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As the demand for multimedia grows, the development of information retrieval systems 
including information about music is of increasing concern. Radio stations and music TV 
channels hold archives of millions of music tapes. Gigabytes of music files are also spread 
over the web. To automate searching and organizing the music files based on their genre is a 
challenging task. In this report, we present an approach to identifying genre of music file 
based on their content. We present experimental result that shows that our approach is 
effective in identifying the genre of the music file with acceptable level of confidence. 

 
1. Introduction 
 
Vast musical databases are currently accessible over computer networks (e.g., the Web), 
creating a need for sophisticated methods to search and organize these databases. 
Because music is a multifaceted, multi-dimensional medium, it demands specialized 
representations, abstractions and processing techniques for effective search that are 
fundamentally different from those used for other retrieval tasks. The project “Exploiting 
Style as Retrieval and Classification Mechanism” undertaken by  Roger Dannenberg and 
his group aims to develop hierarchical, stochastic music representations and concomitant 
storage and retrieval mechanisms that are well suited to music’s unique characteristics by 
exploiting reductionist theories of musical structure and performance (i.e., musical style). 
 
As a part of this whole effort, we decided to explore if it is possible to make prediction 
about music genre/type based on the content of the audio file. Work done previously 
shows that the spectro-temporal features are sufficiently rich to allow for coarse 
classification of music from brief sample of the music. We use two machine learning 
algorithms: Neural Networks and Learning Vector Quantization. We restrict ourselves to 
four genres: Classical, Rock, Jazz and Country, although  the approach we use can 
possibly be extended to much larger classification set. This intuitively seems to be easier 
than recognizing styles of individual composers.  
 
The rest of the report is organized as follows. Section 2 describes our overall approach. 
Section 3 shows our experimental result. In section 4 we analyze our result and this is 
followed by a brief conclusion in section 5. 
 
2. The Approach 

 
In this section we describe our overall approach to preprocessing the music file, 
extracting features and using them to train the networks. 



2.1 Preprocessing Data 
 
Given an audio clip, we first preprocess it to get our input data, that will be used both in 
training and testing phase. The preprocessing steps are as follows. 
 

 

 
Figure 1: Preprocessing of audio clip to get the input data 

 
1. Sample the audio signal at the rate of 28 KHz. At this sampling rate, signals over 

14 KHz are ignored. As humans cannot hear signals over 20 KHz, those 
frequencies need not considered. And at sampling rate as low as 8 KHz, as in 
telephone facility, different genres of music can still be differentiated. So we 
chose some sampling rate that lies between these two limits. 

2. Apply Fourier Transform to 256 samples, after multiplying them with Laplace 
smoothing function. The number of samples (256) was chosen such that it was 
large enough to capture the essential features of the music. 

3. Get the amplitude spectrum from the result of the Fourier Transform at the first 
128 frequencies. Thus we have a vector of length 128. 



4. Then we slide the window of samples, take the next 256 samples, repeat the same 
process and so on. We do this till the end of the audio clip. 

5. Now we make groups of 50 consecutive vectors and take average of each group. 
Such vectors (each of length 128) are used as inputs to our learning algorithms.  

 
Each of these input vectors is used independently of other vectors, though they may 
have come from the same audio clip. In our experiments, we have taken around 400 
vectors from each audio clip. Given the sampling rate, 400 vectors correspond to 
about 3 minutes of music and each vector corresponds to 0.42 second of music. While 
testing a sample of music, we test each of the 400 vectors and then take the plurality 
classification, that is the largest group, as the genre of the music. By this method, we 
have been able to classify all the audio clips we used for our testing phase correctly. 
Although plurality classification is always correct, individual vectors do not get 
always classified correctly. From now on, we will use the term “likelihood of genre 
X” to mean the percentage of vectors classified as genre X, and the term “confidence” 
to express the likelihood of the majority genre. 
 
