

Abstract

Higher order spatial features, such as doublets or

triplets have been used to incorporate spatial information
into the bag-of-local-features model. Due to computational
limits, researchers have only been using features up to the
3rd order, i.e., triplets, since the number of features
increases exponentially with the order. We propose an
algorithm for identifying high-order spatial features
efficiently. The algorithm directly evaluates the inner
product of the feature vectors from two images to be
compared, identifying all high-order features auto-
matically. The algorithm hence serves as a kernel for any
kernel-based learning algorithms. The algorithm is based
on the idea that if a high-order spatial feature co-occurs in
both images, the occurrence of the feature in one image
would be a translation from the occurrence of the same
feature in the other image. This enables us to compute the
kernel in time that is linear to the number of local features
in an image (same as the bag of local features approach),
regardless of the order. Therefore, our algorithm does not
limit the upper bound of the order as in previous work. The
experiment results on the object categorization task show
that high order features can be calculated efficiently and
provide significant improvement in object categorization
performance.

1. Introduction
The visual problems of generic object categorization and

clustering are challenging. The model solving these
problems needs to have enough discriminative power in
order to differentiate objects from different categories.
Besides, the computational complexity in terms of speed
and storage are always important issues to address when we
try to increase the effectiveness of the model. In this paper,
we will propose a novel kernel algorithm which gains more
discrimination with little computational cost.

Most recent works are based on the local features of the
image. The “bag of features” representation [3][20] uses
only the local appearance information from the image, and
discards completely the geometry information. Therefore,
this representation of the image is advantageous in
computational complexity and invariance within category.

However, due to the fact that it does not model the spatial
layout of the local features and therefore the shape of the
objects, it loses some discriminative power, since most
objects are either strictly or loosely structured.

Many works have been done to incorporate geometric
information to the bag-of-features model, which will
usually result in more computational complexity,
exponential or polynomial to the number of features.
Constellation models [16][4] represent the objects with a
fixed number of parts which are composed with the local
features, and capture the geometry information by
modeling the spatial layout of the parts, usually with a joint
Gaussian. This type of models is computational expensive
in that it requires searching an exponentially large number
of hypothesis which give different part assignments to the
features. The second type is star shaped models [19][14],
which exploits geometry information by modeling the
locations of the local features relative to the center of the
object. These models can be easily trained, while usually
require searching for an optimal object center in the image
during testing. Both constellation models and star shaped
models require the training images with bounding boxes.

In this work, we focus on the third type of technique that
uses the mutual geometric relationship between local

Efficient Kernels for Identifying Unbounded-Order Spatial Features

Yimeng Zhang

Carnegie Mellon University
yimengz@andrew.cmu.edu

Tsuhan Chen
Cornell University

tsuhan@ece.cornell.edu

Figure 1: Illustration of the basic idea. Each circle in the top two
images corresponds to a visual word (local feature). Different
colors represent different words. Two images are transformed to
the offset space (bottom image) in order to find the co-occurrence
of high order features. Each cross in the offset space is created by
a pair of same words (same color) form the two input images. The
main idea is that when points have the same location in the
offset space, we have a particular co-occurring order feature.

features [18][11][10]. Higher order features are constructed
with a specific number of local features together with their
spatial layout. Following the definition from [11], we call
the local features 1st order features, and features with two,
three, local features, 2nd, 3rd and order features. One
advantage with this type of models comparing to the
previous two types is translation invariance, and therefore
the models can handle supervised learning with training
examples only labeled with their categories. However, as
the order increases, the number of features will
immediately reach an intractable amount. Therefore, most
previous work end at 2nd order features [18], or at most until
3rd order [11][10]. Moreover, in order to reduce the
computation, higher order features are usually created with
only local features lying within a certain distance, which
makes the models unable to capture long range interactions
in the image.

