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Abstract

We present a correlated bigram LSA approach for unsupervised LM adaptation for
automatic speech recognition. The model is trained using efficient variational EM
and smoothed using the proposed fractional Kneser-Ney smoothing which handles
fractional counts. We address the scalability issue to large training corpora via
bootstrapping of bigram LSA from unigram LSA. For LM adaptation, unigram
and bigram LSA are integrated into the background N-gram LM via marginal
adaptation and linear interpolation respectively. Experimental results on the Man-
darin RT04 test set show that applying unigram and bigram LSAtogether yields
6%–8% relative perplexity reduction and 2.5% relative character error rate reduc-
tion which is statistically significant compared to applying only unigram LSA.
On the large-scale evaluation on Arabic, 3% relative word error rate reduction is
achieved which is also statistically significant.

1 Introduction

Language model (LM) adaptation is crucial to automatic speech recognition (ASR) as it enables
higher-level contextual information to be effectively incorporated into a background LM improving
recognition performance. Exploiting topical context for LM adaptation has shown to be effective
for ASR using latent semantic analysis (LSA) such as LSA using singular value decomposition [1],
Latent Dirichlet Allocation (LDA) [2, 3, 4] and HMM-LDA [5, 6]. One issue in LSA is the bag-
of-word assumption which ignores word ordering. For document classification, word ordering may
not be important. But in the LM perspective, word ordering iscrucial since a trigram LM normally
performs significantly better than a unigram LM for word prediction. In this paper, we investigate
whether relaxing the bag-of-word assumption in LSA helps improving the ASR performance via
LM adaptation.

We employ bigram LSA [7] which is a natural extension of LDA torelax the bag-of-word assump-
tion by connecting the adjacent words in a document togetherto form a Markov chain. There are
two main challenges in bigram LSA which are not addressed properly in [7] especially for large-
scale application. Firstly, the model can be very sparse since it covers topical bigrams inO(V 2 ·K)
whereV andK denote the vocabulary size and the number of topics. Therefore, model smoothing
becomes critical. Secondly, model initialization is important for EM training, especially for bigram
LSA due to the model sparsity. To tackle the first challenge, we represent bigram LSA as a set
of K topic-dependent backoff LM. We propose fractional Kneser-Ney smoothing1 which supports

∗This work is partly supported by the Defense Advanced Research Projects Agency (DARPA) under Con-
tract No. HR0011-06-2-0001. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of DARPA.

1This method was briefly mentioned in [8] without detail. To the best of our knowledge, our formulation in
this paper is considered new to the research community.
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Figure 1: Graphical representation of bigram LSA. Adjacentwords in a document are linked to-
gether to form a Markov chain from left to right.

fractional counts to smooth each backoff LM. We show that ourformulation recovers the original
Kneser-Ney smoothing [9] which supports only integral counts. To address the second challenge,
we propose a bootstrapping approach for bigram LSA trainingusing a well-trained unigram LSA as
an initial model.

During unsupervised LM adaptation, word hypotheses from the first-pass decoding are used to es-
timate the topic mixture weight of each test audio to adapt both unigram and bigram LSA. The
adapted unigram and bigram LSA are combined with the background LM in two stages. Firstly,
marginal adaptation [10] is applied to integrate unigram LSA into the background LM. Then the in-
termediately adapted LM from the first stage is combined withbigram LSA via linear interpolation
with the interpolation weights estimated by minimizing theword perplexity on the word hypotheses.
The final adapted LM is employed for re-decoding.

Related work includes topic mixtures [11] which perform document clustering and train a trigram
LM for each document cluster as an initial model. Sentence-level topic mixtures are modeled so that
the topic label is fixed within a sentence. Topical N-gram model [12] focuses on phrase discovery
and information retrieval. We do not apply this model because the phrase-based LM seems not
outperform the word-based LM.

The paper is organized as follows: In Section 2, we describe the bigram LSA training and the
fractional Kneser-Ney smoothing algorithm. In Section 3, we present the LM adaptation approach
based on marginal adaptation and linear interpolation. In Section 4, we report LM adaptation results
on Mandarin and Arabic ASR, followed by conclusions and future work in Section 5.

