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Knowledge Adaptation with Partially Shared
Features for Event Detection Using Few

Exemplars
Zhigang Ma, Yi Yang, Nicu Sebe, and Alexander G. Hauptmann

Abstract—Multimedia event detection (MED) is an emerging area of research. Previous work mainly focuses on simple event detection
in sports and news videos, or abnormality detection in surveillance videos. In contrast, we focus on detecting more complicated and
generic events that gain more users’ interest, and we explore an effective solution for MED. Moreover, our solution only uses few positive
examples since precisely labeled multimedia content is scarce in the real world. As the information from these few positive examples
is limited, we propose using knowledge adaptation to facilitate event detection. Different from the state of the art, our algorithm is
able to adapt knowledge from another source for MED even if the features of the source and the target are partially different, but
overlapping. Avoiding the requirement that the two domains are consistent in feature types is desirable as data collection platforms
change or augment their capabilities and we should be able to respond to this with little or no effort. We perform extensive experiments
on real-world multimedia archives consisting of several challenging events. The results show that our approach outperforms several
other state-of-the-art detection algorithms.

Index Terms—Multimedia Event Detection (MED), Knowledge Adaptation, Heterogenous Features, Heterogeneous Features based
Structural Adaptive Regression (HF-SAR)
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1 INTRODUCTION

W Ith ever expanding multimedia collections, multimedia
content analysis is becoming a fundamental research

issue for many applications such as indexing and retrieval,
etc. Multimedia content analysis aims to learn the semantics
of multimedia data. To do so, it has to bridge the semantic
gap between the low-level features and the high-level semantic
content description [17][41]. Different approaches have been
proposed to bridge the semantic gap in the literature, either at
concept level or event level.

We first highlight the difference between a concept and
an event. A “concept” means an abstract or general idea
inferred from specific instances of objects, scenes and actions
such as fish, outdoor and boxing. Concepts are lower level
descriptions of multimedia data which usually can be inferred
with a single image or a few video frames. In multimedia
research, a major thrust for multimedia content analysis is
to learn the semantic concepts of the multimedia data and
to use these concepts for multimedia indexing and retrieval.
Multimedia concept analysis has been widely studied for
images and videos [24][32][31]. However, as shared personal
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video collections, news videos and documentary videos have
explosively proliferated these years, video event analysis is
gradually attracting more research interest. An “event” refers
to an observable occurrence that interests users, e.g. celebrat-
ing the New Year. Compared with concepts, events are higher
level descriptions of multimedia data. A meaningful event
builds upon many concepts and is unlikely to be inferred with
a single image or a few video frames. For example, the event
making a cake consists of a combination of several concepts
such as cake, people, kitchen together with the action making
within a longer video sequence.

Annotation and detection are two different topics of both
concept and event analysis. Multimedia annotation, also
known as recognition, aims to associate a datum with one or
multiple semantic labels (tags). Many approaches have been
proposed to improve the annotation accuracy for both images
and videos [24][33]. A typical annotation approach first pre-
trains a series of classifiers, one for each class, and then applies
the pre-trained classifiers to predicting the class label of each
testing datum. In contrast to annotation, detection identifies the
occurrence of a class of interest. One main difference between
annotation and detection is that in annotation each testing
datum is guaranteed to be a positive sample of one of the
predefined classes while the negative examples in detection are
from a set of infinite classes. In other words, both the training
and testing data in annotation tasks are from a fixed number of
classes but the training and testing data in detection tasks can
be from an infinite number of classes. We have no clue about
all the concepts or events these negative examples include.
This provides very limited training information for obtaining a
robust detector, thus making detection a challenging problem.

The TREC Video Retrieval Evaluation (TRECVID) com-
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munity [3] has notably contributed to the research of video
concept and event detection by providing a common testbed
for evaluating different detection approaches [27]. In the
field of multimedia, many other works have also focused on
concept detection, e.g., [32][40][22]. However, the research
on video event detection is still in its infancy. Before 2011,
most existing research on event detection was limited to the
events in sports [29][39][31] and news video archives [38],
or those with repetitive patterns like running [37] or unusual
events in surveillance videos [4][5][6]. In 2010, the TRECVID
community launched the task of “Event detection in Internet
multimedia (MED)” which aims to encourage new technolo-
gies for detecting more generic and complicated events, e.g.,
landing a fish. For this kind of events, there are huge intra-class
variations. Besides, they can only be characterized by long
video sequences, which necessitates the exploration of all the
sequences for analysis. Figure 1 shows some frames from two
videos of the same event landing a fish. At the first glance, we
may consider Video 1 to be skiing as it contains the concept of
“outdoor with snow” which is not a typical scene for landing a
fish. The scene of Video 2 is more typical, in contrast, though
it can also be a scene for sailing. The comparison of these
two videos aims to demonstrate the huge intra-class variation
of complex events. On the other hand, the information from
only a few frames is patchy, as shown in Figure 1. Thus, the
entire video is needed for analysis.

Video 1 

Video 2 

Figure 1. Some sample frames from two videos of the
event landing a fish.

SVM has been used in few systems designed for the MED
task and proved to be highly effective [10][11][19]. These
systems commonly use sufficient positive examples (about
100) for reliable performance. Recently, NIST has proposed a
problem of how to attain respectable detection accuracy when
there are very few positive examples since precisely labeled
multimedia content is scarce in the real world. In this paper, we
focus on developing an effective method for MED with few

exemplars. Though SVM is effective in current systems, its
performance would likely be less robust when there are only a
few positive examples for training. Humans often adapt knowl-
edge obtained from previous experiences to improve learning
of new tasks. Therefore, in the same manner, it is advantageous
to leverage and adapt knowledge from other related domains
or tasks to address the problem of an insufficient number
of labeled examples. In the multimedia community, there are
some available video archives with annotated concept labels,
which can be leveraged to facilitate MED with few exemplars.
Inspired by [40][18][12], we propose to adapt the knowledge
from concept level to assist in our task. Specifically, we use
the available video corpora with annotated concepts as our
auxiliary resource and MED is performed on the target videos.
The concepts are supposed to be relevant to the event to be
detected.

