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Abstract

Cancer is a disease of gene dysregulation, where cells acquire somatic and epigenetic alterations
that drive aberrant cellular signaling. These alterations adversely impact transcriptional programs
and cause profound changes in gene expression. Ultimately, interpreting patient somatic
alterations within context-specific regulatory programs will facilitate personalized therapeutic
decisions for each individual. Towards this goal, we develop a partially interpretable neural
network model with encoder-decoder architecture, called Chromatin-informed Inference of
Transcriptional Regulators Using Self-attention mechanism (CITRUS), to model the impact of
somatic alterations on cellular states and further onto downstream gene expression programs.
The encoder module employs a self-attention mechanism to model the contextual impact of
somatic alterations in a tumor-specific manner. Furthermore, the model uses a layer of hidden
nodes to explicitly represent the state of transcription factors (TFs), and the decoder learns the
relationships between TFs and their target genes guided by the sparse prior based on TF binding
motifs in the open chromatin regions of tumor samples. We apply CITRUS to genomic, mMRNA
sequencing and ATAC-seq data from tumors of 17 cancer types profiled by The Cancer Genome
Atlas. Our computational framework enables us to share information across tumors to learn
patient-specific TF activities, revealing regulatory program similarities and differences between
and within tumor types. We show that CITRUS not only outperforms the competing models in
predicting RNA expression, but also yields biological insights in delineating TFs associated with
somatic alterations in individual tumors. We also validate the differential activity of TFs associated
with mutant PIK3CA in breast cancer cell line and xenograft models using a panel of PI3K pathway
inhibitors.
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Introduction

Interplay between complex signaling inputs and genomic transcriptional responses dictates
important cellular functions. Dysregulation of this interplay leads to development and progression
of disease, most clearly delineated in the context of certain cancers. Cancer cells acquire somatic
alterations that drive aberrant signaling which adversely impact transcriptional programs and
cause profound changes in gene expression. We still lack a complete understanding of the
transcriptional programs and how disruptions in this code affects cellular function in cancer.
Interpreting patient somatic alterations within context-specific transcriptional programs can
facilitate therapeutic decisions for each individual.

In the last decade, a monumental effort to molecularly profile tumors was undertaken by consortia
such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium
(ICGC)"2. These multimodal datasets including gene expression and somatic alterations such as
recurrent mutations and copy number variations (CNVs) have enabled the integration of
transcriptional states with upstream signaling pathways. Several methods have been developed
to connect somatic alterations to a prior network or to gene expression®®. More recently, the
Genomic Data Analysis Network generated assay for transposase-accessible chromatin with
high-throughput sequencing (ATAC-seq) data for the subset of TCGA samples (~500 patients)'°.
However, so far methods for linking somatic alterations to transcriptional programs across
cancers have not incorporated tumor chromatin profiling to encode context-dependent and/or
non-linear impacts of transcription factors (TFs) on gene expression. Incorporating DNA
sequence information at promoter, intronic and intergenic enhancers using TF motif analysis from
tumor ATAC-seq profiles will improve the modeling of transcriptional regulation and delineating
the impact of somatic alterations on transcriptional programs.

Deep learning (DL) is a powerful tool for capturing non-linearity. Attention mechanism is a deep
learning module that has been widely used in computer vision and natural language processing.
In contrast to normal deep learning units, the self-attention mechanism considers the contextual
effort of all the input features to each other and assigns different weights of attention to these
inputs'. In general, the attention mechanism can improve the performance of the DL models or
increase the interpretability of the models. More recently, attention mechanisms have also been
applied to cancer genomics, including cancer driver detection'?, drug response prediction'® and
predicting base editing outcomes'. The genomic impact transformer (GIT) model utilizes the self-
attention mechanism to encode the effects of somatic alterations in cancer and uses multi-layer
perceptrons to predict differentially expressed genes as the output of the model'?. The attention
mechanism enables it to select the likely driver mutations that lead to downstream phenotypes,
such as transcriptome expression levels. However, the GIT model lacks interpretability in the
sense it does not model the intermediate TFs during the signaling from somatic alterations to
gene expression programs.

