
 

 

 
Abstract 

 
Higher order spatial features, such as doublets or 

triplets have been used to incorporate spatial information 
into the bag-of-local-features model. Due to computational 
limits, researchers have only been using features up to the 
3rd order, i.e., triplets, since the number of features 
increases exponentially with the order. We propose an 
algorithm for identifying high-order spatial features 
efficiently. The algorithm directly evaluates the inner 
product of the feature vectors from two images to be 
compared, identifying all high-order features auto- 
matically.  The algorithm hence serves as a kernel for any 
kernel-based learning algorithms.  The algorithm is based 
on the idea that if a high-order spatial feature co-occurs in 
both images, the occurrence of the feature in one image 
would be a translation from the occurrence of the same 
feature in the other image. This enables us to compute the 
kernel in time that is linear to the number of local features 
in an image (same as the bag of local features approach), 
regardless of the order. Therefore, our algorithm does not 
limit the upper bound of the order as in previous work. The 
experiment results on the object categorization task show 
that high order features can be calculated efficiently and 
provide significant improvement in object categorization 
performance. 

1. Introduction 
The visual problems of generic object categorization and 

clustering are challenging. The model solving these 
problems needs to have enough discriminative power in 
order to differentiate objects from different categories. 
Besides, the computational complexity in terms of speed 
and storage are always important issues to address when we 
try to increase the effectiveness of the model. In this paper, 
we will propose a novel kernel algorithm which gains more 
discrimination with little computational cost. 

Most recent works are based on the local features of the 
image. The “bag of features” representation [3][20] uses 
only the local appearance information from the image, and 
discards completely the geometry information. Therefore, 
this representation of the image is advantageous in 
computational complexity and invariance within category. 

However, due to the fact that it does not model the spatial 
layout of the local features and therefore the shape of the 
objects, it loses some discriminative power, since most 
objects are either strictly or loosely structured.  

Many works have been done to incorporate geometric 
information to the bag-of-features model, which will 
usually result in more computational complexity, 
exponential or polynomial to the number of features. 
Constellation models [16][4] represent the objects with a 
fixed number of parts which are composed with the local 
features, and capture the geometry information by 
modeling the spatial layout of the parts, usually with a joint 
Gaussian. This type of models is computational expensive 
in that it requires searching an exponentially large number 
of hypothesis which give different part assignments to the 
features. The second type is star shaped models [19][14], 
which exploits geometry information by modeling the 
locations of the local features relative to the center of the 
object. These models can be easily trained, while usually 
require searching for an optimal object center in the image 
during testing. Both constellation models and star shaped 
models require the training images with bounding boxes.  

In this work, we focus on the third type of technique that 
uses the mutual geometric relationship between local 
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Figure 1: Illustration of the basic idea. Each circle in the top two
images corresponds to a visual word (local feature). Different
colors represent different words. Two images are transformed to
the offset space (bottom image) in order to find the co-occurrence
of high order features.  Each cross in the offset space is created by
a pair of same words (same color) form the two input images. The
main idea is that when  points have the same location in the
offset space, we have a particular co-occurring  order feature.



 

 

features [18][11][10]. Higher order features are constructed 
with a specific number of local features together with their 
spatial layout. Following the definition from [11], we call 
the local features 1st order features, and features with two, 
three,  local features, 2nd, 3rd and  order features. One 
advantage with this type of models comparing to the 
previous two types is translation invariance, and therefore 
the models can handle supervised learning with training 
examples only labeled with their categories.  However, as 
the order  increases, the number of features will 
immediately reach an intractable amount. Therefore, most 
previous work end at 2nd order features [18], or at most until 
3rd order [11][10]. Moreover, in order to reduce the 
computation, higher order features are usually created with 
only local features lying within a certain distance, which 
makes the models unable to capture long range interactions 
in the image.  

We propose an efficient algorithm which is capable of 
handling spatial high order features. The main idea is 
illustrated in Figure 1. In order to find the co-occurring high 
order spatial features between two images, we transform 
the local features to the offset space. A point is created in 
the offset space by two corresponding local features 
between the two images. With the visual word concept, 
corresponding local features are the features described by 
the same words. The location in the offset space is the 
relative location difference between the two words. After 
transforming to the offset space, the word pairs of a 
co-occurring high order feature will be at the same location 
in order to ensure the same spatial layout. After the 
transformation, it would be quite easy to find co-occurring 
high order features, which is intractable in the original 
image space.  