Currently, most knowledge adaptation algorithms require
that the features extracted from the raw data in the source
domain and the target domain must be of exactly the same
type. In many applications, such a requirement may be too
restrictive, as data collection platforms change or augment
their capabilities. In practice, the data in MED and those in the
available concept-based video archives usually only have par-
tially shared data features. For example, many video archives
are key-frame based so they cannot be represented by audio
features such as MFCC. These kinds of features are commonly
used for MED and provide additional information for event
detection. Hence, we propose to study how to effectively adapt
knowledge from one domain to another when the available
feature sets are partially different, but overlapping, for example
if new or different features have more or better instrumentation
for observations.

This paper is the extension of our previous work [13]. We
summarize the main merits of this paper as follows:
• We perform an exploration of MED with few exemplars

by proposing a novel approach built atop knowledge
adaptation.

• Unlike many knowledge adaptation methods, our ap-
proach does not require that auxiliary videos have the
same events as the target videos. We exploit videos with
several semantic concepts to facilitate the event detection
on the target videos; the event differs from the concepts
and the video collections are different from each other.

• Another merit is that our method is able to adapt knowl-
edge from other sources to the target videos when only
parts of the feature space are shared by the two domains.
This is an intrinsic difference from most state-of-the-art
knowledge adaptation algorithms.

2 RELATED WORK
In this section, we briefly review the related work on video
event detection and knowledge adaptation.

2.1 Video Event Detection
Event detection is a challenging problem that has not been yet
sufficiently studied. Based on its difficulty, event detection can
be roughly categorized into simple event detection, predefined
MED and Ad Hoc MED.
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2.1.1 Simple Event Detection
Much effort has been dedicated to the detection of sports
events, news events, unusual surveillance events or those with
repetitive patterns. For example, Xu et al. propose using web-
casting text and broadcast video to detect events from live
sports game [39]. In [38], a model based on a multi-resolution,
multi-source and multi-modal bootstrapping framework has
been developed for events detection in news videos. News
videos are more constrained as they are recorded and edited
by professionals. Hence, they are usually well structured and
easier to analyze compared to the internet MED videos. Adam
et al. present an algorithm using multiple local monitors which
collect low-level statistics to detect certain types of unusual
events in surveillance videos [4]. Wang et al. have proposed
a new motion feature by using motion relativity and visual
relatedness for event detection [37]. Their approach primarily
applies to events that have repetitive motion attributes and are
usually describable by a single shot, e.g. walking and dancing.
The aforementioned events are usually simple, well-defined
and describable by a short video sequence.

2.1.2 Multimedia Event Detection
In 2010, “Event detection in Internet multimedia (MED)”
was initialized in the TRECVID competition by NIST for
detecting more complicated events. Compared to the simple
events mentioned above, the events in MED usually contain
many people and/or objects, various human actions, multiple
scenes and have significant intra-class variations. Additionally,
these events take place in much longer and more complex
video clips. For instance, making a cake includes objects such
as water and bowl; can happen either in the kitchen or outdoor;
is accompanied by specific motions such as getting the flour,
adding water and baking within a longer video sequence.
Though MED is an arduous problem, researchers have been
making steady effort on it [10][11][19][20][21].

NIST introduced the predefined MED competition as fol-
lows: Each team is given the event kits about 5 months before
the submission of the detection system. Hence, there is enough
time for the system to be tailored particularly for a specific
event. SVM is widely used and shows good performance for
predefined MED. We may also use some recent state-of-the-art
classifiers for MED. For example, a new family of boosting
algorithms is proposed in [28] and demonstrates prominent
performance on a variety of applications. In predefined MED,
we can identify some event-specific rules or templates to
facilitate detection of the particular event.

To address the generalizability of the MED system, NIST
introduced Ad Hoc MED competition1 in 2012. Ad Hoc MED
differs from predefined MED in the sense that we should not
tailor the system for a specific event. For this purpose, NIST
releases the event kits to each team only about 12 days before
the submission of the detection system. In this case, we know
the testing events when we build the system but the short time
period does not allow for special tuning for a specific event.

For both predefined MED and Ad Hoc MED, NIST has
introduced an even more challenging problem, i.e., using few

1. http://www.nist.gov/itl/iad/mig/med12.cfm

labeled positive exemplars to build a detection system to deal
with the scarcity of labeled multimedia content. Our work
focuses on this problem by adapting knowledge from auxiliary
concept-based data. As we do not select auxiliary concepts for
a particular event, our work is different from predefined MED.
Moreover, the time needed for building our system satisfies the
time constraint regulated by NIST. Consequently, our work
gets as close as possible to Ad Hoc MED in the intended
understanding of NIST.

2.2 Knowledge Adaptation for Multimedia Analysis

Knowledge adaptation, also known as transfer learning, aims
to propagate the knowledge from an auxiliary domain to a
target domain [40][18][12]. Many existing algorithms require
that the features extracted from the raw data in the source
domain and the target domain must be using the exact
same raw sensor output. However, MED deals with very
complicated events that come from an unlimited semantic
space. Furthermore, the requirement of feature consistency
may be too restrictive, as data collection platforms change or
augment their capabilities. Hence, most existing methods are
not capable of adapting knowledge for MED when we have
heterogeneous feature type between the source and the target.
For example, Yang et al. have proposed to use Adaptive SVMs
for cross-domain video concept detection [40]. The method
obtained encouraging results but has some shortcomings. The
proposed approach requires that the auxiliary videos and the
target videos have the same video concepts. However, in
MED the events are complicated and collecting many auxiliary
videos with the same event description as the target videos
within limited time is impractical. Jiang et al. [18] have
used the image context of Flickr to select concept detectors.
These pre-selected detectors are then refined by the semantic
context learnt from the target domain. In this way, more precise
concept detectors are obtained for video search. The proposed
method is interesting but the selected concept detectors cannot
be handily used for event detection without other sophisticated
algorithms. Besides, as in our problem we only have very few
positive examples, using these examples to refine the concept
detectors is not reliable. Another algorithm proposed by Duan
et al. [12] realizes event recognition of consumer videos by
leveraging web videos. Their method does not require that
the auxiliary domain and the target domain have the same
events. However, the computation of multiple kernel is time
and space consuming, especially when the feature dimension
is high. Luo et al. have presented an object classification
method by casting prior features learned from auxiliary images
into their multiple kernel learning framework and obtained
advantageous performance [14]. Yet this approach works in
a two-step fashion, i.e., training prior features using auxiliary
data and then incorporating them into the following step. In
contrast, our method works in a unified framework which can
jointly optimize the knowledge from the auxiliary domain and
the target domain. Besides those limitations mentioned above,
existing knowledge adaptation algorithms mostly require that
the features in the source domain and the target domain be of
exactly the same type. However, in practice, this requirement
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Figure 2. The illustration of our framework. We first perform nonlinear mapping for the homogeneous features of the
auxiliary and target videos, i.e., Modality A. The video concept classifier and the video event detector obtained from
the homogeneous features presumably have common components which contain irrelevance and noise. We propose
to remove such negative information by optimizing the concept classifier and the event detector jointly. Meanwhile,
another event detector of MED videos is trained based on both Modality A and Modality B. Then we integrate the two
event detectors for optimization, after which the decision values from both are fused for the final prediction.

