
1 
 

Interpretable deep learning for chromatin-informed inference of transcriptional 1 
programs driven by somatic alterations across cancers 2 
Yifeng Tao1+,  Xiaojun Ma2,3+, Georgios I. Laliotis4,5, Adler Guerrero Zuniga4,5, Drake Palmer3, 3 
Eneda Toska4,5, Russell Schwartz1,6, Xinghua Lu2,7, Hatice Ulku Osmanbeyoglu2,3,8* 4 
 5 
1 Computational Biology Department, School of Computer Science, Carnegie Mellon University, 6 
Pittsburgh, USA 7 
2 Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, 8 
USA 9 
3 UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA 10 
4 Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of 11 
Medicine, Baltimore, MD, USA 12 
5 Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, 13 
Baltimore, MD, USA 14 
6 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, USA 15 
7 Department of Pharmaceutical Science, School of Medicine, University of Pittsburgh, 16 
Pittsburgh, USA 17 
8 Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, 18 
USA 19 
 20 
Contributions 21 
These authors contributed equally: Y.T., X.M. 22 
 23 
Corresponding author 24 
Correspondence to: Hatice Ulku Osmanbeyoglu (osmanbeyogluhu@pitt.edu) 25 
ORCID ID: 0000-0002-4972-4347 26 
 27 
Abstract 28 
Cancer is a disease of gene dysregulation, where cells acquire somatic and epigenetic alterations 29 
that drive aberrant cellular signaling. These alterations adversely impact transcriptional programs 30 
and cause profound changes in gene expression. Ultimately, interpreting patient somatic 31 
alterations within context-specific regulatory programs will facilitate personalized therapeutic 32 
decisions for each individual. Towards this goal, we develop a partially interpretable neural 33 
network model with encoder-decoder architecture, called Chromatin-informed Inference of 34 
Transcriptional Regulators Using Self-attention mechanism (CITRUS), to model the impact of 35 
somatic alterations on cellular states and further onto downstream gene expression programs. 36 
The encoder module employs a self-attention mechanism to model the contextual impact of 37 
somatic alterations in a tumor-specific manner. Furthermore, the model uses a layer of hidden 38 
nodes to explicitly represent the state of transcription factors (TFs), and the decoder learns the 39 
relationships between TFs and their target genes guided by the sparse prior based on TF binding 40 
motifs in the open chromatin regions of tumor samples. We apply CITRUS to genomic, mRNA 41 
sequencing and ATAC-seq data from tumors of 17 cancer types profiled by The Cancer Genome 42 
Atlas. Our computational framework enables us to share information across tumors to learn 43 
patient-specific TF activities, revealing regulatory program similarities and differences between 44 
and within tumor types. We show that CITRUS not only outperforms the competing models in 45 
predicting RNA expression, but also yields biological insights in delineating TFs associated with 46 
somatic alterations in individual tumors. We also validate the differential activity of TFs associated 47 
with mutant PIK3CA in breast cancer cell line and xenograft models using a panel of PI3K pathway 48 
inhibitors.   49 
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Introduction 50 
Interplay between complex signaling inputs and genomic transcriptional responses dictates 51 
important cellular functions. Dysregulation of this interplay leads to development and progression 52 
of disease, most clearly delineated in the context of certain cancers. Cancer cells acquire somatic 53 
alterations that drive aberrant signaling which adversely impact transcriptional programs and 54 
cause profound changes in gene expression. We still lack a complete understanding of the 55 
transcriptional programs and how disruptions in this code affects cellular function in cancer. 56 
Interpreting patient somatic alterations within context-specific transcriptional programs can 57 
facilitate therapeutic decisions for each individual. 58 
 59 
In the last decade, a monumental effort to molecularly profile tumors was undertaken by consortia 60 
such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium 61 
(ICGC)1,2. These multimodal datasets including gene expression and somatic alterations such as 62 
recurrent mutations and copy number variations (CNVs) have enabled the integration of 63 
transcriptional states with upstream signaling pathways. Several methods have been developed 64 
to connect somatic alterations to a prior network or to gene expression3-9. More recently, the 65 
Genomic Data Analysis Network generated assay for transposase-accessible chromatin with 66 
high-throughput sequencing (ATAC-seq) data for the subset of TCGA samples (~500 patients)10. 67 
However, so far methods for linking somatic alterations to transcriptional programs across 68 
cancers have not incorporated tumor chromatin profiling to encode context-dependent and/or 69 
non-linear impacts of transcription factors (TFs) on gene expression. Incorporating DNA 70 
sequence information at promoter, intronic and intergenic enhancers using TF motif analysis from 71 
tumor ATAC-seq profiles will improve the modeling of transcriptional regulation and delineating 72 