We calculate the inner product of the feature vectors of 
 order features (  can be any large number) of two 

images, which can be used as a kernel function for any 
kernel based learning algorithms, such as SVM, or Kernel 
PCA. In standard procedure[11][18], the system first 
transforms the input images into feature vectors, and then 
calculates the distance among the feature vectors, both of 
which are computationally expensive with a large number 
of features, and prevent us from using higher order features. 
Borrowing the idea of the kernel methods, we calculate the 
inner product directly without first extracting the features 
for the two images.  We show that given the method for 
finding co-occurring high order features, the inner product 
can be calculated in linear time to the number local features 
in an image, regardless of the order  or the distance 
between the local features. The computation efficiency 
makes us capable of handling long range interaction and 
any large order features.  

Recent years, there have been works [8][7][9] that use 
link analysis techniques to implicitly model the high order 
features. These works first link among images by 
comparing the pair-wise features between images, and then 

they use link analysis to explore the links in order to find 
large connected clusters, which is similar to the concept of 
high order features. The advantage of our work comparing 
to their works is that we can compute high order features 
faster than theirs. They first compare pair-wise features, it 
is similar as a direct computation of 2nd order features, and 
for the link analysis, and usually an Eigen analysis needs to 
be done on a large matrix. Moreover, our method can be 
easily used as a kernel function, and thus we can take 
advantage of some powerful learning algorithms. 

There have been many other kernels proposed for object 
categorization [5][1][10]. However, these kernels are either 
1) not designed to capture spatial information [5], 2) not 
translation invariant [1] since they use absolute coordinates 
to capture the spatial information, or 3) computationally 
expensive [10]. Besides, none of these kernels are designed 
to calculate higher order (larger than 2) features. Our kernel 
addresses all these issues. High order kernels have been 
designed for many other applications, such as the string 
kernel [12] for document classification; 

2. Kernel with High Order Features 
In this section, we describe the kernel of two images with 

high order features. A kernel function is a function that 
calculates the inner production between two examples after 
mapping to the feature space. For any mapping : , 
from the input space , to the feature space , a kernel 
function is as follows. 

 , , , ,                    (1) 
The idea is to compute the inner product by implicitly 
mapping the data to the high dimensional feature space. 

We first describe the image representation in section 2.1, 
and then define the feature space  and the mapping  in 
2.2, and propose the algorithm that calculates the kernel in 
section 2.3. Moreover, we describe the solutions to some 
practical issues in section 2.4 and 2.5, and finally we 
discuss about the computation complexity of the algorithm 
in section 2.6.  

2.1. Image Representation 

An image  is represented as a collection of visual words 
 [3], and each word is associated with their location  on 

the image. , , , , … , . The 
locations can be detected with interest point and region 
detectors, and the words are defined by clustering the local 
features extracted at the interest regions. 

2.2. Kernel with High Order Spatial Features 

We define the features with one word 1st order features, 
and features with two, three, n words, 2nd, 3rd and nth order 
features. Different relative spatial distribution among the n 
visual words yields different n order features. The value of 
each feature in the image is the number of occurrences of 



 

 

that feature in the image.  
Specifically, let Σ be the visual word vocabulary. An  

order feature  would be   words from Σ with a specific 
relative spatial layout. In this section, we only consider 
translation variance about the features, and ignore any 
rotation, or scaling effect of the features, so the same 
feature must have the same pixel-wise spatial layout. We 
will deal with the quantization, scaling and rotation in 
section 2.3 and 2.4. The length of the feature vector would 
be exponential to , approximately |Σ| (    is the 
number of possible special layout for  words). The  
coordinate  of the  order feature vector  of 
an image  is defined as the number of occurrences of the 
feature in the image.   

, ,

,       2  

To remove the bias introduced by the number of visual 
words of an image, we normalize the feature vector as 

. The kernel becomes as follows  

,   ,
,

, ,  
  

Our final kernel is a weighted sum of all  ’s.  

, ,                                 3  

Where the weights ,  is between 0 and 1. As  
gets closer to zero, we put more weight to the higher order 
features. 

Since we define the kernel as an inner product in the 
feature space, it satisfies the Mercer’s condition (symmetric 
and positive semi-definite) from its definition. 

A direct computation of ,  would require 
|Σ|  time and space. To make the computation 

efficient, first, we rewrite the kernel function in equation (2) 
as follows. 