may be too restrictive as MED videos can be represented by
different types of features in contrast with the auxiliary video
archives. Our previous work in [13] has some advantages
compared to the existing knowledge adaptation algorithms
such as no requirement for the same classes between the
auxiliary domain and the target domain, efficiency, etc. But
it still ignores the reality that the auxiliary domain and the
target domain possibly have heterogenous feature type.

To progress beyond these aforementioned works, we pro-
pose a new knowledge adaptation method for MED with few
exemplars from heterogeneous features. During the training
phase, the partially shared features of the source domain and
target domain will be exploited to establish a correspondence
between the two domains. Meanwhile, the instrumentation
obtained from the particular MED features is incorporated into
our framework. The two kinds of aforementioned knowledge
are then integrated to refine the detector of the target videos.

3 FRAMEWORK OVERVIEW

Figure 2 illustrates our framework for MED with few exem-
plars. The video archive where the MED is to be conducted is
our target domain. A nonlinear mapping is applied to the ho-
mogeneous features of the auxiliary and target videos, denoted
by Modality A. Based on the resulting representations, the
shared knowledge between them is to be explored. Specifically,
we perform KPCA [30] to complete the mapping. The video
concept classifier and the video event detector obtained from
the homogeneous features presumably have common com-
ponents which contain irrelevance and noise. We propose to
remove such components by optimizing the concept classifier
and the event detector jointly, thereby bringing discriminating
knowledge for the event detector. On the other hand, we
have the heterogeneous features Modality B for MED videos

and they are combined with the homogeneous features as
indicated in Figure 2. Another event detector of MED videos
is subsequently trained based on the resulting representations
from the nonlinear mapping of Modality A and Modality B.
Then we integrate the two event detectors for optimization,
after which the decision values from both are fused for the
final prediction.

4 CONCEPTS ADAPTATION ASSISTED EVENT
DETECTION
Next, we explain how we adapt knowledge for MED with few
exemplars when the two domains have heterogeneous features.
Our approach is grounded on two components: one is the
knowledge from the available target training examples and
the other one is the knowledge propagated from the auxiliary
concepts-based videos.

We first demonstrate how to exploit the knowledge from
the target training examples. Denote the resulting represen-
tations of the target training videos using both Modality
A and Modality B after the nonlinear mapping as Z̃t =
[z̃1t , z̃

2
t , ..., z̃

nt
t ] ∈ Rdz×nt where t stands for the target, dz is

the feature dimension and nt is the number of the training
data. yt = [y1t , y

2
t , ..., y

nt
t ]T ∈ {0, 1}nt×1 are the labels

for the target training videos. yit = 1 if the ith video is
a positive example whereas yit = 0 otherwise. To begin
with, we associate the low-level representations and high-level
semantics of videos by a decision function f which, for an
input video sequence z, predicts an output y. In this paper,
we define ft as:

ft(Z̃t) = Z̃T
t Pt + 1tbt, (1)

where Pt ∈ Rdz×1 is an event detector which correlates Z̃t

with their labels yt, bt ∈ R1 is a bias term and 1t ∈ Rnt×1
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denotes a column vector with all ones. ft is decided by
minimizing the following objective based on the training
examples Z̃t and their labels yt:

min
ft

loss
(
ft(Z̃t), yt

)
. (2)

loss(·, ·) is a loss function. Different loss functions such as
the hinge loss and the least square loss can be used. In this
paper, we use the `2,1-norm based loss function because it is
robust to outliers [25]. Thus, Eq. (2) is reformulated as:

min
Pt,bt

∥∥∥Z̃T
t Pt + 1tbt − yt

∥∥∥
2,1
. (3)

Now we show how to adapt the knowledge from auxiliary
videos which are associated with different concepts and are
represented only by the homogeneous features, i.e., Modality
A to assist in MED with few exemplars. Denote the resulting
representations of the auxiliary videos after the nonlinear
mapping as X̃a = [x̃1a, x̃

2
a, ..., x̃

na
a ] ∈ Rdh×na where a stands

for the auxiliary domain, dh is the feature dimension and na is
the number of the auxiliary videos. Ya = [y1a, y

2
a, ..., y

na
a ]T ∈

{0, 1}na×ca is their label matrix where ca indicates that there
are ca different concepts. Y ij

a denotes the jth class of yia and
Y ij
a = 1 if x̃ia belongs to the jth concept, while Y ij

a = 0
otherwise. The fundamental step is to mine the correlation
between the low-level representations and high-level semantics
of the auxiliary concepts-based videos. Similarly to Eq. (3),
we realize that by the following objective function:

min
Wa,ba

∥∥∥X̃T
a Wa + 1aba − Ya

∥∥∥
2,1

(4)

where a concept classifier Wa ∈ Rdh×ca is used to correlate
X̃a with their labels Ya, ba ∈ R1×ca is a bias term and 1a ∈
Rna×1 is a column vector with all ones.

Next, we illustrate how to adapt knowledge from the auxil-
iary concepts-based videos for a more discriminating event
detector. To begin with, we also use Modality A for the
target videos in accordance with the auxiliary videos. Denote
the resulting representations after the nonlinear mapping as
X̃t = [x̃1t , x̃

2
t , ..., x̃

nt
t ] ∈ Rdh×nt . We can similarly find an

event detector Wt based on X̃t. Wt ∈ Rdh×1 is used to
correlate X̃t with their labels yt.

