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Abstract

We present a correlated bigram LSA approach for unsupettistadaptation for
automatic speech recognition. The model is trained usifigjexit variational EM
and smoothed using the proposed fractional Kneser-Ney thimgovhich handles
fractional counts. We address the scalability issue toelargining corpora via
bootstrapping of bigram LSA from unigram LSA. For LM adajiat unigram
and bigram LSA are integrated into the background N-gram Li&inaarginal
adaptation and linear interpolation respectively. Expental results on the Man-
darin RTO04 test set show that applying unigram and bigram t&&ther yields
6%—8% relative perplexity reduction and 2.5% relative abtar error rate reduc-
tion which is statistically significant compared to apptyianly unigram LSA.
On the large-scale evaluation on Arabic, 3% relative wordrenate reduction is
achieved which is also statistically significant.

1 Introduction

Language model (LM) adaptation is crucial to automatic spaecognition (ASR) as it enables
higher-level contextual information to be effectively @mporated into a background LM improving
recognition performance. Exploiting topical context fdviladaptation has shown to be effective
for ASR using latent semantic analysis (LSA) such as LSAg@isingular value decomposition [1],
Latent Dirichlet Allocation (LDA) [2, 3, 4] and HMM-LDA [5, & One issue in LSA is the bag-
of-word assumption which ignores word ordering. For docanadassification, word ordering may
not be important. But in the LM perspective, word orderingnscial since a trigram LM normally
performs significantly better than a unigram LM for word po#idn. In this paper, we investigate
whether relaxing the bag-of-word assumption in LSA helpprioning the ASR performance via
LM adaptation.

We employ bigram LSA [7] which is a natural extension of LDAr&dax the bag-of-word assump-
tion by connecting the adjacent words in a document togethfarm a Markov chain. There are
two main challenges in bigram LSA which are not addresse@easty in [7] especially for large-
scale application. Firstly, the model can be very sparseestrcovers topical bigrams i (V2 - K)
whereV and K denote the vocabulary size and the number of topics. Thexefoodel smoothing
becomes critical. Secondly, model initialization is imiaart for EM training, especially for bigram
LSA due to the model sparsity. To tackle the first challenge,represent bigram LSA as a set
of K topic-dependent backoff LM. We propose fractional Kndsey smoothing which supports

*This work is partly supported by the Defense Advanced ResearchcBrdigency (DARPA) under Con-
tract No. HR0011-06-2-0001. Any opinions, findings and conclusimmrecommendations expressed in this
material are those of the authors and do not necessarily reflect the efdARPA.

1This method was briefly mentioned in [8] without detail. To the best of oomkedge, our formulation in
this paper is considered new to the research community.
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Figure 1: Graphical representation of bigram LSA. Adjacsotds in a document are linked to-
gether to form a Markov chain from left to right.

fractional counts to smooth each backoff LM. We show thatfoumulation recovers the original
Kneser-Ney smoothing [9] which supports only integral dsunfo address the second challenge,
we propose a bootstrapping approach for bigram LSA trainsigg a well-trained unigram LSA as
an initial model.

During unsupervised LM adaptation, word hypotheses froaffitist-pass decoding are used to es-
timate the topic mixture weight of each test audio to adaph hmigram and bigram LSA. The
adapted unigram and bigram LSA are combined with the backgid.M in two stages. Firstly,
marginal adaptation [10] is applied to integrate unigranhli&o the background LM. Then the in-
termediately adapted LM from the first stage is combined Wigjtam LSA via linear interpolation
with the interpolation weights estimated by minimizing tixerd perplexity on the word hypotheses.
The final adapted LM is employed for re-decoding.

Related work includes topic mixtures [11] which perform doent clustering and train a trigram

LM for each document cluster as an initial model. Sentereetitopic mixtures are modeled so that
the topic label is fixed within a sentence. Topical N-gram eiddi2] focuses on phrase discovery
and information retrieval. We do not apply this model beeatlse phrase-based LM seems not
outperform the word-based LM.