We propose an efficient algorithm which is capable of
handling spatial high order features. The main idea is
illustrated in Figure 1. In order to find the co-occurring high
order spatial features between two images, we transform
the local features to the offset space. A point is created in
the offset space by two corresponding local features
between the two images. With the visual word concept,
corresponding local features are the features described by
the same words. The location in the offset space is the
relative location difference between the two words. After
transforming to the offset space, the word pairs of a
co-occurring high order feature will be at the same location
in order to ensure the same spatial layout. After the
transformation, it would be quite easy to find co-occurring
high order features, which is intractable in the original
image space.

We calculate the inner product of the feature vectors of
 order features (can be any large number) of two

images, which can be used as a kernel function for any
kernel based learning algorithms, such as SVM, or Kernel
PCA. In standard procedure[11][18], the system first
transforms the input images into feature vectors, and then
calculates the distance among the feature vectors, both of
which are computationally expensive with a large number
of features, and prevent us from using higher order features.
Borrowing the idea of the kernel methods, we calculate the
inner product directly without first extracting the features
for the two images. We show that given the method for
finding co-occurring high order features, the inner product
can be calculated in linear time to the number local features
in an image, regardless of the order or the distance
between the local features. The computation efficiency
makes us capable of handling long range interaction and
any large order features.

Recent years, there have been works [8][7][9] that use
link analysis techniques to implicitly model the high order
features. These works first link among images by
comparing the pair-wise features between images, and then

they use link analysis to explore the links in order to find
large connected clusters, which is similar to the concept of
high order features. The advantage of our work comparing
to their works is that we can compute high order features
faster than theirs. They first compare pair-wise features, it
is similar as a direct computation of 2nd order features, and
for the link analysis, and usually an Eigen analysis needs to
be done on a large matrix. Moreover, our method can be
easily used as a kernel function, and thus we can take
advantage of some powerful learning algorithms.

There have been many other kernels proposed for object
categorization [5][1][10]. However, these kernels are either
1) not designed to capture spatial information [5], 2) not
translation invariant [1] since they use absolute coordinates
to capture the spatial information, or 3) computationally
expensive [10]. Besides, none of these kernels are designed
to calculate higher order (larger than 2) features. Our kernel
addresses all these issues. High order kernels have been
designed for many other applications, such as the string
kernel [12] for document classification;

2. Kernel with High Order Features
In this section, we describe the kernel of two images with

high order features. A kernel function is a function that
calculates the inner production between two examples after
mapping to the feature space. For any mapping : ,
from the input space , to the feature space , a kernel
function is as follows.

 , , , , (1)
The idea is to compute the inner product by implicitly
mapping the data to the high dimensional feature space.

We first describe the image representation in section 2.1,
and then define the feature space and the mapping in
2.2, and propose the algorithm that calculates the kernel in
section 2.3. Moreover, we describe the solutions to some
practical issues in section 2.4 and 2.5, and finally we
discuss about the computation complexity of the algorithm
in section 2.6.

2.1. Image Representation

An image is represented as a collection of visual words
 [3], and each word is associated with their location on

the image. , , , , … , . The
locations can be detected with interest point and region
detectors, and the words are defined by clustering the local
features extracted at the interest regions.

2.2. Kernel with High Order Spatial Features

We define the features with one word 1st order features,
and features with two, three, n words, 2nd, 3rd and nth order
features. Different relative spatial distribution among the n
visual words yields different n order features. The value of
each feature in the image is the number of occurrences of

that feature in the image.
Specifically, let Σ be the visual word vocabulary. An

order feature would be words from Σ with a specific
relative spatial layout. In this section, we only consider
translation variance about the features, and ignore any
rotation, or scaling effect of the features, so the same
feature must have the same pixel-wise spatial layout. We
will deal with the quantization, scaling and rotation in
section 2.3 and 2.4. The length of the feature vector would
be exponential to , approximately |Σ| (is the
number of possible special layout for words). The
coordinate of the order feature vector of
an image is defined as the number of occurrences of the
feature in the image.

, ,

, 2

To remove the bias introduced by the number of visual
words of an image, we normalize the feature vector as

. The kernel becomes as follows

, ,
,

, ,

Our final kernel is a weighted sum of all ’s.