Considering each domain separately, it is reasonable to as-
sume that for classification purposes some noisy and irrelevant
features will not be used, which in turn makes the correspond-
ing rows of the projection matrix Wa or Wt identically equal
to zero. Considering the two domains together, the auxiliary
concept videos and the event videos can be correlated in the
semantic level, e.g., the concepts fish, water, people are basic
elements of the event landing a fish. Previous work on multi-
task learning has suggested that this kind of correlation usually
results in common components in the feature level shared
across related tasks [7][8][9]. In our scenario, the semantically
related auxiliary videos and event videos can be treated
as related tasks because the events build upon the related
concepts. When we represent videos from both domains with
the same type of feature such as SIFT Bag-of-Words using
the same centroid, they would have some shared components.
For example, assuming that the event video landing a fish has

SIFT Bag-of-Words of fish, we may find similar SIFT Bag-of-
Words in an image of fish. Hence, some shared components
in the features between them need to be uncovered. Note
that the event detector is actually a mapping function from
features to event labels. Intuitively, not all the Bag-of-words
are related to semantic labels. Given certain Bag-of-Words, if
they are irrelevant to all the concepts, it is very likely that
these Bag-of-Words are also irrelevant to the events, because
the event builds on top of the concepts. Recalling that the
corresponding rows of Wa or Wt are identically equal to zero
for the irrelevant or noisy features, we should be able to find
similar patterns in the distribution of these rows by learning
Wa and Wt jointly. Thus, we exploit the concept classifier
Wa to help remove the noise in Wt for a more discriminative
event detector.

Denote Wa = [w1
a, ..., w

dh

a ]T , Wt = [w1
t , ..., w

dh

t ]T .
Then we combine them and define a joint analyzer W =
[w1, ..., wdh

]T where wi is the vertical concatenation of wi
a

and wi
t, i.e., wi = [wi

a;w
i
t]. In this sense, wi reflects the joint

information from the auxiliary videos and the target training
videos. Through proper optimization of wi, we can remove
the shared irrelevant or noisy components. Previous work
has shown that sparse models are useful for feature selection
by eliminating redundancy and noise [7][26][25]. The sparse
models are used to make some of the feature coefficients
shrink to zeros to achieve feature selection. The “shrinking to
zero” idea can be applied to uncover the common distribution
of the “identically equal to zero” rows of Wa and Wt discussed
before. In this way, we can remove the shared irrelevance and
noise, thus obtaining a more discriminative Wt.

Now we introduce the technical details of our joint spar-
sity model. Specifically, we propose to exploit ‖W‖2,p =(

dh∑
i=1

(
ca+1∑
j=1

|Wij |)
p
2

) 1
p

to achieve that goal. ‖·‖2,p denotes

the `2,p-norm (0 < p < 2). By minimizing ‖W‖p2,p, we
can reduce the negative impact of the irrelevant or noisy
wi’s. Our model has the flexibility of characterizing different
degree of relevance between concepts and events. p is used
to control the degree of shared structures. The lower p is, the
more semantically correlated are the auxiliary concepts and
the target event. By contrast, when the auxiliary concepts and
the target event have less relevance, we can use a larger p.
When we increase p to 2, we do not impose sharing on the
two domains. To step further, it is expected that the predicted
labels of Wt on X̃t be consistent with those of Pt on Z̃t,
thus resulting in more accurate Pt and Wt. In this way, Pt

from the heterogeneous features of the target and Wt from the
knowledge adaptation would jointly augment the observations

for MED. We achieve this by minimizing
∥∥∥X̃T

t Wt − Z̃T
t Pt

∥∥∥2
F

where ‖·‖2F indicates the Frobenius norm of a matrix.
To this end, we propose the following objective function for

MED with few exemplars:

min
Pt,Wt,Wa,bt,ba

∥∥∥Z̃T
t Pt + 1tbt − yt

∥∥∥
2,1

+
∥∥∥X̃T

t Wt − Z̃T
t Pt

∥∥∥2

F

+
∥∥∥X̃T

a Wa + 1aba − Ya

∥∥∥
2,1

+ α ‖W‖p2,p + β(‖Wt‖2F + ‖Wa‖2F )
(5)
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where (‖Wa‖2F +‖Wt‖2F ) is added to avoid over-fitting. α and
β are regularization parameters.

Once Pt and Wt are obtained, we apply them to the testing
videos for event detection. The decision values of them are
normalized and then their weighted sum based on the feature
numbers are the final decision values of the testing videos.
Our method builds upon 1) the knowledge adaptation from
concepts-based videos to event-based videos by leveraging
the shared structures between them; and 2) the augmented
observation from the particular features that are only owned
by MED videos. We therefore name our method Heterogenous
Features based Structural Adaptive Regression (HF-SAR).

5 OPTIMIZING THE EVENT DETECTOR

In this section, we present our solution for obtaining the target
event detector. Our problem in Eq. (5) involves the `2,1-norm
and the `2,p-norm which are both non-smooth and cannot be
solved in a closed form. We propose to solve it as follows.

Denote Z̃T
t Pt − yt = [u1, ..., unt ]T , X̃T

a Wa − Ya =
[v1, ..., vna ]T . Next, we define three diagonal matrices Dt,
Da and D with their diagonal elements Dii

t = 1
2‖ui‖2

,
Dii

a = 1
2‖vi‖2

, Dii = 1
2
p‖wi‖2−p

2

respectively. The objective
function in Eq. (5) is equivalent to:

min
Pt,Wt,Wa,
bt,ba

Tr
(
(Z̃T

t Pt + 1tbt − yt)TDt(Z̃
T
t Pt + 1tbt − yt)

)
+
∥∥∥X̃T

t Wt − Z̃T
t Pt

∥∥∥2

F
+ Tr

(
(X̃T

a Wa + 1aba − Ya)
TDa

(X̃T
a Wa + 1aba − Ya)

)
+ αTr

(
WTDW

)
+β(‖Wa‖2F + ‖Wt‖2F )

(6)

where Tr (·) denotes the trace operator. By setting the deriva-
tive of Eq. (6) w.r.t. ba to zero, we get:

ba =
1

na
1Ta Ya −

1

na
1Ta X̃

T
a Wa. (7)

Similarly, we obtain bt as:

bt =
1

nt
1Tt yt −

1

nt
1Tt Z̃

T
t Pt. (8)

Substituting Eq. (7) and Eq. (8) into Eq. (6), it becomes:

min
Pt,Wt,Wa

Tr
(
(HtZ̃

T
t Pt −Htyt)

TDt(HtZ̃
T
t Pt −Htyt)

)
+
∥∥∥X̃T

t Wt − Z̃T
t Pt

∥∥∥2

F

+Tr
(
(HaX̃

T
a Wa −HaYa)

