

1 **Interpretable deep learning for chromatin-informed inference of transcriptional  
2 programs driven by somatic alterations across cancers**

3 Yifeng Tao<sup>1+</sup>, Xiaojun Ma<sup>2,3+</sup>, Georgios I. Laliotis<sup>4,5</sup>, Adler Guerrero Zuniga<sup>4,5</sup>, Drake Palmer<sup>3</sup>,  
4 Eneda Toska<sup>4,5</sup>, Russell Schwartz<sup>1,6</sup>, Xinghua Lu<sup>2,7</sup>, Hatice Ulku Osmanbeyoglu<sup>2,3,8\*</sup>

5  
6 <sup>1</sup> Computational Biology Department, School of Computer Science, Carnegie Mellon University,  
7 Pittsburgh, USA

8 <sup>2</sup> Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh,  
9 USA

10 <sup>3</sup> UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA

11 <sup>4</sup> Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of  
12 Medicine, Baltimore, MD, USA

13 <sup>5</sup> Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health,  
14 Baltimore, MD, USA

15 <sup>6</sup> Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, USA

16 <sup>7</sup> Department of Pharmaceutical Science, School of Medicine, University of Pittsburgh,  
17 Pittsburgh, USA

18 <sup>8</sup> Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh,  
19 USA

20 Contributions

21 These authors contributed equally: Y.T., X.M.

22 Corresponding author

23 Correspondence to: Hatice Ulku Osmanbeyoglu (osmanbeyoglu@pitt.edu)

24 ORCID ID: 0000-0002-4972-4347

25 **Abstract**

---

26 Cancer is a disease of gene dysregulation, where cells acquire somatic and epigenetic alterations  
27 that drive aberrant cellular signaling. These alterations adversely impact transcriptional programs  
28 and cause profound changes in gene expression. Ultimately, interpreting patient somatic  
29 alterations within context-specific regulatory programs will facilitate personalized therapeutic  
30 decisions for each individual. Towards this goal, we develop a partially interpretable neural  
31 network model with encoder-decoder architecture, called **Chromatin-informed Inference of  
32 Transcriptional Regulators Using Self-attention mechanism (CITRUS)**, to model the impact of  
33 somatic alterations on cellular states and further onto downstream gene expression programs.  
34 The encoder module employs a self-attention mechanism to model the contextual impact of  
35 somatic alterations in a tumor-specific manner. Furthermore, the model uses a layer of hidden  
36 nodes to explicitly represent the state of transcription factors (TFs), and the decoder learns the  
37 relationships between TFs and their target genes guided by the sparse prior based on TF binding  
38 motifs in the open chromatin regions of tumor samples. We apply CITRUS to genomic, mRNA  
39 sequencing and ATAC-seq data from tumors of 17 cancer types profiled by The Cancer Genome  
40 Atlas. Our computational framework enables us to share information across tumors to learn  
41 patient-specific TF activities, revealing regulatory program similarities and differences between  
42 and within tumor types. We show that CITRUS not only outperforms the competing models in  
43 predicting RNA expression, but also yields biological insights in delineating TFs associated with  
44 somatic alterations in individual tumors. We also validate the differential activity of TFs associated  
45 with mutant PIK3CA in breast cancer cell line and xenograft models using a panel of PI3K pathway  
46 inhibitors.

50 **Introduction**

---

51 Interplay between complex signaling inputs and genomic transcriptional responses dictates  
52 important cellular functions. Dysregulation of this interplay leads to development and progression  
53 of disease, most clearly delineated in the context of certain cancers. Cancer cells acquire somatic  
54 alterations that drive aberrant signaling which adversely impact transcriptional programs and  
55 cause profound changes in gene expression. We still lack a complete understanding of the  
56 transcriptional programs and how disruptions in this code affects cellular function in cancer.  
57 Interpreting patient somatic alterations within context-specific transcriptional programs can  
58 facilitate therapeutic decisions for each individual.

59  
60 In the last decade, a monumental effort to molecularly profile tumors was undertaken by consortia  
61 such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium  
62 (ICGC)<sup>1,2</sup>. These multimodal datasets including gene expression and somatic alterations such as  
63 recurrent mutations and copy number variations (CNVs) have enabled the integration of  
64 transcriptional states with upstream signaling pathways. Several methods have been developed  
65 to connect somatic alterations to a prior network or to gene expression<sup>3-9</sup>. More recently, the  
66 Genomic Data Analysis Network generated assay for transposase-accessible chromatin with  
67 high-throughput sequencing (ATAC-seq) data for the subset of TCGA samples (~500 patients)<sup>10</sup>.  
68 However, so far methods for linking somatic alterations to transcriptional programs across  
69 cancers have not incorporated tumor chromatin profiling to encode context-dependent and/or  
70 non-linear impacts of transcription factors (TFs) on gene expression. Incorporating DNA  
71 sequence information at promoter, intronic and intergenic enhancers using TF motif analysis from  
72 tumor ATAC-seq profiles will improve the modeling of transcriptional regulation and delineating  
73 the impact of somatic alterations on transcriptional programs.

74  
75 Deep learning (DL) is a powerful tool for capturing non-linearity. Attention mechanism is a deep  
76 learning module that has been widely used in computer vision and natural language processing.  
77 In contrast to normal deep learning units, the self-attention mechanism considers the contextual  
78 effort of all the input features to each other and assigns different weights of attention to these  
79 inputs<sup>11</sup>. In general, the attention mechanism can improve the performance of the DL models or  
80 increase the interpretability of the models. More recently, attention mechanisms have also been  
81 applied to cancer genomics, including cancer driver detection<sup>12</sup>, drug response prediction<sup>13</sup> and  
82 predicting base editing outcomes<sup>14</sup>. The genomic impact transformer (GIT) model utilizes the self-  
83 attention mechanism to encode the effects of somatic alterations in cancer and uses multi-layer  
84 perceptrons to predict differentially expressed genes as the output of the model<sup>12</sup>. The attention  
85 mechanism enables it to select the likely driver mutations that lead to downstream phenotypes,  
86 such as transcriptome expression levels. However, the GIT model lacks interpretability in the  
87 sense it does not model the intermediate TFs during the signaling from somatic alterations to  
88 gene expression programs.

89  
90 In this work, we present **Chromatin-informed Inference of Transcriptional Regulators Using Self-**  
91 **attention mechanism (CITRUS)**, a partially interpretable neural network (NN) model with encoder-  
92 decoder architecture, to link somatic alterations to transcriptional programs through modeling the  
93 statistical relationships between mutations, CNVs, gene expression and TF-target gene prior  
94 information (based on TF binding motif analysis in the open chromatin regions based on tumor  
95 ATAC-seq profiling). CITRUS explicitly includes the transcriptional programs in the model, with  
96 external knowledge of TF:target-gene priors based on ATAC-seq data. We showed that CITRUS  
97 not only outperforms competing models in predicting mRNA expression, but also yields important  
98 biological insights in finding dysregulated TFs in individual tumors. We next performed a  
99 systematic knock out *in silico* approach to associate frequent somatic alterations with changes in  
100 inferred TF activities in each cancer type. This analysis identified key regulators associated with

101 the major somatic alterations. In particular, we associated *PIK3CA* activating mutations with  
102 altered activities of distinct sets of TFs in different cancers. Notably, in cell line and xenograft  
103 models of breast cancer, we validated the altered activity of several TFs in the presence of mutant  
104 *PIK3CA* with PI3K pathway inhibitors by measuring expression of target genes, confirming the  
105 context-specific predictions of our model. These proof-of-principle results suggest a  
106 computational strategy for personalized deployment of targeted therapeutics in a pan-cancer  
107 setting.

108

## 109 Results

---

### 110 Pan-cancer modeling of regulatory programs

111 To systematically interpret somatic alterations (SAs) within context-specific transcriptional  
112 programs and identify disrupted TFs that drive tumor-specific gene expression patterns across  
113 multiple cancer types, we developed CITRUS computational framework (**Fig. 1**). The CITRUS  
114 model mimics the biological processing of signaling pathways from SAs to the signaling pathways,  
115 to TFs, and finally to the target gene expressions (mRNA levels). Therefore, the model follows an  
116 overall encoder-decoder architecture (**Fig. 1**). The encoder module compresses the input SAs  
117 into a latent vector variable called a tumor embedding. Then the decoder part first predicts the TF  
118 activities from the tumor embedding, and further predicts the TF target-gene expression. We used  
119 sparse TF-target gene priors based on tumor ATAC-seq data. Briefly, we started with an atlas of  
120 chromatin accessible events derived from the tumor types to be analyzed, using ATAC-seq  
121 profiling data (“Methods” section). We represented every gene by its feature vector of TF-binding  
122 scores, where motif information was summarized across all promoter, intronic, and intergenic  
123 chromatin accessible sites assigned to the gene (see the “Methods” section).