, , 3

Where the weights , is between 0 and 1. As
gets closer to zero, we put more weight to the higher order
features.

Since we define the kernel as an inner product in the
feature space, it satisfies the Mercer’s condition (symmetric
and positive semi-definite) from its definition.

A direct computation of , would require
|Σ| time and space. To make the computation

efficient, first, we rewrite the kernel function in equation (2)
as follows.

, ,

1 1
,,

 1
,,

 4

Here, , means that is an instance of
nth order feature present in image . Let

, , , , … , , is a subset of 1, . . ,
with size . , , … , , .

Hence, although the length of the feature vectors of
two images and can be quite large, the inner product of
them is just the sum of the co-occurrence of all order
features. Our goal would be to count the features occurring
in both images.

2.3. Correspondence Transform

It would be quite difficult to find all co-occurring spatial
features in the image space, given the large dimension of
the feature space and the large amount of 2D distributed
visual words per image.

The main idea of the algorithm is that if in image ,
and in image are the same order feature, then
must be a constant shift of the same visual words of in
the image space. Thus, we can simplify the task of counting
co-occurrence of order features in two images to
counting the constant shift visual word pairs in the two
images. However doing this directly on the image space
would be still too much.

In order to facilitate this process, we first transform the
feature points in two images to the offset space. The idea is
illustrated in Figure 1. We call this ‘Correspondence
Transform’. First, we pair all the same visual words in the
two images (same color circles in the figure). Note that if
for a word in one image, there are multiple correspondences
in the other image, we create multiple pairs, as the green
and red ring word in Figure 1. A pair can be represented as
, , , where is the visual word of the pair, is the

location of the word in one image, and is the location in
the other image. The number of pairs is in fact the inner
product of the first order feature vector (bag of words).
Then, we calculate the difference of the locations for each
pair ∆ , ∆ . This would become our offset space.

Since is a vector of coordinates of and axies, ∆ is
also a vector.

∆ ∆ , ∆ ,
Thus, the offset space is a 2D space as in the bottom image
of Figure 1. Each pair from the two input images
corresponds to one point on this space. Following the
constant shift idea, if we have a co-occurring order
feature, the word pairs from this feature would fall to the
same location on the offset space in order to ensure the
relative spatial layout. For example, in Figure 1, the
particular 3rd order feature with red, blue, and orange points
co-occurs in the two images, therefore, the word pairs of
them fall to the same location in the offset space. After the
transformation, finding co-occurring high order features
becomes a trivial task.

Now, we calculate the kernel values for all of
different on the offset space. We cluster the pairs fall into
the same location in the offset space. The value of the
order kernel function would be the number of clusters of
pairs with the same offset. Note that when we have a cluster
of pairs with the same offset, it also gives us number
of clusters of pairs with the same offset for any . In
the example of Figure 1, is the number of pairs 8,

1 1 since we have two clusters of size 2, and
1 cluster of size 3, = 1 for the cluster of three pairs in the
same offset, and for all 3, 0 since we do not
have any cluster of size larger than 3. We can easily verify

that this is exactly the same as we calculate the inner
product of the feature vectors directly. We summarize the
algorithm as in Algorithm 1. The kernel will be further
normalized as in stated in section 2.2.

The algorithm does not give any constraint or size limit
to the order , since both the computation time and storage
of it do not depend on . With this algorithm, we are
actually calculating the kernels of all order features (1 to
infinity). Of course due to the size of the dictionary
(codebook) and the images, the value of kernels with large
order features would be 0. But algorithm itself does not
limit the order.

Algorithm 1: Compute Order Kernel for N = 1,2,…,∞
Input: Two images , | , … ,

 , | , … ,
Output: values of , for all , … ,∞
Algorithm:
1. Pair all same words of the two images.
2. For each pair, calculate the relative location difference

between them, and project the points to the offset space
at location ∆ .