The paper is organized as follows: In Section 2, we desctieebigram LSA training and the
fractional Kneser-Ney smoothing algorithm. In Section &, pvesent the LM adaptation approach
based on marginal adaptation and linear interpolationekti6n 4, we report LM adaptation results
on Mandarin and Arabic ASR, followed by conclusions andifeitwork in Section 5.

2 Correlated bigram LSA

Latent semantic analysis such as LDA makes a bag-of-wordhgstson that each word in a docu-
ment is generated irrespective of its position in a docum@ntelax this assumption, bigram LSA
has been proposed [7] to modify the graphical structure oAby connecting adjacent words in a
document together to form a Markov chain. Figure 1 shows thphjcal representation of bigram
LSA where the top node represents the prior distributiorr ¢ive topic mixture weights and the
middle layer represents the latent topic label associatedth observed word at the bottom layer.
The document generation procedure of bigram LSA is simil&DA except that the previous word
is taken into consideration for generating the current word

1. Sample from a prior distributiorp(6)
2. For each wordy; at thei-th position of a document:
(a) Sample topic labek; ~ Multinomial(6)
(b) Samplew; given the previous word;_; and the topic labet;: w; ~ p(-|lw;—1, 2;)

Our incremental contributions for bigram LSA are threedfal: Firstly, we present a technique
for topic correlation modeling using Dirichlet-Tree prior Section 2.1. Secondly, we propose
efficient algorithm for bigram LSA training via variationBayes approach and model bootstrapping
which are scalable to large settings in Section 2.2. Thindé/formulate the fractional Kneser-Ney
smoothing to generalize the original Kneser-Ney smoothihgch supports only integral counts in
Section 2.3.
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Figure 2: Left: Dirichlet-Tree prior of depth two. Right: Mational E-step as bottom-up propaga-
tion and summation of fractional topic counts.

2.1 Topic correlation

Modeling topic correlations is motivated by an observatitat documents such as newspaper arti-
cles are usually organized into main-topic and sub-topcanchy for document browsing. From this
perspective, a Dirichlet prior is not appropriate sincesguames topic independence. A Dirichlet-
Tree prior [13, 14] is employed to capture topic correlagioRigure 2 (Left) illustrates a depth-two
Dirichlet-Tree. A depth-one Dirichlet-tree is equivaléata Dirichlet prior in LDA. The sampling
procedure for the topic mixture weight~ p(#) can be described as follows:

1. Sample a vector of branch probabilitigs~ Dirichlet(-; {a;.}) for each nodg = 1...J
where{a;.} denotes the parameter of the Dirichlet distribution at npdee. the pseudo-
counts of the outgoing branehat node;.

2. Compute the topic mixture weightés =[], bf;’“(k) whered;. (k) is an indicator function
which sets to unity when theth branch of thej-th node leads to the leaf node of tojic
and zero otherwise. ThHeth topic weightd;, is computed as the product of sampled branch
probabilities from the root node to the leaf node correspuntb topick.

The structure and the number of outgoing branches of eaéthlzit node can be arbitrary. In this
paper, we employ a balanced binary Dirichlet-tree.

2.2 Modd training

Gibbs sampling was employed for bigram LSA training [7]. Piesthe simplicity, it can be slow
and inefficient since it usually requires many samplingaitens for convergence. We present a
variational Bayes approach for model training. The joikelihood of a documenw?, the latent
topic sequence andd using the bigram LSA can be written as follows:

p(w{v’ Z{va = p(0)- HP(ZZ\G) - p(wilwi—1, 2;) 1)

By introducing a factorizable variational posterior distition ¢(z{¥,0;T) = ¢(9) - vazl q(z;)
over the latent variables and applying the Jensen’s ingguidde lower bound of the marginalized
document likelihood can be derived as follows:
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where the expectation is taken using the variational piostefz:", ). For the E-step, we compute
the partial derivative of the auxiliary functiap(-) with respect tgy(z;) and the parametey;. in the
Dirichlet-Tree posteriog(#). Setting the derivatives to zero yields:
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where Eqgn 7 is motivated from the conjugate property thatDhiechlet-Tree posterior given the
topic sequence] has the same form as the Dirichlet-Tree prior:
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Figure 2 (Right) illustrates that Eqn 7 can be |mplemente|drapagat|on of fractional topic counts
in a bottom-up fashion with each branch as an accumulatoyforEqn 6 and Eqn 7 are applied
iteratively until convergence is reached. For the M-stepcampute the partial derivative of the aux-
iliary function Q(-) over all training documents with respect to topic bigram probabilip(v|u, k)
and set it to zero:

M-Step (unsmoothed):

(v|u, k) qu (zi = k|d) - 8(wi_1,u)d(w;,v) (11)
d =1
_ 2.qCa(u,vlk) — C(u,v]k) (12)
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whereN, denote the number of words in documérandd(w;, v) is a 0-1 Kronecker Delta function
to test if thei-th word in documend is vocabulary. Cy(u, v|k) denotes the fractional counts of a
bigram(u, v) belonging to topid: in documentd. Intuitively, Eqn 12 simply computes the relative
frequency of the bigranu, v). However, this solution is not practical since bigram LSAigss
zero probability to unseen bigrams. Therefore, bigram L88utd be smoothed properly. One
simple approach is to use Laplace-smoothing by adding al smahté to all bigrams. However,
this approach can lead to worse performance since it wil ki@ bigram probability towards a
uniform distribution when the vocabulary sizegets large. Our approach is to representu, k)

as a standard backoff LM smoothed by fractional Kneser-Meyahing as described in Section 2.3.

Model initialization is crucial for variational EM traingn We employ a bootstrapping approach
using a well-trained unigram LSA as an initial model for laigr LSA so thatp(w;|w;_1, k) is
approximated by(w;|k) in Eqn 6. It saves computation and avoids keeping the fuikinbigram
LSA in memory during the EM training. To make the training gedure more practical, we apply
bigram pruning during statistics accumulation in the Mpstéhen the bigram count in a document
is less thar0.1. This heuristic is reasonable since only a small number pittoare “active” to

a bigram. With the sparsity, there is no need to streopies of accumulators for each bigram
and thus reducing the memory requirement significantly. gla@ed bigram counts are re-assigned
to the most likely topic of the current document so that thents are conserved. For practical
implementation, accumulators are saved into the disk icHastfor count merging. In the final step,
each topic-dependent LM is smoothed individually usingrttezged count file.

2.3 Fractional Kneser-Ney smoothing

Standard backoff N-gram LM is widely used in the ASR commyrithe state-of-the-art smoothing
for the backoff LM is based on Kneser-Ney smoothing [9]. Tléds of its success is due to the
preservation of marginal distributions. However, the ioad) formulation only works for integral



counts which is not suitable for bigram LSA using fractionalints. Therefore, we propose the
fractional Kneser-Ney smoothing as a generalization ofotfiginal formulation. The interpolated
form using absolute discounting can be expressed as fallows

prN(vu) = maz{C(g,v) D, 0} + Au) - prn(v) (13)

(u)

where D is a discounting factor. In the original formulatiop, lies betweerd and1. But in our
formulation, D can be any positive number. Intuitivelf, controls the degree of smoothing./lfis
set to zero, the model is unsmoothedDifs too big, bigrams with counts smaller thanare pruned
from the LM. A\(u) ensures the bigram probability sums to unity. After sumnuwer all possible)
on both sides of Egn 13 and re-arranging teriis,) becomes:
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whereC<p(u,-) denotes the sum of bigram counts followingand smaller tharD. N~ p(u,-)
denotes the number of word types followingvith the bigram counts bigger thap.

In Kneser-Ney smoothing, the lower-order distributiogy (v) is treated as unknown parameters
which can be estimated using the preservation of margiséaiilitions:

p0) = 3 prn (o) - ) (19)

wherep(v) is the marginal distribution estimated from the backgrotrathing data so thai(v) =

< __ Therefore, we substitute Egn 13 into Egn 19:
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Eqgn 25 generalizes Kneser-Ney smoothing to integral amtidrgal counts. For the original formu-
lation, C< p (u, -) equals to zero since each observed bigram count must bestoteaby definition
with D less than one. As a result, tlieterm cancels out yielding the original formulation which
counts the number of words precedingnd thus recovering the original formulation. Intuitively
the numerator in Eqn 25 measures the total discounts of wxdiigrams ending at. In other
words, fractional Kneser-Ney smoothing estimates the taweder probability distribution using the
relative frequency ovatiscounts instead of word counts. With this approach, each topic-déest
LM in bigram LSA can be smoothed using our formulation.