124

125 The application of our approach to 17 tumors from TCGA identified key TFs associated with SAs.  
126 Our dataset included samples from seventeen different tumor types for which mRNA, somatic  
127 mutation, copy number variation and ATAC-seq data were available: bladder urothelial carcinoma  
128 (BLCA, n=371), breast cancer (BRCA, n=719), cervical squamous cell carcinoma and  
129 endocervical adenocarcinoma (CESC, n=267), colorectal adenocarcinoma (COAD, n=271),  
130 esophageal carcinoma (ESCA, n=170), glioblastoma multiforme (GBM, n=143), head and neck  
131 squamous carcinoma (HNSC, n=475), kidney renal cell-clear carcinoma (KIRC, n=357), kidney  
132 renal papillary cell carcinoma (KIRP, n=272), liver hepatocellular carcinoma (LIHC, n=336), lung  
133 adenocarcinoma (LUAD, n=459), lung squamous cell carcinoma (LUSC, n=430),  
134 pheochromocytoma and paraganglioma (PCPG, n=109), prostate cancer (PRAD, n=449),  
135 stomach adenocarcinoma (STAD, n=373), thyroid carcinoma (THCA, n=216), and uterine corpus  
136 endometrial carcinoma (UCEC, n=361).

137

138 For statistical evaluation, we computed the mean Spearman correlation between predicted and  
139 measured gene expression profiles on held-out samples (see Methods). We obtained significantly  
140 better performance than a regularized bilinear regression algorithm called affinity regression  
141 (AR)<sup>15,16</sup> that was trained independently for each cancer type and explains gene expression  
142 across tumors in terms of SA status and presence of TF binding sites based on pan-cancer ATAC-  
143 seq atlas (**Fig. 2A**).

144

145 To identify the SAs that have an impact on gene expression programs, we compared the  
146 relationship of overall attention weights (inferred by CITRUS) and the frequencies of somatic  
147 alterations (used as the control group) across all cancer types and within a cancer type (**Fig 2B**  
148 and **Supplementary Fig. 1**). In general, the attention weights are correlated with the alteration  
149 frequencies of genes. For example, the top altered genes *TP53* and *PIK3CA* had high attention  
150 weights. However, our self-attention mechanism assigned low attention weights to many highly

151 frequently altered genes, indicating these genes can be cancer passengers. Indeed, we found  
152 genes with high attention weights were enriched for known cancer drivers from the IntOGen<sup>9</sup>  
153 database. We first grouped all the genes into two parts with the threshold of 2 ( $\log(\text{attention}+1)$   
154  $\geq 2$  as the more attended group, and  $\log(\text{attention}+1) < 2$  as the less attended group). Using the  
155 Fisher exact test, we found known cancer drivers were enriched in the highly attended group ( $P$   
156 =  $4.48 \times 10^{-41}$ ) for pan-cancer analysis.

157  
158 Next, we used CITRUS across tumor types to learn patient-specific TF activities. Clustering of  
159 tumors by inferred TF activities as derived from the model largely recovered the distinction  
160 between the major tumor types (**Fig. 2C**). In particular, samples with squamous morphology  
161 components (BLCA, CESC, ESCA, HNSC, and LUSC) grouped together. Similarly, tumors with  
162 tissue or organ similarities or proximity also grouped together. These included neuroendocrine  
163 and glioma tumors (GBM and PCPG), clear cell and papillary renal carcinomas (KIRC and KIRP),  
164 a gastrointestinal group (COAD, and STAD), breast and endometrial cancer (BRCA and UCEC).  
165 We also observed similar clustering with tumor embeddings (**Supplementary Fig 2**).  
166

167 Next, we assessed TF-tumor type associations by t-test and compare inferred TF activities  
168 between samples in a given tumor type vs. those in all other tumor types. We corrected for FDR  
169 across TFs and identified significant shared and cancer-specific TFs and the results are shown  
170 in **Supplementary Table 1**. **Fig. 3** shows the average TF activity and significance of cancer-  
171 specific TFs across cancer types. For clarity, only the union of 4 top significant TFs per cancer are  
172 shown. FUBP1, which regulates *c-Myc* gene transcription, had significantly higher inferred activity  
173 in many cancer types including LIHC, HNSC, BLCA, ESCA, CESC, LUSC, PRAD, BRCA, and  
174 UCEC. Moreover, in agreement with previous reports, IRF3 activity was significantly higher in  
175 GBM<sup>17</sup>; KLF8 had decreased activity in GBM, LIHC and KIRC, consistent with its role in  
176 suppressing cell apoptosis during tumor progression<sup>18</sup>; YY1, which regulates various processes  
177 of development<sup>19</sup> and had increased activity in CESC and COAD.  
178

### 179 **CITRUS-inferred TF-activity based cancer subtypes and somatic alteration landscape**

180 Next, we asked whether our method could identify TF activity based subtypes associated with  
181 SAs. We conducted *k*-means clustering on inferred TF activities for each cancer type to get  
182 subtypes, and then conducted hierarchical clustering for both the cancer subtypes and TF  
183 activities. **Fig. 4** shows the clustering of subtypes by CITRUS-inferred mean TF activities and  
184 corresponding SA associations (see Methods). We observed major variations in mean TF  
185 activities across different cancer types, and less but significant variations within each cancer type.  
186 These variations within a cancer type may be explained by the distinct mutation or copy number  
187 alteration profiles of different subgroups. For example, clustering by TF activities revealed  
188 subclasses of endocervical adenocarcinoma (CESC) enriched with *KRAS*; kidney renal cell-clear  
189 carcinoma (KIRC) enriched with *VHL*, *BAP1*, *PBRM1* and *TP53*; liver hepatocellular carcinoma  
190 (LIHC) enriched with *CTNNB1*, *BAP1* and *TP53*; thyroid carcinoma (THCA) enriched with *NRAS*,  
191 *HRAS* and *BRAF* status; pheochromocytoma and paraganglioma (PCPG) enriched with *HRAS*  
192 status.  
193

194 We next developed a systematic statistical approach for modelling the impact of SAs on TF  
195 activity, with the eventual goal of deciphering cancer-specific downstream effects of targeted  
196 therapies and potentially discovering secondary targets for combination drug strategies. We  
197 implemented a knock out *in silico* approach that removes a specific somatic mutation (or copy  
198 number variation)  $g$  from all the tumor samples that carry it to identify a set of TFs predicted to be  
199 significantly dysregulated by each SA in each TCGA cancer study (see Methods section). **Fig. 5A**  
200 shows the TF activities associated with SAs in UCEC. Our model identified mutations in *PIK3CA*,  
*PTEN*, *KRAS*, *TP53*, and *CTNNB1* as significantly associated with various TF activities across

202 UCEC tumors (~66% of tumors have *PTEN* inactivating mutations, ~50% have *PIK3CA* activating  
203 mutations, ~38% have *TP53* mutations, ~26% have *CTNNB1*, and ~20% have *KRAS*). UCEC  
204 samples with *PTEN* mutations are mutually exclusive with *TP53*, *CTNNB1* and *KRAS* showed  
205 distinct patterns of TF activities. Mutations in *PTEN*, which inactivate its phosphatase activity,  
206 increase PI3K signaling. TFs associated with *PTEN* mutations involved in cell cycle and  
207 differentiation including E2F5, TP63, ELF3, DBP, ZKSCAN3, LHX2, HOXB6, SOX9, DBP,  
208 MYLB1, and GLIS1. Whereas, TFs associated with *CTNNB1* mutant status were involved in WNT  
209 and TGF-beta signaling including TCF7, TCF7L2, TCF7L1, FOXH1, EMX1, and MYBL1.  
210

211 Similarly **Fig. 5B** shows the TF activities associated with SAs in BRCA. Our model identified  
212 mutations in *PIK3CA*, *PTEN*, *MAP2K4*, *GATA3*, *TP53*, and *CDH1* as significantly associated with  
213 various TF activities across tumors. In BRCA, ~36% of tumors have *PIK3CA* activating mutations,  
214 ~35% have *TP53*, ~15% have *GATA3*, ~15% have *CDH1*, ~10% have *PTEN*, and ~7% have  
215 *MAP2K4* mutations. Activating mutations in *PIK3CA* often occur in one of three hotspot locations  
216 (E545K, E542K and H1047R) and promote constitutive signaling through the pathway. TFs  
217 associated with *PIK3CA* mutations involved in WNT signaling, epithelial–mesenchymal transition  
218 and cancer stem cell transition including ELF3, TFEC, STAT4, STAT5B, NFATC1, GLIS1, CDC5L  
219 and AR. BRCA samples with *PIK3CA* and *TP53* mutations are mutually exclusive. Our knock  
220 out *in silico* analysis associated different regulators with these mutations. *TP53* mutant tumors  
221 are associated with increased activity of TFs that have roles in pro-growth such as ETS2 and  
222 FOSB, growth modulatory such as THAP1, CREB3L1, and CEBPZ and development MEF2C/D,  
223 MEOX1, MSX1. We also performed similar analyses for other cancer types (**Supplementary Fig.**  
224 **3**).

