Efficient Algorithms with Asymmetric Read and Write Costs

Guy E. Blelloch¹, Jeremy T. Fineman², Phillip B. Gibbons¹, Yan Gu¹, and Julian Shun³

¹ Carnegie Mellon University
² Georgetown University
³ University of California, Berkeley

Abstract
In several emerging technologies for computer memory (main memory), the cost of reading is significantly cheaper than the cost of writing. Such asymmetry in memory costs poses a fundamentally different model from the RAM for algorithm design. In this paper we study lower and upper bounds for various problems under such asymmetric read and write costs. We consider both the case in which all but $O(1)$ memory has asymmetric cost, and the case of a small cache of symmetric memory. We model both cases using the (M, ω)-ARAM, in which there is a small (symmetric) memory of size M and a large unbounded (asymmetric) memory, both random access, and where reading from the large memory has unit cost, but writing has cost $\omega \gg 1$.

For FFT and sorting networks we show a lower bound cost of $\Omega(\omega n \log_\omega M n)$, which indicates that it is not possible to achieve asymptotic improvements with cheaper reads when ω is bounded by a polynomial in M. Moreover, there is an asymptotic gap (of $\min(\omega, \log n) / \log(\omega M)$) between the cost of sorting networks and comparison sorting in the model. This contrasts with the RAM, and most other models, in which the asymptotic costs are the same. We also show a lower bound for computations on an $n \times n$ diamond DAG of $\Omega(\omega n^2 / M)$ cost, which indicates no asymptotic improvement is achievable with fast reads. However, we show that for the minimum edit distance problem (and related problems), which would seem to be a diamond DAG, we can beat this lower bound with an algorithm with only $O(\omega n^2 / (M \min(\omega^{1/3}, M^{1/2}))$ cost. To achieve this we make use of a “path sketch” technique that is forbidden in a strict DAG computation. Finally, we show several interesting upper bounds for shortest path problems, minimum spanning trees, and other problems. A common theme in many of the upper bounds is that they require redundant computation and a tradeoff between reads and writes.

1998 ACM Subject Classification F.1.1 Models of Computation, F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Computational Model, Lower Bounds, Shortest-paths, Non-Volatile Memory, Sorting Networks, Fast Fourier Transform, Diamond DAG, Minimum Spanning Tree

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.95

1 Introduction

Fifty years of algorithms research has focused on settings in which reads and writes (to memory) have similar cost. But what if reads and writes to memory have significantly different costs? How would that impact algorithm design? What new techniques are useful for trading-off doing more cheaper operations (say more reads) in order to do fewer expensive operations (say fewer writes)? What are the fundamental limitations on such trade-offs (lower bounds)? What well-known equivalences for traditional memory fail to hold for asymmetric memories?
Table 1 Summary of Our Results for the \((M, \omega)\)-ARAM († indicates main results)

<table>
<thead>
<tr>
<th>problem</th>
<th>ARAM cost</th>
<th>time</th>
<th>section</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT</td>
<td>(\Theta(\omega n \log n / \log(\omega M)))†</td>
<td>(\Theta(Q(n) + n \log n))</td>
<td>3, 6</td>
</tr>
<tr>
<td>sorting networks</td>
<td>(\Omega(\omega n \log n / \log(\omega M)))†</td>
<td>(\Theta(Q(n) + n \log n))</td>
<td>3</td>
</tr>
<tr>
<td>sorting (comparison)</td>
<td>(O(n(\log n + \omega)))</td>
<td>(\Theta(n(\log n + \omega)))</td>
<td>6, 10</td>
</tr>
<tr>
<td>diamond DAG</td>
<td>(\Theta(n^2 \omega / M))</td>
<td>(\Theta(n(n + \omega)))</td>
<td>3</td>
</tr>
<tr>
<td>longest common subsequence,</td>
<td>(O(n^2 \omega / \min(\omega^{1/3} M, M^{1/2})))†</td>
<td>(O(\omega(n + n^3)))</td>
<td>4</td>
</tr>
<tr>
<td>edit distance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>single-source shortest path</td>
<td>(O(\min(n(\omega + m/M), (m + n \log n)\omega, m(\omega + \log n))))†</td>
<td>(O(Q(n, m) + n \log n))</td>
<td>5</td>
</tr>
<tr>
<td>all-pairs shortest-path</td>
<td>(O(n^2(\omega + n/\sqrt{M})))</td>
<td>(O(n(\log n + \omega)))</td>
<td>6</td>
</tr>
<tr>
<td>search tree, priority queue</td>
<td>(O(\omega + \log n)) per update</td>
<td>(O(\omega + \log n)) per update</td>
<td>6</td>
</tr>
<tr>
<td>2D convex hull, triangulation</td>
<td>(O(n(\log n + \omega)))</td>
<td>(\Theta(n(\log n + \omega)))</td>
<td>6</td>
</tr>
<tr>
<td>BFS, DFS, topological sort,</td>
<td>(\Theta(\omega n + m))</td>
<td>(\Theta(\omega n + m))</td>
<td>6</td>
</tr>
<tr>
<td>biconnected components, SCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimum spanning tree</td>
<td>(O(m \min(\log n, n/M) + \omega n))†</td>
<td>(O(Q(n, m) + n \log n))</td>
<td>6</td>
</tr>
</tbody>
</table>

Such questions are coming to the fore with the arrival of new main-memory technologies [29, 32] that offer key potential benefits over existing technologies such as DRAM, including nonvolatility, significantly lower energy consumption, and higher density (more bits stored per unit area). These emerging memories will sit on the processor’s memory bus and be accessed at byte granularity via loads and stores (like DRAM), and are projected to become the dominant main memory within the decade [36, 49]. Because these emerging technologies store data as “states” of a given material, the cost of reading (checking the current state) is significantly cheaper than the cost of writing (modifying the physical state of the material): Reads are up to an order of magnitude or more lower energy, lower latency, and higher (per-module) bandwidth than writes [5, 6, 10, 11, 20, 21, 30, 31, 33, 41, 47].

This paper provides a first step towards answering these fundamental questions about asymmetric memories. We introduce a simple model for studying such memories, and a number of new results. In the simplest model we consider, there is an asymmetric random-access memory such that reads cost 1 and writes cost \(\omega\) per-module bandwidth than writes [5, 6, 10, 11, 20, 21, 30, 31, 33, 41, 47].