, ,  
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Here, ,  means that  is an instance of 
nth order feature present in image . Let 

, , , , … , ,  is a subset of  1, . . ,  
with size .  , , … , , . 

Hence, although the length of the feature vectors   of 
two images  and  can be quite large, the inner product of 
them is just the sum of the co-occurrence of all   order 
features. Our goal would be to count the features occurring 
in both images.  

2.3. Correspondence Transform 

It would be quite difficult to find all co-occurring spatial 
features in the image space, given the large dimension of 
the feature space and the large amount of 2D distributed 
visual words per image.  

The main idea of the algorithm is that if  in image , 
and  in image  are the same  order feature, then  
must be a constant shift of the same visual words of  in 
the image space. Thus, we can simplify the task of counting 
co-occurrence of  order features in two images to 
counting the constant shift   visual word pairs in the two 
images. However doing this directly on the image space 
would be still too much. 

In order to facilitate this process, we first transform the 
feature points in two images to the offset space. The idea is 
illustrated in Figure 1. We call this ‘Correspondence 
Transform’. First, we pair all the same visual words in the 
two images (same color circles in the figure). Note that if 
for a word in one image, there are multiple correspondences 
in the other image, we create multiple pairs, as the green 
and red ring word in Figure 1. A pair can be represented as 
, , , where   is the visual word of the pair,  is the 

location of the word in one image, and  is the location in 
the other image. The number of pairs is in fact the inner 
product of the first order feature vector (bag of words). 
Then, we calculate the difference of the locations for each 
pair ∆ , ∆ .  This would become our offset space.  

Since  is a vector of coordinates of  and  axies, ∆  is 
also a vector. 

∆ ∆ , ∆ ,  
Thus, the offset space is a 2D space as in the bottom image 
of Figure 1. Each pair from the two input images 
corresponds to one point on this space. Following the 
constant shift idea, if we have a co-occurring  order 
feature, the word pairs from this feature would fall to the 
same location on the offset space in order to ensure the 
relative spatial layout. For example, in Figure 1, the 
particular 3rd order feature with red, blue, and orange points 
co-occurs in the two images, therefore, the word pairs of 
them fall to the same location in the offset space. After the 
transformation, finding co-occurring high order features 
becomes a trivial task.  

Now, we calculate the kernel values for all  of 
different  on the offset space. We cluster the pairs fall into 
the same location in the offset space. The value of the   
order kernel function would be the number of clusters of  
pairs with the same offset. Note that when we have a cluster 
of  pairs with the same offset, it also gives us  number 
of clusters of  pairs with the same offset for any . In 
the example of Figure 1,  is the number of pairs 8, 

1 1  since we have two clusters of size 2, and 
1 cluster of size 3,   = 1 for the cluster of three pairs in the 
same offset, and for all 3, 0 since we do not 
have any cluster of size larger than 3. We can easily verify 



 

 

that this is exactly the same as we calculate the inner 
product of the feature vectors directly. We summarize the 
algorithm as in Algorithm 1. The kernel will be further 
normalized as in stated in section 2.2. 

The algorithm does not give any constraint or size limit 
to the order , since both the computation time and storage 
of it do not depend on . With this algorithm, we are 
actually calculating the kernels of all order features (1 to 
infinity).  Of course due to the size of the dictionary 
(codebook) and the images, the value of kernels with large 
order features would be 0. But algorithm itself does not 
limit the order. 

Algorithm 1: Compute  Order Kernel for N = 1,2,…,∞
Input: Two images , | , … , 

 , | , … ,  
Output: values of ,  for all , … ,∞ 
Algorithm: 
1. Pair all same words of the two images. 
2. For each pair, calculate the relative location difference 

between them, and project the points to the offset space 
at location ∆ . 

3. Cluster the pairs at the same location in the offset space 
to create a set of clusters S. 

4. For each cluster in , we update the kernel values as 
follows: | | , where | | is the size of this 
cluster. 

2.4. Quantization 

Till now, we have been assuming that the same feature 
has strictly the same layout. In practice, we need to loosen 
this constraint. In this section, we talk about how to code 
the geometry constraint of the special high order features. 

