Predicting Drug Sensitivity of Cancer Cell Lines via Collaborative Filtering with Contextual Attention

Yifeng Tao1,2,†, Shuangxia Ren3,4,†, Michael Q. Ding3, Russell Schwartz1,5,*, Xinghua Lu3,4,6,*

1Computational Biology Department, School of Computer Science, Carnegie Mellon University
2Joint Carnegie Mellon-University of Pittsburgh Ph.D. Program in Computational Biology
3Department of Biomedical Informatics, School of Medicine, University of Pittsburgh
4Intelligent Systems Program, School of Computing and Information, University of Pittsburgh
5Department of Biological Sciences, Carnegie Mellon University
6Department of Pharmaceutical Science, School of Medicine, University of Pittsburgh
Introduction

• Challenges in predicting drug response of cancer cell lines
 • Robustness
 • Contextual effects
 • Interpretability
Methods

- CADRE: Contextual Attention-based Drug REsponse
 - Collaborative filtering: copes with noisy data
 - Attention mechanism: improves interpretability and performance
 - Pretrained gene embeddings: boosts performance further
Results

- Outperforms competing models
- Effective attention-encoded cell line representation
- Identifies critical biomarkers related to drug resistance