TDa(HaX̃
T
a Wa −HaYa)

)
+αTr

(
WTDW

)
+ β(‖Wa‖2F + ‖Wt‖2F )

(9)

where Ht = It− 1
nt
1t1

T
t , Ha = Ia− 1

na
1a1

T
a and It ∈ Rnt×nt ,

Ia ∈ Rna×na are two identity matrices. Setting the derivative
of Eq. (9) w.r.t. Wa to zero, we get:

Wa = (X̃aHaDaHaX̃
T
a + αD + βId)

−1X̃aHaDaHaYa (10)

where Id ∈ Rdh×dh is an identity matrix. Note that D is
treated as a constant in this step as we adopt an alternating

optimization approach here. In the same manner, we obtain
the event detector Wt as:

Wt = A−1X̃tZ̃tPt (11)

where A = αD+ βId + X̃tX̃
T
t . To optimize Pt, the problem

equals to:

min
Pt

Tr(PT
t Z̃tHtDtHtZ̃

T
t Pt − 2PT

t Z̃tHtDtHtyt)

+
∥∥∥X̃T

t Wt − Z̃T
t Pt

∥∥∥2

F
+ αTr(WT

t DWt) + βTr(WT
t Wt)

(12)

Substituting Eq. (11) into Eq. (12) and defining

J = Z̃tHtDtHtZ̃
T
t − Z̃tX̃

T
t A
−1X̃tZ̃

T
t + Z̃tZ̃

T
t (13)

K = 2Z̃tHtDtHtyt, (14)

the problem becomes:

min
Pt

Tr(PT
t JPt − PT

t K) (15)

By setting the derivative of the above function w.r.t. Pt to zero,
we get:

Pt =
1

2
J−1K (16)

Next, we propose Algorithm 1 to solve the objective func-
tion in Eq. (5). The computational complexity of Algorithm 1
is as follows. For training, it is O(d3z) as dz > dh. Note
that dz � nt because there are few training examples in our
problem. Thus, the training process is not very computation-
ally expensive. During testing, computing kernels between the
testing data and the training data is the most expensive process.
Suppose there are nte testing videos, we need to compute
ntnte kernels. Each datum is dz dimensional so the complexity
is O(dzntnte).

It can be proved that the objective function value of Eq. (5)
monotonically decreases in each iteration until converging to
local optimum using Algorithm 1.

6 EXPERIMENTS

In this section, we present the experiments which evaluate the
performance of our Heterogenous Features based Structural
Adaptive Regression (HF-SAR) for MED with few exemplars.

6.1 Datasets
NIST has provided so far the largest video corpora for MED.
Our experiments on MED with few exemplars are conducted
on the TRECVID MED 2010 (MED10) and TRECVID MED
2011 (MED11) development set. MED102 includes 3 events
defined by NIST, which are Making a cake, Batting a run,
and Assembling a shelter. MED113 includes 15 events, i.e.,
Attempting a board trick, Feeding an animal, Landing a
fish, Wedding ceremony, Working on a woodworking project,
Birthday party, Changing a vehicle tire, Flash mob gathering,
Getting a vehicle unstuck, Grooming an animal, Making
a sandwich, Parade, Parkour, Repairing an appliance and

2. http://nist.gov/itl/iad/mig/med10.cfm
3. http://www.nist.gov/itl/iad/mig/med11.cfm
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Algorithm 1: Optimizing the event detector.

Input:
The target training data Z̃t ∈ Rdz×nt , X̃t ∈ Rdh×nt ,
yt ∈ Rnt×1;

The auxiliary data X̃a ∈ Rdh×na , Ya ∈ Rna×ca ;

Parameters α, β and p.

Output:
Optimized Pt ∈ Rdz×1, Wt ∈ Rdh×1 and bt ∈ R1.

1: Set t = 0, initialize Pt ∈ Rdz×1, Wt ∈ Rdh×1 and
Wa ∈ Rdh×ca randomly;

2: repeat
Compute Z̃T

t Pt − yt = [u1, ..., unt ]T ,
X̃T

a Wa − Ya = [v1, ..., vna ]T and W = [w1, ..., wd]T ;

Compute the diagonal matrix Dt
t , D

t
a and Dt

according to Dii
t = 1

2‖ui‖2
, Dii

a = 1
2‖vi‖2

, and
Dii = 1

2
p‖wi‖2−p

2

respectively;

Update W t+1
a as: W t+1

a =
(X̃aHaD

t
aX̃

T
a + αDt + βId)

−1X̃aHaDaHaY
T
a ;

Update bt+1
a as: bt+1

a = 1
na

1Ta Ya − 1
na

1Ta X̃
T
a W

t+1
a ;

Update P t+1
t according to Eq. (13), Eq. (14) and Eq.

(16);

Update W t+1
t as: W t+1

t = A−1X̃tZ̃
T
t P

t+1
t ;

Update bt+1
t as: bt+1

t = 1
nt
1Tt yt − 1

nt
1Tt Z̃

T
t W

t+1
t ;

t = t+ 1.
until Convergence;

3: Return Pt, Wt and bt.

Working on a sewing project. The two datasets are combined
together (MED10-11 for short) in our experiments so we have
a dataset of 9746 video clips.

We first use the development set from TRECVID 2012
semantic indexing task (SIN12) as the auxiliary videos. SIN12
covers 346 concepts but some of them have few positive
examples. Additionally, “events” usually refer to “seman-
tically meaningful human activities, taking place within a
selected environment and containing a number of necessary
objects” [15]. Hence, we removed the concepts with few
positive examples and selected 65 concepts that are related to
human, environment and objects. We thus use a subset with
3244 video frames. On the other hand, multimedia events are
usually accompanied by human actions, which suggests that
we may find similar motion features between event videos and
basic human action videos. Hence, we additionally use UCF50
dataset [16] to test whether it is able to facilitate multimedia
event detection.