225 We found *TP53* mutation associated with similar TFs across different cancer types  
226 (**Supplementary Fig. 4**). *TP53* is one of the most frequently inactivated tumor suppressor genes  
227 that suffers from missense mutations in human cancer. These missense mutations express a  
228 mutant form of p53 protein. Therefore, the cells retain and express a mutant form of the p53  
229 protein that can either disable other tumor suppressors (e.g., p63 and p73) or enable oncogenes  
230 such as ETS2, an ETS family member<sup>20</sup>. Indeed, inferred TF activity of ETS2 was increased in  
231 mutant versus WT *TP53* tumors across cancers (**Fig. 5C**); these differences are not as significant  
232 at the gene expression level (**Supplementary Fig. 5**).  
233

### 235 **Experimental validation of oncogenic mutant PI3K-driven TF activity in breast cancer**

236 The PI3K pathway controls proliferation, metabolism, survival and motility and is frequently  
237 activated in many cancers, often via mutations in the gene coding for the alpha subunit of the  
238 PI3K, *PIK3CA*<sup>24</sup>. The PI3K inhibitor alpelisib was recently approved in metastatic estrogen  
239 receptor positive/*PIK3CA* mutant breast cancer<sup>25</sup>. Our analysis associated mutant *PIK3CA* with  
240 STAT4, and NFATC1 transcriptional activity in breast cancer patients. To validate the effect of  
241 the oncogenic PI3K in the activity of these TFs, we utilized quantitative PCR (qPCR) to measure  
242 the expression of canonical target genes in parental and *PIK3CA*<sup>H1047R</sup> knock-in MCF10a cells  
243 treated with a panel of PI3K/AKT inhibitor (the PI3K $\alpha$  specific inhibitors alpelisib and GDC0077,  
244 the PI3K $\alpha$ / $\gamma$ / $\delta$  inhibitor GDC0032/Taselisib, the pan-AKT inhibitor GDC0068, and the mTOR  
245 inhibitor RAD001/Everolimus). Gene expression analysis revealed altered expression of  
246 canonical STAT4, and NFATC1 target genes upon mutant *PIK3CA*<sup>H1047R</sup> compared to parental  
247 MCF10a cells. Notably, the expression changes were altered in the opposite direction upon  
248 treatment with PI3K/AKT inhibitors (**Fig. 6A, 6B**), but not mTOR, suggesting the robust differential  
249 regulation of the transcriptional program of STAT4, and NFATC1 by the PI3K pathway. We also  
250 validated these findings in MCF7 (*PIK3CA*<sup>E545K</sup>) breast cancer cells and in MCF7-derived  
251 xenograft tumors treated with vehicle or alpelisib (see Methods section) (**Fig. 6B, 6C**), suggesting

252 the PI3K-mediated regulation of the transcriptional activity of STAT4, and NFATC1 in cells and  
253 tumors.

254

## 255 Discussion

256 Tumor data sets are a challenging case for regulatory network analysis due to the complexity of  
257 cancer genomes (e.g. alterations such as aneuploidy, CNVs, structural variation, and mutations)  
258 confounding epigenomic and regulatory sequence analysis. Our method provides a systematic  
259 framework for integrating resources on regulatory genomics with tumor expression and mutation  
260 and CNV data to better understand expression programs driven by SAs in cancers and infer  
261 patient-specific TF activities. Our method uses a deep learning framework called a self-attention  
262 mechanism to capture the complex contextual interactions between somatic alterations. For more  
263 accurate representation of TF:target-genes relationship, we leveraged ATAC-seq tumor data from  
264 patients. Our model is designed to capture flow of information from altered genes (e.g. signaling  
265 proteins) to TFs to target genes; the knock out *in silico* analysis is likely to identify causal impacts  
266 of SAs. Joint modeling across different tumor types also reveals patient subgroups associated  
267 with SAs. We validated CITRUS-predicted TF activity associated with activating *PIK3CA* mutation  
268 in BRCA, using *vitro* and *vivo* models giving a proof-of-principle for the potential therapeutic  
269 application of our approach. We showed that for TFs associated with *PIK3CA* mutation, TF target  
270 gene expression changed after PI3K inhibitor treatment. In cases where a SA is associated with  
271 the activity of a targetable TF or their upstream/downstream component, our analysis may  
272 suggest combination therapies.

273

274 One limitation of the TF binding motif search approach is that TFs of the same family often share  
275 a similar motif and thus are difficult to disambiguate. Therefore, TF motifs encompass the  
276 individual activities of multiple TFs. Moreover, co-binding TF binding patterns (e.g., AP-1-IRF  
277 complexes) can be biologically more important for fine tuning of gene expression. We will also  
278 investigate representing these composite elements as features in our models. Furthermore, we  
279 do not represent directionality in the TF:target- gene priors (i.e., whether a gene is activated or  
280 repressed by a TF). Hence, negative values of inferred TF activities can be meaningfully  
281 interpreted by prior knowledge of whether the TF is acting as an activator or as a repressor. These  
282 limitations may confound the interpretation of activities of TFs with context-specific activator and  
283 repressor roles. Further, tumor data sets are also a challenging case for regulatory network  
284 analysis due to the presence of stromal/immune cells within the tumor and the heterogeneity of  
285 cancer cells themselves. However, our framework can be extended to modeling of single-cell  
286 RNA-seq or deconvoluted RNA-seq by computational methods as we will report elsewhere.

287

288 Despite these limitations, modeling impact of SAs on transcriptional programs may ultimately  
289 enable the development of individualized therapies, aid in understanding mechanisms of drug  
290 resistance, and allow the identification of biomarkers of response. We anticipate that  
291 computational modeling of transcriptional regulation across different tumor types will emerge as  
292 an important tool in precision oncology, aiding in the eventual goal of choosing the best  
293 therapeutic option for each individual patient.

294

## 295 Methods

---

### 296 Data preprocessing

297 We downloaded the RNA-seq data for each of the 17 tumor types from the Genomic Data  
298 Commons (GDC) portal (<https://gdc.cancer.gov/about-data/publications/pancanatlas>). The RNA-  
299 seq expression data have been log2-transformed into RSEM values. We obtained processed  
300 gene-level somatic alterations of each cancer patient from Cai et al.<sup>4</sup>. Briefly, the value in the

301 tumor for that gene was set to 1 if it hosts a non-synonymous mutation, small insert/deletion, or  
302 somatic copy number alteration (deletion or amplification), and otherwise the value was set to 0.  
303

304 We downloaded the ATAC-seq pancancer peak set from GDC portal  
305 (<https://gdc.cancer.gov/about-data/publications/ATACseq-AWG>)<sup>10</sup>. Using the MEME<sup>21</sup> curated  
306 Cis-BP<sup>22</sup> TF-binding motif reference, we scanned pancancer ATAC-seq peak atlas with FIMO<sup>23</sup>  
307 to find peaks likely to contain each motif ( $P < 10^{-5}$ ). The final set contained 320 motifs. We  
308 associated each peak to its nearest gene in the human genome using the ChIPpeakAnno  
309 package<sup>24</sup>. ATAC-seq peaks located in the body of the transcription unit, together with the 100 kb  
310 regions upstream of the transcription start site (TSS) and downstream of the 3' end, were  
311 assigned to the gene. TF-binding site identification was used to turn each gene's set of assigned  
312 ATAC peaks into a feature vector of binding signals by assigning the maximum score of each  
313 motif across all peaks to a gene. Then, we created a matrix  $C \in \{0,1\}^{k \times l}$  that defines a candidate  
314 set of associations between TFs and target genes.  $C_{i,j} = 1$  when there is a connection from TF  $j$   
315 to the gene/RNA  $i$  (red lines connecting the TF layer and Exp layer in **Fig. 1**).  
316

### 317 CITRUS model

318 Formally, given a specific tumor  $t$ , with the cancer types  $s$ , we have a set of SAs in the tumor  
319  $\{g_u\}_{u=1}^m$ , the decoder module first maps each gene  $g$  (it is  $g_u$  here, but we omit the subscript for  
320 the simplicity of notation) into its corresponding gene vector  $e_g$ . Then the decoder utilizes the  
321 multi-head self-attention mechanism to calculate the weighted sum of the both gene embeddings  
322 and cancer type embedding:

$$323 \quad e_t = e_s + \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 + \dots + \alpha_m e_m.$$