Apart from averaging 50 vectors to obtain an input vectors, we have tried out three 
other features. 
 
a. Take the difference of consecutive vectors and the average these difference 

vectors to obtain the input vectors. This method did not yield any good result 
though. 

b. Take the average of 50 vectors and then take the difference of the vectors so 
obtained to get the input vectors. This method gave results that were better than 
the previous approach, but not as good as those of averaging method. 

c. We also tried out using envelope of the audio clip. The highest frequency 
component in the envelope we used was 440Hz. We used a Lisp program to find 
the envelope of the audio clip and then got input vectors using the same approach 
we used in the averaging method. This method too does not perform well. This 
method was preliminary tried out to see if it is able to increase the confidence 
with which Rock and Country were classified. Initially ‘average of FFT approach’ 
was not giving good confidence in classification between Rock and Country using 
Neural Network, so we tried this envelope method. 

 
The results for all the approaches will be given later. To obtain the Fourier transform 
of audio sample, we used the program named “Nyquist”. 
 

2.2 Building the Networks 
 
2.2.1 The neural network 

 
The structure of the neural network that we used is as follows: 

1. Four output units, one for each genre.  
2. One hidden layer, having 30 hidden units 
3. Input layer, having 128 units. 



The number of hidden units was chosen experimentally. We found that, if the number of 
units in the hidden layer is increased above 30, the learning phase becomes slow, 
although the testing/training accuracy does not improve much. The number of input units 
was chosen arbitrarily, we have done some experiments (described later in this report) 
that, sort of, justifies the number. 
 
2.2.2 The Linear Vector Quatization (LVQ) Networks 
 
Learning Vector Quantization is a neural network based method to find a good set of 
reference vectors to be stored as a nearest neighbor classifier’s reference set. It is often 
used for speech recognition and it has high performance. So, we decided to try genre 
classification using LVQ towards the end of the project.  
 
An LVQ network contains a Kohonen layer which learns and performs the classification. 
LVQ assigns equal number of Processing Elements (PEs) for each class of the Kohonen. 
 
The basic LVQ trains and then uses Kohonen layer as follows: 
 

1. In the training mode, the distance of a training vector to each PE is computed  and 
the nearest PE is declared to be the winner. 

2. If the winner PE is in the class of the training vector, it is moved toward the 
training vector. 

3.  If the wining PE is not in the class of  the training vector, it is moved away from 
the training vector. This is referred to as repulsion. 

4. During the training process, the PEs assigned to a class migrate to the region 
associated with their class. 

5. In the classification mode, the distance of an input vector to each PE is computed 
and again the nearest PE is declared to be the winner. The input vector is then 
assigned to the class of that PE.   

 
We here consider a variant of LVQ, which is called LVQ2, since it performs better in the 
situation where, when the winning PE gives wrong result, the second best PE is in the 
right class. While experimenting with basic LVQ, we found that whenever we make a 
wrong prediction, the 2nd best prediction is in fact the correct classification. So we 
decided to improve our prediction by using LVQ2. The parameters of the LVQ2 network 
we used in the experiment are as follows: 
 
��Number of inputs: 128 
��Number of outputs: 4 
��Number of PEs in Kohonen layer: 100  
��Number of iteration: for LVQ1: 500,000, for LVQ2: 50,000 

 
The first two parameters (input and output) are based on our problem specification. The 
rest are based on experiment. We tried for several possible alternatives and selected the 
best value. 
 



2.3 Training Phase  
As discussed above, from each audio clip, we obtain about 400 vectors and each of them 
is used to train the network independently. We used 24 audio clips of each genre, that 96 
in all. The number of training vectors was approximately 38,000. 

 
2.4 Testing Phase  
We used 40 audio clips, 10 per each genre, to test the network. All of the clips were 
classified correctly with varying confidence. The result for various features used is given 
below and a comparison is made.  
 
 
3 Experimental Results 
 
In this section we present the result of various experiments we have done. Almost all the 
experiments described here were done on Neural Networks. We considered LVQ only 
during the last stages of the project. To train LVQ network, we used the features that 
performed the best in the case of Neural Networks. LVQ better than Neural networks in 
most of the cases. 
 