6.2 Setup
We ran our program on the Carnegie Mellon University
Parallel Data Lab cluster, which contains 300 cores, to extract

features and perform the Bag-of-Words mapping for all the
videos. When utilizing SIN12 dataset, we extract SIFT [23]
and CSIFT [34] features for the videos in MED10-11 and
SIN12. Then we use 1x1, 2x2 and 3x1 spatial grids to generate
the spatial BoW representation [35]. For each grid, we use
a standard BoW representation with 4,096 dimensions, thus
resulting in a 32,768 dimension spatial BoW feature for
SIFT/CSIFT to represent each video. When utilizing UCF50
dataset, we extract STIP [36] feature for the videos in MED10-
11 and UCF50 since STIP has proved to be robust for
analyzing action videos. A similar procedure is followed to
generate the spatial BoW representation. Hence, the feature
representation in this work is different from our previous
work [13] in which we just used BoW representation. Apart
from visual features, some other features, which provide
different yet complementary information, can also be used to
represent videos. For example, the auditory feature based on
Mel-frequency Cepstral Coefficients (MFCC) has also been
frequently used [19]. We additionally use this feature for
MED videos and the dimension is 4096. Thus, when using
the SIN12 dataset, our two domains have SIFT and CSIFT as
shared feature type while MFCC works as the heterogeneous
feature for MED videos; when using UCF50 dataset, our two
domains have STIP as shared feature type while MFCC is the
heterogeneous feature for MED videos.

According to the MED task definition from NIST, each
event is detected independently. Therefore, there are 18 in-
dividual detection tasks. NIST has defined that the number
of positive training examples is 10 for MED with few ex-
emplars [2]. However, for MED10-11 there is no standard
training and testing set partition provided by NIST. Hence, we
randomly split the MED10-11 dataset into two subsets, one as
the training set and the other one as the testing set. We follow
the definition given by NIST and randomly select 10 positive
examples for each event. Other 1000 negative examples are
selected and combined with the positive examples as the
training data. The remaining 8736 videos are our testing
data. The experiments are independently repeated 5 times
with randomly selected positive and negative examples. The
average results are reported.

We use three evaluation metrics. The first one, Minimum
NDC (MinNDC), is officially used by NIST in TRECVID
MED 2011 evaluation [1]. Lower MinNDC indicates better
detection performance. The second one is the Probability
of Miss-Detection based on the Detection Threshold 12.5.
This evaluation metric is used by NIST in TRECVID MED
2012 [2] to evaluate MED performance. We denote it as
Pmd@TER=12.5 for short. Likewise, lower Pmd@TER=12.5
indicates better performance. For more details about the above
two evaluation metrics, please see the TRECVID 2011 and
2012 evaluation plans [1][2]. The third one is Average Preci-
sion (AP). Higher AP indicates better performance.

6.3 Comparison Algorithms
In this section, we show the MED results using Heterogenous
Features based Structural Adaptive Regression (HF-SAR) and
other state-of-the-art algorithms. A brief introduction of the
comparison algorithms is as follows:
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• HF-SAR: the proposed new method which is designed for
knowledge adaptation based on heterogeneous features.
The χ2 kernel is used for its advantageous performance
on video analysis.

• Structural Adaptive Regression (SAR) [13]: our previous
algorithm on knowledge adaptation for MED with few
exemplars. Similarly, the χ2 kernel is used.

• Adaptive Multiple Kernel Learning (A-MKL) [12]: a
recent knowledge adaptation algorithm built upon SVM.

• Multiple Kernel Transfer Learning (MKTL) [14]: a recent
multi-class transfer learning algorithm built within a mul-
tiple kernel learning framework. The original algorithm
in [14] has used RBF kernel. For fair comparison, we
implement it with χ2 kernel.

• SAR&SVM: We use SAR based on SIFT+CSIFT features
between the auxiliary domain and the target domain. In
addition, we use SVM based on MFCC feature in the
target domain. Then we fuse the decision values obtained
by both of them. In this way, we can evaluate the perfor-
mance of combining homogeneous transfer learning and
the classifier on the heterogeneous feature.

• SVM: the most widely used and robust event detector for
MED [19][10][17][37]. Similarly, we use the χ2 kernel
for it.

• TaylorBoost [28]: a state-of-the-art classifier extended
from AdaBoost.

For SVM, we use LIBSVM, and for A-MKL, MKTL and
TaylorBoost we use the code shared by the authors. During the
training and predicting, we combine SIFT, CSIFT and MFCC
features of the MED10-11 dataset for SVM and TaylorBoost.
SAR, A-MKL and MKTL are knowledge adaptation based
algorithms, which utilize the SIN12 dataset as auxiliary data.
However, they require that the target domain and the auxiliary
domain have the homogeneous feature representation so only
SIFT and CSIFT are used for them. HF-SAR leverages SIN12
for MED with few exemplars on MED10-11 and it is capable
of using SIFT, CSIFT and MFCC together.

All the regularization parameters are tuned from
{0.001, 0.1, 10, 1000}, and the parameter p of HF-SAR
and SAR is tuned from {0.5, 1, 1.5}. We report the best
results for each algorithm.

6.4 MED Results
The detection performance of different algorithms is dis-
played in Figure 3 and Table 1 where all the knowledge
adaptation methods have exploited SIN12 dataset. Note that
LOWER MinNDC and Pmd@TER=12.5 indicate BETTER
performance; HIGHER AP indicates BETTER performance.
The proposed method HF-SAR is consistently competitive.
Zooming into details, we have the following observations:
1) when using MinNDC as metric, HF-SAR gains the best
performance for 17 events; 2) when using Pmd@TER=12.5
as metric, HF-SAR gains the best performance for 15 events;
3) when using AP as metric, HF-SAR is the best method for 14
events; 4) HF-SAR obtains the top performance for the average
accuracy over all the 18 events; 5) SAR&SVM is generally the
second competitive algorithm. This indicates that incorporat-
ing the additional information contained in the heterogenous

feature into a robust knowledge adaptation algorithm based
on homogeneous features is beneficial. However, it is unclear
which algorithms should be combined together for the best
performance as they may work with different mechanisms;
6) SAR, A-MKL and SVM have varying degrees of success
on some events. However, they are generally worse than HF-
SAR and SAR&SVM. It means knowledge adaptation based
on homogeneous features loses useful information from the
heterogenous feature, and SVM utilizes all the features but it
cannot leverage knowledge from other sources. In contrast,
the newly proposed method HF-SAR transfers knowledge
between homogeneous features while simultaneously exploits
the heterogeneous feature to get boosted performance.