324 The self-attention mechanism takes input of gene embeddings of all the mutated/alterred genes,  
325 and output the attention weights  $\{\alpha_u\}_{u=1}^m$  through a sub-neural network. Such attention  
326 mechanism captures the contextual impact of co-existing somatic alterations and their complex  
327 interactions instead of simpler models. Interested readers can find the mathematical details in the  
328 references<sup>12</sup>.  
329

330 The decoder part first infers the TF activities from the encoded tumor embedding  $e_t$ :

$$331 \quad e_f = \tanh(W_f e_t + b_f).$$

332 We used the tanh activation instead of ReLU operation, which is more widely used in deep  
333 learning, because it has similar performance to that of ReLU in our model and generates more  
334 biologically meaningful results, e.g., distribution of TFs  $e_f$ . Finally CITRUS predicts the cancer  
335 type specific mRNA expressions from the TF activities:

$$336 \quad \hat{y} = \sigma(W e_f + b_r),$$

337 where  $W$  corresponds to the sparse TF:target-gene matrix constrained by the prior  $C \in \{0,1\}^{k \times l}$ .  
338 More specifically, in order to integrate priors into our model,  $W$  share the same shape with prior  
339  $C$ , and  $W_{i,j}$  is allowed to be nonzero only when  $C_{i,j} = 1$ , and  $W_{i,j}$  is constrained to be non-negative  
340 value. The loss function to be optimized is thus:

$$341 \quad MSE(y, \hat{y})$$

342 One might use other common approaches to integrate the priors of  $C$  into the  $W$ , i.e., by applying  
343 a Gaussian prior to the  $W$ , which is equivalent to adding an additional penalty to the loss function  
344  $\sum_{i,j: C_{i,j}=0} (W)_{i,j}^2$ . However, this “soft” constraint tends to generate less stable TF layers across  
345 different runs of training compared to the “hard” constraints shown in our present work.  
346

347 We introduced additional dropout operations with dropout rate of 0.2 after the input layer,  
348 activated tumor embedding layer, and activated TF layer to increase the model robustness to  
349 noise and prevent overfitting.

350 **Training and evaluation:** We implemented the CITRUS through the PyTorch package  
351 (<https://pytorch.org/>) and trained through Adam optimizer with default parameters except the  
352 learning rate<sup>15</sup> and weight decay. We set learning rate to be  $1 \times 10^{-3}$ , and weight decay to be  
353  $1 \times 10^{-5}$ . For each fold of training, we used early stopping with patience of 30 steps to stop  
354 training.

355  
356 For statistical evaluation, we computed the mean Spearman correlation ( $\rho$ ) between predicted  
357 and measured gene expression profiles on held-out patients for each tumor type. We splitted the  
358 dateset into training (40%), validation (20%) and test sets (20%). For CITRUS model, we utilized  
359 the training and validation sets to tune hyperparameters such as learning rate and training steps,  
360 and then evaluated on the held-out test sets. For affinity regression (see below), we seperated  
361 datasets by cancer type, and conducted 5-fold cross-validation to tune hyperparameters for each  
362 type on training and validation sets, and then applied the trained model with selected  
363 hyperparameters to the test set for performance evaluation. In order to increase the stability for  
364 the analysis of inferred TF activities, we ensembled multiple CITRUS models with different  
365 random seeds, by bootstrapping the model for 10 times, and integrate the TF layer by taking the  
366 average of 10 trials to increase the stability of inference.

367  
368 **Training the affinity regression models**  
369 AR is an algorithm for efficiently solving a regularized bilinear regression problem<sup>15,25</sup> , defined  
370 here as follows. For a data set of  $M$  tumor samples profiled using RNA-seq with  $N$  genes, we let  
371  $\mathbf{Y} \in \mathbb{R}^{N \times M}$  be the log 10 gene expression profiles of tumor samples. Each column of  $\mathbf{Y}$  corresponds  
372 to an RNA-seq experiment for a cancer type. We define each gene's TF attributes in a matrix  $\mathbf{D}$   
373  $\in \mathbb{R}^{N \times Q}$ , where each row represents a gene and each column represent the hit vector for a TF, that  
374 is, the bit vector indicating whether there is binding site for the TF of each gene based on ATAC-  
375 seq data. We define the SA attributes of tumor samples as a matrix  $\mathbf{P} \in \mathbb{R}^{M \times S}$  where each row  
376 represents a tumor sample and each column represents the somatic alteration status for the tumor  
377 sample. We set up a bilinear regression problem to learn the weight matrix  $\mathbf{W} \in \mathbb{R}^{Q \times S}$  on paired of  
378 TF and SA features:

$$\mathbf{D}\mathbf{W}\mathbf{P}^T \sim \mathbf{Y}$$

381 We can transform the system to an equivalent system of equations by reformulating the matrix  
382 products as Kronecker products

$$\mathbf{D}\mathbf{W}\mathbf{P}^T \approx \mathbf{Y} \Leftrightarrow (\mathbf{P} \otimes \mathbf{D}) \text{vec}(\mathbf{W}) \approx \text{vec}(\mathbf{Y})$$

383 where  $\otimes$  is a Kronecker product and  $\text{vec}(\cdot)$  is a vectorizing operator that stacks a matrix and  
384 produces a vector, yielding a standard (if large-scale) regression problem. Full details and a  
385 derivation of the reduced optimization problem are provided elsewhere<sup>15</sup>.

### 387 **Contextual impact of somatic alterations with knock out *in silico* analysis**

388 We implemented a knock out *in silico* approach that removes a specific somatic mutation (or copy  
389 number variation)  $g$  from all the tumor samples that carry it. The new knocked-out SA profiles and  
390 CITRUS-inferred TF activities generate the "wild type" corpus that does not contain this  
391 alteration  $g$ . In contrast, all the original samples containing the alteration  $g$  serve as the  
392 "mutant/ altered" group. We finally conducted the t-test between the mutant group and wild type  
393 group to evaluate the contextual impact of mutation  $g$ . The knockout *in silico* is different from the  
394 normal t-test, since it captures contextual effects of mutations through the non-linear attention  
395 module of CITRUS, and provides a perfect experiment/control setting where all mutations are the

396 same but mutation g. For a complex genotype, the model explains TF regulator activity across  
397 tumors. We then corrected for multiple hypotheses across regulator models, treating inferred TF  
398 activities as separate groups of tests.  
399

400 **Selection of TF targets for validation experiments**

401 The selection of the canonical target genes for each TF, was performed using the Cistrome  
402 Cancer Transcription Factor targets tool for BRCA, in the Cistrome project browser<sup>26</sup>  
403

404 **Cell lines and PI3K/AKT/mTOR inhibitors**

405 MCF10A Isogenic parental and *PIK3CA*<sup>H1047R</sup> heterozygous mutants were purchased from  
406 Horizon. MCF-10A cells were maintained in DF-12 media supplemented with 5% filtered  
407 horse serum (Invitrogen), EGF (20 ng/µL) (Sigma), hydrocortisone (0.5 mg/mL) (Sigma),  
408 cholera toxin (100 mg/mL) (Sigma), insulin (10 µg/mL) (Sigma), and 1% penicillin/streptomycin.  
409 Cells were used at low passages and were incubated at 37°C in 5% CO<sub>2</sub>. MCF10A parental and  
410 mutant cells were seeded in 6-multiwell plates in regular culture conditions to allow correct  
411 attachment and ensure ~75% confluence at harvesting day. 24 hours after seeding, cells were  
412 washed twice with PBS before adding the starvation media (without serum, EGF and insulin).  
413 Where indicated, cells were treated with DMSO as control or alpelisib (1µM), taselisib (100nM),  
414 GDC0077 (100nM), GDC0068/ipatasertib (1µM) or RAD001/everolimus (100nM) for 4h.  
415

416 MCF7 were purchased from ATCC (ATCC HTB-22) and grown in DMEM/F12 supplemented with  
417 10% FBS, penicillin/ streptomycin 1% under standard conditions.  
418

419 The PI3Ka-specific inhibitors alpelisib and GDC0077, the PI3Ka/γ/δ taselisib, the pan-AKT  
420 inhibitor GDC0068/ipatasertib, the mTORC1 inhibitor RAD001/everolimus were purchased  
421 (Selleckchem). All the cells were tested regularly for mycoplasma, to ensure experiments in  
422 mycoplasma-free cultures.  
423

424 **In vivo studies**

425 For the MCF7 xenograft study, 0.18 mg/90d-release oestrogen pellets were implanted into 6-  
426 week-old female NOD scid gamma mice 3 days prior to the tumor cell transplantation. Ten million  
427 MCF7 cells per mouse were subcutaneously transplanted.  
428

429 **RNA extraction and RT-qPCR**

430 RNA was isolated using the QIAGEN RNeasy Kit and retrotranscription was performed using the  
431 iScript cDNA synthesis kit from Bio-Rad, following manufacturer's instructions. cDNA was  
432 amplified by real time quantitative PCR in a Applied Biosystems Real-Time PCR system, using  
433 SYBR Select Master Mix from Applied Biosystems. Each sample was run in technical triplicates  
434 and each experiment was performed in triplicate.  
435

436 **Statistical analysis**

437 Statistical tests were performed with the R statistical environment and *Python*. For population  
438 comparisons of inferred TF activities, we performed Student's t-test and determined the direction  
439 of shifts by comparing the mean of two populations. We corrected raw P-values for multiple  
440 hypothesis testing based on two methods: Bonferroni and false discovery rate (BH method).