3. Cluster the pairs at the same location in the offset space
to create a set of clusters S.

4. For each cluster in , we update the kernel values as
follows: | | , where | | is the size of this
cluster.

2.4. Quantization

Till now, we have been assuming that the same feature
has strictly the same layout. In practice, we need to loosen
this constraint. In this section, we talk about how to code
the geometry constraint of the special high order features.

It is straightforward to encode spatial information to 2nd
order features. [11][18] use a spatial histogram centered at
one of the word, and try to model different spatial
distribution of the other word relative to this word. In [18],
the histogram is only defined with distance, and [11] also
separates the histogram in order to describe ‘above’,
‘below’, ‘to the left’ and ‘to the right’. It would be not easy
to define the spatial histogram this way when it comes to 3rd
or larger order features，since it is unclear how to define the
relative position of one word to the other two words. We
define the spatial layout for the features as follows. First we

quantize the image space with a step size as in Figure 2.
The same visual words that are distributed in the same
relative spatial layout in the quantized image are considered
as the same feature. Therefore, the three words connected
with the filled lines and those with the dotted lines for the
two images in Figure 2 are considered as the same feature.
For distinct visual words, we can calculate the number of
possible relative spatial layouts by fixing one word first and
choose the possible location for the other words. Let be
the quantized width of an image, be the quantized length.
The number of possible relative spatial layout is as follows.

 2w 1 2 1 . (1)
There would be fewer possible layouts when the words in
the feature are not distinct.

For the algorithm, what we only need to do is to replace
the location for each word with the quantized .
Therefore the offset of two pairs will also be the quantized
offset.

2.5. Invariance

Till now, we have only considered translation invariance
of our spatial high order features when calculating the
kernels. We can also make the features (quasi-)scale
invariant by making use of the scales of regions for the
words [11]. To handle the scale invariance, we only need to
make a small modification to our algorithm for the kernel
calculation. Now an image is represented as a collection
of the word-location-scale triples , , .

As described in Figure 3, when we rescale the location
by the ratio of the scales of the words in the two images, a
co-occurrence of the scale invariant feature becomes a
constant shift of the same words from one image to the
other again. Then, we can use the same algorithm to
calculate the kernel functions. Therefore, we use the same
algorithm as described in section 2.3, except at step 2, we
calculate ∆ as / , rather than .

In similar way, it is also possible to make the features
rotation invariant by using the dominant orientation of the
region.

2.6. Computational Time

Let represent the number of features in an image. It

Figure 3: Method to handle scale invariant spatial features.
Different colors represent different visual words. The size of the
circle represents the scale of the word. The scales of the words in
image 2 are twice the scales of the words in image 1.

Figure 2: An example for spatial layout of the features. Different
colors represent different words.

Image1 Image2

takes time to pair the same words in two images and
calculate the offsets of the pairs (step 1 and 2), where is
the number of pairs created. To cluster the pairs with the
same offsets and update the kernel needs time. In the
worst case (only one visual word occurs in each image), we
have pairs. However, in practice we can only form
pairs linear to . Especially with a large codebook size,
the number of pairs we form can be even smaller than .
Moreover, after running one time of the algorithm, we have
already calculated all order kernels. Therefore, in practice
we only need time to calculate the kernels of all
order features, which is the same complexity with
calculating a kernel with bag of words model.

3. Experiments
We evaluate the proposed kernel for object

categorization task. We use several public datasets:
Caltech-101, MSRC dataset [18], and Graz-01 dataset. For
all the datasets, we use the whole images (No bounding box)
for both training and testing, which we believe is an
advantage for our algorithm, since the high order kernels
support partially matching similarities.

3.1. Implementation Issues

For all the datasets, we apply Harris-Laplacian interest
point detector [15] and SIFT detector [13] to each gray
scale image to get the local features. The local features are
further clustered with K means algorithm to obtain the
visual words. We apply the proposed kernels to K nearest
neighbor and Support Vector Machine for the classification
task. For the implementation of SVM, we used the public
library Libsvm [2]. For stableness, we do not consider
scaling and rotation in these experiments.