For FFT we show an \(\Omega(\omega n \log \omega M n)\) lower bound on the ARAM cost, and a matching upper bound. Thus, even allowing for redundant (re)computation of nodes (to save writes), it is not possible to achieve asymptotic improvements with cheaper reads when \(\omega \in O(M^c)\) for a constant \(c\). Prior lower bound approaches for FFTs for symmetric memory fail to carry over to asymmetric memory, so a new lower bound technique is required. We use an

\[1\] While the exact technology is continually evolving, candidate technologies include phase-change memory, spin-torque transfer magnetic RAM, and memristor-based resistive RAM.
interesting new accounting argument for fractionally assigning a unit weight for each node of the network to subcomputations that each have cost ωM. The assignment shows that each subcomputation has on average at most $M \log(\omega M)$ weight assigned to it, and hence the total cost across all $\Theta(n \log n)$ nodes yields the lower bound.

For sorting, we show the surprising result that on asymmetric memories, comparison sorting is asymptotically faster than sorting networks. This contrasts with the RAM model (and I/O models, parallel models such as the PRAM, etc.), in which the asymptotic costs are the same! The lower bound leverages the same key partitioning lemma as in the FFT proof.

We present a tight lower bound for DAG computation on diamond DAGs that shows there is no asymptotic advantage of cheaper reads. On the other hand, we also show that allowing a vertex to be “partially” computed before all its immediate predecessors have been computed (thereby violating a DAG computation rule), we can beat the lower bound and show asymptotic advantage. Specifically, for both the longest common subsequence and edit distance problems (normally thought of as diamond DAG computations), we devise a new “path sketch” technique that leverages partial aggregation on the DAG vertices. Again we know of no other models in which such techniques are needed.

Finally, we show how to adapt Dijkstra’s single-source shortest-paths algorithm using phases so that the priority queue is kept in small-memory, and briefly sketch how to adapt Borůvka’s minimum spanning tree algorithm to reduce the number of shortcuts and hence writes that are needed. A common theme in many of our algorithms is that they use redundant computations and require a tradeoff between reads and writes.

Related Work Prior work [7, 22, 25, 37, 38, 46] has studied read-write asymmetries in NAND flash memory, but this work has focused on (i) the asymmetric granularity of reads and writes in NAND flash chips: bits can only be cleared by incurring the overhead of erasing a large block of memory, and/or (ii) the asymmetric endurance of reads and writes: individual cells wear out after tens of thousands of writes to the cell. Emerging memories, in contrast, can read and write arbitrary bytes in-place and have many orders of magnitude higher write endurance, enabling system software to readily balance application writes across individual physical cells by adjusting its virtual-to-physical mapping. Other prior work has studied database query processing under asymmetric read-write costs [12, 13, 45, 46] or looked at other systems considerations [14, 30, 35, 48, 50, 51]. Our recent paper [10] introduced the general study of parallel (and external memory) models and algorithms with asymmetric read and write costs, focusing on sorting. Our follow-on paper [8] defined an abstract nested-parallel model of computation with asymmetric read-write costs that maps efficiently onto more concrete parallel machine models using a work-stealing scheduler, and presented reduced-write, work-efficient, highly-parallel algorithms for a number of fundamental problems such as tree contraction and convex hull. In contrast, this paper considers a much simpler model (the sequential (M, ω)-ARAM) and presents not just algorithms but also lower bounds—plus, the techniques are new. Finally, concurrent with this paper, Carson et al. [11] developed interesting upper and lower bounds for various linear algebra problems and direct N-body methods under asymmetric read and write costs. For sequential algorithms, they define a model similar to the (M, ω)-ARAM (as well as a cache-oblivious variant), and show that for “bounded data reuse” algorithms, i.e., algorithms in which each input or computed value is used only a constant number of times, the number of writes to asymmetric memory is asymptotically the same as the sum of the reads and writes to asymmetric memory. This implies, for example, a tight $\Omega(n \log n / \log M)$ lower bound on the number of writes for FFT under the bounded data reuse restriction; in contrast, our tight bounds for FFT do
not have this restriction and use fewer writes. They also presented algorithms without this restriction for matrix multiplication, triangular solve, and Cholesky factorization that reduce the number of writes to $\Theta(\text{output size})$, without increasing the number of reads, as well as various distributed-memory parallel algorithms.

2 Model and Preliminaries

We analyze algorithms in an (M, ω)-ARAM. In the model we assume a symmetric small-memory of size $M \geq 1$, an asymmetric large-memory of unbounded size, and a write cost $\omega \geq 1$, which we assume without loss of generality is an integer. (Typically, we are interested in the setting where $n \gg M$, where n is the input size, and $\omega \gg 1$.) We assume standard random access machine (RAM) instructions. We consider two cost measures for computations in the model. We define the (asymmetric) ARAM cost Q as the total number of reads from large-memory plus ω times the number of writes to large-memory. We define the (asymmetric) time T as the ARAM cost plus the number of reads from and writes to small-memory.\footnote{The time metric models the fact that reads to certain emerging asymmetric memories are projected to be roughly as fast as reads to symmetric memory (DRAM). The ARAM cost metric Q does not make this assumption and hence is more generally applicable.}

Because all instructions are from memory, this includes any cost of computation. In the paper we present results for both cost measures.

The model contrasts with the widely-studied external-memory model \cite{1} in the asymmetry of the read and write costs. Also for simplicity in this paper we do not partition the memory into blocks of size B. Another difference is that the asymmetry implies that even the case of $M = O(1)$ (studied in \cite{10} for sorting) is interesting. We note that our ARAM cost is a special case of the general flash model cost proposed in \cite{4}; however that paper presents algorithms only for another special case of the model with symmetric read-write costs.

We use the term value to refer to an object that fits in one word (location) of the memory. We assume words are of size $\Theta(\log n)$ for input size n. The size M is the number of words in small-memory. All logarithms are base 2 unless otherwise noted. The DAG computation problem is given a DAG and a value for each of its input vertices (in-degree = 0), compute the value for each of its output vertices (out-degree = 0). The value of any non-input vertex can be computed in unit time given the value of all its immediate predecessors. As in standard I/O models \cite{1} we assume values are atomic and cannot be split when mapped into the memory. The DAG computation problem can be modeled as a pebbling game on the DAG \cite{28}. Note that we allow (unbounded) recomputation of a DAG vertex, and indeed recomputation is a useful technique for reducing the number of writes (at the cost of additional reads).

