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Abstract
In commercial speech applications, millions of speech
utterances from the field are collected from millions of
users, creating a challenge to best leverage the user data
to enhance speech recognition performance. Motivated
by an intuition that similar users may produce similar
utterances, we propose a latent speaker model for unsu-
pervised language modeling. Inspired by latent seman-
tic analysis (LSA), an unsupervised method to extract la-
tent topics from document corpora, we view the accumu-
lated unsupervised text from a user as a document in the
corpora. We employ latent Dirichlet-Tree allocation, a
tree-based LSA, to organize the latent speakers in a tree
hierarchy in an unsupervised fashion. During speaker
adaptation, a new speaker model is adapted via a linear
interpolation of the latent speaker models. On an in-
house evaluation, the proposed method reduces the word
error rates by 1.4% compared to a well-tuned baseline
with speaker-independent and speaker-dependent adap-
tation. Compared to a competitive document clustering
approach based on the exchange algorithm, our model
yields slightly better recognition performance.
Index Terms: speaker topic modeling, language model
adaptation

1. Introduction

Language model adaptation has been an active research
area for automatic speech recognition. One popular ap-
proach is latent semantic analysis (LSA) which enables
topical information of a context to be effectively incorpo-
rated into a background model to improve performance.
LSA has been evolved from traditional singular value
decomposition [1] to probabilistic approaches such as
probabilistic latent semantic analysis [2, 3, 4], and latent
Dirichlet allocation (LDA) [5, 6, 7]. These approaches
usually train LSA models using supervised text (e.g. web
articles). Moreover, the size of an article is usually suf-
ficiently long so that topics in the articles are well cap-
tured. In some applications, however, obtaining super-
vised training text from a specific domain may be costly.
Speech utterances can be short and independent, making
topic adaptation difficult from the limited context.

In this paper, we explore speaker language modeling

to address adaptation on short utterances. Unlike other
efforts, by necessity, our approach relies exclusively on
unsupervised text from a speech recognizer for speaker
language modeling and adaptation. First, the accumu-
lated text from a speaker is considered as a document,
implicitly capturing the popular topics for that speaker.
Intuitively, similar speakers produce similar utterances.
We employ correlated N-gram LSA [8] to derive a set
of correlated latent speakers in an unsupervised fashion.
Informally, different topical words within a speaker doc-
ument have mutual triggering effects via LSA. Knowing
the current topics (e.g. finance) from preceding speaker
data may help predict the most-likely future topics (e.g.
technology) of the speaker. With the accumulated text of
a speaker, we predict the language model interpolation
weights per speaker. The speaker-specific interpolation
weights are then used as part of the speaker adapted lan-
guage model during subsequent speech recognition.

Works related to using speaker information include
multi-speaker language modeling [9] which integrates
the word usage of other speakers in a meeting for word
prediction of a speaker via a word clustering approach.
Probabilistic LSA [4] is employed to combine topic and
speaker models for language model adaptation via uni-
gram rescaling.

This paper is organized as follows: Section 2 gives a
brief review of correlated N-gram LSA and speaker adap-
tation. Section 4 presents experimental results using our
research system. Section 5 concludes our work.

2. Correlated N-gram LSA

Bigram LSA [10] attempts to relax the bag-of-word as-
sumption in LSA that each word in a document is gener-
ated irrespective of its position in a document. Figure 1
shows the graphical representation of trigram LSA where
the top node represents the prior distribution over the
topic mixture weights and the middle layer represents the
latent topic associated to each word at the bottom layer.
The document generation procedure of N-gram LSA is
similar to LDA except that the word history is considered
to generate the next word:

1. Sampleθ from a prior distributionp(θ)
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Figure 1: Graphical representation of trigram LSA.

2. For each wordwi at thei-th position of a docu-
ment:

(a) Sample topic label:zi ∼ Multinomial(θ)

(b) Samplewi given the word historyhi and the
topic labelzi: wi ∼ p(·|hi, zi)

To model topic correlation, we use a Dirichlet tree as the
prior distributionp(θ).