441 Association score between TF activity subtypes and frequent SAs. For each somatic mutation or  
442 copy number variation, we calculated the *p*-value of its frequency in a cancer subtype is different  
443 from that in other subtypes using Fisher's exact test. The *p*-value was further adjusted through

444 FDR across subtypes. To identify the relative frequency of a SA in a subtype, we defined the  
445 association score, which is the product of relative frequency direction and  $-\log_{10}\text{FDR}$ .

446

#### 447 **Data Availability**

448 ATAC-seq data is available in a public repository from Genomic Data Commons  
449 (<https://gdc.cancer.gov/about-data/publications/ATACseq-AWG>). RNA-seq gene expression  
450 data, somatic mutation, copy number variation data and clinical data are available in a public  
451 repository from TCGA's Firehose data run  
452 (<https://confluence.broadinstitute.org/display/GDAC/Dashboard-Stddata>). Only the samples  
453 'whitelisted' by TCGA for the Pan-Cancer Analysis Working Group were used in the study. For  
454 our analysis, we restricted to samples with parallel RNA-seq, somatic mutation and GISTIC  
455 copy number data.

456

#### 457 **Code Availability**

458 The software for CITRUS is available from <https://github.com/osmanbeyoglulab/CITRUS>

459

#### 460 **References**

---

- 461 1 Consortium, I. T. P.-C. A. o. W. G. Pan-cancer analysis of whole genomes. *Nature* **578**,  
462 82-93, doi:10.1038/s41586-020-1969-6 (2020).
- 463 2 Cancer Genome Atlas Research, N. et al. The Cancer Genome Atlas Pan-Cancer  
464 analysis project. *Nat Genet* **45**, 1113-1120, doi:10.1038/ng.2764 (2013).
- 465 3 Wang, Z. et al. Cancer driver mutation prediction through Bayesian integration of multi-  
466 omic data. *PLoS One* **13**, e0196939, doi:10.1371/journal.pone.0196939 (2018).
- 467 4 Cai, C. et al. Systematic discovery of the functional impact of somatic genome  
468 alterations in individual tumors through tumor-specific causal inference. *PLoS Comput  
469 Biol* **15**, e1007088, doi:10.1371/journal.pcbi.1007088 (2019).
- 470 5 Hofree, M., Shen, J. P., Carter, H., Gross, A. & Ideker, T. Network-based stratification of  
471 tumor mutations. *Nat Methods* **10**, 1108-1115, doi:10.1038/nmeth.2651 (2013).
- 472 6 Paull, E. O. et al. Discovering causal pathways linking genomic events to transcriptional  
473 states using Tied Diffusion Through Interacting Events (TieDIE). *Bioinformatics* **29**,  
474 2757-2764, doi:10.1093/bioinformatics/btt471 (2013).
- 475 7 Basha, O., Mauer, O., Simonovsky, E., Shpringer, R. & Yeger-Lotem, E. ResponseNet  
476 v.3: revealing signaling and regulatory pathways connecting your proteins and genes  
477 across human tissues. *Nucleic Acids Res* **47**, W242-W247, doi:10.1093/nar/gkz421  
478 (2019).
- 479 8 Bashashati, A. et al. DriverNet: uncovering the impact of somatic driver mutations on  
480 transcriptional networks in cancer. *Genome Biol* **13**, R124, doi:10.1186/gb-2012-13-12-  
481 r124 (2012).
- 482 9 Ng, S. et al. PARADIGM-SHIFT predicts the function of mutations in multiple cancers  
483 using pathway impact analysis. *Bioinformatics* **28**, i640-i646,  
484 doi:10.1093/bioinformatics/bts402 (2012).
- 485 10 Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers.  
486 *Science* **362**, doi:10.1126/science.aav1898 (2018).
- 487 11 Vaswani, A. et al. in *Advances in neural information processing systems* 5998-6008  
488 (2017).
- 489 12 Tao, Y., Cai, C., Cohen, W. W. & Lu, X. From genome to phenotype: Predicting multiple  
490 cancer phenotypes based on somatic genomic alterations via the genomic impact  
491 transformer. *Pac Symp Biocomput* **25**, 79-90 (2020).

492 13 Cadow, J., Born, J., Manica, M., Oskooei, A. & Rodriguez Martinez, M. PaccMann: a  
493 web service for interpretable anticancer compound sensitivity prediction. *Nucleic Acids*  
494 **Res** **48**, W502-W508, doi:10.1093/nar/gkaa327 (2020).

495 14 Marquart, K. F. *et al.* Predicting base editing outcomes with an attention-based deep  
496 learning algorithm trained on high-throughput target library screens. *Nat Commun* **12**,  
497 5114, doi:10.1038/s41467-021-25375-z (2021).

498 15 Pelossof, R. *et al.* Affinity regression predicts the recognition code of nucleic acid-  
499 binding proteins. *Nat Biotechnol* **33**, 1242-1249, doi:10.1038/nbt.3343 (2015).

500 16 Osmanbeyoglu, H. U., Toska, E., Chan, C., Baselga, J. & Leslie, C. S. Pancancer  
501 modelling predicts the context-specific impact of somatic mutations on transcriptional  
502 programs. *Nat Commun* **8**, 14249, doi:10.1038/ncomms14249 (2017).

503 17 Tarassishin, L. & Lee, S. C. Interferon regulatory factor 3 alters glioma inflammatory and  
504 invasive properties. *J Neurooncol* **113**, 185-194, doi:10.1007/s11060-013-1109-3 (2013).

505 18 Wang, M. D. *et al.* A novel role of Kruppel-like factor 8 as an apoptosis repressor in  
506 hepatocellular carcinoma. *Cancer Cell Int* **20**, 422, doi:10.1186/s12935-020-01513-3  
507 (2020).

508 19 Zhang, Q., Stovall, D. B., Inoue, K. & Sui, G. The oncogenic role of Yin Yang 1. *Crit Rev*  
509 *Oncog* **16**, 163-197, doi:10.1615/critrevoncog.v16.i3-4.30 (2011).

510 20 Martinez, L. A. Mutant p53 and ETS2, a Tale of Reciprocity. *Front Oncol* **6**, 35,  
511 doi:10.3389/fonc.2016.00035 (2016).

512 21 Bailey, T. L. *et al.* MEME SUITE: tools for motif discovery and searching. *Nucleic Acids*  
513 **Res** **37**, W202-208, doi:10.1093/nar/gkp335 (2009).

514 22 Weirauch, M. T. *et al.* Determination and inference of eukaryotic transcription factor  
515 sequence specificity. *Cell* **158**, 1431-1443, doi:10.1016/j.cell.2014.08.009 (2014).

516 23 Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given  
517 motif. *Bioinformatics* **27**, 1017-1018, doi:10.1093/bioinformatics/btr064 (2011).

518 24 Zhu, L. J. *et al.* ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and  
519 ChIP-chip data. *BMC Bioinformatics* **11**, 237, doi:10.1186/1471-2105-11-237 (2010).

520 25 Osmanbeyoglu, H. U., Pelossof, R., Bromberg, J. F. & Leslie, C. S. Linking signaling  
521 pathways to transcriptional programs in breast cancer. *Genome Res* **24**, 1869-1880,  
522 doi:10.1101/gr.173039.114 (2014).

523 26 Zheng, R. *et al.* Cistrome Data Browser: expanded datasets and new tools for gene  
524 regulatory analysis. *Nucleic Acids Res* **47**, D729-D735, doi:10.1093/nar/gky1094 (2019).

525

## 526 Acknowledgements

527 The results published here are in whole or part based on data generated by The Cancer Genome  
528 Atlas project established by the NCI and NHGRI (accession number: phs000178.v7p6).  
529 Information about TCGA and the investigators and institutions that constitute the TCGA research  
530 network can be found at <http://cancergenome.nih.gov/>. We thank Jacob Stewart-Ornstein for  
531 helpful discussions. This work was supported by NIH award from R00CA207871. Y.T. was  
532 partially supported by Center for Machine Learning and Health Fellowship in Digital Health from  
533 Carnegie Mellon University. R.S. was partially supported by NIH award R21CA216452, by the  
534 National Human Genome Research Institute of the National Institutes of Health under award  
535 number R01HG010589, by the Pennsylvania Dept. of Health under award FP00003273, and by  
536 the Mario Lemieux Foundation. This work was also partially supported by the AWS Machine  
537 Learning Research Awards granted to R.S. The content does not necessarily represent the official  
538 views of the above funding agencies. The content is solely the responsibility of the authors and  
539 does not necessarily represent the official views of the National Institutes of Health. The  
540 Pennsylvania Department of Health specifically disclaims responsibility for any analyses,  
541 interpretations or conclusions.