Next we show the detection results by exploiting UCF50
dataset. As HF-SAR has already shown its advantage over
other knowledge adaptation algorithms and this experiment
aims to show that we can even adapt useful action knowledge
for MED with few exemplars, we only compare HF-SAR to
the best baseline classifier SVM. This time, we combine STIP
and MFCC features of the MED10-11 dataset for SVM. The
detailed results are illustrated in Table 2. As can be seen,
HF-SAR beats SVM on 17, 17, 15 events and the average
performance over all the 18 events in terms of MinNDC,
Pmd@TER=12.5, AP respectively. Moreover, for those events
on which HF-SAR is better, we can observe noticeable per-
formance improvement. It is also worth mentioning that the
performance of SVM is lower than its performance in the
previous experiment because different and fewer features are
used.

6.5 Influence of Knowledge Adaptation

It is interesting to understand how the knowledge adaptation
from the auxiliary concept-based videos impacts the MED
with few exemplars. We base our study on two scenarios: First,
we set α in Eq. (5) to 0 so there is no knowledge adaptation;
Second, since in our objective function the item α ‖W‖p2,p
controls the effect of the knowledge adaptation, we investigate
the influence by varying the parameter α and p after fixing β
at its optimal values.

For the first scenario, we show the performance comparison
between using auxiliary data and not using it in Figure 4.
MinNDC is used as metric and the results on the first 10
events are displayed due to the space limit. It can be seen
that using auxiliary data has clear advantage over not using it,
which demonstrates that through proper design, the auxiliary
knowledge contributes notably to the MED with few exem-
plars.

For the second scenario, we similarly use MinNDC as
metric to show the performance variation. Due to the space
limit, we only show the results on the first 6 events in Figure 5.
We observe from Figure 5 that the best results are generally
obtained when p = 0.5 or p = 1. For the other parameter α
there is no obvious rule, which is presumably data-dependent.
Lower p indicates that the model is more sparse, thereby
eliminating more redundancy and noise.
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Figure 3. Performance comparison on MED with few exemplars.
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Table 1
Average detection accuracy of different methods. Better results are highlighted in bold.

Evaluation Metric SAR A-MKL MKTL SAR&SVM SVM TaylorBoost HF-SAR
MinNDC

Pmd@12.5
AP

0.860
0.601
0.162

0.881
0.617
0.144

0.873
0.610
0.153

0.841
0.572
0.183

0.850
0.575
0.181

0.902
0.677
0.080

0.817
0.549
0.201

Table 2
Detection results by exploiting UCF50 dataset in

comparison with SVM.

Event Metric SVM HF-SAR Relative
Improvement

E01
MinNDC

Pmd@TER=12.5
AP

0.884
0.546
0.247

0.922
0.569
0.206

N/A
N/A
N/A

E02
MinNDC

Pmd@TER=12.5
AP

1.000
0.938
0.037

0.999
0.877
0.046

0.1%
7.0%

24.3%

E03
MinNDC

Pmd@TER=12.5
AP

1.000
0.928
0.035

0.990
0.815
0.061

1.0%
13.9%
74.3%

E04
MinNDC

Pmd@TER=12.5
AP

0.936
0.870
0.044

0.912
0.770
0.132

2.6%
13.0%
200%

E05
MinNDC

Pmd@TER=12.5
AP

0.975
0.914
0.061

0.946
0.817
0.097

3.1%
11.9%
59.0%

E06
MinNDC

Pmd@TER=12.5
AP

0.992
0.917
0.049

0.973
0.797
0.077

2.0%
15.1%
57.1%

E07
MinNDC

Pmd@TER=12.5
AP

1.000
0.944
0.033

0.992
0.881
0.032

0.8%
7.2%
N/A

E08
MinNDC

Pmd@TER=12.5
AP

0.945
0.862
0.094

0.833
0.676
0.173

13.4%
27.5%
84.0%

E09
MinNDC

Pmd@TER=12.5
AP

0.970
0.804
0.072

0.928
0.703
0.093

4.5%
14.4%
29.2%

E10
MinNDC

Pmd@TER=12.5
AP

0.997
0.933
0.035

0.991
0.862
0.043

0.6%
8.2%

22.9%

E11
MinNDC

Pmd@TER=12.5
AP

0.995
0.904
0.037

0.982
0.835
0.041

1.3%
8.3%

10.8%

E12
MinNDC

Pmd@TER=12.5
AP

0.975
0.889
0.052

0.940
0.770
0.077

9.4%
4.5%

13.7%

E13
MinNDC

Pmd@TER=12.5
AP

0.970
0.711
0.094

0.957
0.689
0.078

3.7%
3.2%
N/A

E14
MinNDC

Pmd@TER=12.5
AP

0.919
0.840
0.083

0.819
0.687
0.191

12.2%
22.3%
130.1%

E15
MinNDC

Pmd@TER=12.5
AP

0.964
0.880
0.059

0.945
0.794
0.066

2.0%
10.8%
11.9%

E16
MinNDC

Pmd@TER=12.5
AP

0.975
0.864
0.045

0.937
0.796
0.053

4.1%
8.5%

17.8%

E17
MinNDC

Pmd@TER=12.5
AP

0.893
0.766
0.125

0.736
0.585
0.253

21.3%
30.9%
102.4%

E18
MinNDC

Pmd@TER=12.5
AP

0.982
0.922
0.036

0.967
0.836
0.041

1.6%
10.3%
13.9%

Average
MinNDC

Pmd@TER=12.5
AP

0.965
0.857
0.069

0.932
0.764
0.098

3.5%
12.2%
42.0%

6.6 Using Fewer Concepts
In this experiment, we test the performance variance of
the proposed algorithm by varying the number of auxiliary
concepts as 5, 10, 20, 30, 50 and 65. Figure 6 displays
the corresponding results on the first 10 events in terms
of Minimum NDC. We have the following observations: 1)
Generally, the performance of using only 5 auxiliary concepts
is noticeably worse than using all the 65 auxiliary concepts;
2) From using 5 auxiliary concepts to using 30 auxiliary con-
cepts, the performance is gradually improved for most events;
3) From using 30 auxiliary concepts to using 65 auxiliary
concepts, the performance does not vary much, which suggests
that the performance saturates at the point when 30 auxiliary
concepts are used. Our observation indicates that when the
number of auxiliary concepts is very small, which also means
few auxiliary videos, the performance gain is limited. To get
more performance boost, we may want to incorporate more
auxiliary videos with more concepts. However, how to decide
the optimal number of auxiliary concepts is still an open
problem and is out of the scope of this paper.