Due to the large dimension of the feature space, images
will have extremely sparse representations in the feature
space. This also leads to the fact that the kernel based
self-similarity of an image will be much larger than the
similarity between two distinct images. Thus, our kernel
matrix will be nearly diagonal, especially for large order.
This is called diagonal dominance in machine learning, and
is proved to be a problem when the kernel matrix is applied
to learning algorithms such as SVM. Many methods have
been proposed to overcome this problem [6]. We applied

the negative diagonal shift method, which is to subtract a
constant from the diagonal of the kernel matrix. Although it
is possible make the kernel matrix not positive
semi-definite any more, it has shown to gain good
performance in practice.

3.2. Effect of High Order Features

We use six object categories from the Caltech 101 dataset:
{faces, motorbikes, airplanes, rear cars, watches, ketches}.
This dataset has previously been used for unsupervised
object category detection [7], while we use it in a
supervised way. The goal of this experiment is to explore
the change of the classification performance and
computational time as we increase the order of the features.
For all the six categories, there are more than 100 images
per category, and reliable interest point can be detected.
The task is to classify an image to one of the six categories.
For the experiments, we randomly choose 50 images per
category for training and 50 other images for testing. We
repeat this 10 times and present the average results. We set
the dictionary size as 500. We report the results of
classification for two classes (faces and motorbikes), four
classes (faces, motorbikes, airplanes, and rear cars), five
classes (4 classes + watches), and six classes. We first use
the step size 16 for image quantization in the experiments.
For SVM, we use the one-vs-one scheme implemented in
Libsvm for the multi-class classification.

Kernel Matrix
Figure 4 shows the kernel matrix of the training data with

five classes for different order features. As the order
increases, the matrix gets sparser and sparser, thus more
discriminative among different categories. However, the
inner class similarity matrix also gets sparser for some
categories, such as airplane and rear car, with large orders
(7 or 10). This is due to the fact that few co-occurring large
order features are detected for some image pairs in the same
category when the category includes more variance in
object structure, scale, or rotation. Faces and Motorbikes
are two objects with the most consistent structures.

 Individual vs. Cumulative
We show the classification results with K Nearest

Neighbor classifier (3 in Figure 5. We use the

Figure 4: Kernel Matrix of the training data for different Order features. From the left to right are 1st, 2nd, 3rd, 5th, 7th, 10th order kernel
matrices. Training data is arranged in the categories of ‘face’, ‘airplane’, ‘rear car’, ‘motorbike’, and ‘watches’. As the order increases, the
matrix gets sparser and sparser.

normalized kernel as the similarity function for KNN. We
present both the results of individual kernels with only

 order features, and the results of weighted sum of
kernels from 1st to order individual kernels. We use

0.02 for the weighting. We show the performance
until 10th order since most images do not have co-occurring
features whose order are larger than 10. We found that for
both individual and cumulative kernels, we gain significant
improvement from 1st order (bag of words) to 2nd order
features, which proves that modeling geometry information
helps a lot. For the individual case, we get best performance
with 8th order kernel for 2 class classification task, 2nd for 4
class, and 3rd for both 5 and 6 class classification task. The
accuracy dropping for the individual kernels is mainly
because as the order increases, fewer images will have
co-occurring features as we have seen in the kernel matrix
(Figure 4). For the cumulative case, the accuracy generally
keeps increasing as we increase the order (may stop
growing at some order). We found that even if individually
the accuracy drops for the large order kernels, they may still
contribute to the performance when we add them together.
This is not surprising given the fact that higher order
features are more discriminative. We reach best

performance when the maximum order is 10 for 2 class, 5
for 4, 5, and 6 class classification tasks.

Using as Kernel for SVM
We apply the kernel to SVM. Figure 6 shows the results

for the weighted sum of the individual kernels. Generally,
the accuracy with SVM is better than KNN for all the
orders. We can still see the performance increases as we
increase the order. We reach the best performance when the
max order of the features used is around 5.