In this work, we present Chromatin-informed Inference of Transcriptional Regulators Using Self-
attention mechanism (CITRUS), a partially interpretable neural network (NN) model with encoder-
decoder architecture, to link somatic alterations to transcriptional programs through modeling the
statistical relationships between mutations, CNVs, gene expression and TF-target gene prior
information (based on TF binding motif analysis in the open chromatin regions based on tumor
ATAC-seq profiling). CITRUS explicitly includes the transcriptional programs in the model, with
external knowledge of TF:target-gene priors based on ATAC-seq data. We showed that CITRUS
not only outperforms competing models in predicting mRNA expression, but also yields important
biological insights in finding dysregulated TFs in individual tumors. We next performed a
systematic knock out in silico approach to associate frequent somatic alterations with changes in
inferred TF activities in each cancer type. This analysis identified key regulators associated with
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the major somatic alterations. In particular, we associated PIK3CA activating mutations with
altered activities of distinct sets of TFs in different cancers. Notably, in cell line and xenograft
models of breast cancer, we validated the altered activity of several TFs in the presence of mutant
PIK3CA with PI3K pathway inhibitors by measuring expression of target genes, confirming the
context-specific predictions of our model. These proof-of-principle results suggest a
computational strategy for personalized deployment of targeted therapeutics in a pan-cancer
setting.

Results

Pan-cancer modeling of regulatory programs

To systematically interpret somatic alterations (SAs) within context-specific transcriptional
programs and identify disrupted TFs that drive tumor-specific gene expression patterns across
multiple cancer types, we developed CITRUS computational framework (Fig. 1). The CITRUS
model mimics the biological processing of signaling pathways from SAs to the signaling pathways,
to TFs, and finally to the target gene expressions (mMRNA levels). Therefore, the model follows an
overall encoder-decoder architecture (Fig. 1). The encoder module compresses the input SAs
into a latent vector variable called a tumor embedding. Then the decoder part first predicts the TF
activities from the tumor embedding, and further predicts the TF target-gene expression. We used
sparse TF-target gene priors based on tumor ATAC-seq data. Briefly, we started with an atlas of
chromatin accessible events derived from the tumor types to be analyzed, using ATAC-seq
profiling data (“Methods” section). We represented every gene by its feature vector of TF-binding
scores, where motif information was summarized across all promoter, intronic, and intergenic
chromatin accessible sites assigned to the gene (see the “Methods” section).

The application of our approach to 17 tumors from TCGA identified key TFs associated with SAs.
Our dataset included samples from seventeen different tumor types for which mRNA, somatic
mutation, copy number variation and ATAC-seq data were available: bladder urothelial carcinoma
(BLCA, n=371), breast cancer (BRCA, n=719), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC, n=267), colorectal adenocarcinoma (COAD, n=271),
esophageal carcinoma (ESCA, n=170), glioblastoma multiforme (GBM, n=143), head and neck
squamous carcinoma (HNSC, n=475), kidney renal cell-clear carcinoma (KIRC, n=357), kidney
renal papillary cell carcinoma (KIRP, n=272), liver hepatocellular carcinoma (LIHC, n=336), lung
adenocarcinoma (LUAD, n=459), lung squamous cell carcinoma (LUSC, n=430),
pheochromocytoma and paraganglioma (PCPG, n=109), prostate cancer (PRAD, n=449),
stomach adenocarcinoma (STAD, n=373), thyroid carcinoma (THCA, n=216), and uterine corpus
endometrial carcinoma (UCEC, n=361).

For statistical evaluation, we computed the mean Spearman correlation between predicted and
measured gene expression profiles on held-out samples (see Methods). We obtained significantly
better performance than a regularized bilinear regression algorithm called affinity regression
(AR)''® that was trained independently for each cancer type and explains gene expression
across tumors in terms of SA status and presence of TF binding sites based on pan-cancer ATAC-
seq atlas (Fig. 2A).

To identify the SAs that have an impact on gene expression programs, we compared the
relationship of overall attention weights (inferred by CITRUS) and the frequencies of somatic
alterations (used as the control group) across all cancer types and within a cancer type (Fig 2B
and Supplementary Fig. 1). In general, the attention weights are correlated with the alteration
frequencies of genes. For example, the top altered genes TP53 and PIK3CA had high attention
weights. However, our self-attention mechanism assigned low attention weights to many highly
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frequently altered genes, indicating these genes can be cancer passengers. Indeed, we found
genes with high attention weights were enriched for known cancer drivers from the IntOGen®
database. We first grouped all the genes into two parts with the threshold of 2 (log(attention+1)
>= 2 as the more attended group, and log(attention+1) < 2 as the less attended group). Using the
Fisher exact test, we found known cancer drivers were enriched in the highly attended group (P
= 4.48 x 10™*") for pan-cancer analysis.

Next, we used CITRUS across tumor types to learn patient-specific TF activities. Clustering of
tumors by inferred TF activities as derived from the model largely recovered the distinction
between the major tumor types (Fig. 2C). In particular, samples with squamous morphology
components (BLCA, CESC, ESCA, HNSC, and LUSC) grouped together. Similarly, tumors with
tissue or organ similarities or proximity also grouped together. These included neuroendocrine
and glioma tumors (GBM and PCPG), clear cell and papillary renal carcinomas (KIRC and KIRP),
a gastrointestinal group (COAD, and STAD), breast and endometrial cancer (BRCA and UCEC).
We also observed similar clustering with tumor embeddings (Supplementary Fig 2).