3.1 Selecting the best feature 
 
As we discussed before, we tried four different features to use in the whole experiment: 
average of the FFT vectors, average of differences of successive FFT vectors, difference 
of averages of successive FFT vectors, average of envelope of the spectrum. The result of 
trying these different features is shown in following graph. 
 

 
Figure 2: Comparing effectiveness of different features. 

 
As can be seen from the above statistics, the simple averaging approach outperforms the 
other approaches. In fact, in those cases the training error is more than 50%, which is bad. 



So, we used simple averaging approach throughout all the experiments. From now on, we 
will talk only about the “average of FFTs” approach only, since the other methods are 
way behind this method. 
 
3.2 Fixing number of iteration 
 
We then concentrated on the question of how many iterations of each learning algorithm 
needs to go through to get acceptable performance. The result is shown in figure 3. 
 

 
Figure 3: Number of iterations ( ×10,000)  and training error  

 
The graph shows, to have less than 10% training error, Neural Network needs about 
200,000 iterations and LVQ needs around 550,000 iterations. We used this value for 
number of iterations for rest of the experiments. 

 
3.3 Testing Error 
 
We trained Neural network and LVQ network, using the averaging of FFT feature and 
reasonable number of iterations. We used approximately 38,000 input data to train the 
networks, and then tested their performance on separate set of data. Both the networks 
were able to classify each of the 3-minute audio clips, with different degree of 
confidence. Recall that confidence is the fraction of FFTs classified correctly. A number 
of FFT data are generated from an audio clip, and majority of the classifications of FFTs 
is taken as the classification of the audio clip. So, in spite of correct classification, the 
confidence may be less than 100%, when some of the FFTs are classified incorrectly. 
Figure 4 shows the result. Here, by the term testing error rate, we mean the percentage of 
FFTs misclassified for each genre. So, the quantity (100 – testing error rate) expresses 
classification confidence for that genre.  



 
Figure 4: Classification error in different genre 

 
The graph shows that, in most of the case, LVQ network performs better than neural 
network and its confidence is always more than 70%. It is also found that, classical music 
is the easiest to classify. LVQ network has the most difficulty in classifying country 
music, while neural network has the most difficulty in classifying Jazz music. 
 
LVQ algorithm finds an optimal set of reference vectors for classification purposes. 
During learning, reference vectors are shifted into an optimal position, whereas during 
recall a nearest neighbor classification technique is used. Since LVQ performs so well in 
classifying music into different genres from the 128-element vectors described 
previously, it can be inferred that for the four genres, the vectors obtained form fairly 
well defined clusters.  

 
3.4 Training set size 
 

Following experiment shows how number of training FFTs affects the confidence of the 
prediction in the case of Neural Networks. We varied the number of FFTs used for 
training and found the testing error. The graph below shows the result. 



 
 

Figure 5: Effect of training size on Testing error  
When only 2000 FFTs are used (which is equivalent to 40 input vectors) the testing error 
(i.e. 100 - confidence of prediction) is around 35%, for 10000 FFTs it is around 25% (this 
testing is over all genres). 

 
4 Sensitivity Analysis 
 
Sensitivity Analysis was carried out to see which part of 128-long input vector 
contributes maximum in prediction (note that, entries in the FFT vectors are sorted in 
ascending order of the frequency). To see which frequency FFT data contributes most in 
classification, we did the following experiments: 
 

1. We removed the first 32 elements of each of the base (128-long) input vector and 
used the new 96-long vector as input in the experiments. We did the same 
experiment by removing next 32 elements, then next 32 elements, so on. 

2. We repeated the above step by removing 64 elements at a time from the base 
input vector. We removed the front 64, then the middle 64 and finally the last 64 
elements. 

 
It can be seen from the data that different genre have different regions of “importance” in 
the 128 element input vector. And also note from the above data that some subset of 128 
elements lead to better classification for some genres. For example, for Jazz, dropping 
any 64 elements leads to much higher classification accuracy. In the following section we 
try to identify best subset of 128 elements for each genre based on the experimental 
results. 
 



.  
Figure 6: Comparing confidence of recognizing classical music with different parts of 

features missing. 
 
