Robust and Accurate Deconvolution of Tumor Populations Uncovers Evolutionary Mechanisms of Breast Cancer Metastasis

Yifeng Tao¹, Haoyun Lei¹, Xuecong Fu², Adrian V. Lee³, Jian Ma¹, Russell Schwartz¹,²

¹Computational Biology Department, School of Computer Science, Carnegie Mellon University
²Department of Biological Sciences, Carnegie Mellon University
³Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee-Womens Research Institute
Background: cancer progression and metastasis

• Tumor phylogeny: tumor cells follow a clonal evolution process
• Metastasis: transfer from primary site to other sites
• Heterogeneous tumor populations/clones even from same tissue
Background: breast cancer metastasis and bulk data

- Breast cancer: second common cause of death from cancer in women
- Breast cancer metastasis (BrM) causes majority of those deaths
- Mechanism of tumor progression during metastasis relies on phylogenetic analysis
- scRNA rarely available due to years between sample collection
- Robust and accurate deconvolution (RAD) of bulk tumor samples is essential
Approach: evolution inference of BrM from bulk RNA

- To boost RAD: knowledge-based gene module (DAVID; DW Huang et al. 2009)
- Core of RAD: bulk sample deconvolution
- Based on RAD-unmixed populations: phylogeny inference (MEP; Tao et al. 2019)
RAD formulation: biologically inspired NMF

- RAD formulated as non-negative matrix factorization (NMF)
 - B: bulk RNA of samples; C: RNA of populations; F: fractions of populations
 - Data noisy and correlated \rightarrow gene module compression
 - Non-convex and no efficient optimizer \rightarrow RAD three-phase optimizer
 - k not known in prior \rightarrow cross-validation

$$\min_{C,F} \left\| B - CF \right\|_{F}^{2},$$

subject to:

\[C_{il} \geq 0, \quad i = 1, \ldots, m, \quad l = 1, \ldots, k, \]
\[F_{lj} \geq 0, \quad l = 1, \ldots, k, \quad j = 1, \ldots, n, \]
\[\sum_{l=1}^{k} F_{lj} = 1, \quad j = 1, \ldots, n \]
RAD phase 1: multiplicative update warm-start

- **Revised** multiplicative update (MU) rules
 - Loop until objective stops decreasing

\[
C \leftarrow C \odot (BF^T) \odot (CFF^T),
\]
\[
F \leftarrow F \odot (C^TB) \odot (C^TWF),
\]
\[
F_{lj} \leftarrow F_{lj} / \sum_{l'=1}^{k} F_{l'j} , \quad l = 1, \ldots, k, \quad j = 1, \ldots, n
\]

- MU is non-increasing objective only for general NMF problem (DD Lee et al. 2000)
- Fast to converge to a reasonable solution
RAD phase 2: coordinate descent

- Coordinate descent
 - Optimizes over C and F iteratively until convergence

 \[
 C \leftarrow \arg \min_C \| B - CF \|_{Fr}^2, \\
 \text{s.t. } C_{i,l} \geq 0, \quad i = 1, \ldots, m, \quad l = 1, \ldots, k
 \]

 \[
 F \leftarrow \arg \min_F \| B - CF \|_{Fr}^2, \\
 \text{s.t. } F_{l,j} \geq 0, \quad l = 1, \ldots, k, \quad j = 1, \ldots, n, \\
 \sum_{l=1}^{k} F_{l,j} = 1, \quad j = 1, \ldots, n
 \]

- Subproblems solved as quadratic programming problems (MS Andersen et al. 2013)
- Computationally expensive compared with MU warm-start
- Further reduces loss by \(~5-30\%)
RAD phase 3: minimum similarity selection

• Minimum similarity selection
 • Repeat random initialization, phase 1 and phase 2 for multiple (e.g., 10) times
 • Select solution with minimum similarity

\[
\cosim(C) = \sum_{l=1}^{k-1} \sum_{l'=l+1}^{k} C_l^T C_{l'}
\]

• Better solution: components/populations orthogonal from each other
Population number estimation via RAD

- Masking trick for cross-validation (CV)
- Select k that achieves minimum CV error
- Masked RAD algorithm exits!

\[
\min_{C,F} \| M \odot (B - CF') \|_{Fr}^2
\]

\[
\text{s.t. } C_{il} \geq 0, \quad i = 1, \ldots, m, \quad l = 1, \ldots, k,
\]
\[
F_{lj} \geq 0, \quad l = 1, \ldots, k, \quad j = 1, \ldots, n,
\]
\[
\sum_{l=1}^k F_{lj} = 1, \quad j = 1, \ldots, n
\]
Datasets and experiment design

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Gene module</th>
<th>Ground truth C and F</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated (K Zaitsev et al. 2019)</td>
<td>Known</td>
<td>Known</td>
<td>• Evaluate effect of gene module</td>
</tr>
<tr>
<td>GSE19830 (SS Shen-Orr et al. 2010)</td>
<td>Knowledge base</td>
<td>Known</td>
<td>• Evaluate effect of gene module • Evaluate RAD accuracy on estimating C, F, and k</td>
</tr>
<tr>
<td>BrM (L Zhu et al. 2019)</td>
<td>Knowledge base</td>
<td>Unknown</td>
<td>• Understand breast cancer metastasis mechanism</td>
</tr>
</tbody>
</table>
Gene modules facilitate robust deconvolution

- Simulated datasets: gene module known
 - Too small module size \rightarrow fragile deconvolution
 - Too large module size \rightarrow worse estimation
RAD detects correct number of cell components

- GSE19830: three cell types known in advance
- BrM: ground truth cell types unknown
RAD estimates populations more accurately

- Outperforms three competing methods on GSE19830 dataset
- Gene module inferred from knowledge base improves RAD as well
Common evolutionary mechanisms of BrM

- Infer phylogenies from RAD-unmixed populations
 - Minimum elastic potential (MEP; Nei et al. 1987, Tao et al. 2019)
 - Four cases in total (one shown)
- Common early pathway-level events
 - ↓ PI3K-Akt (PK Brastianos et al. 2015)
 - ↓ Extracellular matrix (ECM)-receptor interaction
 - ↓ focal adhesion (M Nagano et al. 2012)
Conclusion and future work

• Deconvolution of bulk data is the key to understanding the BrM progression
• We propose RAD, a toolkit that accurately and robustly estimates the number of cell populations (k), expression profiles of cell populations (C), and fractions of populations (F)
• Through RAD, we find the loss of PI3K-Akt, ECM-receptor interaction, and focal adhesion emerge as the common early pathway-level events of BrM
• Integrate single cell data of metastatic samples to improve RAD performance
Acknowledgments

Dr. Russell Schwartz Dr. Jian Ma Dr. Adrian V. Lee Haoyun Lei Xuecong Fu