 concepts and using 65 concepts from SIN11.

Event Description Evaluation Metric SCR(30C) SCR(65C) SAIR(30C) SAIR(65C)

Attempting a board trick MinNDC
AP

0.811
0.215

0.742
0.274

0.764
0.246

0.775
0.248

Feeding an animal MinNDC
AP

0.976
0.071

0.981
0.079

0.961
0.091

0.964
0.089

Landing a fish MinNDC
AP

0.722
0.214

0.704
0.234

0.625
0.286

0.626
0.281

SAIR outperforms all other methods for the average accuracy
over all the 15 events. 2) In terms of AP, SAIR is the best
method for 8 events and the second best one for the other
7 events. SAIR obtains the top performance for the average
accuracy over all the 15 events. Notably, it outperforms the
runner-up SVM by 8%. 3) SVM and SCR have varying degree
of success for some events. However, when considering the
overall performance, they are not as consistently robust as
SAIR. 4) As a linear approach, LDA has weak performance.
Hence, it is preferable to use kernel methods. The better
performance of SAIR indicate that leveraging other concept-
based and/or event-based videos is beneficial for multimedia
event detection.

4.4 Performance w.r.t. Fewer Concepts

To study whether the number of concepts selected affects the
MED performance, we conduct an experiment by reducing
the 65 concepts to 30 concepts. The video frames related
to these 30 concepts in SIN11 are used to help learn the
intermediate representation. We also enlist the performance
variance of SCR as it also leverages the SIN dataset to
obtain a concepts-based representation for MED. The first
three events, i.e., Attempting a board trick, Feeding an animal
and Landing a fish are used as showcases. Table 2 displays
the corresponding results. It can be seen that the performance
of SAIR does not vary much when using only 30 concepts for
intermediate representation. However, the performance of SCR
drops drastically. For example, SCR outperforms SAIR for the
event Attempting a board trick when using 65 concepts but
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Figure 1. Performance comparison between using 500 negative examples and using 1000 negative examples. Note
that LOWER MinNDC/HIGHER AP indicates BETTER performance.

SAIR beats SCR when using 30 concepts. Thus, our method
SAIR is more robust to the selection of concepts-based videos
compared to SCR.

4.5 Using More Negative Examples
We further conduct an experiment to evaluate whether neg-
ative examples contribute much to the detection accuracy
by increasing the number of negative examples to 1000.
Figure 1 shows the performance comparison between using
500 negative examples and 1000 negative examples. It can
be seen that using 1000 negative examples is clearly better
than merely using 500 negative examples, which indicates that
negative examples do help improve the detection accuracy.
Since negative examples are quite easy to obtain in the real
world, it is reasonable and beneficial to leverage such free
resources for boosted detection accuracy.

4.6 Parameter Sensitivity
In our experiments we have tuned the regularization parameter
α in (11). Thus, we conduct an experiment to study how
the parameter α in (11) affects the detection performance.

Similarly, we use Attempting a board trick, Feeding an animal,
Landing a fish in this experiment. Figure 2 demonstrates the
performance variation w.r.t α. For these three events, the best
results are obtained when α is small.

4.7 Convergence
In the previous section, we have proved that the objective
function in (11) converges through the proposed algorithm. For
practical applications it is interesting how fast our algorithm
converges. In our convergence experiment we fix α at 1.

Figure 3 shows the convergence curve of our optimization
algorithm. It can be seen that our algorithm converges within
10 iterations, which is efficient.

4.8 Nonlinear SAIR vs Linear SAIR
We have mentioned before that usually nonlinear classifiers
obtain better performance than linear classifiers for event
detection. For better performance, we have extended our
algorithm SAIR to a nonlinear classifier. To understand the
performance improvement from linear method to nonlinear
method, we use the linear SAIR for MED. The comparison
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Figure 2. Performance variation w.r.t. different values of α. Note that LOWER MinNDC/HIGHER AP indicates BETTER
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Figure 3. Convergence curve of the proposed algorithm.

between the two approaches is displayed in Figure 4. It can be
seen that nonlinear SAIR has remarkable advantage over linear
SAIR in terms of MinNDC and AP. The result demonstrates
that it is beneficial to implement our method as a nonlinear
classifier for MED.

5 CONCLUSION

Multimedia event detection is important for video indexing
and retrieval. We have proposed a new learning framework
for multimedia event detection by leveraging the classifier-
specific intermediate representation from low-level features.
The intermediate representation of videos is automatically
optimized together with the classifier. As a result, the interme-
diate representation is able to better reveal the video semantics
and at the same time is preferable for the classifier learning.
Specifically, we have used external videos in the learning pro-
cess, which provide extra informative cues. The joint learning
of the intermediate representation and the classifier results in

a respectable framework for multimedia event detection. To
validate its efficacy, we conducted several experiments using
real-world video archives. The results showed that our method
consistently yields competitive or better accuracy than other
methods.
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