the impact of somatic alterations on transcriptional programs. 73 
 74 
Deep learning (DL) is a powerful tool for capturing non-linearity. Attention mechanism is a deep 75 
learning module that has been widely used in computer vision and natural language processing. 76 
In contrast to normal deep learning units, the self-attention mechanism considers the contextual 77 
effort of all the input features to each other and assigns different weights of attention to these 78 
inputs11. In general, the attention mechanism can improve the performance of the DL models or 79 
increase the interpretability of the models. More recently, attention mechanisms have also been 80 
applied to cancer genomics, including cancer driver detection12, drug response prediction13 and 81 
predicting base editing outcomes14. The genomic impact transformer (GIT) model utilizes the self-82 
attention mechanism to encode the effects of somatic alterations in cancer and uses multi-layer 83 
perceptrons to predict differentially expressed genes as the output of the model12. The attention 84 
mechanism enables it to select the likely driver mutations that lead to downstream phenotypes, 85 
such as transcriptome expression levels. However, the GIT model lacks interpretability in the 86 
sense it does not model the intermediate TFs during the signaling from somatic alterations to 87 
gene expression programs.  88 
 89 
In this work, we present Chromatin-informed Inference of Transcriptional Regulators Using Self-90 
attention mechanism (CITRUS), a partially interpretable neural network (NN) model with encoder-91 
decoder architecture, to link somatic alterations to transcriptional programs through modeling the 92 
statistical relationships between mutations, CNVs, gene expression and TF-target gene prior 93 
information (based on TF binding motif analysis in the open chromatin regions based on tumor 94 
ATAC-seq profiling). CITRUS explicitly includes the transcriptional programs in the model, with 95 
external knowledge of TF:target-gene priors based on ATAC-seq data. We showed that CITRUS 96 
not only outperforms competing models in predicting mRNA expression, but also yields important 97 
biological insights in finding dysregulated TFs in individual tumors. We next performed a 98 
systematic knock out in silico approach to associate frequent somatic alterations with changes in 99 
inferred TF activities in each cancer type. This analysis identified key regulators associated with 100 
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the major somatic alterations. In particular, we associated PIK3CA activating mutations with 101 
altered activities of distinct sets of TFs in different cancers. Notably, in cell line and xenograft 102 
models of breast cancer, we validated the altered activity of several TFs in the presence of mutant 103 
PIK3CA with PI3K pathway inhibitors by measuring expression of target genes, confirming the 104 
context-specific predictions of our model. These proof-of-principle results suggest a 105 
computational strategy for personalized deployment of targeted therapeutics in a pan-cancer 106 
setting. 107 
 108 
Results  109 
Pan-cancer modeling of regulatory programs 110 
To systematically interpret somatic alterations (SAs) within context-specific transcriptional 111 
programs and identify disrupted TFs that drive tumor-specific gene expression patterns across 112 
multiple cancer types, we developed CITRUS computational framework (Fig. 1). The CITRUS 113 
model mimics the biological processing of signaling pathways from SAs to the signaling pathways, 114 
to TFs, and finally to the target gene expressions (mRNA levels). Therefore, the model follows an 115 
overall encoder-decoder architecture (Fig. 1). The encoder module compresses the input SAs 116 
into a latent vector variable called a tumor embedding. Then the decoder part first predicts the TF 117 
activities from the tumor embedding, and further predicts the TF target-gene expression. We used 118 
sparse TF-target gene priors based on tumor ATAC-seq data. Briefly, we started with an atlas of 119 
chromatin accessible events derived from the tumor types to be analyzed, using ATAC-seq 120 
profiling data (“Methods” section). We represented every gene by its feature vector of TF-binding 121 
scores, where motif information was summarized across all promoter, intronic, and intergenic 122 
chromatin accessible sites assigned to the gene (see the “Methods” section).  123 
 124 
The application of our approach to 17 tumors from TCGA identified key TFs associated with SAs. 125 
Our dataset included samples from seventeen different tumor types for which mRNA, somatic 126 
mutation, copy number variation and ATAC-seq data were available: bladder urothelial carcinoma 127 
(BLCA, n=371), breast cancer (BRCA, n=719), cervical squamous cell carcinoma and 128 
endocervical adenocarcinoma (CESC, n=267), colorectal adenocarcinoma (COAD, n=271), 129 
esophageal carcinoma (ESCA, n=170), glioblastoma multiforme (GBM, n=143), head and neck 130 
squamous carcinoma (HNSC, n=475), kidney renal cell-clear carcinoma (KIRC, n=357), kidney 131 
renal papillary cell carcinoma (KIRP, n=272), liver hepatocellular carcinoma (LIHC, n=336), lung 132 