542 **Ethics declarations**

---

543 Competing interests

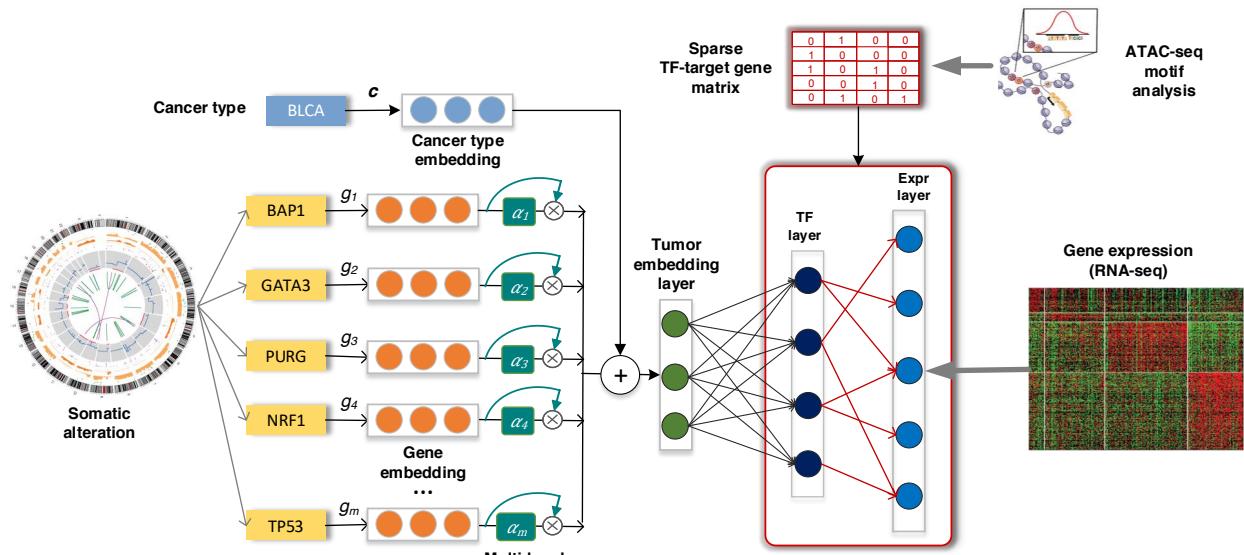
544 The authors declare no competing financial interests.

545

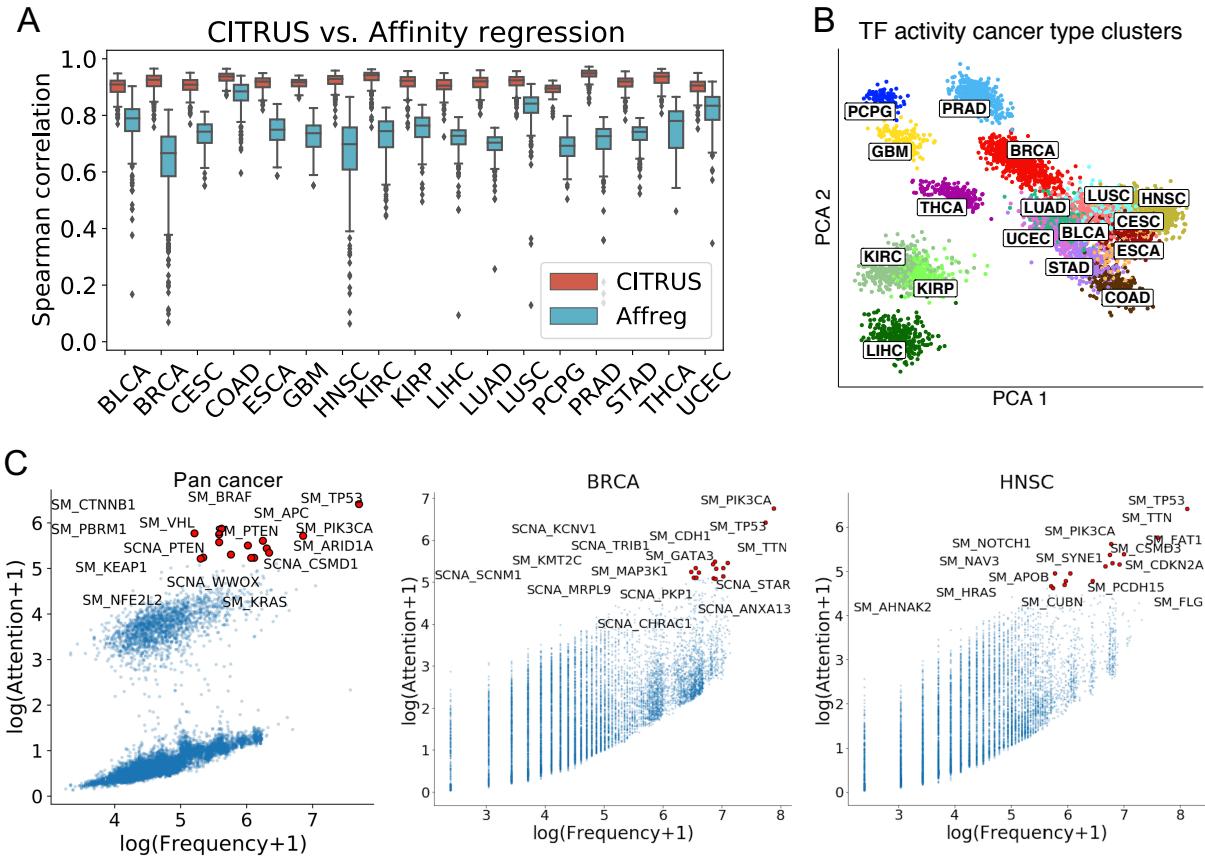
546 **Author contributions**

547 H.U.O. conceived general ideas, supervised implementation, planned validation, and interpreted  
548 results. X.M. developed novel machine learning models and implemented validation experiments.  
549 Y.T. developed novel machine learning models and planned validation experiments. D.P.  
550 collected and preprocessed ATAC-seq data of the study. X.L. and R.S. helped to conceive  
551 general ideas, and interpret results. G.L. and A.G.Z performed the experimental validation and  
552 wrote the experimental validation section. E.T. supervised the experimental validation. H.U.O.  
553 and Y.T. wrote the manuscript. X.M., X.L. and R.S. contributed to reviewing, and editing the  
554 manuscript.