Next, we assessed TF-tumor type associations by t-test and compare inferred TF activities
between samples in a given tumor type vs. those in all other tumor types. We corrected for FDR
across TFs and identified significant shared and cancer-specific TFs and the results are shown
in Supplementary Table 1. Fig. 3 shows the average TF activity and significance of cancer-
specifc TFs across cancer types. For clarity, only the union of 4 top significant TFs per cancer are
shown. FUBP1, which regulates c-Myc gene transcription, had significantly higher inferred activity
in many cancer types including LIHC, HNSC, BLCA, ESCA, CESC, LUSC, PRAD, BRCA, and
UCEC. Moreover, in agreement with previous reports, IRF3 activity was significantly higher in
GBM'""; KLF8 had decreased activity in GBM, LIHC and KIRC, consistent with its role in
suppressing cell apoptosis during tumor progression'®; YY1, which regulates various processes
of development'® and had increased activity in CESC and COAD.

CITRUS-inferred TF-activity based cancer subtypes and somatic alteration landscape
Next, we asked whether our method could identify TF activity based subtypes associated with
SAs. We conducted k-means clustering on inferred TF activities for each cancer type to get
subtypes, and then conducted hierarchical clustering for both the cancer subtypes and TF
activities. Fig. 4 shows the clustering of subtypes by CITRUS-inferred mean TF activities and
corresponding SA associations (see Methods). We observed major variations in mean TF
activities across different cancer types, and less but significant variations within each cancer type.
These variations within a cancer type may be explained by the distinct mutation or copy number
alteration profiles of different subgroups. For example, clustering by TF activities revealed
subclasses of endocervical adenocarcinoma (CESC) enriched with KRAS; kidney renal cell-clear
carcinoma (KIRC) enriched with VHL, BAP1, PBRM1 and TP53; liver hepatocellular carcinoma
(LIHC) enriched with CTNNB1, BAP1 and TP53; thyroid carcinoma (THCA) enriched with NRAS,
HRAS and BRAF status; pheochromocytoma and paraganglioma (PCPG) enriched with HRAS
status.

We next developed a systematic statistical approach for modelling the impact of SAs on TF
activity, with the eventual goal of deciphering cancer-specific downstream effects of targeted
therapies and potentially discovering secondary targets for combination drug strategies. We
implemented a knock out in silico approach that removes a specific somatic mutation (or copy
number variation) g from all the tumor samples that carry it to identify a set of TFs predicted to be
significantly dysregulated by each SA in each TCGA cancer study (see Methods section). Fig. 5A
shows the TF activities associated with SAs in UCEC. Our model identified mutations in PIK3CA,
PTEN, KRAS, TP53, and CTNNB1 as significantly associated with various TF activities across
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UCEC tumors (~66% of tumors have PTEN inactivating mutations, ~50% have PIK3CA activating
mutations, ~38% have TP53 mutations, ~26% have CTNNB1, and ~20% have KRAS). UCEC
samples with PTEN mutations are mutually exclusive with TP53, CTNNB1 and KRAS showed
distinct patterns of TF activities. Mutations in PTEN, which inactivate its phosphatase activity,
increase PI3K signaling. TFs associated with PTEN mutations involved in cell cycle and
differentiation including E2F5, TP63, ELF3, DBP, ZKSCAN3, LHX2, HOXB6, SOX9, DBP,
MYLB1, and GLIS1. Whereas, TFs associated with CTNNB7 mutant status were involved in WNT
and TGF-beta signaling including TCF7, TCF7L2, TCF7L1, FOXH1, EMX1, and MYBLA1.

Similarly Fig. 5B shows the TF activities associated with SAs in BRCA. Our model identified
mutations in PIK3CA, PTEN, MAP2K4, GATA3, TP53, and CDH1 as significantly associated with
various TF activities across tumors. In BRCA, ~36% of tumors have PIK3CA activating mutations,
~35% have TP53 , ~15% have GATA3, ~15% have CDH1, ~10% have PTEN, and ~7% have
MAP2K4 mutations. Activating mutations in PIK3CA often occur in one of three hotspot locations
(E545K, E542K and H1047R) and promote constitutive signaling though the pathway. TFs
associated with PIK3CA mutations involved in WNT signaling, epithelial-mesenchymal transition
and cancer stem cell transition including ELF3, TFEC, STAT4, STAT5B, NFATC1, GLIS1, CDC5L
and AR. BRCA samples with PIK3CA and TP53 mutations are mutually exclusive. Our knock
out in silico analysis associated different regulators with these mutations. TP53 mutant tumors
are associated with increased activity of TFs that have roles in pro-growth such as ETS2 and
FOSB, growth modulatory such as THAP1, CREB3L1, and CEBPZ and development MEF2C/D,
MEOX1, MSX1. We also performed similar analyses for other cancer types (Supplementary Fig.
3).