adenocarcinoma (LUAD, n=459), lung squamous cell carcinoma (LUSC, n=430),  133 
pheochromocytoma and paraganglioma (PCPG, n=109), prostate cancer (PRAD, n=449), 134 
stomach adenocarcinoma (STAD, n=373), thyroid carcinoma (THCA, n=216),  and uterine corpus 135 
endometrial carcinoma (UCEC, n=361).  136 
 137 
For statistical evaluation, we computed the mean Spearman correlation between predicted and 138 
measured gene expression profiles on held-out samples (see Methods). We obtained significantly 139 
better performance than a regularized bilinear regression algorithm called affinity regression 140 
(AR)15,16 that was trained independently for each cancer type and explains gene expression 141 
across tumors in terms of SA status and presence of TF binding sites based on pan-cancer ATAC-142 
seq atlas (Fig. 2A).  143 
 144 
To identify the SAs that have an impact on gene expression programs, we compared the 145 
relationship of overall attention weights (inferred by CITRUS) and the frequencies of somatic 146 
alterations (used as the control group)  across all cancer types and within a cancer type (Fig 2B 147 
and Supplementary Fig. 1). In general, the attention weights are correlated with the alteration 148 
frequencies of genes. For example, the top altered genes TP53 and PIK3CA had high attention 149 
weights. However, our self-attention mechanism assigned low attention weights to many highly 150 
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frequently altered genes, indicating these genes can be cancer passengers. Indeed, we found 151 
genes with high attention weights were enriched for known cancer drivers from the IntOGen9 152 
database. We first grouped all the genes into two parts with the threshold of 2 (log(attention+1) 153 
>= 2 as the more attended group, and log(attention+1) < 2 as the less attended group). Using the 154 
Fisher exact test,  we found known cancer drivers were enriched in the highly attended group (P 155 
= 4.48 x 10-41) for pan-cancer analysis. 156 
 157 
Next, we used CITRUS across tumor types to learn patient-specific TF activities. Clustering of 158 
tumors by inferred TF activities as derived from the model largely recovered the distinction 159 
between the major tumor types (Fig. 2C). In particular, samples with squamous morphology 160 
components (BLCA, CESC, ESCA, HNSC, and LUSC) grouped together. Similarly, tumors with 161 
tissue or organ similarities or proximity also grouped together. These included neuroendocrine 162 
and glioma tumors (GBM and PCPG), clear cell and papillary renal carcinomas (KIRC and KIRP), 163 
a gastrointestinal group (COAD, and STAD), breast and endometrial cancer (BRCA and UCEC). 164 
We also observed similar clustering with tumor embeddings (Supplementary Fig 2). 165 
 166 
Next, we assessed TF-tumor type associations by t-test and compare inferred TF activities 167 
between samples in a given tumor type vs. those in all other tumor types. We corrected for FDR 168 
across TFs and identified significant shared and cancer-specific TFs and the results are shown 169 
in Supplementary Table 1. Fig. 3 shows the average TF activity and significance of cancer-170 
specifc TFs across cancer types. For clarity, only the union of 4 top significant TFs per cancer are 171 
shown. FUBP1, which regulates c-Myc gene transcription, had significantly higher inferred activity 172 
in many cancer types including LIHC, HNSC, BLCA, ESCA, CESC, LUSC, PRAD, BRCA, and 173 
UCEC. Moreover, in agreement with previous reports, IRF3 activity was significantly higher in 174 
GBM17; KLF8 had decreased activity in GBM, LIHC and KIRC, consistent with its role in 175 
suppressing cell apoptosis during tumor progression18; YY1, which regulates various processes 176 
of development19 and had increased activity in CESC and COAD.  177 
 178 
CITRUS-inferred TF-activity based cancer subtypes and somatic alteration landscape 179 
Next, we asked whether our method could identify TF activity based subtypes associated with 180 
SAs. We conducted k-means clustering on inferred TF activities for each cancer type to get 181 
subtypes, and then conducted hierarchical clustering for both the cancer subtypes and TF 182 
activities. Fig. 4 shows the clustering of subtypes by CITRUS-inferred mean TF activities and 183 
corresponding SA associations (see Methods). We observed major variations in mean TF 184 
activities across different cancer types, and less but significant variations within each cancer type. 185 
These variations within a cancer type may be explained by the distinct mutation or copy number 186 
alteration profiles of different subgroups. For example, clustering by TF activities revealed 187 
subclasses of endocervical adenocarcinoma (CESC) enriched with KRAS; kidney renal cell-clear 188 
carcinoma (KIRC) enriched with VHL, BAP1, PBRM1 and TP53; liver hepatocellular carcinoma 189 
(LIHC) enriched with CTNNB1, BAP1 and TP53;  thyroid carcinoma (THCA) enriched with NRAS, 190 
HRAS and BRAF status; pheochromocytoma and paraganglioma (PCPG) enriched with HRAS 191 
status.  192 
  193 
We next developed a systematic statistical approach for modelling the impact of SAs on TF 194 