3 Lower Bounds

We start by showing lower bounds for FFT DAGs, sorting networks and diamond DAGs. The idea in showing the lower bounds is to partition a computation into subcomputations that each have a lower bound on cost, but an upper bound on the number of inputs and outputs they can use. Our lower bound for FFT DAGs then uses an interesting accounting technique that gives every node in the DAG a unit weight, and fractionally assigns this weight across the subcomputations. In the special case $\omega = 1$, this leads to a simpler proof.
for the lower bound on the I/O complexity of FFT DAGs than the well-known bound by Hong and Kung [27].

We refer to a subcomputation as any contiguous sequence of instructions. The outputs of a subcomputation are the values written by the subcomputation that are either an output of the full computation or read by a later subcomputation. Symmetrically, the inputs of a subcomputation are the values read by the subcomputation that are either an input of the full computation or written by a previous subcomputation. An \((l,m)\)-partitioning of a computation is a partitioning of instructions into subcomputations such that each has at most \(l\) inputs and at most \(m\) outputs. We allow for recomputation—instructions in different subcomputations might compute the same value.

\begin{lemma}
Any computation in the \((M,\omega)\)-ARAM has an \(((\omega+1)M, 2M)\)-partitioning such that at most one of the subcomputations has ARAM cost \(Q < \omega M\).
\end{lemma}

\begin{proof}
We generate the partitioning constructively. Starting at the beginning, partition the instructions into contiguous blocks such that all but possibly the last block has cost \(Q \geq \omega M\), but removing the last instruction from the block would have cost \(Q < \omega M\). To remain within the cost bound each such subcomputation can read at most \(\omega M\) values from large-memory. It can also read the at most \(M\) values that are in the small-memory when the subcomputation starts. Therefore it can read at most \((\omega+1)M\) distinct values from the input or from previous subcomputations. Similarly, each subcomputation can write at most \(M\) values to large-memory, and an additional \(M\) values that remain in small-memory when the subcomputation ends. Therefore it can write at most \(2M\) distinct values that are available to later subcomputations or the output.
\end{proof}

FFT

We now consider lower bounds for the DAG computation problem for the family of FFT DAGs (also called FFT networks, or butterfly networks). The FFT DAG of input size \(n = 2^k\) consists of \(k+1\) levels each with \(n\) vertices (for a total of \(n \log 2n\) vertices). Each vertex \((i,j)\) at level \(i \in 0, \ldots, k-1\) and row \(j\) has two out-edges, which go to vertices \((i+1,j)\) and \((i+1,j \oplus 2^i)\) (\(\oplus\) is the exclusive-or of the bit representation). This is the DAG used by the standard FFT (Fast Fourier Transform) computation. We note that in the FFT DAG there is at most a single path from any vertex to another.

\begin{lemma}
Any \((l,m)\)-partitioning of a computation for simulating an \(n\) input FFT DAG has at least \(n \log n / (m \log l)\) subcomputations.
\end{lemma}

\begin{proof}
We refer to all vertices whose values are outputs of any subcomputation, as partition output vertices. We assign each such vertex arbitrarily to one of the subcomputations for which it is an output.

Consider the following accounting scheme for fractionally assigning a unit weight for each non-input vertex to some set of partition output vertices. If a vertex is a partition output vertex, then assign the weight to itself. Otherwise take the weight, divide it evenly between its two immediate descendants (out-edges) in the FFT DAG, and recursively assign that weight to each. For example, for a vertex \(x\) that is not a partition output vertex, if an immediate descendant \(y\) is a partition output vertex, then \(y\) gets a weight of \(1/2\) from \(x\), but if not and one of \(y\)’s immediate descendants \(z\) is, then \(z\) gets a weight of \(1/4\) from \(x\). Since each non-input vertex is fully assigned across some partition output vertices, the sum of the weights assigned across the partition output vertices exactly equals \(|V| - n = n \log n\). We now argue that every partition output vertex can have at most \(\log l\) weight assigned to it. Looking back from an output vertex we see a binary tree rooted at the output. If we follow
each branch of the tree until we reach an input for the subcomputation, we get a tree with at most \(l\) leaves, since there are at most \(l\) inputs and at most a single path from every vertex to the output. The contribution of each vertex in the tree to the output is \(1/2^i\), where \(i\) is its depth (the root is depth 0). The leaves (subcomputation inputs) are not included since they are partition output vertices themselves, or inputs to the whole computation, which we have excluded. By induction on the tree structure, the weight of that tree is maximized when it is perfectly balanced, which gives a total weight of \(\log l\).

Because every subcomputation can have at most \(m\) outputs, the total weight assigned to each subcomputation is at most \(m \log l\). Since the total weight across all subcomputations is \(n \log n\), the total number of subcomputations is at least \(n \log n / (m \log l)\). ▶

Theorem 3 (FFT Lower Bound). Any solution to the DAG computation problem on the family of FFT DAGs parametrized by input size \(n\) has costs \(Q(n) = \Omega(\omega n \log n / \log(\omega M))\) and \(T(n) = \Omega(Q(n) + n \log n)\) on the \((M, \omega)\)-ARAM.

Proof. By Lemma 1 every computation must have an \((\omega + 1)M, 2M\)-partitioning with subcomputation cost \(Q \geq \omega M\) (except perhaps one). Plugging in Lemma 2 we have \(Q(n) \geq \omega M n \log n / (2M \log((\omega + 1)M))\), which gives our bound on \(Q(n)\). For \(T(n)\) we just add in the cost of the computation of each vertex. ▶

Note that when \(\omega \in O(M^c)\) for a constant \(c\), these lower bounds match those for the standard external memory model \([1, 27]\) assuming both reads and writes have cost \(\omega\). This implies that cheaper reads do not help asymptotically in this case. However, when this is not the case, cheaper reads do provide an asymptotic advantage, as will be seen by our matching upper bound given in Section 6.