We found TP53 mutation associated with similar TFs across different cancer types
(Supplementary Fig. 4). TP53 is one of the most frequently inactivated tumor suppressor genes
that suffers from missense mutations in human cancer. These missense mutations express a
mutant form of p53 protein. Therefore, the cells retain and express a mutant form of the p53
protein that can either disable other tumor suppressors (e.g., p63 and p73) or enable oncogenes
such as ETS2, an ETS family member®. Indeed, inferred TF activity of ETS2 was increased in
mutant versus WT TP53 tumors across cancers (Fig. 5C); these differences are not as significant
at the gene expression level (Supplementary Fig. 5).

Experimental validation of oncogenic mutant PI3K-driven TF activity in breast cancer

The PI3K pathway controls proliferation, metabolism, survival and motility and is frequently
activated in many cancers, often via mutations in the gene coding for the alpha subunit of the
PI3K, PIK3CA?. The PI3K inhibitor alpelisib was recently approved in metastatic estrogen
receptor positive/PIK3CA mutant breast cancer?®. Our analysis associated mutant PIK3CA with
STAT4, and NFATC1 transcriptional activity in breast cancer patients. To validate the effect of
the oncogenic PI3K in the activity of these TFs, we utilized quantitative PCR (qPCR) to measure
the expression of canonical target genes in parental and PIK3CA™%'R knock-in MCF10a cells
treated with a panel of PI3K/AKT inhibitor (the PI3Ka specific inhibitors alpelisib and GDC0077,
the PI3Ka/y/d inhibitor GDCO0032/Taselisib, the pan-AKT inhibitor GDC0068, and the mTOR
inhibitor RADOO1/Everolimus). Gene expression analysis revealed altered expression of
canonical STAT4, and NFATC1 target genes upon mutant PIK3CA™"'%"R compared to parental
MCF10a cells. Notably, the expression changes were altered in the opposite direction upon
treatment with PI3BK/AKT inhibitors (Fig. 6A, 6B), but not mTOR, suggesting the robust differential
regulation of the transcriptional program of STAT4, and NFATC1 by the PI3K pathway. We also
validated these findings in MCF7 (PIK3CAF***) breast cancer cells and in MCF7-derived
xenograft tumors treated with vehicle or alpelisib (see Methods section) (Fig. 6B, 6C), suggesting



252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

296
297
298
299
300

the PI3K-mediated regulation of the transcriptional activity of STAT4, and NFATC1 in cells and
tumors.

Discussion

Tumor data sets are a challenging case for regulatory network analysis due to the complexity of
cancer genomes (e.g. alterations such as aneuploidy, CNVs, structural variation, and mutations)
confounding epigenomic and regulatory sequence analysis. Our method provides a systematic
framework for integrating resources on regulatory genomics with tumor expression and mutation
and CNV data to better understand expression programs driven by SAs in cancers and infer
patient-specific TF activities. Our method uses a deep learning framework called a self-attention
mechanism to capture the complex contextual interactions between somatic alterations. For more
accurate representation of TF:target-genes relationship, we leveraged ATAC-seq tumor data from
patients. Our model is designed to capture flow of information from altered genes (e.g. signaling
proteins) to TFs to target genes; the knock out in silico analysis is likely to identify causal impacts
of SAs. Joint modeling across different tumor types also reveals patient subgroups associated
with SAs. We validated CITRUS-predicted TF activity associated with activating PIK3CA mutation
in BRCA, using vitro and vivo models giving a proof-of-principle for the potential therapeutic
application of our approach. We showed that for TFs associated with PIK3CA mutation, TF target
gene expression changed after PI3K inhibitor treatment. In cases where a SA is associated with
the activity of a targetable TF or their upstream/downstream component, our analysis may
suggest combination therapies.

One limitation of the TF binding motif search approach is that TFs of the same family often share
a similar motif and thus are difficult to disambiguate. Therefore, TF motifs encompass the
individual activities of multiple TFs. Moreover, co-binding TF binding patterns (e.g., AP-1-IRF
complexes) can be biologically more important for fine tuning of gene expression. We will also
investigate representing these composite elements as features in our models. Furthermore, we
do not represent directionality in the TF:target- gene priors (i.e., whether a gene is activated or
repressed by a TF). Hence, negative values of inferred TF activities can be meaningfully
interpreted by prior knowledge of whether the TF is acting as an activator or as a repressor. These
limitations may confound the interpretation of activities of TFs with context-specific activator and
repressor roles. Further, tumor data sets are also a challenging case for regulatory network
analysis due to the presence of stromal/immune cells within the tumor and the heterogeneity of
cancer cells themselves. However, our framework can be extended to modeling of single-cell
RNA-seq or deconvoluted RNA-seq by computational methods as we will report elsewhere.