2 Correlated bigram LSA

Latent semantic analysis such as LDA makes a bag-of-word assumption that each word in a docu-
ment is generated irrespective of its position in a document. To relax this assumption, bigram LSA
has been proposed [7] to modify the graphical structure of LDA by connecting adjacent words in a
document together to form a Markov chain. Figure 1 shows the graphical representation of bigram
LSA where the top node represents the prior distribution over the topic mixture weights and the
middle layer represents the latent topic label associated to each observed word at the bottom layer.
The document generation procedure of bigram LSA is similar to LDA except that the previous word
is taken into consideration for generating the current word:

1. Sampleθ from a prior distributionp(θ)

2. For each wordwi at thei-th position of a document:

(a) Sample topic label:zi ∼ Multinomial(θ)
(b) Samplewi given the previous wordwi−1 and the topic labelzi: wi ∼ p(·|wi−1, zi)

Our incremental contributions for bigram LSA are three-folded: Firstly, we present a technique
for topic correlation modeling using Dirichlet-Tree priorin Section 2.1. Secondly, we propose
efficient algorithm for bigram LSA training via variationalBayes approach and model bootstrapping
which are scalable to large settings in Section 2.2. Thirdly, we formulate the fractional Kneser-Ney
smoothing to generalize the original Kneser-Ney smoothingwhich supports only integral counts in
Section 2.3.
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Figure 2: Left: Dirichlet-Tree prior of depth two. Right: Variational E-step as bottom-up propaga-
tion and summation of fractional topic counts.

2.1 Topic correlation

Modeling topic correlations is motivated by an observationthat documents such as newspaper arti-
cles are usually organized into main-topic and sub-topic hierarchy for document browsing. From this
perspective, a Dirichlet prior is not appropriate since it assumes topic independence. A Dirichlet-
Tree prior [13, 14] is employed to capture topic correlations. Figure 2 (Left) illustrates a depth-two
Dirichlet-Tree. A depth-one Dirichlet-tree is equivalentto a Dirichlet prior in LDA. The sampling
procedure for the topic mixture weightθ ∼ p(θ) can be described as follows:

1. Sample a vector of branch probabilitiesbj ∼ Dirichlet(·; {αjc}) for each nodej = 1...J
where{αjc} denotes the parameter of the Dirichlet distribution at nodej, i.e. the pseudo-
counts of the outgoing branchc at nodej.

2. Compute the topic mixture weight asθk =
∏

jc b
δjc(k)
jc whereδjc(k) is an indicator function

which sets to unity when thec-th branch of thej-th node leads to the leaf node of topick
and zero otherwise. Thek-th topic weightθk is computed as the product of sampled branch
probabilities from the root node to the leaf node corresponding to topick.

The structure and the number of outgoing branches of each Dirichlet node can be arbitrary. In this
paper, we employ a balanced binary Dirichlet-tree.

2.2 Model training

Gibbs sampling was employed for bigram LSA training [7]. Despite the simplicity, it can be slow
and inefficient since it usually requires many sampling iterations for convergence. We present a
variational Bayes approach for model training. The joint likelihood of a documentwN

1 , the latent
topic sequencezN

1 andθ using the bigram LSA can be written as follows:

p(wN
1 , zN

1 , θ) = p(θ) ·

N
∏

i=1

p(zi|θ) · p(wi|wi−1, zi) (1)

By introducing a factorizable variational posterior distribution q(zN
1 , θ; Γ) = q(θ) ·

∏N
i=1 q(zi)

over the latent variables and applying the Jensen’s inequality, the lower bound of the marginalized
document likelihood can be derived as follows:

log p(wN
1 ; Λ,Γ) = log

∫

θ

∑

z1...zN

q(zN
1 , θ; Γ) ·

p(wN
1 , zN

1 , θ; Λ)

q(zN
1 , θ; Γ)

(2)

≥

∫

θ

∑

z1...zN

q(zN
1 , θ; Γ) · log

p(wN
1 , zN

1 , θ; Λ)

q(zN
1 , θ; Γ)