Quantization Step Size
Figure 7 shows the average classification accuracy when
we use different step sizes to quantize the image. A larger
step size will give more geometry constraint to the features.
The performance is similar when we have fewer classes. As
the number of classes increases, a larger step size gives
better performance, since we designed the experiments as
categories with more variance are added generally.

 1 Order 1 - 2 order 1-10 order
KNN 66.0 4.6 71.3 2.9 73.1 3.0
SVM 78.1 4.3 78.3 2.6 80.4 2.5

Table 1: Average classification accuracy on 9 categories of
MSRC-2 dataset.

Figure 5: Object categorization performance with KNN (k=3). We show the average classification accuracy for classification task with
2, 4, 5, and 6 classes. The x axis is the feature order . The left figure shows the accuracy only using the order kernel. The right
figure shows the accuracy using the weighted sum of the kernels from 1 to .

Figure 6: Object categorization performance
with SVM. We use weighted sum of the
individual kernels

Figure 7: Average classification
accuracies when using different step size
for quantization.

Figure 8: Categorization accuracies with
dictionary size 50. We show the results
for 6 class classification.

 Proposed [9] [17]
Bike 94% 84% 78%
Person 84% 82% 76.5%
Table 2: Equal Error Rate for categorization with Graz 01

dataset (no bounding box is used). We use the combined kernel for
1st to 10th order features.

Dictionary Size
The experiments till now are using a dictionary size 500.

We try to decrease the dictionary size to 50. Figure 8 shows
the classification performance when using KNN and SVM.
In this case, the individual visual words would be quite
meaningless, which results in low accuracies when using
low order features. Especially for KNN, the accuracy is
under 70% when using bag of words model. However, for
both KNN and SVM, as we increase the order of the
features, we got the performance quite close to that when
we use 500 visual words. This shows that even if the local
features are not discriminative itself, by increasing the
orders, we can create discriminative features.

Computational Time
It takes averagely 0.02 second for computing the

proposed kernels between two images with a Matlab
implementation on a 3.4GHz CPU, when we have around
500 words per image. This is the time for computing
kernels with all order features (1st, 2nd to any large order),
since we only need to run the algorithm once to get those
kernels.

3.3. Increasing the Variance

We further perform experiments with the MSRC-2
dataset [18], which has much more variance within the
same category than the Caltech 101 dataset. There are 15
categories, and 30 images per category in this dataset.
Previous work using this dataset for object categorization
removes the background cluster for both training and
testing. However, we evaluate on the whole image. We
choose nine categories out of fifteen: {cow, airplanes, faces,
cars, bikes, books, signs, sheep and chairs}, so that objects
from different categories won’t appear in the same image.
This is a difficult dataset, since in [20], even if with a
bounding box, rather than removing the background cluster
completely, the accuracy drops to 78.5%.
Following the standard set up, we randomly select 15
images per category for training, and the rest for testing.
We repeat this ten times and report the average
performance. Table 1 shows the experiment results with
both SVM and KNN. The results show that high order
features improve the classification accuracy.

We also applied our algorithm to the Graz-01 datasets.
We use the same dataset as in [17], which contains 100
training images and 50 testing images for each category.
The task is to classify an object category (person or bike)
from the background category. We show the Equal Error
Rates in table 2. We compare our results with [9] and [17].

 Table 3. Confusion Matrix of MSRC dataset. There are 15
images per category. This is the result of one run among the ten
runs of the experiment. (Accuracy = 82.2%)

In [17], they mainly focus on local appearance, while [9]
ignore local appearance, and but use pairwise interactions
between simple features to model the shape of the objects.