Despite these limitations, modeling impact of SAs on transcriptional programs may ultimately
enable the development of individualized therapies, aid in understanding mechanisms of drug
resistance, and allow the identification of biomarkers of response. We anticipate that
computational modeling of transcriptional regulation across different tumor types will emerge as
an important tool in precision oncology, aiding in the eventual goal of choosing the best
therapeutic option for each individual patient.

Methods

Data preprocessing

We downloaded the RNA-seq data for each of the 17 tumor types from the Genomic Data
Commons (GDC) portal (https://gdc.cancer.gov/about-data/publications/pancanatlas). The RNA-
seq expression data have been log2-transformed into RSEM values. We obtained processed
gene-level somatic alterations of each cancer patient from Cai et al.*. Briefly, the value in the
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tumor for that gene was set to 1 if it hosts a non-synonymous mutation, small insert/deletion, or
somatic copy number alteration (deletion or amplification), and otherwise the value was set to 0.

We downloaded the ATAC-seq pancancer peak set from GDC portal
(https://gdc.cancer.gov/about-data/publications/ATACseq-AWG)'?. Using the MEME?" curated
Cis-BP?# TF-binding motif reference, we scanned pancancer ATAC-seq peak atlas with FIMO?
to find peaks likely to contain each motif (P<107°). The final set contained 320 motifs. We
associated each peak to its nearest gene in the human genome using the ChlPpeakAnno
package?. ATAC-seq peaks located in the body of the transcription unit, together with the 100 kb
regions upstream of the transcription start site (TSS) and downstream of the 3’ end, were
assigned to the gene. TF-binding site identification was used to turn each gene’s set of assigned
ATAC peaks into a feature vector of binding signals by assigning the maximum score of each
motif across all peaks to a gene. Then, we created a matrix C < {0,1}* that defines a candidate
set of associations between TFs and target genes. Ci; = 1 when there is a connection from TF j
to the gene/RNA i (red lines connecting the TF layer and Exp layer in Fig. 1).

CITRUS model
Formally, given a specific tumor t, with the cancer types s, we have a set of SAs in the tumor
{gu. i, the decoder module first maps each gene g (it is g, here, but we omit the subscript for
the simplicity of notation) into its corresponding gene vector e;. Then the decoder utilizes the
multi-head self-attention mechanism to calculate the weighted sum of the both gene embeddings
and cancer type embedding:

e, =e;+ae +oze, +oazes + -+ ey,
The self-attention mechanism takes input of gene embeddings of all the mutated/altered genes,
and output the attention weights {a,};-; through a sub-neural network. Such attention
mechanism captures the contextual impact of co-existing somatic alterations and their complex
interactions instead of simpler models. Interested readers can find the mathematical details in the
references’.

The decoder part first infers the TF activities from the encoded tumor embedding e;:
ef = tanh(ert + bf)
We used the tanh activation instead of ReLU operation, which is more widely used in deep
learning, because it has similar performance to that of ReLU in our model and generates more
biologically meaningful results, e.g., distribution of TFs e;. Finally CITRUS predicts the cancer
type specific mRNA expressions from the TF activities:
y = 0(W€f + br),
where W corresponds to the sparse TF:target-gene matrix constrained by the prior C € {0,1}**L.
More specifically, in order to integrate priors into our model, W share the same shape with prior
C,and W, ; is allowed to be nonzero only when C; ; = 1, and W;; is constrained to be non-negative
value. The loss function to be optimized is thus:
MSE(y,9)
One might use other common approaches to integrate the priors of C into the W, i.e., by applying
a Gaussian prior to the W, which is equivalent to adding an additional penalty to the loss function
Zi,j:ci,jzo(W)ﬁ ;- However, this “soft” constraint tends to generate less stable TF layers across

different runs of training compared to the “hard” constraints shown in our present work.

We introduced additional dropout operations with dropout rate of 0.2 after the input layer,
activated tumor embedding layer, and activated TF layer to increase the model robustness to
noise and prevent overfitting.
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Training and evaluation: We implemented the CITRUS through the PyTorch package
(https://pytorch.org/) and trained through Adam optimizer with default parameters except the
learning rate’® and weight decay. We set learning rate to be 1 x 1073, and weight decay to be
1 x 107>, For each fold of training, we used early stopping with patience of 30 steps to stop
training.