activity, with the eventual goal of deciphering cancer-specific downstream effects of targeted 195 
therapies and potentially discovering secondary targets for combination drug strategies. We 196 
implemented a knock out in silico approach that removes a specific somatic mutation (or copy 197 
number variation) g from all the tumor samples that carry it to identify a set of TFs predicted to be 198 
significantly dysregulated by each SA in each TCGA cancer study (see Methods section). Fig. 5A 199 
shows the TF activities associated with SAs in UCEC. Our model identified mutations in PIK3CA, 200 
PTEN, KRAS, TP53, and CTNNB1 as significantly associated with various TF activities across 201 
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UCEC tumors (∼66% of tumors have PTEN inactivating mutations, ∼50% have PIK3CA activating 202 
mutations, ~38% have TP53 mutations, ~26% have CTNNB1, and ~20% have KRAS). UCEC 203 
samples with PTEN mutations are mutually exclusive with TP53, CTNNB1 and KRAS showed 204 
distinct patterns of TF activities. Mutations in PTEN, which inactivate its phosphatase activity, 205 
increase PI3K signaling. TFs associated with PTEN mutations involved in cell cycle and 206 
differentiation including E2F5, TP63, ELF3, DBP, ZKSCAN3, LHX2, HOXB6, SOX9, DBP, 207 
MYLB1, and GLIS1. Whereas, TFs associated with CTNNB1 mutant status were involved in WNT 208 
and TGF-beta signaling including TCF7, TCF7L2, TCF7L1, FOXH1, EMX1, and MYBL1.  209 
 210 
Similarly Fig. 5B shows the TF activities associated with SAs in BRCA. Our model identified 211 
mutations in PIK3CA, PTEN, MAP2K4, GATA3, TP53, and CDH1 as significantly associated with 212 
various TF activities across tumors. In BRCA, ∼36% of tumors have PIK3CA activating mutations, 213 
~35% have TP53 , ~15% have GATA3, ~15% have CDH1, ∼10% have PTEN, and ~7% have 214 
MAP2K4 mutations. Activating mutations in PIK3CA often occur in one of three hotspot locations 215 
(E545K, E542K and H1047R) and promote constitutive signaling though the pathway. TFs 216 
associated with PIK3CA mutations involved in WNT signaling, epithelial–mesenchymal transition 217 
and cancer stem cell transition including ELF3, TFEC, STAT4, STAT5B, NFATC1, GLIS1, CDC5L 218 
and AR. BRCA samples with PIK3CA and TP53 mutations are mutually exclusive. Our knock 219 
out in silico  analysis associated different regulators with these mutations. TP53 mutant tumors 220 
are associated with increased activity of TFs that have roles in pro-growth such as ETS2 and 221 
FOSB, growth modulatory such as THAP1, CREB3L1, and CEBPZ and development MEF2C/D, 222 
MEOX1, MSX1. We also performed similar analyses for other cancer types (Supplementary Fig. 223 
3). 224 
 225 
We found TP53 mutation associated with similar TFs across different cancer types 226 
(Supplementary Fig. 4). TP53 is one of the most frequently inactivated tumor suppressor genes 227 
that suffers from missense mutations in human cancer. These missense mutations express a 228 
mutant form of p53 protein. Therefore, the cells retain and express a mutant form of the p53 229 
protein that can either disable other tumor suppressors (e.g., p63 and p73) or enable oncogenes 230 
such as ETS2, an ETS family member20.  Indeed, inferred TF activity of ETS2 was increased in 231 
mutant versus WT TP53 tumors across cancers (Fig. 5C); these differences are not as significant 232 
at the gene expression level (Supplementary Fig. 5).  233 
 234 
Experimental validation of oncogenic mutant PI3K-driven TF activity in breast cancer 235 
The PI3K pathway controls proliferation, metabolism, survival and motility and is frequently 236 
activated in many cancers, often via mutations in the gene coding for the alpha subunit of the 237 
PI3K, PIK3CA24. The PI3K inhibitor alpelisib was recently approved in metastatic estrogen 238 
receptor positive/PIK3CA mutant breast cancer25. Our analysis associated mutant PIK3CA with 239 
STAT4, and NFATC1 transcriptional activity in breast cancer patients. To validate the effect of 240 
the oncogenic PI3K in the activity of these TFs, we utilized quantitative PCR (qPCR) to measure 241 
the expression of canonical target genes in parental and PIK3CAH1047R knock-in MCF10a cells 242 
treated with a panel of PI3K/AKT inhibitor (the PI3Kα specific inhibitors alpelisib and GDC0077, 243 
the PI3Kα/γ/δ inhibitor GDC0032/Taselisib, the pan-AKT inhibitor GDC0068, and the mTOR 244 
inhibitor RAD001/Everolimus). Gene expression analysis revealed altered expression of 245 
canonical STAT4, and NFATC1 target genes upon mutant PIK3CAH1047R compared to parental 246 
MCF10a cells. Notably, the expression changes were altered in the opposite direction upon 247 
treatment with PI3K/AKT inhibitors (Fig. 6A, 6B), but not mTOR, suggesting the robust differential 248 
regulation of the transcriptional program of STAT4, and NFATC1 by the PI3K pathway. We also 249 
validated these findings in MCF7 (PIK3CAE545K) breast cancer cells and in MCF7-derived 250 
xenograft tumors treated with vehicle or alpelisib (see Methods section) (Fig. 6B, 6C), suggesting 251 
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the PI3K-mediated regulation of the transcriptional activity of STAT4, and NFATC1 in cells and 252 