It is straightforward to encode spatial information to 2nd 
order features. [11][18] use a spatial histogram centered at 
one of the word, and try to model different spatial 
distribution of the other word relative to this word. In [18], 
the histogram is only defined with distance, and [11] also 
separates the histogram in order to describe ‘above’, 
‘below’, ‘to the left’ and ‘to the right’. It would be not easy 
to define the spatial histogram this way when it comes to 3rd 
or larger order features，since it is unclear how to define the 
relative position of one word to the other two words. We 
define the spatial layout for the features as follows. First we 

quantize the image space with a step size  as in Figure 2. 
The same visual words that are distributed in the same 
relative spatial layout in the quantized image are considered 
as the same feature. Therefore, the three words connected 
with the filled lines and those with the dotted lines for the 
two images in Figure 2 are considered as the same feature. 
For  distinct visual words, we can calculate the number of 
possible relative spatial layouts by fixing one word first and 
choose the possible location for the other words. Let  be 
the quantized width of an image,  be the quantized length. 
The number of possible relative spatial layout is as follows. 

 2w 1 2 1 .                         (1) 
There would be fewer possible layouts when the  words in 
the feature are not distinct.  

For the algorithm, what we only need to do is to replace 
the location  for each word with the quantized     . 
Therefore the offset of two pairs will also be the quantized 
offset. 

2.5. Invariance 

Till now, we have only considered translation invariance 
of our spatial high order features when calculating the 
kernels. We can also make the features (quasi-)scale 
invariant by making use of the scales of regions for the 
words [11]. To handle the scale invariance, we only need to 
make a small modification to our algorithm for the kernel 
calculation. Now an image  is represented as a collection 
of the word-location-scale triples , , .  

As described in Figure 3, when we rescale the location   
by the ratio of the scales of the words in the two images, a 
co-occurrence of the scale invariant feature becomes a 
constant shift of the same words from one image to the 
other again. Then, we can use the same algorithm to 
calculate the kernel functions. Therefore, we use the same 
algorithm as described in section 2.3, except at step 2, we 
calculate ∆  as / , rather than .  

In similar way, it is also possible to make the features 
rotation invariant by using the dominant orientation of the 
region. 

2.6. Computational Time 

Let  represent the number of features in an image. It 

Figure 3: Method to handle scale invariant spatial features.
Different colors represent different visual words. The size of the
circle represents the scale of the word. The scales of the words in
image 2 are twice the scales of the words in image 1. 

Figure 2: An example for spatial layout of the features. Different
colors represent different words.  

Image1 Image2 



 

 

takes  time to pair the same words in two images and 
calculate the offsets of the pairs (step 1 and 2), where  is 
the number of pairs created. To cluster the pairs with the 
same offsets and update the kernel needs  time. In the 
worst case (only one visual word occurs in each image), we 
have  pairs. However, in practice we can only form 
pairs linear to .  Especially with a large codebook size, 
the number of pairs we form can be even smaller than . 
Moreover, after running one time of the algorithm, we have 
already calculated all order kernels. Therefore, in practice 
we only need  time to calculate the kernels of all 
order features, which is the same complexity with 
calculating a kernel with bag of words model.  

3. Experiments 
We evaluate the proposed kernel for object 

categorization task. We use several public datasets: 
Caltech-101, MSRC dataset [18], and Graz-01 dataset. For 
all the datasets, we use the whole images (No bounding box) 
for both training and testing, which we believe is an 
advantage for our algorithm, since the high order kernels 
support partially matching similarities. 

3.1. Implementation Issues 

For all the datasets, we apply Harris-Laplacian interest 
point detector [15] and SIFT detector [13] to each gray 
scale image to get the local features. The local features are 
further clustered with K means algorithm to obtain the 
visual words. We apply the proposed kernels to K nearest 
neighbor and Support Vector Machine for the classification 
task. For the implementation of SVM, we used the public 
library Libsvm [2]. For stableness, we do not consider 
scaling and rotation in these experiments. 

Due to the large dimension of the feature space, images 
will have extremely sparse representations in the feature 
space. This also leads to the fact that the kernel based 
self-similarity of an image will be much larger than the 
similarity between two distinct images. Thus, our kernel 
matrix will be nearly diagonal, especially for large order.  
This is called diagonal dominance in machine learning, and 
is proved to be a problem when the kernel matrix is applied 
to learning algorithms such as SVM. Many methods have 
been proposed to overcome this problem [6]. We applied 

the negative diagonal shift method, which is to subtract a 
constant from the diagonal of the kernel matrix. Although it 
is possible make the kernel matrix not positive 
semi-definite any more, it has shown to gain good 
performance in practice.  