For statistical evaluation, we computed the mean Spearman correlation (p) between predicted
and measured gene expression profiles on held-out patients for each tumor type. We splitted the
dateset into training (40%), validation (20%) and test sets (20%). For CITRUS model, we utilized
the training and validation sets to tune hyperparameters such as learning rate and training steps,
and then evaluated on the held-out test sets. For affinity regression (see below), we seperated
datasets by cancer type, and conducted 5-fold cross-validation to tune hyperparameters for each
type on training and validation sets, and then applied the trained model with selected
hyperparameters to the test set for performance evaluation. In order to increase the stability for
the analysis of inferred TF activities, we ensembled multiple CITRUS models with different
random seeds, by bootstrapping the model for 10 times, and integrate the TF layer by taking the
average of 10 trials to increase the stability of inference.

Training the affinity regression models

AR is an algorithm for efficiently solving a regularized bilinear regression problem'>?* | defined
here as follows. For a data set of M tumor samples profiled using RNA-seq with N genes, we let
YeRMM be the log 10 gene expression profiles of tumor samples. Each column of Y corresponds
to an RNA-seq experiment for a cancer type. We define each gene’s TF attributes in a matrix D
eRMQ where each row represents a gene and each column represent the hit vector for a TF, that
is, the bit vector indicating whether there is binding site for the TF of each gene based on ATAC-
seq data. We define the SA attributes of tumor samples as a matrix P € R™ where each row
represents a tumor sample and each column represents the somatic alteration status for the tumor
sample. We set up a bilinear regression problem to learn the weight matrix W € R%S on paired of
TF and SA features:

DWP'~Y

We can transform the system to an equivalent system of equations by reformulating the matrix
products as Kronecker products

DWP '~ Y & (P®D) vec(W) ~ vec(Y)

where @ is a Kronecker product and vec(.) is a vectorizing operator that stacks a matrix and
produces a vector, yielding a standard (if large-scale) regression problem. Full details and a
derivation of the reduced optimization problem are provided elsewhere'®.

Contextual impact of somatic alterations with knock out in silico analysis

We implemented a knock out in silico approach that removes a specific somatic mutation (or copy
number variation) g from all the tumor samples that carry it. The new knocked-out SA profiles and
CITRUS-inferred TF activities generate the “wild type” corpus that does not contain this
alteration g. In contrast, all the original samples containing the alteration g serve as the
"mutant/altered" group. We finally conducted the t-test between the mutant group and wild type
group to evaluate the contextual impact of mutation g. The knockout in silico is different from the
normal t-test, since it captures contextual effects of mutations through the non-linear attention
module of CITRUS, and provides a perfect experiment/control setting where all mutations are the
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same but mutation g. For a complex genotype, the model explains TF regulator activity across
tumors. We then corrected for multiple hypotheses across regulator models, treating inferred TF
activities as separate groups of tests.

Selection of TF targets for validation experiments
The selection of the canonical target genes for each TF, was performed using the Cistrome
Cancer Transcription Factor targets tool for BRCA, in the Cistrome project browser®

Cell lines and PI3K/AKT/mTOR inhibitors

MCF10A Isogenic parental and PIK3CA"'%'R heterozygous mutants were purchased from
Horizon. MCF-10A cells were maintained in DF-12 media supplemented with 5% filtered
horse serum (Invitrogen), EGF (20 ng/uL) (Sigma), hydrocortisone (0.5 mg/mL) (Sigma),
cholera toxin (100 mg/mL) (Sigma), insulin (10 pg/mL) (Sigma), and 1% penicillin/streptomycin.
Cells were used at low passages and were incubated at 37°C in 5% CO2. MCF10A parental and
mutant cells were seeded in 6-multiwell plates in regular culture conditions to allow correct
attachment and ensure ~75% confluency at harvesting day. 24 hours after seeding, cells were
washed twice with PBS before adding the starvation media (without serum, EGF and insulin).
Where indicated, cells were treated with DMSO as control or alpelisib (1uM), taselisib (100nM),
GDCO0077 (100nM), GDCO0068/ipatasertib (1uM) or RADOO1/everolimus (100nM) for 4h.

MCF7 were purchased from ATCC (ATCC HTB-22) and grown in DMEM/F12 supplemented with
10% FBS, penicillin/ streptomycin 1% under standard conditions.

The PI3Ka-specific inhibitors alpelisib and GDCO0077, the PI3Ka/y/® taselisib, the pan-AKT
inhibitor GDCO0068/ipatasertib, the mTORC1 inhibitor RADO0O1/everolimus were purchased
(Selleckchem). All the cells were tested regularly for mycoplasma, to ensure experiments in
mycoplasma-free cultures.