2.1. Model Training

We follow the same procedure in [8] for N-gram LSA
training via variational Bayes inference. The joint like-
lihood of a documentwN

1 , the latent topic sequencezN
1

andθ using N-gram LSA is written as follows:

p(wN
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N
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p(zi|θ) · p(wi|hi, zi)

With a factorizable variational posterior distribution
q(zN

1 , θ; Γ) = q(θ) ·
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i=1 q(zi) over the latent variables,
the lower bound of the marginalized document likelihood
can be derived using the Jensen’s inequality:
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where the expectation is taken usingq(zN
1 , θ; Γ). By par-

tial differentiation on the auxiliary functionQ(·) over the
variational parametersΓ and setting the results to zero,
we obtain the following E-step procedure (assuming LDA
for simplicity):

E-steps:

q(zi = k) ∝ p(wi|hi, k) · eEq [log θk;{γk}]

γk = αk +

N
∑

i=1

q(zi = k)

whereEq[log θk] =

K
∑

k=1

(

Ψ(γk) − Ψ(
∑

k′

γk′)

)

where{αk} are the parameters of a Dirichlet prior.Ψ(·)
denotes the derivative of the logarithm of the Gamma
function.

For the M-step, we compute the partial derivative of
the auxiliary functionQ(·) over all training documentsd
with respect to the emission probabilityp(v|h, k) and set
the results to zero:

M-step: (unsmoothed)

p(v|h, k) ∝
∑

d

Nd
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whereNd denote the number of words in documentd

and δ(x, y) is the Kronecker Delta function which sets
to unity if x is equal toy. C(h, v|k) denotes the frac-
tional count of N-gram(h, v) belonging to topick. Given
the fractional N-gram counts, we could first rounding
off the fractional counts to integers and apply any lan-
guage model smoothing. Another approach is to ap-
ply fractional Kneser-Ney smoothing [8]. In this paper,
we employ the former as approximation. To make the
model training practical, we approximatep(wi|hi, k) by
p(wi|k) in the E-steps.

3. Unsupervised Speaker Adaptation

Using the accumulated unsupervised speaker text from
a speech recognizer, we treat these as a speaker “doc-
ument” and estimate the posterior of speakers via the
E-steps. The latent speaker model is obtained via linear
interpolation:

θ̂sk =
γsk

∑

k′ γsk′

for k = 1...K (1)

plsa(v|h, s) =
K
∑

k=1

θ̂sk · p(v|h, k) (2)

For new speakers without any accumulated text, we esti-
mate the interpolation weights via simple averaging over
the weights of training speakers:

θ̂∗k =
1

S

∑

s

θsk

where S denotes the number of training speakers.
As trivial baselines, we build speaker-independent (SI)



and speaker-dependent (SD) language models using the
pooled data from all speakers, and the speaker-specific
data respectively. Intuitively, the SI and SD models are
the two extremes while the latent speaker model lies in-
between them. The SI model is trained on more data but it
may be too general. The SD model captures the speaker-
specific behavior but it may lack sufficient training data.
Finally, we interpolate the background language model
with the SI, SD and the latent speaker models linearly:

pa(v|h, s) = λ1 · pbg(v|h) + λ2 · psi(v|h)

+λ3 · psd(v|h) + λ4 · plsa(v|h)

where the interpolation weights are estimated using a
combination of heuristics and grid search.

4. Experimental Setup

We evaluated the proposed speaker language modeling on
an in-house speech recognition task using our research
system. The speaker training corpus was a sample of
250K speakers totaling 8M words spanning a two-month
period. This corpus consisted of unsupervised recognizer
output. The test set was a sample of 1810 speakers total-
ing 57K words spanning the subsequent month. Manual
transcriptions were used for accuracy assessment but not
for adaptation. Most of the test utterances had less than
ten words. The background model was an interpolated
4-gram LM built from diverse sources including large
amounts of unsupervised in-domain data preceding the
speaker training corpus. The background model was al-
ready optimized for the evaluation task. Language mod-
els were adapted for each test date using the speaker train-
ing corpus and all preceding test corpus from the recog-
nizer output. Since both model training and adaptation
used unsupervised text, the vocabulary size on all adap-
tation cases and the background model were equal and
no out-of-vocabulary words were added. For speakers
with non-empty accumulated data, we applied speaker-
dependent adaptation. For latent speaker model, we used
the training corpora to build an initial model. On each
test date, we adapted the latent speaker models incre-
mentally via folding in new preceding data followed by
model update with ten EM iterations. Table 1 shows
sample speaker-topics extracted from latent Dirichlet-
Tree allocation. Finally, we interpolated the background
model linearly with the adaptive components and tuned
the interpolation weights accordingly. For comparison
purpose, we employed the K-means style exchange al-
gorithm [11] to perform “hard” clustering on speaker
documents in contrast with “soft” clustering in latent
Dirichlet-Tree allocation. In both cases, we used eight
latent speakers for experiments with the same weight es-
timation procedure.