(By Jensen’s Inequality) (3)

= Eq[log
p(θ)

q(θ)
] +

N
∑

i=1

Eq[log
p(zi|θ)

q(zi)
] +

N
∑

i=1

Eq[log p(wi|wi−1, zi)] (4)

= Q(wN
1 ; Λ,Γ) (5)

where the expectation is taken using the variational posterior q(zN
1 , θ). For the E-step, we compute

the partial derivative of the auxiliary functionQ(·) with respect toq(zi) and the parameterγjc in the
Dirichlet-Tree posteriorq(θ). Setting the derivatives to zero yields:



E-Steps:

q(zi = k) ∝ p(wi|wi−1, k) · eEq [log θk;{γjc}] for k = 1..K (6)

γjc = αjc +
N

∑

i=1

Eq[δjc(zi)] = αjc +
N

∑

i=1

K
∑

k=1

q(zi = k) · δjc(k) (7)

whereEq[log θk] =
∑

jc

δjc(k) · Eq[log bjc] =
∑

jc

δjc(k)

(

Ψ(γjc) − Ψ(
∑

c

γjc)

)

(8)

where Eqn 7 is motivated from the conjugate property that theDirichlet-Tree posterior given the
topic sequencezN

1 has the same form as the Dirichlet-Tree prior:

p(bJ
1 |z

N
1 ) ∝ p(zN

1 |bJ
1 ) · p(bJ

1 ; {αjc}) ∝





N
∏

i=1

∏

jc

b
δjc(zi)
jc



 ·
∏

jc

b
αjc−1
jc (9)

=
∏

jc

b
(αjc+

∑ N
i=1

δjc(zi))−1

jc =
∏

jc

b
γ′

jc−1

jc =

J
∏

j=1

Dirichlet(bj ; {γ
′
jc}) (10)

Figure 2 (Right) illustrates that Eqn 7 can be implemented aspropagation of fractional topic counts
in a bottom-up fashion with each branch as an accumulator forγjc. Eqn 6 and Eqn 7 are applied
iteratively until convergence is reached. For the M-step, we compute the partial derivative of the aux-
iliary functionQ(·) over all training documentsd with respect to topic bigram probabilityp(v|u, k)
and set it to zero:

M-Step (unsmoothed):

p(v|u, k) ∝
∑

d

Nd
∑

i=1

q(zi = k|d) · δ(wi−1, u)δ(wi, v) (11)

=

∑

d Cd(u, v|k)
∑

d

∑V
v′=1 Cd(u, v′|k)

=
C(u, v|k)

∑V
v′=1 C(u, v′|k)

(12)

whereNd denote the number of words in documentd andδ(wi, v) is a 0-1 Kronecker Delta function
to test if thei-th word in documentd is vocabularyv. Cd(u, v|k) denotes the fractional counts of a
bigram(u, v) belonging to topick in documentd. Intuitively, Eqn 12 simply computes the relative
frequency of the bigram(u, v). However, this solution is not practical since bigram LSA assigns
zero probability to unseen bigrams. Therefore, bigram LSA should be smoothed properly. One
simple approach is to use Laplace-smoothing by adding a small count δ to all bigrams. However,
this approach can lead to worse performance since it will bias the bigram probability towards a
uniform distribution when the vocabulary sizeV gets large. Our approach is to representp(v|u, k)
as a standard backoff LM smoothed by fractional Kneser-Ney smoothing as described in Section 2.3.

Model initialization is crucial for variational EM training. We employ a bootstrapping approach
using a well-trained unigram LSA as an initial model for bigram LSA so thatp(wi|wi−1, k) is
approximated byp(wi|k) in Eqn 6. It saves computation and avoids keeping the full initial bigram
LSA in memory during the EM training. To make the training procedure more practical, we apply
bigram pruning during statistics accumulation in the M-step when the bigram count in a document
is less than0.1. This heuristic is reasonable since only a small number of topics are “active” to
a bigram. With the sparsity, there is no need to storeK copies of accumulators for each bigram
and thus reducing the memory requirement significantly. Thepruned bigram counts are re-assigned
to the most likely topic of the current document so that the counts are conserved. For practical
implementation, accumulators are saved into the disk in batches for count merging. In the final step,
each topic-dependent LM is smoothed individually using themerged count file.