Sorting Networks. A sorting network is a acyclic network of comparators, each of which takes two input keys and returns the minimum of the keys on one output, and the maximum on the other. For a family of sorting networks parametrized by \(n\), each network takes \(n\) inputs, has \(n\) ordered outputs, and when propagating the inputs to the outputs must place the keys in sorted order on the outputs. A sorting network can be modeled as a DAG in the obvious way. Ajtai, Komlós and Szemerédi \([3]\) described a family of sorting networks that have \(O(n \log n)\) comparators and \(O(\log n)\) depth. Follow-on work has provided many simplifications and constant factor improvements, including the well-known Patterson variant \([40]\) and a simplification by Seiferas \([43]\). Recently Goodrich \([26]\) gave a much simpler construction of an \(O(n \log n)\) comparator network, but it requires polynomial depth. Here we show lower bounds for simulating any sorting network on the \((M, \omega)\)-ARAM.

Theorem 4 (Sorting Lower Bound). Simulating any family of sorting networks parametrized on input size \(n\) has \(Q(n) = \Omega(\omega n \log n / \log(\omega M))\) and \(T(n) = \Omega(Q(n) + n \log n)\) on the \((M, \omega)\)-ARAM.

Proof. Consider an \((l, m)\)-partitioning of the computation. Each subcomputation has at most \(l\) inputs from the network, and \(m\) outputs for the network. The computation is oblivious to the values in the network (it can only place the minimum and maximum on the outputs of each comparator). Therefore locations of the inputs and outputs are independent of the input values. The total number of choices the subcomputation has is therefore \(\binom{m}{l} m! = l! / (l - m)! < l^m\). Since there are \(n!\) possible permutations, we have that the number of subcomputations \(k\) must satisfy \((l^m)^k \geq n!\). Taking the logarithm of both sides, rearranging, and using Stirling’s formula we have \(k > \log(n!) / (m \log l) > \frac{1}{2} n \log n / (m \log l)\) (for \(n > e^2\)).
By Lemma 1 we have \(Q(n) > \omega M \cdot \frac{1}{2} n \log n / (2M \log((1 + \omega)M)) = \frac{1}{2} \omega n \log n / \log((1 + \omega)M) \) (for \(n > e^2 \)).

These bounds are the same as for simulating an FFT DAG, and, as with FFTs, they indicate that faster reads do not asymptotically affect the lower bound unless \(\omega \) is larger than any polynomial in \(M \). These lower bounds rely on the sort being done on a network, and in particular that the location of all read and writes are oblivious to the data itself. As discussed in Section 6, for general comparison sorting algorithms, we can get better upper bounds than indicated by these lower bounds.

Diamond DAG We consider the family of diamond DAGs parametrized by size \(n \times m \). Each DAG has \(nm \) vertices arranged in a \(n \times m \) grid such that every vertex \((i, j)\), \(0 \leq i < (n - 1), 0 \leq j < (m - 1)\) has two out-edges to \((i + 1, j)\) and \((i, j + 1)\). The DAG has one input at \((0, 0)\) and one output at \((n - 1, m - 1)\). Diamond DAGs have many applications in dynamic programs, such as for the edit distance (ED), longest common subsequence (LCS), and optimal sequence alignment problems.

Lemma 5 (Cook and Sethi, 1976). Solving the DAG computation problem on the family of diamond DAGs of size \(n \times n \) requires \(n \) memory locations to store vertex values from the DAG.

Proof. Cook and Sethi [16] showed that evaluating the top half of an \(n \times n \) diamond DAG \((i + j \geq n - 1)\), which they call a pyramid DAG, requires \(n \) memory locations to store partial results. Because all paths of the diamond DAG must go through the top half, it follows for the diamond DAG.

Theorem 6 (Diamond DAG Lower Bound). The family of diamond DAGs parametrized by size \(n \times m \) has \(Q(n, m) = \Omega(\omega nm / M) \) and \(T(n, m) = \Omega(Q(n, m) + nm) \) on the \((M, \omega)\)-ARAM.

Proof. Consider the sub-DAG induced by a \(2M \times 2M \) diamond \((a \leq i < a + 2M, b \leq j < b + 2M)\) of vertices. By Lemma 5 any subcomputation that computes the last output vertex of the sub-DAG requires \(2M \) memory locations to store values from the diamond. The extra in-edges along two sides and out-edges along the other two can only make the problem harder. Half of the \(2M \) required memory can be from small-memory, and so the remaining \(M \) must require writing those values to large-memory. Therefore every \(2M \times 2M \) diamond requires \(M \) writes of values within the diamond. Partitioning the full diamond DAG into \(2M \times 2M \) sub-diamonds, gives us \(nm / (2M)^2 \) partitions. Therefore the total number of writes is at least \(M \times nm / (2M)^2 = nm / (4M) \), each with cost \(\omega \). For the time bound we need to add the \(nm \) calculations for all vertex values.

This lower bound is asymptotically tight since a diamond DAG can be evaluated with matching upper bounds by evaluating each \(M/2 \times M/2 \) diamond sub-DAG as a subcomputation with \(M \) inputs, outputs and memory.

These bounds show that for the DAG computation problem on the family of diamond DAGs there is no asymptotic advantage of having cheaper reads. In Section 4 we show that for the ED and LCS problems (normally thought of as a diamond DAG computation), it is possible to do better than the lower bounds. This requires breaking the DAG computation rule by partially computing the values of each vertex before all inputs are ready. The lower bounds are interesting since they show that improving asymptotic performance with cheaper reads requires breaking the DAG computation rule.
4 Longest Common Subsequence and Edit Distance

This section describes a more efficient dynamic-programming algorithm for longest common subsequence (LCS) and edit distance (ED). The standard approach for these problems (an $M \times M$ tiling) results in an ARAM cost of $O(mn\omega/M)$ and time of $O(mn + mn\omega/M)$, where m and n are the length of the two input strings. Lemma 6 states that the standard bound is optimal under the standard DAG computation rule that all inputs must be available before evaluating a node. Perhaps surprisingly, we are able to beat these bounds by leveraging the fact that dynamic programs do not perform arbitrary functions at each node, and hence we do not necessarily need all inputs to begin evaluating a node.

Our main result is captured by the following theorem for large input strings. For smaller strings, we can do even better (see the full version of the paper [9]).

\textbf{Theorem 7.} Let $k_T = \min((\omega/M)^{1/3}, \sqrt{M})$ and suppose $m, n = \Omega(k_T M)$. Then it is possible to compute the ED or length of the LCS with time $T(m, n) = O(mn + mn\omega/(k_T M))$.