In vivo studies

For the MCF7 xenograft study, 0.18 mg/90d-release oestrogen pellets were implanted into 6-
week-old female NOD scid gamma mice 3 days prior to the tumor cell transplantation. Ten million
MCF7 cells per mouse were subcutaneously transplanted.

RNA extraction and RT-qPCR

RNA was isolated using the QIAGEN RNeasy Kit and retrotranscription was performed using the
iScript cDNA synthesis kit from Bio-Rad, following manufacturer’s instructions. cDNA was
amplified by real time quantitative PCR in a Applied Biosystems Real-Time PCR system, using
SYBR Select Master Mix from Applied Biosystems. Each sample was run in technical triplicates
and each experiment was performed in triplicate.

Statistical analysis

Statistical tests were performed with the R statistical environment and Python. For population
comparisons of inferred TF activities, we performed Student’s t-test and determined the direction
of shifts by comparing the mean of two populations. We corrected raw P-values for multiple
hypothesis testing based on two methods: Bonferroni and false discovery rate (BH method).

Association score between TF activity subtypes and frequent SAs. For each somatic mutation or
copy number variation, we calculated the p-value of its frequency in a cancer subtype is different
from that in other subtypes using Fisher's exact test. The p-value was further adjusted through
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FDR across subtypes. To identify the relative frequency of a SA in a subtype, we defined the
association score, which is the product of relative frequency direction and -log10cFDR.

Data Availability

ATAC-seq data is available in a public repository from Genomic Data Commons
(https://gdc.cancer.gov/about-data/publications/ATACseq-AWG). RNA-seq gene expression
data, somatic mutation, copy number variation data and clinical data are available in a public
repository from TCGA'’s Firehose data run
(https://confluence.broadinstitute.org/display/GDAC/Dashboard-Stddata). Only the samples
‘whitelisted’ by TCGA for the Pan-Cancer Analysis Working Group were used in the study. For
our analysis, we restricted to samples with parallel RNA-seq, somatic mutation and GISTIC
copy number data.

Code Availability
The software for CITRUS is available from https://github.com/osmanbeyoglulab/CITRUS
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Fig. 1: Overview of CITRUS algorithm: the attention-based model with TF:target-gene
priors. The input to our framework includes somatic alteration and copy number variation, assay
for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), tumor
expression datasets and TF recognition motifs. CITRUS takes somatic alteration and copy
number variation data as input and encodes them as a tumor embedding using a self-attention
mechanism. Additional cancer type information is used for stratifying the confounding factor of
tissue type. The middle layer further transforms the tumor embeddings into TF layer, which
represents the inferred activities of 320 TFs. Finally, the gene expression levels are predicted
from the TF activities through a TF:target-gene priors constrained sparse layer based on ATAC-
seq.
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Fig. 2: CITRUS models impact of somatic alterations on gene expression programs. (A)
Performance of the CITRUS models for each cancer type compared to regularized bilinear
regression method, affinity regression (Affreg). Boxplots showing mean Spearman correlations
between predicted and actual gene expression using the CITRUS model (orange) and Affreg
(light blue) for TCGA data each cancer-type. Both CITRUS and Affreg are tuned on the training
and validation sets, and evaluated on the same held-out test set. (B) Principal components
analysis (PCA) of TF activity colored by cancer type. (C) Mutation frequencies and CITRUS-
inferred attention weights of genes. We show cumulated results in Pan-cancer and individual
BRCA, and HNSC. See Supplementary Fig. 1 for full compilation of each cancer type.

14



583
584

585
586
587
588
589
590
591
592

ETV6
RUNX1 1
ONECUT2
NR1D1 4
ZNF410 4
ZNF784 4
KLF6
HINFP
DNMT1
GATA2
FUBP1 |
TBX2
PLAG1
JDP2 4
EPAS1 A
NRA4A3 -
FOXD2 4
ERG -
BRCAT1 1
HMGA2
ATF3 4
TBX3
ATF1
EOMES 1
TFDP1 A
ZNF683
MSC 4
USF2
RARG{ O
TP63 4
MEIS2
STAT1
FOXK1 -
TCF4
IRF2
NFYC 4
DDIT3
MNT -
IRF3
MSX1 A
MYBL1 4
MEOX1
POU2F2 1
CREB3 1
HOMEZ 1
CENPB 1
TFCP2
CTCFL {
MYBL2 4
NR3C2 4
NFE2L2 4
KLF8 { O
ZNF232 4
NRF1
THRA 1
YY1 4
CEBPG 1
ZNF350 4
FL1 4O
RFX1
1D4 4

TFs

Fig. 3: CITRUS identifies regulatory features of tumor types. Dotplot shows the mean inferred
TF activity differences between samples in a given tumor type vs. those in all other tumor types
by t-test. We corrected for FDR across TFs for each such pairwise comparison and identified
significant TF regulators and the results are shown in Supplementary Table 1.The dot size
indicates -log10(FDR). For clarity, the union of the top 4 significant TFs in each cancer type is

shown.