3 Unsupervised LM adaptation

Unsupervised LM adaptation is performed by first inferrihg topic distribution of each test audio
using the word hypotheses from the first-pass decoding viatianal inference in Eqn 6—7. Relative
frequency over the branch posterior countsis applied on each Dirichlet node The MAP topic

mixture weightd and the adapted unigram and bigram LSA are computed as fllow

. 6jc(k)
b < ] (7]) fork = 1..K (26)
je c’ ’yjcl
K R K R
pa(v) = Zp(v|k) -0 andp, (v|u) = Zp(v|u, k) - 0y 27)
k=1 k=1

The unigram LSA marginals are integrated into the backgidurgram LM p;,(v|h) via marginal
adaptation [10] as follows:

)\ 7P
i) o (2 ol @®)

Marginal adaptation has a close connection to maximum pytmeodeling since the marginal con-
straints can be encoded as unigram features. Intuitiviglgautm LSA would be integrated in the same
fashion by introducing bigram marginal constraints. Hoarewe found that integrating bigram
features via marginal adaptation did not offer further ioy@ment compared to only integrating un-
igram features. Since marginal adaptation integratesgrami feature as a likelihood ratio between
the adapted margingl, (v) and the background margina), (v) in Eqn 28, perhaps the unigram and
bigram likelihood ratios are very similar and thus the latkges not give extra information. Another
explanation is that marginal adaptation corresponds tg ong iteration of generalized iterative
scaling (GIS). Due to the large number of bigram featureims of millions, one GIS iteration
may not be sufficient for convergence. On the other hand,lsitiear LM interpolation is found
to be effective in our experiment. The final LM adaptatiomfata is provided using results from
Eqn 27 and Eqgn 28 as a two-stage process:

PP wh) = X-pP(lh) + (1= )\) - pa(vfu) (29)

where\ is tuned to optimize perplexity on word hypotheses from ttst-fiass decoding on a per-
audio basis.

4 Experimental setup

Our LM adaptation approach was evaluated using the RT04 Btam@8roadcast News evaluation
system. The system employed context-dependent Initi@dtFicoustic models trained using 100-
hour broadcast news audio from the Mandarin HUB4 1997 mgisiet and a subset of TDT4. 42-
dimension features were extracted after linear discrimtigaalysis projected from a window of
MFCC and energy features. The system employed a two-passlidgcstrategy using speaker-
independent and speaker-adaptive acoustic models. Feetload-pass decoding, we applied stan-
dard acoustic model adaptation such as vocal tract lengtnalization and maximum likelihood
linear regression on the feature and model spaces. Théaiarpora include Xinhua News 2002
(January—September) containing 13M words and 64k docuaménbackground 4-gram LM was
trained using modified Kneser-Ney smoothing using the SRibblkit [15]. The same training
corpora were used for unigram and bigram LSA training Wil topics. The vocabulary size is
108k words. Discounting factdp for fractional Kneser-Ney smoothing was sebtd.

First-pass decoding was first performed to obtain an auiortrahscript for each audio show. Then
unsupervised LM adaptation was applied using the autontraitscript to obtain an adapted LM
for second-pass decoding using the approach describeaiiv®8. Word perplexity and character
error rates (CER) were measured on the Mandarin RT04 tesiMsgthed pairs sentence-segment
word error test was performed for significance test usindt&T scoring tool.



Table 1: Correlated bigram topics extracted from bigram LSA

Topic index Top bigrams sorted by p(u, v|k)
“topic-61" F+2£24E (s student) fJ+ZUF ('s education) &+ (education ’s)
28 +H(school 's),/PE+3E (youth class) Z i +# & (quality of education)
“topic-62" AT +553% (expert cultivation) K 24+8% #: (university chancellor)
& +4 (famous) T+ (high-school) f+2£4E (s student)
“topic-63” F+1#t 4 PR [E (and social security ]+t ('s employment),
Flk+ A 5 (unemployed officer)git Ik +5 £i7 (employment position)
“topic-64" HI+F57('s research)® X +2£3% (expert people)s&+4iiiH (etc area)
HW)+HK (biological technology)i/f 5T+ (research result)
“topic-65" AZE+FH: R 4H (Human DNA sequencejft]+2: K ('s DNA)

AW+ K (biological technology)itfifi+F 4l (embryo stem cell)

Table 2: Character Error Rates (Word perplexity) on the RiE@4 set. Bigram LSA was applied in
addition to unigram LSA.