Let $k_Q = \min(\omega^{1/3}, \sqrt{M})$ and suppose $m, n = \Omega(k_Q M)$. Then it is possible to compute the ED or length of the LCS with an ARAM cost of $Q(m, n) = O(mn\omega/(k_Q M))$.

To understand these bounds, our algorithm beats the ARAM cost of the standard tiling algorithm by a k_T factor. And if $\omega \geq M$, our algorithm (using different tuning parameters) beats the time of the standard tiling algorithm by a k_T factor.

\textbf{Overview} The dynamic programs for LCS and ED correspond to computing the shortest path through an $m \times n$ grid with diagonal edges, where m and n are the string lengths. We focus here on computing the length of the shortest path, but it is possible to output the path as well with the same asymptotic complexity (see [9]). Without loss of generality, we assume that $m \leq n$, so the grid is at least as wide as it is tall. For LCS, all horizontal and vertical edges have weight 0; the diagonal edges have weight -1 if the corresponding characters in the strings match, and weight ∞ otherwise. For ED, horizontal and vertical edges have weight 1, and diagonal edges have weights either 0 or 1 depending on whether the characters match. Our algorithm is not sensitive to the particular weights of the edges, and thus it applies to both problems and their generalizations.

Note that the $m \times n$ grid is not built explicitly since building and storing the graph would take $\Theta(mn)$ writes if $mn \gg M$. To get any improvement, it is important that subgrids reuse the same space. The weights of each edge can be inferred by reading the appropriate characters in each input string.

Our algorithm partitions the implicit grid into size-$(hM' \times kM')$, where h and k are parameters of the algorithm to be set later, and $M' = M/c$ for large enough constant $c > 1$ to give sufficient working space in small-memory. When string lengths m and $n \geq m$ are both “large”, we use $h = k$ and thus usually work with $kM' \times kM'$ square subgrids. If the smaller string length m is small enough, we instead use parameters $h < k$. To simplify the description of the algorithm, we assume without loss of generality that m and n are divisible by hM' and kM', respectively, and that M is divisible by c.

Our algorithm operates on one $hM' \times kM'$ rectangle at a time, where the edges are directed right and down. The shortest-path distances to all nodes along the bottom and right boundary of each rectangle are explicitly written out, but all other intermediate computations are discarded. We label the vertices $v_{i,j}$ for $1 \leq i \leq hM'$ and $1 \leq j \leq kM'$ according to their row and column in the square, respectively, starting from the top-left corner. We call the vertices immediately above or to the left of the square the \textit{input nodes}. The input nodes
are all outputs for some previously computed rectangle. We call the vertices \(u_{hM',j} \) along the bottom boundary and \(u_{i,kM'} \) along the right boundary the output nodes.

The goal is to reduce the number of writes, thereby decreasing the overall cost of computing the output nodes, which we do by sacrificing reads and time. It is not hard to see that recomputing internal nodes enables us to reduce the number of writes. Consider, for example, the following simple approach assuming \(M = \Theta(1) \): For each output node of a \(k \times k \) square, try all possible paths through the square, keeping track of the best distance seen so far; perform a write at the end to output the best value.\(^3\) Each output node tries \(2^{\Theta(k)} \) paths, but only a \(\Theta(1/k) \)-fraction of nodes are output nodes. Setting \(k = \Theta(\lg \omega) \) reduces the number of writes by a \(\Theta(\lg \omega) \)-factor at the cost of \(\omega^{O(1)} \) reads. This same approach can be extended to larger \(M \), giving the same \(\lg \omega \) improvement, by computing “bands” of nearby paths simultaneously. But our main algorithm, which we discuss next, is much better as \(M \) gets larger (see Theorem 7).

Path sketch The key feature of the grid leveraged by our algorithm is that shortest paths do not cross, which enables us to avoid the exponential recomputation of the simple approach. The noncrossing property has been exploited previously for building shortest-path data structures on the grid (e.g., [42]) and more generally planar graphs (e.g., [23, 34]). These previous approaches do not consider the cost of writing to large-memory, and they build data structures that would be too large for our use. Our algorithm leverages the available small-memory to compute bands of nearby paths simultaneously. We capture both the noncrossing and band ideas through what we call a path sketch, which we define as follows.

The path sketch enables us to cheaply recompute the shortest paths to nodes.

We call every \(M' \)-th row in the square a superrow, meaning there are \(h \) superrows in the square. The algorithm partitions the \(i \)-th superrow into segments \((i, \ell, r) \) of consecutive elements \(u_{iM',\ell}, u_{iM',\ell+1}, \ldots, u_{iM',r} \). The main restriction on segments is that \(r < \ell + M' \), i.e., each segment consists of at most \(M' \) consecutive elements in the superrow. Note that the segment boundaries are determined by the algorithm and are input dependent.

A path sketch is a sequence of segments \((s, \ell_s, r_s), (s+1, \ell_{s+1}, r_{s+1}), (s+2, \ell_{s+2}, r_{s+2}), \ldots, (i, \ell_i, r_i) \), summarizing the shortest paths to the segment. Specifically, this sketch means that for each vertex in the last segment, there is a shortest path to that vertex that goes through a vertex in each of the segments in the sketch. If the sketch starts at superrow 1, then the path originates from a node above the first superrow (i.e., the top boundary or the topmost \(M' \) nodes of the left boundary). If the sketch starts with superrow \(s > 1 \), then the path originates at one of the \(M' \) nodes on the left boundary between superrows \(s - 1 \) and \(s \). Since paths cannot go left, the path sketch also satisfies \(\ell_s \leq \ell_{s+1} \leq \cdots \leq \ell_i \).

Evaluating a path sketch Given a path sketch, we refer to the process of determining the shortest-path distances to all nodes in the final segment \((i, \ell_i, r_i) \) as evaluating the path sketch or evaluating the segment, with the distances in small-memory when the process completes. Note that we have not yet described how to build the path sketch, as the building process uses evaluation as a subroutine.