2.3 Fractional Kneser-Ney smoothing

Standard backoff N-gram LM is widely used in the ASR community. The state-of-the-art smoothing
for the backoff LM is based on Kneser-Ney smoothing [9]. The belief of its success is due to the
preservation of marginal distributions. However, the original formulation only works for integral



counts which is not suitable for bigram LSA using fractionalcounts. Therefore, we propose the
fractional Kneser-Ney smoothing as a generalization of theoriginal formulation. The interpolated
form using absolute discounting can be expressed as follows:

pKN (v|u) =
max{C(u, v) − D, 0}

C(u)
+ λ(u) · pKN (v) (13)

whereD is a discounting factor. In the original formulation,D lies between0 and1. But in our
formulation,D can be any positive number. Intuitively,D controls the degree of smoothing. IfD is
set to zero, the model is unsmoothed; IfD is too big, bigrams with counts smaller thanD are pruned
from the LM.λ(u) ensures the bigram probability sums to unity. After summingover all possiblev
on both sides of Eqn 13 and re-arranging terms,λ(u) becomes:

1 =
∑

v

max{C(u, v) − D, 0}

C(u)
+ λ(u) (14)

=⇒ λ(u) = 1 −
∑

v

max{C(u, v) − D, 0}

C(u)
= 1 −

∑

v:C(u,v)>D

C(u, v) − D

C(u)
(15)

=
C(u) −

∑

v:C(u,v)>D C(u, v) + D
∑

v:C(u,v)>D 1

C(u)
(16)

=

∑

v:C(u,v)≤D C(u, v) + D
∑

v:C(u,v)>D 1

C(u)
(17)

=
C≤D(u, ·) + D · N>D(u, ·)

C(u)
(18)

whereC≤D(u, ·) denotes the sum of bigram counts followingu and smaller thanD. N>D(u, ·)
denotes the number of word types followingu with the bigram counts bigger thanD.

In Kneser-Ney smoothing, the lower-order distributionpKN (v) is treated as unknown parameters
which can be estimated using the preservation of marginal distributions:

p̂(v) =
∑

u

pKN (v|u) · p̂(u) (19)

wherep̂(v) is the marginal distribution estimated from the backgroundtraining data so that̂p(v) =
C(v)

∑

v′ C(v′) . Therefore, we substitute Eqn 13 into Eqn 19:

C(v) =
∑

u

(

max{C(u, v) − D, 0}

C(u)
+ λ(u) · pKN (v)

)

· C(u) (20)

=

(

∑

u

max{C(u, v) − D, 0}

)

+ pKN (v) ·
∑

u

C(u) · λ(u) (21)

=⇒ pKN (v) =
C(v) −

∑

u max{C(u, v) − D, 0}
∑

u C(u) · λ(u)
(22)

=
C(v) − C>D(·, v) + D · N>D(·, v)

∑

u C(u) · λ(u)
(23)

=
C≤D(·, v) + D · N>D(·, v)

∑

u C≤D(u, ·) + D · N>D(u, ·)
(using Eqn 18) (24)

=
C≤D(·, v) + D · N>D(·, v)

∑

v C≤D(·, v) + D · N>D(·, v)
(25)

Eqn 25 generalizes Kneser-Ney smoothing to integral and fractional counts. For the original formu-
lation,C≤D(u, ·) equals to zero since each observed bigram count must be at least one by definition
with D less than one. As a result, theD term cancels out yielding the original formulation which
counts the number of words precedingv and thus recovering the original formulation. Intuitively,
the numerator in Eqn 25 measures the total discounts of observed bigrams ending atv. In other
words, fractional Kneser-Ney smoothing estimates the lower-order probability distribution using the
relative frequency overdiscounts instead of word counts. With this approach, each topic-dependent
LM in bigram LSA can be smoothed using our formulation.