Top words of latent speakers
where need get want like buy
me for good taxi I’m looking

Oregon Portland Maine men Salem Washington
find California SanFrancisco SanJose

what where time weather playing closest

Table 1: Sample latent speakers from latent Dirichlet-
Tree allocation.

LM Adaptation Rel. PPLR Rel. WERR

SI 31.4% 5.6%
SI+hard cluster 37.8 6.9

SI+LDA 38.9 8.0

Table 2: Oracle perplexity reduction (PPLR) and word
error rate reduction (WERR) relative to the background
model with various speaker adaptation approaches tuned
on manual reference.

4.1. Oracle Results

As a sanity check, we evaluated the upper-bound per-
formance via estimating the interpolation weights using
the per-speaker manual reference on each test date and in
all models including the background model. We applied
unconstrained EM to estimate the weights until conver-
gence. Table 2 shows the word perplexity and the word
error rate compared to the background model. By simply
pooling all the speaker data, speaker-independent adapta-
tion yielded significant reduction in perplexity and word
error rates by 31.4% and 5.6% respectively. With the ut-
terance content changing over time, speaker-independent
adaptation captures the changes effectively with preced-
ing speaker data. Adding the latent speaker models either
using “hard” clustering or LDA-based “soft” clustering
further reduced the perplexity and word error rates. The
LDA-based approach performed slightly better than the
“hard” clustering approach on both perplexity and word
error rate.

LM Adaptation Rel. WERR (%)

SI 4.8%
SI+hard cluster 5.4

SI+LDA 5.7

SI+SD 5.9
SI+SD+hard cluster 6.7

SI+SD+LDA 7.2

Table 3: Word error rate reduction (WERR) relative to
the background model with various speaker adaptation
approaches tuned on preceding unsupervised text.



# utterance SI+SD SI+LDA SI+SD+LDA
0 0.0% 0.46% 0.46%

≤ 1 -0.13 0.58 0.51
≤ 2 0.25 0.38 1.00
≤ 3 0.41 0.59 1.54
≤ 4 0.23 0.29 1.50
≤ 5 0.06 0.23 1.39

Table 4: Comparison between speaker-dependent and la-
tent speaker adaptation on limited preceding adaptation
utterances in word error rate reduction (WERR) relative
to speaker-independent adaptation.

4.2. Recognition Results

To evaluate the adaptation methods in a more realistic set-
ting, we then used the preceding accumulated data from
the speech recognizer for weight estimation. Table 3
shows the word error rate on various adaptation scheme
compared to the background model. We observed similar
word error rate reduction using SI adaptation. The LDA-
based latent speaker model yielded additional gain but the
gain was significantly smaller than the gain observed in
the oracle experiments. This shows that the quality of
input adaptation data is crucial. Factors such as recog-
nition errors, relevancy of the preceding data, and the
amount of speaker-specific text may affect the accuracy
of weight prediction on a specific test date in the latent
speaker model.

Integrating SI and SD adaptation further brought
down the word error rates by 5.9% relative to the back-
ground model. Combining all adaptation approaches
yielded the best results with 7.2% relative reduction in
word error rate. Results are statistically significant at
0.1% significance level with respect to applying both SI
and SD adaptation. Similar to previous results, the LDA-
based “soft” clustering produced slightly better results
than the “hard” clustering using the exchange algorithm.

With insufficient adaptation data, speaker-dependent
adaptation may not be effective. To verify this hypoth-
esis, we compute the relative word error rate reduction
with respect to speaker-independent adaptation using a
subset of test speakers with limited number of preceding
adaptation utterances. Table 4 shows the robustness of
latent speaker adaptation with better recognition perfor-
mance than speaker-dependent adaptation.

5. Conclusions

We have presented unsupervised latent speaker language
modeling. Both model training and prediction use purely
unsupervised text from a speech recognizer. With cor-
related N-gram LSA for latent speaker language model-
ing, we have shown significant improvement in recog-
nition performance compared to a strong baseline using
speaker-independent and speaker-dependent adaptation.
Accurate estimation of interpolation weights have shown

crucial but however governed by the intrinsic recogni-
tion errors and relevancy of the accumulated adaptation
data of a speaker. The topics explored by a speaker may
change over time during system usage. In the future, we
will explore complementary input for better adaptation.
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