tumors.  253 
 254 
Discussion  255 
Tumor data sets are a challenging case for regulatory network analysis due to the complexity of 256 
cancer genomes (e.g. alterations such as aneuploidy, CNVs, structural variation, and mutations) 257 
confounding epigenomic and regulatory sequence analysis. Our method provides a systematic 258 
framework for integrating resources on regulatory genomics with tumor expression and mutation 259 
and CNV data to better understand expression programs driven by SAs in cancers and infer 260 
patient-specific TF activities. Our method uses a deep learning framework called a self-attention 261 
mechanism to capture the complex contextual interactions between somatic alterations.  For more 262 
accurate representation of TF:target-genes relationship, we leveraged ATAC-seq tumor data from 263 
patients. Our model is designed to capture flow of information from altered genes (e.g. signaling 264 
proteins) to TFs to target genes; the knock out in silico analysis is likely to identify causal impacts 265 
of SAs. Joint modeling across different tumor types also reveals patient subgroups associated 266 
with SAs. We validated CITRUS-predicted TF activity associated with activating PIK3CA mutation 267 
in BRCA, using vitro and vivo models giving a proof-of-principle for the potential therapeutic 268 
application of our approach. We showed that for TFs associated with PIK3CA mutation, TF target 269 
gene expression changed after PI3K inhibitor treatment. In cases where a SA is associated with 270 
the activity of a targetable TF or their upstream/downstream component, our analysis may 271 
suggest combination therapies.  272 
 273 
One limitation of the TF binding motif search approach is that TFs of the same family often share 274 
a similar motif and thus are difficult to disambiguate. Therefore, TF motifs encompass the 275 
individual activities of multiple TFs. Moreover, co-binding TF binding patterns (e.g., AP-1−IRF 276 
complexes) can be biologically more important for fine tuning of gene expression. We will also 277 
investigate representing these composite elements as features in our models. Furthermore, we 278 
do not represent directionality in the TF:target- gene priors (i.e., whether a gene is activated or 279 
repressed by a TF). Hence, negative values of inferred TF activities can be meaningfully 280 
interpreted by prior knowledge of whether the TF is acting as an activator or as a repressor. These 281 
limitations may confound the interpretation of activities of TFs with context-specific activator and 282 
repressor roles. Further, tumor data sets are also a challenging case for regulatory network 283 
analysis due to the presence of stromal/immune cells within the tumor and the heterogeneity of 284 
cancer cells themselves. However, our framework can be extended to modeling of single-cell 285 
RNA-seq or deconvoluted RNA-seq  by computational methods as we will report elsewhere. 286 
 287 
Despite these limitations, modeling impact of SAs on transcriptional programs may ultimately 288 
enable the development of individualized therapies, aid in understanding mechanisms of drug 289 
resistance, and allow the identification of biomarkers of response. We anticipate that 290 
computational modeling of transcriptional regulation across different tumor types will emerge as 291 
an important tool in precision oncology, aiding in the eventual goal of choosing the best 292 
therapeutic option for each individual patient. 293 
 294 
Methods  295 
Data preprocessing 296 
We downloaded the RNA-seq data for each of the 17 tumor types from the Genomic Data 297 
Commons (GDC) portal (https://gdc.cancer.gov/about-data/publications/pancanatlas). The RNA-298 
seq expression data have been log2-transformed into RSEM values. We obtained processed 299 
gene-level somatic alterations of each cancer patient from Cai et al.4. Briefly, the value in the 300 
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tumor for that gene was set to 1 if it hosts a non-synonymous mutation, small insert/deletion, or 301 
somatic copy number alteration (deletion or amplification), and otherwise the value was set to 0. 302 
 303 
We downloaded the ATAC-seq pancancer peak set from GDC portal 304 
(https://gdc.cancer.gov/about-data/publications/ATACseq-AWG)10. Using the MEME21 curated 305 
Cis-BP22 TF-binding motif reference, we scanned pancancer ATAC-seq peak atlas with FIMO23 306 
to find peaks likely to contain each motif (P < 10−5). The final set contained 320 motifs. We 307 
associated each peak to its nearest gene in the human genome using the ChIPpeakAnno 308 
package24. ATAC-seq peaks located in the body of the transcription unit, together with the 100 kb 309 
regions upstream of the transcription start site (TSS) and downstream of the 3’ end, were 310 
assigned to the gene. TF-binding site identification was used to turn each gene’s set of assigned 311 
ATAC peaks into a feature vector of binding signals by assigning the maximum score of each 312 
motif across all peaks to a gene. Then, we created a matrix C Î {0,1}kxl that defines a candidate 313 
set of associations between TFs and target genes. Ci,j = 1 when there is a connection from TF 𝑗 314 