3 Unsupervised LM adaptation

Unsupervised LM adaptation is performed by first inferring the topic distribution of each test audio
using the word hypotheses from the first-pass decoding via variational inference in Eqn 6–7. Relative
frequency over the branch posterior countsγjc is applied on each Dirichlet nodej. The MAP topic
mixture weightθ̂ and the adapted unigram and bigram LSA are computed as follows:

θ̂k ∝
∏

jc

(

γjc
∑

c′ γjc′

)δjc(k)

for k = 1...K (26)

pa(v) =

K
∑

k=1

p(v|k) · θ̂k andpa(v|u) =

K
∑

k=1

p(v|u, k) · θ̂k (27)

The unigram LSA marginals are integrated into the background N-gram LMpbg(v|h) via marginal
adaptation [10] as follows:

p(1)
a (v|h) ∝

(

pa(v)

pbg(v)

)β

· pbg(v|h) (28)

Marginal adaptation has a close connection to maximum entropy modeling since the marginal con-
straints can be encoded as unigram features. Intuitively, bigram LSA would be integrated in the same
fashion by introducing bigram marginal constraints. However, we found that integrating bigram
features via marginal adaptation did not offer further improvement compared to only integrating un-
igram features. Since marginal adaptation integrates a unigram feature as a likelihood ratio between
the adapted marginalpa(v) and the background marginalpbg(v) in Eqn 28, perhaps the unigram and
bigram likelihood ratios are very similar and thus the latter does not give extra information. Another
explanation is that marginal adaptation corresponds to only one iteration of generalized iterative
scaling (GIS). Due to the large number of bigram features in terms of millions, one GIS iteration
may not be sufficient for convergence. On the other hand, simple linear LM interpolation is found
to be effective in our experiment. The final LM adaptation formula is provided using results from
Eqn 27 and Eqn 28 as a two-stage process:

p(2)
a (v|h) = λ · p(1)

a (v|h) + (1 − λ) · pa(v|u) (29)

whereλ is tuned to optimize perplexity on word hypotheses from the first-pass decoding on a per-
audio basis.

4 Experimental setup

Our LM adaptation approach was evaluated using the RT04 Mandarin Broadcast News evaluation
system. The system employed context-dependent Initial-Final acoustic models trained using 100-
hour broadcast news audio from the Mandarin HUB4 1997 training set and a subset of TDT4. 42-
dimension features were extracted after linear discriminant analysis projected from a window of
MFCC and energy features. The system employed a two-pass decoding strategy using speaker-
independent and speaker-adaptive acoustic models. For thesecond-pass decoding, we applied stan-
dard acoustic model adaptation such as vocal tract length normalization and maximum likelihood
linear regression on the feature and model spaces. The training corpora include Xinhua News 2002
(January–September) containing 13M words and 64k documents. A background 4-gram LM was
trained using modified Kneser-Ney smoothing using the SRILMtoolkit [15]. The same training
corpora were used for unigram and bigram LSA training with200 topics. The vocabulary size is
108k words. Discounting factorD for fractional Kneser-Ney smoothing was set to0.4.

First-pass decoding was first performed to obtain an automatic transcript for each audio show. Then
unsupervised LM adaptation was applied using the automatictranscript to obtain an adapted LM
for second-pass decoding using the approach described in Section 3. Word perplexity and character
error rates (CER) were measured on the Mandarin RT04 test set. Matched pairs sentence-segment
word error test was performed for significance test using theNIST scoring tool.



Table 1: Correlated bigram topics extracted from bigram LSA.

Topic index Top bigrams sorted by p(u, v|k)

“topic-61” {+¦	(’s student),{+s¸(’s education),s¸+{(education ’s)
¦D+{(school ’s),è#+Á(youth class),£�+s¸(quality of education)

“topic-62” |b+w÷(expert cultivation),L¦+D�(university chancellor)
ø+Ö(famous),Ä+°D(high-school),{+¦	(’s student)

“topic-63” Z+öÌâF(and social security),{+Ò�(’s employment),
��+|Ê(unemployed officer),Ò�+« (employment position)

“topic-64” {+ÏÄ(’s research),Û�+¦V(expert people),�+�­(etc area)
	Ô+�b(biological technology),ÏÄ+Ä*(research result)

“topic-65” |¡+äO�(Human DNA sequence),{+äO(’s DNA)
	Ô+�b(biological technology),vÎ+�ûÜ(embryo stem cell)

Table 2: Character Error Rates (Word perplexity) on the RT04test set. Bigram LSA was applied in
addition to unigram LSA.