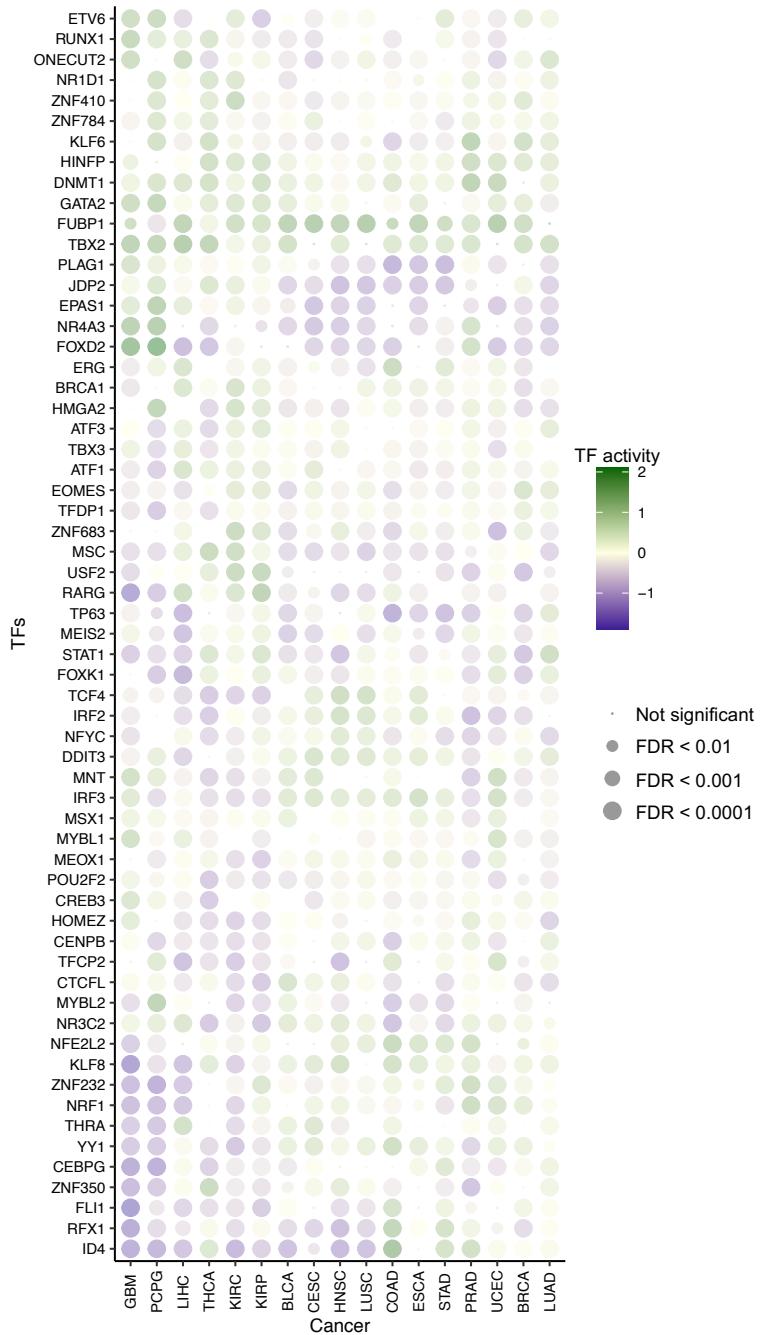
555

**Figures**558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569

**Fig. 1: Overview of CITRUS algorithm: the attention-based model with TF:target-gene priors.** The input to our framework includes somatic alteration and copy number variation, assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), tumor expression datasets and TF recognition motifs. CITRUS takes somatic alteration and copy number variation data as input and encodes them as a tumor embedding using a self-attention mechanism. Additional cancer type information is used for stratifying the confounding factor of tissue type. The middle layer further transforms the tumor embeddings into TF layer, which represents the inferred activities of 320 TFs. Finally, the gene expression levels are predicted from the TF activities through a TF:target-gene priors constrained sparse layer based on ATAC-seq.

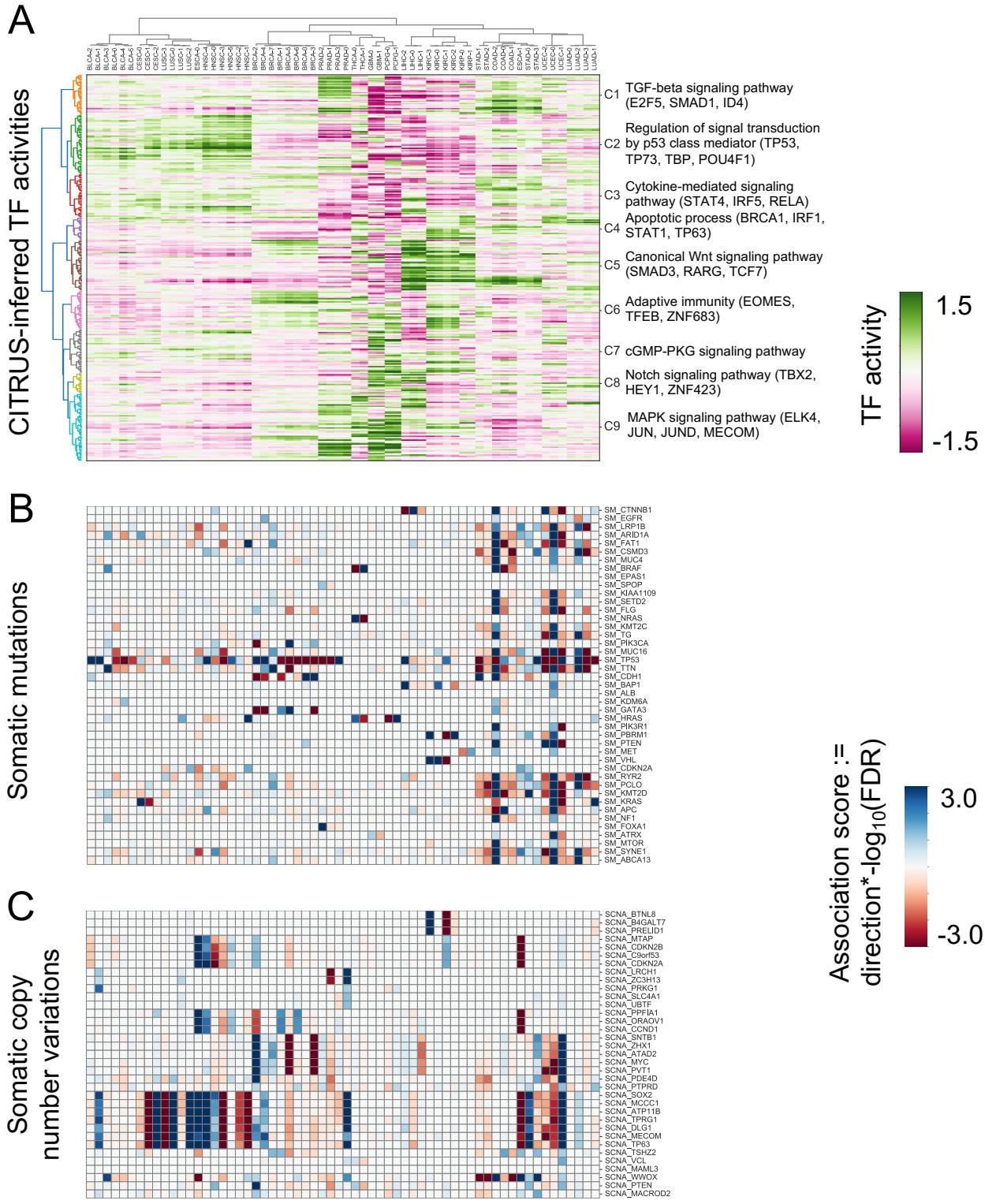


570  
 571 **Fig. 2: CITRUS models impact of somatic alterations on gene expression programs. (A)**  
 572 Performance of the CITRUS models for each cancer type compared to regularized bilinear  
 573 regression method, affinity regression (Affreg). Boxplots showing mean Spearman correlations  
 574 between predicted and actual gene expression using the CITRUS model (orange) and Affreg  
 575 (light blue) for TCGA data each cancer-type. Both CITRUS and Affreg are tuned on the training  
 576 and validation sets, and evaluated on the same held-out test set. **(B)** Principal components  
 577 analysis (PCA) of TF activity colored by cancer type. **(C)** Mutation frequencies and CITRUS-  
 578 inferred attention weights of genes. We show cumulated results in Pan-cancer and individual  
 579 cancer types. See **Supplementary Fig. 1** for full compilation of each cancer type.  
 580  
 581  
 582