LM (13M) CCTV NTDTV RFA OVERALL
background LM 15.3% (748) 21.8(1718) 39.5(3655) 24.9
+unigram LSA 14.4 (629) 21.5(1547) 38.9(3015) 24.3

+bigram LSA (Kneser-Ney, 30 topics)  14.5(604) 20.7 (1502) 39.0(2736) 241
+bigram LSA (Witten-Bell) 14.1(594) 20.9(1452) 38.3(2628 23.8
+bigram LSA (Kneser-Ney) 14.0(587) 20.8(1448) 38.2(2586) 23.7

4.1 LM adaptation results

Table 1 shows the correlated bigram topics sorted by thé¢ fagmam probabilityp(v|u, k) - p(ulk).
Most of the top bigrams appear either as phrases or wordashattavith a stopword such &§(’s in
English). Table 2 shows the LM adaptation results in CER arglpxity. Applying both unigram
and bigram LSA yields consistent improvement over unigra@Alin the range of 6.4%-8.5%
relative reduction in perplexity and 2.5% relative redoiatin the overall CER. The CER reduction is
statistically significant at 0.1% significance level. We gared our proposed fractional Kneser-Ney
smoothing with Witten-Bell smoothing which also suppor&ctional counts. The results showed
that Kneser-Ney smoothing performs slightly better thartéMiBell smoothing. Increasing the
number of topics in bigram LSA helps despite model sparsifg. applied extra EM iterations on
top of the bootstrapped bigram LSA but no further perforneaingprovement was observed.

4.2 Large-scale evaluation

We evaluated our approach using the CMU-InterACT voweli2eabic transcription system dis-
criminatively trained ori500-hour transcribed audio using MMIE for the GALE Phase-3eatbn.

A large background 4-gram LM was trained using 962M-word txpora with 737k vocabulary.
Unigram and bigram LSA were trained on the same corpora anel agplied to lattice rescoring on
Dev07 and unseen Dev08 test sets with 2.6-hour and 3-hoig slidws containing broadcast news
(BN) and broadcast conversation (BC) genre. Table 3 shomtbtgram LSA rescoring reduces the
overall word error rate by more than 3.0% relative compaoeti¢ unadapted baseline on both sets
which are statistically significant at 0.1% significanceele\However, degradation is observed using
trigram LSA compared to bigram LSA which may be due to datasspeess.

Table 3: Lattice rescoring results in word error rate on De@nseen Dev08) using the CMU-
InterACT Arabic transcription system for the GALE Phasev8leation.

GALE LM (962M) BN BC OVERALL
background LM 11.6% 194 14.3(16.4)
+unigram LSA 115 19.2 14.2(16.3)

+bigram LSA (Witten-Bell) 11.0 19.0 13.9(15.9)
+bigram LSA (Kneser-Ney) 11.0 18.9 13.8(15.9)
+trigram LSA (Kneser-Ney) 11.3 188 14.0 ()



5 Conclusion

We present a correlated bigram LSA approach for unsupehiséadaptation for ASR. Our con-
tributions include efficient variational EM for model tritig and fractional Kneser-Ney approach
for LM smoothing with fractional counts. Bigram LSA yielddditional improvement in both per-
plexity and recognition performance in addition to unigraBA. Increasing the number of topics
for bigram LSA helps despite the model sparsity. Bootstirsgpppigram LSA from unigram LSA
saves computation and memory requirement during EM trginBur approach is scalable to large
training corpora and works well on different languages. Tirhprovement from bigram LSA is
statistically significant compared to the unadapted basekuture work includes applying the pro-
posed approach for statistical machine translation.
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