6.7 Do Negative Examples Help?
We further conduct an experiment to evaluate whether nega-
tive examples contribute much to the detection accuracy by
reducing the number of negative examples to 500 and 100.
Figure 7 shows the performance comparison between using
100, 500 and 1000 negative examples on the first 10 events.
Similarly, Minimum NDC is chosen as the evaluation metric.

From Figure 7 we have the following observations: 1) Using
1000 or 500 negative examples is better than using only 100
negative examples. 2) The performance difference between
using 1000 and using 500 negative examples is quite small.
This experiment indicates that negative examples are helpful
in improving the detection accuracy in some degree. For
example, when 500 or 1000 negative examples are used, the
performance is generally better than using 100 negative exam-
ples only. However, as the number of negative examples used
increases, the performance gain does not increase accordingly,
e.g., from using 500 negative examples to using 1000 negative
examples. How many negative examples would bring in the
most performance gain is still an open problem, which is out of
the scope of this paper. However, since negative examples are
quite easy to obtain in the real world, it is natural to leverage
such cheap resources for boosted detection accuracy.

6.8 Parameter Sensitivity Study
There are two regularization parameters, denoted as α and
β in Eq. (5). To learn how they affect the performance, we
conduct an experiment on the parameter sensitivity. Due to
the space limit, we still only show the results on the first 6
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Figure 4. Performance comparison between using auxiliary knowledge and not using auxiliary knowledge.
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Figure 5. The detection performance variance w.r.t. α and p.
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Figure 8. The detection performance variance w.r.t. α and β.

events in Figure 8. From Figure 8 we notice that for some
events, e.g., Birthday party, the performance is sensitive to
the two parameters. For some other events like Feeding an
animal the performance does not change much. However, we
can generally obtain good performance for these events when
α and β are comparable. For example, good performance is
obtained when α = β = 0.001 for Attempting a board trick,
Feeding an animal, Landing a fish and Wedding ceremony, and
α = β = 10 for Birthday party. A similar pattern is observed
for other events as well.

6.9 Convergence Study

We solve our objective function using an alternating approach.
In practice, how fast our algorithm converges is crucial for
the whole computational efficiency. Hence, we conduct an
experiment to show the convergence curve of our algorithm.
As we have similar results on all the 18 events, we only present
the convergence curve on the first event. All the parameters
involved are fixed at 1.

1 2 3 4 5 6 7 8 9 10
3215

3220

3225

3230

3235

3240

Iteration Number

O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

 

 

HF−SAR

Figure 9. Convergence curve of the objective function
value in Eq. (5) using Algorithm 1 for the event Attempting
a board trick. The figure shows that the objective func-
tion value monotonically decreases until convergence by
applying the proposed algorithm.

Figure 9 shows the convergence curve. It can be seen that
the objective function value converges within 10 iterations.
The convergence experiment demonstrates the efficiency of
our alternating algorithm.

7 COMPLEMENTARY EXPERIMENT ON MULTI-
CLASS CLASSIFICATION
Our proposed algorithm can be easily extended to other
applications such as multi-class classification. In this section,
we conduct a complementary experiment on image annotation
to show its effectiveness for multi-class classification.

We use the Animals with Attributes (AwA) dataset [42]
for evaluation. The reason is that the dataset has both ani-
mal categories and the associated attributes. Similarly to our
assumption, different animal categories may share common
attributes. Thus, we use the 10 animal categories specified
in [42] as our target annotation categories and the rest as our
auxiliary data. Note that for the auxiliary data we use their
attribute labels since these attributes are the shared components
with the target animal categories. The 10 target categories are
persian cat, hippopotamus, leopard, humpback whale, seal,
chimpanzee, rat, giant panda, pig and raccoon. For the 10
classes to be annotated, we randomly select 10 samples per
category to form the training set and the remaining data
of these categories are our testing data. We use the SIFT
feature as the homogeneous feature and the Locality Similarity
Histogram (LSH) feature as the heterogeneous feature for
image representation. In other words, the images of the 10
target categories are represented by SIFT and LSH while those
of the auxiliary categories are represented by SIFT only.

The annotation comparison between different algorithms
is displayed in Table 3. We can see that HF-SAR is much
better than other comparison algorithms. SVM is second best
algorithm. Especially, other transfer learning algorithms have
weaker performance as only one feature is exploited.

The reported accuracy in [42] is 40.5%. But we point out
that in [42] six features have been used whereas we only use
two features. We did not use all the features used in [42]
because we were concerned with the computational efficiency,
e.g., the comparison algorithms A-MKL and TaylorBoost are
computationally expensive. On the other hand, to be consistent
with our previous experiment on MED with few exemplars,
we select 10 samples from each target category to form the
training set, making our training set also different from that
in [42]. Thus, we cannot directly compare the annotation
accuracy of our method and that of [42].

This complementary experiment has demonstrated that our
method also has the potential for other applications.

8 CONCLUSION
In this paper, we have introduced the research exploration of
MED with few exemplars. This is an important research issue
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Table 3
Performance comparison of different methods on image annotation. The best result is highlighted in bold.

Evaluation Metric SAR A-MKL MKTL SAR&SVM SVM TaylorBoost HF-SAR
Accuracy 0.257 0.248 0.232 0.265 0.310 0.264 0.373

as it focuses on more generic, complicated and meaningful
events that reflect our daily activities. In addition, the situation
we are faced in the real world requires that only few positive
examples are used. To achieve good performance, we have
proposed to borrow strength from available concepts-based
videos for MED with few exemplars. A notable difference
between our proposed algorithm and most existing knowledge
adaptation algorithms is that it is built upon heterogeneous
features, i.e., the features of the source and the target are
partially different, but overlapping. Specifically, we first mine
the shared irrelevance and noise between the auxiliary videos
and the target videos based on the homogeneous features. Then
a sophisticated method is exerted to alleviate the negative
impact of the irrelevance and noise to optimize the event
detector. Meanwhile, another event detector of MED videos is
trained based on the heterogeneous feature. Then we integrate
the two event detectors for optimization, after which the
decision values from both are fused for the final prediction.
Extensive experiments using real-world multimedia archives
were conducted with promising results. The results validate
that: 1) it is beneficial to leverage auxiliary knowledge for
MED when we do not have sufficient positive examples; and 2)
the capability of knowledge adaptation based on heterogeneous
features is realistic and advantageous.
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