to the gene/RNA 𝑖 (red lines connecting the TF layer and Exp layer in Fig. 1).  315 
 316 
CITRUS model 317 
Formally, given a specific tumor 𝑡, with the cancer types 𝑠, we have a set of SAs in the tumor 318 
{𝑔!}!"#$ , the decoder module first maps each gene 𝑔 (it is 𝑔! here, but we omit the subscript for 319 
the simplicity of notation) into its corresponding gene vector 𝒆%. Then the decoder utilizes the 320 
multi-head self-attention mechanism to calculate the weighted sum of the both gene embeddings 321 
and cancer type embedding:  322 

𝒆& = 𝒆' + α#𝒆# + α(𝒆( + α)𝒆) +⋯+ α$𝒆$. 323 
The self-attention mechanism takes input of gene embeddings of all the mutated/altered genes, 324 
and output the attention weights {α!}!"#$  through a sub-neural network. Such attention 325 
mechanism captures the contextual impact of co-existing somatic alterations and their complex 326 
interactions instead of simpler models. Interested readers can find the mathematical details in the 327 
references12. 328 
 329 
The decoder part first infers the TF activities from the encoded tumor embedding 𝒆&: 330 

𝒆* = 𝑡𝑎𝑛ℎ2𝑊*𝒆& + 𝒃*5. 331 
We used the tanh activation instead of ReLU operation, which is more widely used in deep 332 
learning, because it has similar performance to that of ReLU in our model and generates more 333 
biologically meaningful results, e.g., distribution of TFs 𝒆*. Finally CITRUS predicts the cancer 334 
type specific mRNA expressions from the TF activities: 335 

𝑦7 = σ2𝑊𝑒* + 𝑏+5, 336 
where 𝑊 corresponds to the sparse TF:target-gene matrix constrained by the prior 𝐶 ∈ {0,1},×.. 337 
More specifically, in order to integrate priors into our model, 𝑊 share the same shape with prior 338 
𝐶, and 𝑊/,1 is allowed to be nonzero only when 𝐶/,1 = 1, and Wi,j is constrained to be non-negative 339 
value. The loss function to be optimized is thus: 340 

𝑀𝑆𝐸(𝑦, 𝑦7) 341 
One might use other common approaches to integrate the priors of 𝐶 into the 𝑊, i.e., by applying 342 
a Gaussian prior to the 𝑊, which is equivalent to adding an additional penalty to the loss function 343 
∑ (𝑊)/,1(/,1:3!,#"4 . However, this “soft” constraint tends to generate less stable TF layers across 344 
different runs of training compared to the “hard” constraints shown in our present work.  345 
 346 
We introduced additional dropout operations with dropout rate of 0.2 after the input layer, 347 
activated tumor embedding layer, and activated TF layer to increase the model robustness to 348 
noise and prevent overfitting. 349 



8 
 

Training and evaluation: We implemented the CITRUS through the PyTorch package 350 
(https://pytorch.org/) and trained through Adam optimizer with default parameters except the 351 
learning rate15 and weight decay. We set learning rate to be 1 × 105), and weight decay to be 352 
1 × 1056. For each fold of training, we used early stopping with patience of 30 steps to stop 353 
training. 354 
 355 
For statistical evaluation, we computed the mean Spearman correlation (ρ) between predicted 356 
and measured gene expression profiles on held-out patients for each tumor type. We splitted the 357 
dateset into training (40%), validation (20%) and test sets (20%). For CITRUS model, we utilized 358 
the training and validation sets to tune hyperparameters such as learning rate and training steps, 359 
and then evaluated on the held-out test sets. For affinity regression (see below), we seperated 360 
datasets by cancer type, and conducted 5-fold cross-validation to tune hyperparameters for each 361 
type on training and validation sets, and then applied the trained model with selected 362 
hyperparameters to the test set for performance evaluation. In order to increase the stability for 363 
the analysis of inferred TF activities, we ensembled multiple CITRUS models with different 364 
random seeds, by bootstrapping the model for 10 times, and integrate the TF layer  by taking the 365 
average of 10 trials to increase the stability of inference. 366 
 367 
Training the affinity regression models 368 
AR is an algorithm for efficiently solving a regularized bilinear regression problem15,25 , defined 369 
here as follows. For a data set of M tumor samples profiled using RNA-seq with N genes, we let 370 
YÎRNxM be the log 10 gene expression profiles of tumor samples. Each column of Y corresponds 371 
to an RNA-seq experiment for a cancer type. We define each gene’s TF attributes in a matrix D 372 
ÎRNxQ, where each row represents a gene and each column represent the hit vector for a TF, that 373 
is, the bit vector indicating whether there is binding site for the TF of each gene based on ATAC-374 
seq data. We define the SA attributes of tumor samples as a matrix P Î RMxS where each row 375 
represents a tumor sample and each column represents the somatic alteration status for the tumor 376 
sample. We set up a bilinear regression problem to learn the weight matrix W Î RQxS on paired of 377 
TF and SA features: 378 

 379 
DWPT ~ Y 380 

We can transform the system to an equivalent system of equations by reformulating the matrix 381 
products as Kronecker products 382 

DWPT » Y  Û (PÄD) vec(W) » vec(Y) 383 