3.2. Effect of High Order Features 

We use six object categories from the Caltech 101 dataset: 
{faces, motorbikes, airplanes, rear cars, watches, ketches}. 
This dataset has previously been used for unsupervised 
object category detection [7], while we use it in a 
supervised way. The goal of this experiment is to explore 
the change of the classification performance and 
computational time as we increase the order of the features.  
For all the six categories, there are more than 100 images 
per category, and reliable interest point can be detected. 
The task is to classify an image to one of the six categories. 
For the experiments, we randomly choose 50 images per 
category for training and 50 other images for testing. We 
repeat this 10 times and present the average results. We set 
the dictionary size as 500. We report the results of 
classification for two classes (faces and motorbikes), four 
classes (faces, motorbikes, airplanes, and rear cars), five 
classes (4 classes + watches), and six classes. We first use 
the step size 16 for image quantization in the experiments. 
For SVM, we use the one-vs-one scheme implemented in 
Libsvm for the multi-class classification.  

 
Kernel Matrix 
Figure 4 shows the kernel matrix of the training data with 

five classes for different order features. As the order 
increases, the matrix gets sparser and sparser, thus more 
discriminative among different categories. However, the 
inner class similarity matrix also gets sparser for some 
categories, such as airplane and rear car, with large orders 
(7 or 10). This is due to the fact that few co-occurring large 
order features are detected for some image pairs in the same 
category when the category includes more variance in 
object structure, scale, or rotation. Faces and Motorbikes 
are two objects with the most consistent structures.   

 
 Individual vs. Cumulative 
We show the classification results with K Nearest 

Neighbor classifier ( 3  in Figure 5. We use the 

Figure 4: Kernel Matrix of the training data for different Order features. From the left to right are 1st, 2nd, 3rd, 5th, 7th, 10th order kernel
matrices. Training data is arranged in the categories of ‘face’, ‘airplane’, ‘rear car’, ‘motorbike’, and ‘watches’. As the order increases, the
matrix gets sparser and sparser. 



 

 

normalized kernel as the similarity function for KNN. We 
present both the results of individual kernels  with only 

 order features, and the results of weighted sum of 
kernels from 1st to  order individual kernels. We use 

0.02  for the weighting. We show the performance 
until 10th order since most images do not have co-occurring 
features whose order are larger than 10. We found that for 
both individual and cumulative kernels, we gain significant 
improvement from 1st order (bag of words) to 2nd order 
features, which proves that modeling geometry information 
helps a lot. For the individual case, we get best performance 
with 8th order kernel for 2 class classification task, 2nd for 4 
class, and 3rd for both 5 and 6 class classification task. The 
accuracy dropping for the individual kernels is mainly 
because as the order increases, fewer images will have 
co-occurring features as we have seen in the kernel matrix 
(Figure 4). For the cumulative case, the accuracy generally 
keeps increasing as we increase the order (may stop 
growing at some order). We found that even if individually 
the accuracy drops for the large order kernels, they may still 
contribute to the performance when we add them together.  
This is not surprising given the fact that higher order 
features are more discriminative. We reach best 

performance when the maximum order is 10 for 2 class, 5 
for 4, 5, and 6 class classification tasks. 

Using as Kernel for SVM 
We apply the kernel to SVM. Figure 6 shows the results 

for the weighted sum of the individual kernels. Generally, 
the accuracy with SVM is better than KNN for all the 
orders. We can still see the performance increases as we 
increase the order. We reach the best performance when the 
max order of the features used is around 5.  

Quantization Step Size 
Figure 7 shows the average classification accuracy when 
we use different step sizes to quantize the image. A larger 
step size will give more geometry constraint to the features. 
The performance is similar when we have fewer classes. As 
the number of classes increases, a larger step size gives 
better performance, since we designed the experiments as 
categories with more variance are added generally. 
 

 1 Order 1 - 2 order 1-10 order 
KNN 66.0 4.6 71.3 2.9 73.1 3.0 
SVM 78.1 4.3 78.3 2.6 80.4 2.5 
 
 

Table 1: Average classification accuracy on 9 categories of
MSRC-2 dataset.  

Figure 5: Object categorization performance with KNN (k=3). We show the average classification accuracy for classification task with
2, 4, 5, and 6 classes. The x axis is the feature order . The left figure shows the accuracy only using the  order kernel.  The right
figure shows the accuracy using the weighted sum of the kernels from 1 to . 