4. Conclusion
We proposed an efficient algorithm to calculate kernels

with high order spatial features. The algorithm is based on a
transformation from the image space to the offset space,
which makes the task of finding any order co-occurring
features quite easy and fast. The computational complexity
of the kernel is proved to be linear to the number of features
per image, and does not depend on the order of the features.
This enables us to use any large order features. The
experiment results of object categorization task showed
that high order features are useful, and the performance will
usually increase as we increase the feature order. The
improvement is especially obvious when the local features
are not discriminative enough

We believe that there are still a lot of improvement we
can do for this approach. First, although we showed the
possible solution for scale and rotation invariance, we did
not use them in the experiments. It still needs to be explored
for the robustness when we try to deal with scaling and
rotation with the algorithm. Second, currently we are doing
quantization on the image space in order to loosen the
geometry constraint. It can be beneficial to do the
quantization directly on the offset space. Finally, although
we showed that the kernel has the same computational
complexity with bag of words model, it would be
interesting to explore how to use it efficiently in a large
dataset, where bag of words can take the advantage of their
vector representation.

Acknowledgement
The work is supported in part by Industrial Technology

Research Institute and Chunghwa Telecomm.

References
[1] A. Bosch, A. Zisserman, and X. Munoz. Representing shape

with a spatial pyramid kernel. In CIVR, 2007.

True
Label cow airplane face car bike book sign sheep chair
cow 12 0 0 0 0 0 0 1 2

airplane 0 14 0 1 0 0 0 0 0
face 0 0 12 2 0 0 0 0 1
car 0 0 1 12 0 0 0 0 2
bike 0 0 0 0 15 0 0 0 0
book 0 0 1 0 0 12 0 0 2
sign 1 0 2 0 1 1 9 0 1
sheep 1 0 0 0 0 0 0 13 1
chair 0 0 1 0 1 0 1 0 12

Inferred label

[2] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support
vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[3] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray.
Visual categorization with bags of keypoints. In ECCV,
2004.

[4] R. Fergus, P. Perona, and A. Zisserman. Object class
recognition by unsupervised scale-invariant learning. In
CVPR, 2003.

[5] K. Grauman and T. Darrell. The pyramid match kernel:
discriminative classification with sets of image features. In
ICCV, 2005.

[6] D. Greene and P. Cunningham. Practical solutions to the
problem of diagonal dominance in kernel document
clustering. In ICML, 2006.

[7] G. Kim, C. Faloutsos, and M. Hebert. Unsupervised
modeling and recognition of object categories with
combination of visual contents and geometric similarity links.
In ACM International Conference on Multimedia
Information Retrieval (ACM MIR), October 2008.

[8] M. Leordeanu and M. Hebert. A spectral technique for
correspondence problems using pairwise constraints. In
ICCV, 2005.

[9] M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local
appearance: Category recognition from pairwise interactions
of simple features. In CVPR, 2007.

[10] H. Ling and S. Soatto. Proximity distribution kernels for
geometric context in category recognition. In ICCV, 2007.

[11] D. Liu, G. Hua, P. Viola, and T. Chen. Integrated feature
selection and higher-order spatial feature extraction for
object categorization. In CVPR, 2008.

[12] H. Lodhi, C. Saunders, N. Cristianini, C. Watkins, and B.
Scholkopf. Text classification using string kernels. Journal
of Machine Learning Research, 2:563–569, 2002.

[13] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60:91–110, 2004.

[14] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object
class detection with a generative model. In CVPR, 2006.

[15] K. Mikolajczyk and C. Schmid. Int. J. Comput. Vision,
(1):63–86, October.

[16] J. Niebles and L. Fei-Fei. A hierarchical model of shape and
appearance for human action classification. In CVPR, 2007.

[17] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic
object recognition with boosting. In PALM, 2006.

[18] S. Savarese, J.Winn, and A. Criminisi. Discriminative object
class models of appearance and shape by correlatons. In
CVPR, 2006.

[19] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S.
Willsky. Learning hierarchical models of scenes, objects,
and parts. In ICCV, 2005.

[20] J. Winn, A. Criminisi, and T. Minka. Object categorization
by learned universal visual dictionary. In ICCV, 2005.

Figure 9: Example High Order features found for two images. For each pair of images, we show the features of the largest 4 orders between
them. Different color represents different co-occurring features. For the first three rows, the two images are from the same category. For the
last row, images are from different categories. The results show that we can find larger order features for images from the same category.