where ⊗ is a Kronecker product and vec(.) is a vectorizing operator that stacks a matrix and 384 
produces a vector, yielding a standard (if large-scale) regression problem. Full details and a 385 
derivation of the reduced optimization problem are provided elsewhere15.  386 

Contextual impact of somatic alterations with knock out in silico analysis 387 
We implemented a knock out in silico approach that removes a specific somatic mutation (or copy 388 
number variation) g from all the tumor samples that carry it. The new knocked-out SA profiles and 389 
CITRUS-inferred TF activities generate the “wild type” corpus that does not contain this 390 
alteration g. In contrast, all the original samples containing the alteration g serve as the 391 
"mutant/altered" group. We finally conducted the t-test between the mutant group and wild type 392 
group to evaluate the contextual impact of mutation g. The knockout in silico is different from the 393 
normal t-test, since it captures contextual effects of mutations through the non-linear attention 394 
module of CITRUS, and provides a perfect experiment/control setting where all mutations are the 395 
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same but mutation g. For a complex genotype, the model explains TF regulator activity across 396 
tumors. We then corrected for multiple hypotheses across regulator models, treating inferred TF 397 
activities as separate groups of tests. 398 
 399 
Selection of TF targets for validation experiments 400 
The selection of the canonical target genes for each TF, was performed using the Cistrome 401 
Cancer Transcription Factor targets tool for BRCA, in the Cistrome project browser26 402 
 403 
Cell lines and PI3K/AKT/mTOR inhibitors 404 
MCF10A Isogenic parental and PIK3CAH1047R heterozygous mutants were purchased from 405 
Horizon. MCF-10A  cells  were  maintained  in  DF-12  media  supplemented  with  5%  filtered  406 
horse  serum  (Invitrogen),  EGF  (20  ng/μL) (Sigma), hydrocortisone (0.5 mg/mL) (Sigma), 407 
cholera toxin (100 mg/mL) (Sigma), insulin (10 μg/mL) (Sigma), and 1% penicillin/streptomycin. 408 
Cells were used at low passages and were incubated at 37°C in 5% CO2. MCF10A parental and 409 
mutant cells were seeded in 6-multiwell plates in regular culture conditions to allow correct 410 
attachment and ensure ~75% confluency at harvesting day. 24 hours after seeding, cells were 411 
washed twice with PBS before adding the starvation media (without serum, EGF and insulin). 412 
Where indicated, cells were treated with DMSO as control or alpelisib (1μM), taselisib (100nM), 413 
GDC0077 (100nM), GDC0068/ipatasertib (1μM) or RAD001/everolimus (100nM) for 4h.   414 
 415 
MCF7 were purchased from ATCC (ATCC HTB-22) and grown in DMEM/F12 supplemented with 416 
10% FBS, penicillin/ streptomycin 1% under standard conditions. 417 
 418 
The PI3Ka-specific inhibitors alpelisib and GDC0077, the PI3Kα/γ/δ taselisib, the pan-AKT 419 
inhibitor GDC0068/ipatasertib, the mTORC1 inhibitor RAD001/everolimus were purchased 420 
(Selleckchem). All the cells were tested regularly for mycoplasma, to ensure experiments in 421 
mycoplasma-free cultures. 422 
 423 
In vivo studies 424 
For the MCF7 xenograft study, 0.18 mg/90d-release oestrogen pellets were implanted into 6-425 
week-old female NOD scid gamma mice 3 days prior to the tumor cell transplantation. Ten million 426 
MCF7 cells per mouse were subcutaneously transplanted. 427 
 428 
RNA extraction and RT–qPCR 429 
RNA was isolated using the QIAGEN RNeasy Kit and retrotranscription was performed using the 430 
iScript cDNA synthesis kit from Bio-Rad, following manufacturer’s instructions. cDNA was 431 
amplified by real time quantitative PCR in a Applied Biosystems Real-Time PCR system, using 432 
SYBR Select Master Mix from Applied Biosystems. Each sample was run in technical triplicates 433 
and each experiment was performed in triplicate. 434 
 435 
Statistical analysis 436 
Statistical tests were performed with the R statistical environment and Python. For population 437 
comparisons of inferred TF activities, we performed Student’s t-test and determined the direction 438 
of shifts by comparing the mean of two populations. We corrected raw P-values for multiple 439 
hypothesis testing based on two methods: Bonferroni and false discovery rate (BH method).  440 
Association score between TF activity subtypes and frequent SAs. For each somatic mutation or 441 
copy number variation, we calculated the p-value of its frequency in a cancer subtype is different 442 
from that in other subtypes using Fisher’s exact test. The p-value was further adjusted through 443 
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FDR across subtypes. To identify the relative frequency of a SA in a subtype, we defined the 444 
association score, which is the product of relative frequency direction and -log10FDR.  445 
 446 
Data Availability 447 
ATAC-seq data is available in a public repository from Genomic Data Commons 448 
(https://gdc.cancer.gov/about-data/publications/ATACseq-AWG). RNA-seq gene expression 449 
data, somatic mutation, copy number variation data and clinical data are available in a public 450 
repository from TCGA’s Firehose data run 451 