Figure 6: Object categorization performance
with SVM. We use weighted sum of the
individual kernels 

Figure 7: Average classification
accuracies when using different step size
for quantization. 

Figure 8: Categorization accuracies with
dictionary size 50. We show the results
for 6 class classification. 



 

 

 Proposed [9] [17] 
Bike 94% 84% 78% 
Person 84% 82% 76.5% 
Table 2: Equal Error Rate for categorization with Graz 01 

dataset (no bounding box is used). We use the combined kernel for 
1st to 10th order features. 
 

Dictionary Size 
The experiments till now are using a dictionary size 500. 

We try to decrease the dictionary size to 50. Figure 8 shows 
the classification performance when using KNN and SVM. 
In this case, the individual visual words would be quite 
meaningless, which results in low accuracies when using 
low order features. Especially for KNN, the accuracy is 
under 70% when using bag of words model. However, for 
both KNN and SVM, as we increase the order of the 
features, we got the performance quite close to that when 
we use 500 visual words. This shows that even if the local 
features are not discriminative itself, by increasing the 
orders, we can create discriminative features. 

Computational Time 
It takes averagely 0.02 second for computing the 

proposed kernels between two images with a Matlab 
implementation on a 3.4GHz CPU, when we have around 
500 words per image. This is the time for computing 
kernels with all order features (1st, 2nd to any large order), 
since we only need to run the algorithm once to get those 
kernels. 

3.3. Increasing the Variance 

We further perform experiments with the MSRC-2 
dataset [18], which has much more variance within the 
same category than the Caltech 101 dataset. There are 15 
categories, and 30 images per category in this dataset. 
Previous work using this dataset for object categorization 
removes the background cluster for both training and 
testing. However, we evaluate on the whole image. We 
choose nine categories out of fifteen: {cow, airplanes, faces, 
cars, bikes, books, signs, sheep and chairs}, so that objects 
from different categories won’t appear in the same image. 
This is a difficult dataset, since in [20], even if with a 
bounding box, rather than removing the background cluster 
completely, the accuracy drops to 78.5%. 
Following the standard set up, we randomly select 15 
images per category for training, and the rest for testing. 
We repeat this ten times and report the average 
performance. Table 1 shows the experiment results with 
both SVM and KNN. The results show that high order 
features improve the classification accuracy.  

We also applied our algorithm to the Graz-01 datasets. 
We use the same dataset as in [17], which contains 100 
training images and 50 testing images for each category. 
The task is to classify an object category (person or bike) 
from the background category. We show the Equal Error 
Rates in table 2. We compare our results with [9] and [17].  

 
  Table 3. Confusion Matrix of MSRC dataset. There are 15 
images per category. This is the result of one run among the ten 
runs of the experiment. (Accuracy = 82.2%) 
 
In [17], they mainly focus on local appearance, while [9] 
ignore local appearance, and but use pairwise interactions 
between simple features to model the shape of the objects. 

4. Conclusion 
We proposed an efficient algorithm to calculate kernels 

with high order spatial features. The algorithm is based on a 
transformation from the image space to the offset space, 
which makes the task of finding any order co-occurring 
features quite easy and fast. The computational complexity 
of the kernel is proved to be linear to the number of features 
per image, and does not depend on the order of the features. 
This enables us to use any large order features. The 
experiment results of object categorization task showed 
that high order features are useful, and the performance will 
usually increase as we increase the feature order. The 
improvement is especially obvious when the local features 
are not discriminative enough 

We believe that there are still a lot of improvement we 
can do for this approach. First, although we showed the 
possible solution for scale and rotation invariance, we did 
not use them in the experiments. It still needs to be explored 
for the robustness when we try to deal with scaling and 
rotation with the algorithm. Second, currently we are doing 
quantization on the image space in order to loosen the 
geometry constraint. It can be beneficial to do the 
quantization directly on the offset space. Finally, although 
we showed that the kernel has the same computational 
complexity with bag of words model, it would be 
interesting to explore how to use it efficiently in a large 
dataset, where bag of words can take the advantage of their 
vector representation. 
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Figure 9: Example High Order features found for two images. For each pair of images, we show the features of the largest 4 orders between
them. Different color represents different co-occurring features. For the first three rows, the two images are from the same category. For the
last row, images are from different categories. The results show that we can find larger order features for images from the same category. 