LM (13M) CCTV NTDTV RFA OVERALL

background LM 15.3% (748) 21.8 (1718) 39.5 (3655) 24.9
+unigram LSA 14.4 (629) 21.5 (1547) 38.9 (3015) 24.3

+bigram LSA (Kneser-Ney, 30 topics) 14.5 (604) 20.7 (1502) 39.0 (2736) 24.1
+bigram LSA (Witten-Bell) 14.1 (594) 20.9 (1452) 38.3 (2628) 23.8
+bigram LSA (Kneser-Ney) 14.0 (587) 20.8 (1448) 38.2 (2586) 23.7

4.1 LM adaptation results

Table 1 shows the correlated bigram topics sorted by the joint bigram probabilityp(v|u, k) · p(u|k).
Most of the top bigrams appear either as phrases or words attached with a stopword such as{(’s in
English). Table 2 shows the LM adaptation results in CER and perplexity. Applying both unigram
and bigram LSA yields consistent improvement over unigram LSA in the range of 6.4%–8.5%
relative reduction in perplexity and 2.5% relative reduction in the overall CER. The CER reduction is
statistically significant at 0.1% significance level. We compared our proposed fractional Kneser-Ney
smoothing with Witten-Bell smoothing which also supports fractional counts. The results showed
that Kneser-Ney smoothing performs slightly better than Witten-Bell smoothing. Increasing the
number of topics in bigram LSA helps despite model sparsity.We applied extra EM iterations on
top of the bootstrapped bigram LSA but no further performance improvement was observed.

4.2 Large-scale evaluation

We evaluated our approach using the CMU-InterACT vowelizedArabic transcription system dis-
criminatively trained on1500-hour transcribed audio using MMIE for the GALE Phase-3 evaluation.
A large background 4-gram LM was trained using 962M-word text corpora with 737k vocabulary.
Unigram and bigram LSA were trained on the same corpora and were applied to lattice rescoring on
Dev07 and unseen Dev08 test sets with 2.6-hour and 3-hour audio shows containing broadcast news
(BN) and broadcast conversation (BC) genre. Table 3 shows that bigram LSA rescoring reduces the
overall word error rate by more than 3.0% relative compared to the unadapted baseline on both sets
which are statistically significant at 0.1% significance level. However, degradation is observed using
trigram LSA compared to bigram LSA which may be due to data sparseness.

Table 3: Lattice rescoring results in word error rate on Dev07 (unseen Dev08) using the CMU-
InterACT Arabic transcription system for the GALE Phase-3 evaluation.

GALE LM (962M) BN BC OVERALL
background LM 11.6% 19.4 14.3 (16.4)
+unigram LSA 11.5 19.2 14.2 (16.3)

+bigram LSA (Witten-Bell) 11.0 19.0 13.9 (15.9)
+bigram LSA (Kneser-Ney) 11.0 18.9 13.8 (15.9)
+trigram LSA (Kneser-Ney) 11.3 18.8 14.0 (-)



5 Conclusion

We present a correlated bigram LSA approach for unsupervised LM adaptation for ASR. Our con-
tributions include efficient variational EM for model training and fractional Kneser-Ney approach
for LM smoothing with fractional counts. Bigram LSA yields additional improvement in both per-
plexity and recognition performance in addition to unigramLSA. Increasing the number of topics
for bigram LSA helps despite the model sparsity. Bootstrapping bigram LSA from unigram LSA
saves computation and memory requirement during EM training. Our approach is scalable to large
training corpora and works well on different languages. Theimprovement from bigram LSA is
statistically significant compared to the unadapted baseline. Future work includes applying the pro-
posed approach for statistical machine translation.
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