(https://confluence.broadinstitute.org/display/GDAC/Dashboard-Stddata). Only the samples 452 
‘whitelisted’ by TCGA for the Pan-Cancer Analysis Working Group were used in the study. For 453 
our analysis, we restricted to samples with parallel RNA-seq, somatic mutation and GISTIC 454 
copy number data. 455 
 456 
Code Availability 457 
The software for CITRUS is available from https://github.com/osmanbeyoglulab/CITRUS 458 
 459 
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Figures 556 
 557 

 558 
Fig. 1: Overview of CITRUS algorithm: the attention-based model with TF:target-gene 559 
priors. The input to our framework includes somatic alteration and copy number variation, assay 560 
for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), tumor 561 
expression datasets and TF recognition motifs. CITRUS takes somatic alteration and copy 562 
number variation data as input and encodes them as a tumor embedding using a self-attention 563 
mechanism. Additional cancer type information is used for stratifying the confounding factor of 564 
tissue type. The middle layer further transforms the tumor embeddings into TF layer, which 565 
represents the inferred activities of 320 TFs. Finally, the gene expression levels are predicted 566 
from the TF activities through a TF:target-gene priors constrained sparse layer based on ATAC-567 
seq. 568 
 569 
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 570 
Fig. 2: CITRUS models impact of somatic alterations on gene expression programs. (A) 571 
Performance of the CITRUS models for each cancer type compared to regularized bilinear 572 
regression method, affinity regression (Affreg). Boxplots showing mean Spearman correlations 573 
between predicted and actual gene expression using the CITRUS model (orange) and Affreg 574 
(light blue) for TCGA data each cancer-type. Both CITRUS and Affreg are tuned on the training 575 
and validation sets, and evaluated on the same held-out test set. (B) Principal components 576 
analysis (PCA) of TF activity colored by cancer type. (C) Mutation frequencies and CITRUS-577 
inferred attention weights of genes. We show cumulated results in Pan-cancer and individual 578 
BRCA, and HNSC. See Supplementary Fig. 1 for full compilation of each cancer type. 579 
 580 
 581 
 582 
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 583 
Fig. 3: CITRUS identifies regulatory features of tumor types. Dotplot shows the mean inferred 584 
TF activity differences between samples in a given tumor type vs. those in all other tumor types 585 
by t-test. We corrected for FDR across TFs for each such pairwise comparison and identified 586 
significant TF regulators and the results are shown in Supplementary Table 1.The dot size 587 
indicates -log10(FDR). For clarity, the union of the top 4 significant TFs in each cancer type is 588 
shown.  589 
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 593 
Fig. 4: Landscape of somatic alterations and inferred TF activities. (A) Top heatmap shows 594 
tumor subtypes clustered by the mean TF inferred activity. Color scale is proportional to TF 595 
activity. The heat map shows -log10 FDR values multipled by the direction derived by Fisher exact 596 
test for (B) mutations and (C) copy number variations. 597 
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 598 
Fig. 5: Somatic alterations are associated with dysregulated TF activity. Impact of SAs on 599 
individual TFs based on knock out in silico experiments in TCGA (A) UCEC and (B) BRCA. The 600 
dotplot shows mean TF activity and dot size indicates -log10(FDR). See Supplementary Fig. 3 601 
for full list of cancer types. (C) Inferred ETS2 activity in TCGA studies and impact of TP53 602 
mutations. Tumors with mutant TP53 have significantly higher activity of ETS2 than WT tumors 603 
(P < 0.01, t-test). This association is not significant using mRNA levels of ETS2 (Supplementary 604 
Fig. 5). Box edges represent the upper and lower quantile with median value shown as bold line 605 
in the middle of the box. Whiskers represent 1.5 times the quantile. 606 
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626 
Fig. 6: Experimental validation of the PIK3CA-driven TF in breast cancer. (A) Validation of 627 
canonical target genes of STAT4, and NFATC1 in MCF10A parental and PIK3CAH1047R cells 628 
treated with DMSO or a panel of PI3K/AKT inhibitors (alpelisib 1μΜ, GDC0077 100nM, GDC0032 629 
100nM, GDC0068 1μΜ, Everolimus 100nM) in starvation media for 4 hours, using qPCR. 630 
Expression levels were normalized to ACTIN. Circles represent independent experiments. Error 631 
bars show SD (n=3). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (one-side unpaired t-test). (B) 632 
Similar analysis of expression of target genes in MCF7 (PIK3CAE545K) was performed as in A. 633 
(C) Validation of the same target genes as in A, in MCF7-derived xenograft tumors treated with 634 
Vehicle or Alpelisib ( (for details see Methods). Expression levels were normalized on ACTIN. 635 
Circles represent independent experiments. Error bars show SED (n=2). *p<0.05, **p<0.01, 636 
***p<0.001, ****p<0.0001. (one-side unpaired t-test). 637 
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