GBM
PCPG -
LIHC 4
THCA -
KIRC 1
KIRP
BLCA 1

O CESC A

5 HNSC

@ Lusc
COAD 4
ESCA 1
STAD A1
PRAD 1
UCEC -
BRCA -
LUAD 1

TF activity
2

Not significant
® FDR<0.01
® FDR <0.001
@ FDR <0.0001



593
594

595
596
597

c1 TGF-beta signaling pathway
(E2F5, SMAD1, ID4)

Regulation of signal transduction
C2 by p53 class mediator (TP53,
TP73, TBP, POU4F1)

1IN |
IR

il

|
/)

Cytokine-mediated signaling

pathway (STAT4, IRF5, RELA)

Apoptotic process (BRCAT1, IRF1,
C4 STAT1, TP63)

Canonical Wnt signaling pathway

C5 (SMAD3, RARG, TCF7)

Adaptive immunity (EOMES,
TFEB, ZNF683)

1.5

Cé

C7 cGMP-PKG signaling pathway

Notch signaling pathway (TBX2,
HEY1, ZNF423)

MAPK signaling pathway (ELK4,
JUN, JUND, MECOM) 1 5

Cc8

CITRUS-inferred TF activities

TF activity

o

LT T ] F SM_CTNNB1
= EREEE.S e
e " mm B
n & T
] n RREEE - )
c | [
e nESaEass e
— H T :gmﬁgnt:
(0] . ] L SM_PIK3CA
-— i 77777‘H:¥¥ - I SM_MUC16
S - N EE T
E T F*ﬁ 1
N [
-_,L:) l R pEnaia SR R EE N i
o T 1
E i ! | T Hi .. m
3 1 e o0
n ! oL 3.0
guiiEeRs i 3 '
T H L SmM_Foxa1 O -—
| L SM_ATRX n o))
T F SM_MTOR
H s S, c o
1
el
-
© €
C HH H 5 .2
[ SONAT =
| ot W30
(7)) ] [ SCNA_Corf53 17 9
[ SCNA"CDKN2A
o I SCNA_LRCH1 < - —
> (@] L SCNA_ZC3H13 ho]
- SCNA_PRKGT
Q= SONA SLCaAT
Q ® EEEEEEEE SRR ChT ] [T [ SCNA_PPFIA1
O = ‘ [ SCNA"ORAOV
o ©
= >
O
£ 3
B E
>
c

|

[ LT [
[

Eecececceceei®

1 I 1 [[\H[\Hﬁ E%gg;%%im
Fig. 4: Landscape of somatic alterations and inferred TF activities. (A) Top heatmap shows
tumor subtypes clustered by the mean TF inferred activity. Color scale is proportional to TF
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Fig. 5: Somatic alterations are associated with dysregulated TF activity. Impact of SAs on
individual TFs based on knock out in silico experiments in TCGA (A) UCEC and (B) BRCA. The
dotplot shows mean TF activity and dot size indicates -log10(FDR). See Supplementary Fig. 3
for full list of cancer types. (C) Inferred ETS2 activity in TCGA studies and impact of TP53
mutations. Tumors with mutant TP53 have significantly higher activity of ETS2 than WT tumors
(P < 0.01, t-test). This association is not significant using mRNA levels of ETS2 (Supplementary
Fig. 5). Box edges represent the upper and lower quantile with median value shown as bold line
in the middle of the box. Whiskers represent 1.5 times the quantile.
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Fig. 6: Experimental validation of the PIK3CA-driven TF in breast cancer. (A) Validation of
canonical target genes of STAT4, and NFATC1 in MCF10A parental and PIK3CAH1047R cells
treated with DMSO or a panel of PI3K/AKT inhibitors (alpelisib 1uM, GDC0077 100nM, GDC0032
100nM, GDCO0068 1uM, Everolimus 100nM) in starvation media for 4 hours, using qPCR.
Expression levels were normalized to ACTIN. Circles represent independent experiments. Error
bars show SD (n=3). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (one-side unpaired t-test). (B)
Similar analysis of expression of target genes in MCF7 (PIK3CAE545K) was performed as in A.
(C) Validation of the same target genes as in A, in MCF7-derived xenograft tumors treated with
Vehicle or Alpelisib ( (for details see Methods). Expression levels were normalized on ACTIN.
Circles represent independent experiments. Error bars show SED (n=2). *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001. (one-side unpaired t-test).
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