The main idea of evaluating the sketch is captured by Figure 1 for the example sketch \(\langle 1, 4, 6 \rangle, \langle 2, 6, 6 \rangle, \langle 3, 8, 9 \rangle \). The sketch tells us that shortest paths to \(u_{9,8} \) and \(u_{9,9} \) pass through

\(^3\) This approach requires constant small-memory to keep the best distance, the current distance, and working space for computing the current distance. We also need bits proportional to the path length to enumerate paths.
one of $u_{3,4}, u_{3,5}, u_{3,6}$ and the node $u_{6,6}$. Thus, to compute the distances to $u_{9,8}$ and $u_{9,9}$, we need only consider paths through the darker nodes and solid edges—the lighter nodes and dashed edges are not recomputed during evaluation.

The algorithm works as follows. First compute the shortest-path distances to the first segment in the sketch. To do so, horizontally sweep a height-$(M' + 1)$ column across the $(M' + 1) \times kM'$ slab raising above the s-th superrow, keeping two columns in small-memory at a time. Also keep the newly computed distances to the first segment in small-memory, and stop the sweep at the right edge of the segment. More generally, given the distances to a segment in small-memory, we can compute the values for the next segment in the same manner by sweeping a column through the slab. This algorithm yields the following performance.

Lemma 8. Given a path sketch $\langle s, \ell_s, r_s \rangle, \ldots, \langle i, \ell_i, r_i \rangle$ in an $hM' \times kM'$ grid with distances to all input nodes computed, our algorithm correctly computes the shortest-path distances to all nodes in the segment $\langle i, \ell_i, r_i \rangle$. Assuming $k \geq h$ and small-memory size $M \geq 5M' + \Theta(1)$, the algorithm requires $O(kM'^2)$ operations in small-memory, $O(kM)$ reads, and 0 writes.

Proof. Correctness follows from the definition of the path sketch: the sweep performed by the algorithm considers all possible paths that pass through these segments.

The algorithm requires space in small-memory to store two columns in the current slab, the previous segment in the sketch, and the next segment in the sketch, and the two segment boundaries themselves, totaling $4M' + \Theta(1)$ small-memory. Due to the monotonically increasing left endpoints of each segment, the horizontal sweep repeats at most M' columns per superrrow, so the total number of column iterations is $O(kM' + hM') = O(kM')$. Multiplying by M' gives the number of nodes computed.

The main contributor to reads is the input strings themselves to infer the structure/weights of the grid. With M' additional small-memory, we can store the “vertical” portion of the input string used while computing each slab, and thus the vertical string is read only once with $O(hM') = O(kM')$ reads. The “horizontal” input characters can be read with each of the $O(kM')$ column-sweep iterations. An additional k reads suffice to read the sketch itself, which is a lower-order term.

Building the path sketch The main algorithm on each rectangle involves building the set of sketches to segments in the bottom superrrow. At some point during the sketch-building process, the distances to each output node is computed, at which point it can be written.
out. The main idea of the algorithm is a sketch-extension subroutine: given segments in the i-th superrow and their sketches, extend the sketches to produce segments in the $(i+1)$-th superrow along with their sketches.

Our algorithm builds up an ordered list of consecutive path sketches, one superrow at a time. The first superrow is partitioned into k segments, each containing exactly M' consecutive nodes. The list of sketches is initialized to these segments.

Given a list of sketches to the i-th superrow, our algorithm extends the list of sketches to the $(i+1)$-th superrow as follows. The algorithm sweeps a height-$(M'+1)$ column across the $(M'+1) \times kM'$ slab between these superrows (inclusive). The sweep begins at the left end of the slab, reading the input values from the left boundary, and continuing across the entire width of the slab. In small-memory, we evaluate the first segment of the i-th superrow (using the algorithm from Lemma 8). Whenever the sweep crosses a segment boundary in the i-th superrow, again evaluate the next segment in the i-th superrow. For each node in the slab, the sweep calculates both the shortest-path distance and a pointer to the segment in the previous superrow from whence the shortest path originates (or a null pointer if it originates from the left boundary). When the originating segment of the bottom node (the node in the $(i+1)$-th superrow) changes, the algorithm creates a new segment for the $(i+1)$-th superrow and appends it to the sketch of the originating segment. If the segment in the current segment in the $(i+1)$-th superrow grows past M' elements, a new segment is created instead and the current path sketch is copied and spliced into the list of sketches. Any sketch that is not extended through this process is no longer relevant and may be spliced out of the list of sketches. When the sweep reaches a node on the output boundary (right edge or bottom edge of the square), the distance to that node is written out.

Lemma 9. The sketching algorithm partitions the i-th superrow into at most ik segments.

Proof. The proof is by induction over superrows. As a base case, the first superrow consists of exactly k segments. For the inductive step, there are two cases in which a new segment is started in the $(i+1)$-th superrow. The first case is that the originating segment changes, which can occur at most ik times by inductive assumption. The second case is that the current segment grows too large, which can occur at most k times. We thus have at most $(i+1)k$ segments in the $(i+1)$-th superrow.

Lemma 10. Suppose $h \leq k$ and small-memory $M \geq 11M' + \Theta(1)$, and consider an $hM' \times kM'$ grid with distances to input nodes already computed. Then the sketch building algorithm correctly computes the distances to all output boundary nodes using $O((hk)^2M^2)$ operations in small-memory, $O((hk)^2M)$ reads from large-memory, and $O(h^2k + X)$ writes to large-memory, where $X = O(kM)$ is the number of boundary nodes written out.

Proof. Consider the cost of computing each slab, ignoring the writes to the output nodes. We reserve $5M' + \Theta(1)$ small-memory for the process of evaluating segments in the previous superrow. To perform the sweep in the current slab, we reserve M' small-memory to store one segment in the previous row, M' small-memory to store characters in the “vertical” input string, $4(M'+1)$ small-memory to store two columns (each with distances and pointers) for the sweep, and an additional $\Theta(1)$ small-memory to keep, e.g., the current segment boundaries. Since there are at most hk segments in the previous superrow (Lemma 9), the algorithm evaluates at most hk segments; applying Lemma 8, the cost is $O(hk^2M^2)$ operations, $O(hk^2M)$ reads, and 0 writes. There are an additional $O(kM^2)$ operations to sweep through the kM^2 nodes in the slab, plus $O(kM)$ reads to scan the “horizontal” input string. Finally, there are $O(hk)$ writes to extend existing sketches and $O(hk)$ writes to copy at most k sketches.
We describe and analyze three versions (two classical and one new variant) of Dijkstra’s ARAM cost. As the size of squares increase, the fraction of output nodes and hence writes decreases, at the cost of more overhead for operations in small-memory and reads from large-memory. Assuming both \(n \) and \(m \) are large enough to do so, plugging in \(h = k = \max\{1, k_T\} \) or \(h = k = k_Q \) with a few steps of algebra to eliminate terms yields Theorem 7.