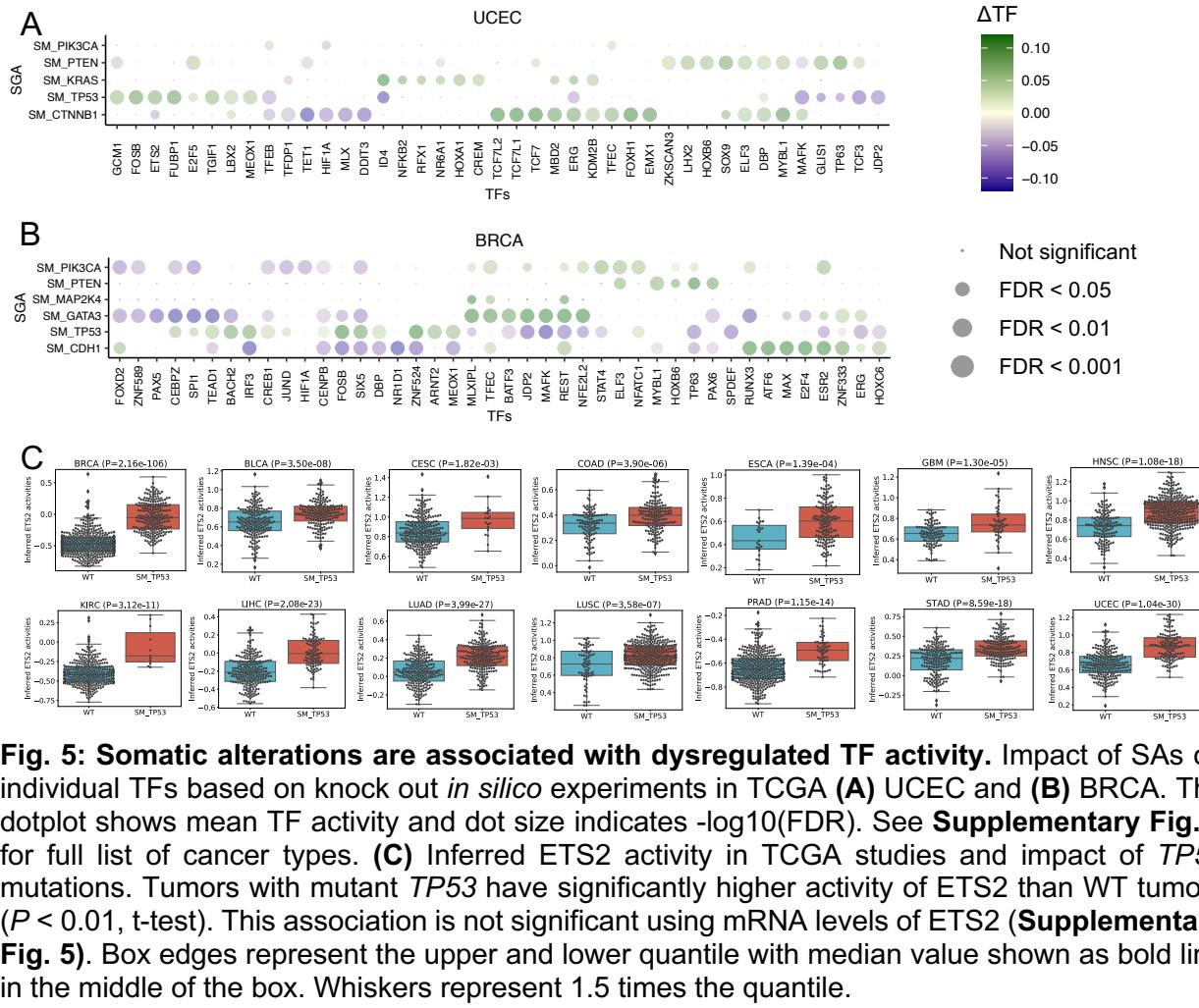
583  
584  
585  
586  
587  
588  
589  
590  
591  
592

**Fig. 3: CITRUS identifies regulatory features of tumor types.** Dotplot shows the mean inferred TF activity differences between samples in a given tumor type vs. those in all other tumor types by t-test. We corrected for FDR across TFs for each such pairwise comparison and identified significant TF regulators and the results are shown in **Supplementary Table 1**. The dot size indicates  $-\log_{10}(\text{FDR})$ . For clarity, the union of the top 4 significant TFs in each cancer type is shown.



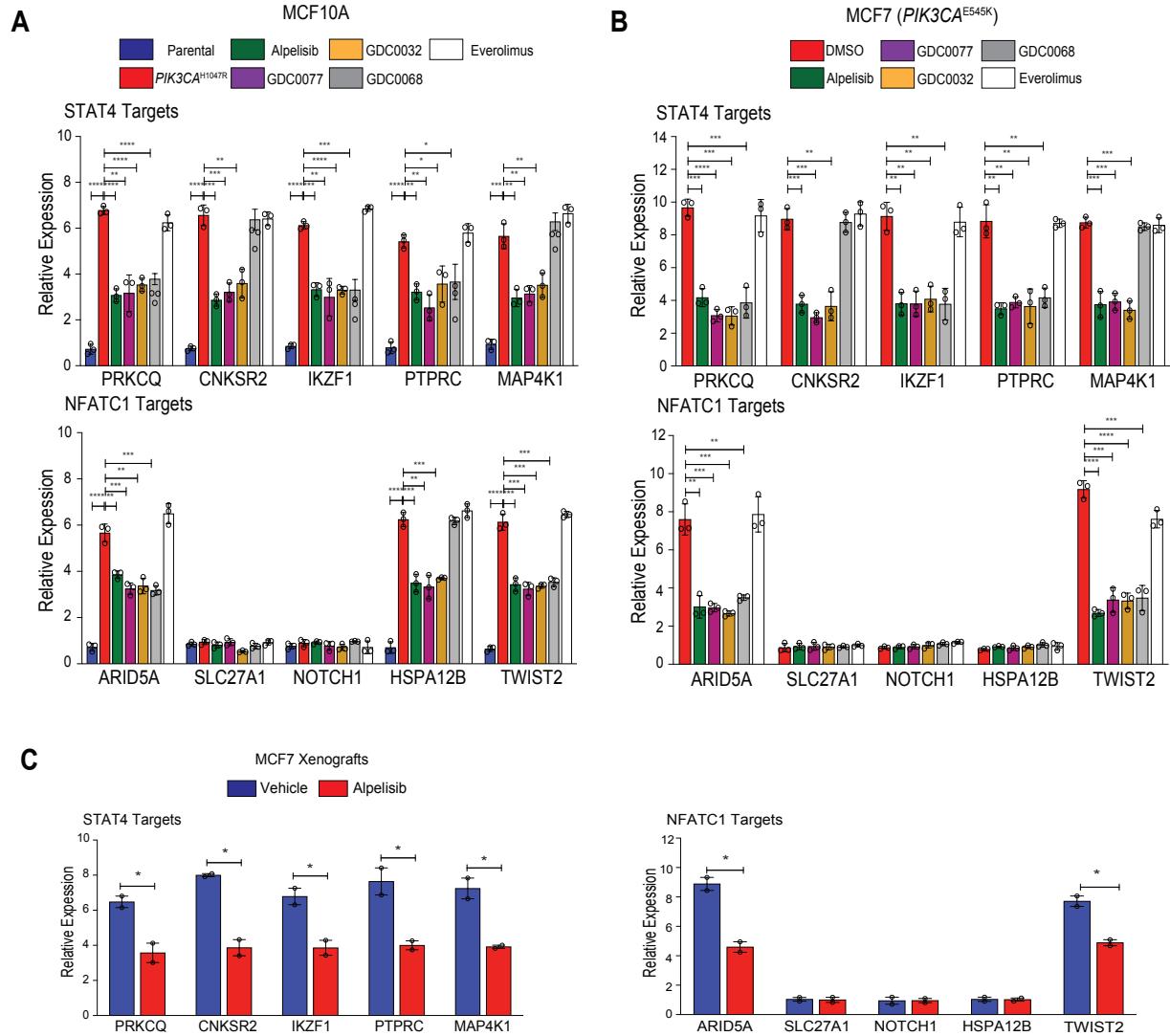
593  
 594  
 595  
 596  
 597

**Fig. 4: Landscape of somatic alterations and inferred TF activities. (A)** Top heatmap shows tumor subtypes clustered by the mean TF inferred activity. Color scale is proportional to TF activity. The heat map shows  $-\log_{10}$  FDR values multiplied by the direction derived by Fisher exact test for **(B)** mutations and **(C)** copy number variations.



**Fig. 5: Somatic alterations are associated with dysregulated TF activity.** Impact of SAs on individual TFs based on knock out *in silico* experiments in TCGA (A) UCEC and (B) BRCA. The dotplot shows mean TF activity and dot size indicates  $-\log_{10}(\text{FDR})$ . See **Supplementary Fig. 3** for full list of cancer types. (C) Inferred ETS2 activity in TCGA studies and impact of *TP53* mutations. Tumors with mutant *TP53* have significantly higher activity of ETS2 than WT tumors ( $P < 0.01$ , t-test). This association is not significant using mRNA levels of ETS2 (**Supplementary Fig. 5**). Box edges represent the upper and lower quantile with median value shown as bold line in the middle of the box. Whiskers represent 1.5 times the quantile.

598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625



626  
627 **Fig. 6: Experimental validation of the PIK3CA-driven TF in breast cancer. (A)** Validation of  
628 canonical target genes of STAT4, and NFATC1 in MCF10A parental and PIK3CAH1047R cells  
629 treated with DMSO or a panel of PI3K/AKT inhibitors (alpelisib 1 $\mu$ M, GDC0077 100nM, GDC0032  
630 100nM, GDC0068 1 $\mu$ M, Everolimus 100nM) in starvation media for 4 hours, using qPCR.  
631 Expression levels were normalized to ACTIN. Circles represent independent experiments. Error  
632 bars show SD (n=3). \*p<0.05, \*\*p<0.01, \*\*\*p<0.001, \*\*\*\*p<0.0001. (one-side unpaired t-test). **(B)**  
633 Similar analysis of expression of target genes in MCF7 (*PIK3CA*<sup>E545K</sup>) was performed as in A.  
634 **(C)** Validation of the same target genes as in A, in MCF7-derived xenograft tumors treated with  
635 Vehicle or Alpelisib ( (for details see Methods). Expression levels were normalized on ACTIN.  
636 Circles represent independent experiments. Error bars show SED (n=2). \*p<0.05, \*\*p<0.01,  
637 \*\*\*p<0.001, \*\*\*\*p<0.0001. (one-side unpaired t-test).