Classical is the easiest to recognize among all the genres we considered. The confidence 
always remains over 90%  for all the different subsets we have considered. It can be seen 
from that  any 64 elements of the base input vectors can be used to make good prediction 
and the classification is best(~98%) when all the elements of the vector are used. But the 
other three genres have widely varying confidences. 

 
Figure 7: Comparing confidence of recognizing country music with different parts of 

features missing. 
 
For the Country music when all the 128 elements of the input vector are used the 
classification confidence is 63% and this does not improve much when different subsets 
of element are considered. When any 64 elements are left put, the confidence of 
prediction falls down to  below 60%. But when the elements indexed from 65 to 96 are 
left out, the confidence increases to 70%, an increase of 7%, which is not much 
considering that this increase over only 10 songs. This is the only case when the 
confidence increases, so the best subset for Country would be elements indexed 1 through 
64 and those indexed 97 through 128. Among these elements, the order of importance is 
as follows: elements indexed 33 through 64 being the most important (when these are 
dropped the confidence drops to 41%) followed by elements indexed 1 through 32(when 
these are dropped the confidence drops to 43%) followed by elements indexed 97 through 
128. 



 
Figure 8: Comparing confidence of recognizing jazz music with different parts of features 

missing. 
 
For Jazz, the learning is much better when a subset of 128-elements is used. The 
confidence of prediction when all the 128 elements are used is 56% and when any subset 
of these 128 elements is used the confidence increases by at least 10%, the maximum 
increase being  35%, which significant even though this increase is over 10 songs. When 
the first 64 elements are dropped the confidence of prediction increases to 91%, an 
increase of 35%.  In the cases when the middle 64 and the last 64 are dropped the 
confidence increases to around 85%. So the last 64 elements will give the best prediction 
for Jazz. Interesting thing here is when additional elements are added to this subset the 
confidence drops (when elements indexed 1 through 32 are added the confidence drops to 
66%, a drop of 25%).  In fact subsets having 64 elements perform better than subsets 
having 96 elements. When additional elements are added to any of the three 64 element 
subset the performance drops as can be seen from the above data (the only exception 
being the case when elements 65 through 97 (confidence increases to 85%) are added to 
the subset of elements 1 through 64 (the confidence for this subset is 83%).  

 
Figure 9: Comparing confidence of recognizing rock music with different parts of 

features missing. 
 
For Rock, the performance does not vary much with subset of features used (it hovers 
around 70% always). The elements from 65-96 seem to be of more importance as the 
confidence drops to 60% from 70% when these elements are dropped (when other 
elements are dropped the confidence either increases or stays the same).  



 

 
Figure 10: Comparing confidence of recognizing all genres with different parts of 

features missing. 
 
Across all the genres, the subset of elements indexed 1 through 96 gives the best 
confidence followed by  subset of elements indexed 1 through 64. In fact in al most all 
the case the subsets give better average confidence than 128 elements set. The only case 
where the confidence drops is when elements indexed 33 through 64 are dropped. So 
these subset of elements seem to be the most important in deciding the genre of the 
music. Dropping of elements indexed 97 through 128 gives an increase of 7.5% per 
genre, which is the highest among all subsets of features considered. So this subset of 
features is probably the misleading or difficult to learn. 
 
5. Conclusion 
 
From results described above it can be concluded that a coarse classification of music 
into four genres can be done easily by machines. And the confidence with which it is 
done is also significant. The work described in this report can be extended to include 
further genres like Techno etc. Another direction would be to classify music by 
artist/composer. This we believe will be more difficult than classifying into different 
genres; an analysis of the kind described in the report may not be enough to differentiate 
between different artists/composers.  
 
To build on the work in this report, sensitivity analysis can be carried out at a finer level. 
The sensitivity analysis that we have done gives us only a coarse picture of the 
importance of each of the 128 element vectors. It would also be interesting to see how the 
classification accuracy changes with the sampling frequency (which in our experiments 
was 28kHz and also with the window size (256 samples in our experiments). 
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