Theorem 12
The SSSP problem on a graph \(G = (V, E) \) with non-negative edge weights can be solved with \(Q(n, m) = O(\min(n(\omega + m/M), (m + n \log n)\omega, m(\omega + \log n))) \) and \(T(n, m) = O(Q(n, m) + n \log n) \), both in expectation, on the \((M, \omega)\)-ARAM.

We start with the classical Dijkstra’s algorithm [19], which maintains for each vertex \(v \), \(\delta(v) \), a tentative upper bound on the distance, initialized to \(+\infty \) (except for \(\delta(s) \), which is initialized to 0). The algorithm consists of \(n - 1 \) iterations, and the final distances from \(s \) are stored in \(\delta(\cdot) \). In each iteration, the algorithm selects the unvisited vertex \(u \) with smallest finite \(\delta(u) \), marks it as \textit{visited}, and uses its outgoing edges to relax (update) all of its neighbors’ distances. A priority queue is required to efficiently select the unvisited vertex with minimum distance. Using a Fibonacci heap [24], the time of the algorithm is \(O(m + n \log n) \) in the standard (symmetric) RAM model. In the \((M, \omega)\)-ARAM, the costs are \(Q = T = O((m + n \log n)\omega) \) since the Fibonacci heap requires asymptotically as many writes as reads. Alternatively, using a binary search tree for the priority queue reduces the number of writes (see Section 6) at the cost of increasing the number of reads, giving \(Q = T = O(m \log n + \omega n) \). These bounds are better when \(m = o(\omega n) \). Both of these variants store the priority queue in large-memory, requiring at least one write to large-memory per edge.

We now describe an algorithm, which we refer to as \textit{phased Dijkstra}, that fully maintains the priority queue in small-memory and only requires \(O(n) \) writes to large-memory. The idea is to partition the computation into phases such that for a parameter \(M' \) each phase needs a
priority queue of size at most $2M'$ and visits at least M' vertices. By selecting $M' = M/c$ for an appropriate constant c, the priority queue fits in small-memory, and the only writes to large-memory are the final distances.

Each phase starts and ends with an empty priority queue P and consists of two parts. A Fibonacci heap is used for P, but is kept small by discarding the M' largest elements (vertex distances) whenever $|P| = 2M'$. To do this P is flattened into an array, the M'-th smallest element d_{max} is found by selection, and the Fibonacci heap is reconstructed from the elements no greater than d_{max}, all taking linear time. All further insertions in a given phase loops over all edges in the graph and relaxes any that go from a visited to an unvisited vertex (possibly inserting or decreasing a key in P). The second part then runs the standard Dijkstra’s algorithm, repeatedly visiting the vertex with minimum distance and relaxing its neighbors until P is empty. To implement relax, the algorithm needs to know whether a vertex is already in P, and if so its location in P so that it can do a decrease-key on it. It is too costly to store this information with the vertex in large-memory, but it can be stored in small-memory using a hash table.

The correctness of this phased Dijkstra’s algorithm follows from the fact that it only ever visits the closest unvisited vertex, as with the standard Dijkstra’s algorithm.

Lemma 13. Phased Dijkstra’s has $Q(n, m) = O(n(\omega + m/M))$ and $T(n, m) = O(Q(n, m) + n \log n)$ both in expectation (for $M \leq n$).

Proof. During a phase either the size of P will grow to $2M'$ (and hence delete some entries) or it will finish the algorithm. If P grows to $2M'$ then at least M' vertices are visited during the phase since that many need to be deleted with delete-min to empty P. Therefore the number of phases is at most $\lceil n/M' \rceil$. Visiting all edges in the first part of each phase involves at most m insertions and decrease-keys into P, each taking $O(1)$ amortized time in small-memory, and $O(1)$ time to read the edge from large-memory. Since compacting Q when it overflows takes linear time, its cost can be amortized against the insertions that caused the overflow. The cost across all phases for the first part is therefore $Q = W = O(m \lceil n/M' \rceil)$. For the second part, every vertex is visited once and every edge relaxed at most once across all phases. Visiting a vertex requires a delete-min in small-memory and a write to large-memory, while relaxing an edge requires an insert or decrease-key in small-memory, and $O(1)$ reads from large-memory. We therefore have for this second part (across all phases) that $Q = O(\omega n + m)$ and $W = O(n(\omega + \log n) + m)$. The operations on P each include an expected $O(1)$ cost for the hash table operations. Together this gives our bounds.

Compared to the first two versions of Dijkstra’s algorithm with $Q = T = O(\omega m + \min(\omega n \log n, m \log n))$, the new algorithm is strictly better when $\omega M > n$. More specifically, the new algorithm performs better when $nm/M < \max\{\omega m, \min(\omega n \log n, m \log n)\}$. Combining these three algorithms proves Theorem 12, when the best one is chosen based on the parameters M, ω, n, and m.

6 Further Results and Open Problems

In this section we outline results for a variety of other problems. The bounds are summarized as part of Table 1.

FFT For the FFT we can match the lower bound using the algorithm described elsewhere [10], although in that case the computation cost was not considered. The idea is to first split the
DAG into layers of \(\log(\omega M) \) levels. Then divide each layer so that the last \(\log M \) levels are partitioned into FFT networks of output size \(M \). Attach to each partition all needed inputs from the layer and the vertices needed to reach them (note that these vertices will overlap among partitions). Each extended partition will have \(\omega M \) inputs and \(M \) outputs, and can be computed in \(M \) small-memory with \(Q = O(\omega M) \), and \(T = O((\omega + \log M)M) \). This gives a total upper bound of \(Q = O(\omega M \times n \log n/(M \log(\omega M))) = O(\omega n \log n/\log(\omega M)) \), and \(T = O(Q(n) + \log n) \), which matches the lower bound (asymptotically). All computations are done within the DAG model.

Search Trees and Priority Queues We now consider algorithms for some problems that can be implemented efficiently using balanced binary search trees. In the following discussion we assume \(M = O(1) \). Red-black trees with appropriate rebalancing rules require only \(O(1) \) amortized time per update (insertion or deletion) once the location for the key is found [44]. For a tree of size \(n \) finding a key’s location uses \(O(\log n) \) reads but no writes, so the total amortized cost \(Q = T = O(\omega + \log n) \) per update in the \((M,\omega) \)-ARAM. For arbitrary sequences of searches and updates, \(\Omega(\omega + \log n) \) is a matching lower bound on the amortized cost per operation when \(M = O(1) \). Because priority queues can be implemented with a binary search tree, insertion and delete-min have the same bounds. It seems more difficult, however, to reduce the number of writes for priority queues that support efficient melding or decrease-key.

Sorting Sorting can be implemented with \(Q = T = O(n(\log n + \omega)) \) by inserting all keys into a red-black tree and then reading them off in priority order [10]. We note that this bound on time is better than the sorting network lower bound (Theorem 4). For example, when \(\omega = M = \log n \) it gives a factor of \(\log n \)/\(\log \log n \) improvement. The additional power is a consequence of being able to randomly write to one of \(n \) locations at the leaves of the tree for each insertion. The bound is optimal for \(T \) because \(n \) writes are required for the output and comparison-based sorting requires \(O(n \log n) \) operations.

Convex Hull and Triangulation A variety of problems in computational geometry can be solved optimally using balanced trees and sorting. The planar convex-hull problem can be solved by first sorting the points by \(x \) coordinates and then either using Overmars’ technique or Graham’s scan [18]. In both cases, the second part takes linear time so the overall cost is \(O(\text{Sort}(n)) \). The planar Delaunay triangulation problem can be solved efficiently with the plane sweep method [18]. This involves maintaining a priority queue on \(x \) coordinate, and maintaining a balanced binary search tree on the \(y \) coordinate. A total of \(O(n) \) operations are required on each, again giving bounds \(O(\text{Sort}(n)) \).

BFS and DFS Breadth-first and depth-first search can be performed with \(Q = T = O(\omega n + n) \). In particular each vertex only requires a constant number of writes when it is first added to the frontier (the stack or queue) and a constant number of writes when it is finished (removed from the stack or queue). Searches along an edge to an already visited vertex require no writes. This implies that several problems based on BFS and DFS also only require \(Q = T = O(\text{DFS}(n)) \). Such problems include topological sort, biconnected components, and strongly connected components. The analysis is based on the fact that there are only \(O(n) \) forward edges in the DFS. However when using priority-first search on a weighted graph (e.g., Dijkstra’s or Prim’s algorithm) then the problem is more difficult to perform optimally as the priority queue might need to be updated for every visited edge.
Dynamic Programming With regards to dynamic programming, some problems are reasonably easy and some harder. We covered LCS and ED in Section 4. The standard Floyd-Warshall algorithm for the all-pairs shortest-path (APSP) problem uses $O(n^3)$ writes. However, by rearranging the loops and carefully scheduling the writes it is possible to implement the algorithm using only $O(n^2)$ writes and $O(n^3)$ reads, giving $T = O(\omega n^2 + n^3)$ [9]. This version, however, is not efficient in terms of Q. Kleene’s divide-and-conquer algorithm [2] can be used to reduce the ARAM cost [39]. Each recursive call makes two calls to itself on problems of half the size, and six calls to matrix multiply over the semiring $(\min, +)$. Here we analyze the algorithm in the (M, ω)-ARAM. The matrix multiplies on two matrices of size $n \times n$ can be done in the model in $Q_M(n) = O(n^2(\omega + n/\sqrt{M}))$ [10]. This leads to the recurrence $Q_{Kleene}(n) = 2Q_{Kleene}(n/2) + O(Q_M(n)) + O(\omega n^2)$, which solves to $Q_{Kleene}(n) = O(Q_M(n))$ because the cost is dominated at the root of the recurrence. It is not known whether this is optimal. A similar approach can be used for several other problems, including sequence alignment with gaps, optimal binary search trees, and matrix chain multiplication [15].

Minimum Spanning Tree The standard algorithms for the minimum spanning tree (MST) problem are not write efficient. However using a variant of Borůvka’s algorithm, and careful management of a union-find data structure, MST can be made write-efficient. In particular, for an input graph in adjacency-list format with n vertices and m edges, MST has cost $Q(n, m) = T(n, m) = O(m \log n + \omega n)$ on the (M, ω)-ARAM, with $M = O(1)$. We outline the idea here—a more detailed description is given in the full paper [9].

The algorithm proceeds in two phases. For the first phase, consisting of the first $\log \log n$ rounds of Borůvka steps, the algorithm performs no shortcuts on a union-find tree. Thus it will leave chains of length up to $\log \log n$ that need to be followed for each root lookup. Also all vertices of each component are maintained in a linked list so that a component (root) can be searched with just reads. Because there are at most $O(m \log \log n)$ queries during the first $\log \log n$ rounds, the total number of reads for identifying the minimum edges between components in the first phase is $O(m(\log \log n)^2)$. There are $O(n)$ writes for creating links in the tree, linking components in the lists, and outputting selected edges.

After this first phase, the algorithm shortcuts all vertices to point directly to their root ($O(n)$ reads and writes). We refer to the roots as the phase-one components. In the second phase, after each of the remaining rounds the algorithm shortcuts the phase-one components to point directly to their new root. Because there can only be at most $n/\log n$ phase-one components, and at most $\log n - \log \log n$ rounds in the second phase, the total number of reads and writes for these updates is $O(n)$. Looking up a vertex takes two steps: one to find its phase-one component and another to get to the current component (root), both taking constant time. Therefore the total number of reads for identifying the minimum edges between components in the second phase is $O(m) \times (\log n - \log \log n) = O(m \log n)$. Summing the reads and writes gives the above bounds. Observing that the SSSP algorithm in Section 5 can be adapted to implement Prim’s MST algorithm [17] yields the bounds in Table 1 (the n/M term is in expectation).

Acknowledgments

This research was supported in part by NSF grants CCF-1314590, CCF-1314633 and CCF-1533858, the Intel Science and Technology Center for Cloud Computing, and the Miller Institute for Basic Research in Science at UC Berkeley.
References

Philip N. Klein, Shayan Oveis, and Oren Weimann. Shortest paths in directed planar graphs with negative lengths: A linear-space $O(n \log^2 n)$-time algorithm. ACM Transactions on Algorithms, 6(2), 2010.

