

ECCV 2010 TUTORIAL

NONRIGID STRUCTURE FROM MOTION

YASER SHEIKH

The Robotics Institute
Carnegie Mellon University
Pittsburgh, USA
<http://cs.cmu.edu/~yaser>

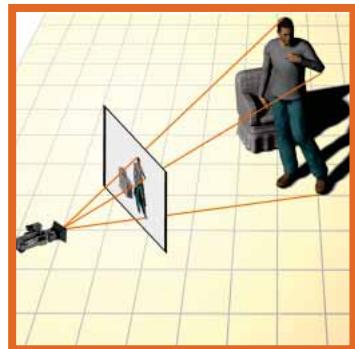
SOHAIB KHAN

Computer Vision Lab
LUMS School of Science & Engineering
Lahore, PAKISTAN
<http://web.lums.edu.pk/~sohaib>

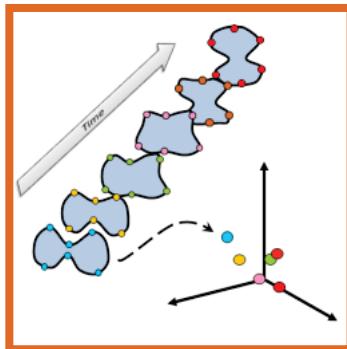
<http://www.cs.cmu.edu/~yaser/ECCV2010Tutorial.html>

NONRIGID STRUCTURE FROM MOTION

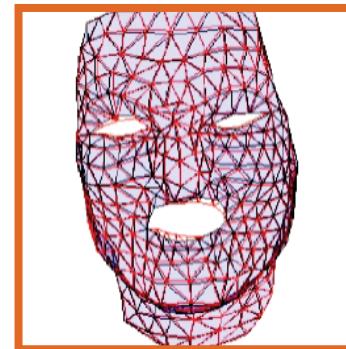
Tutorial Outline



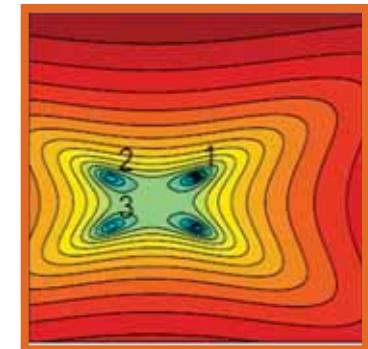
Introduction to
Nonrigid SfM



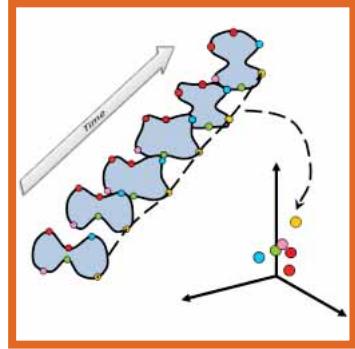
Shape
Representation



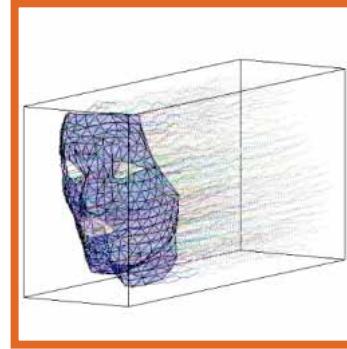
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

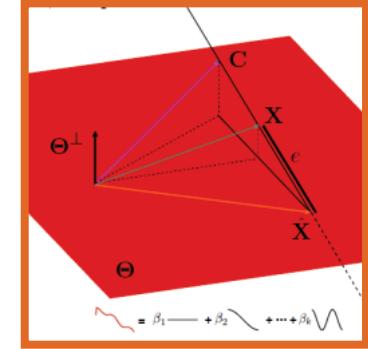


Trajectory
Representation



Shape-Trajectory
Duality

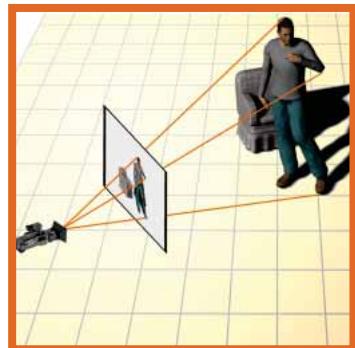
Trajectory
Estimation



Reconstructibility
and limitations

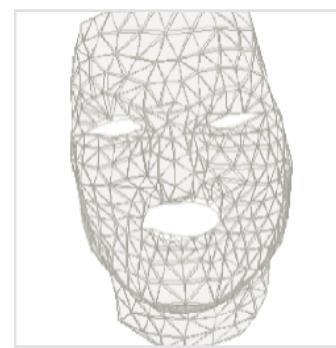
NONRIGID STRUCTURE FROM MOTION

Tutorial Outline

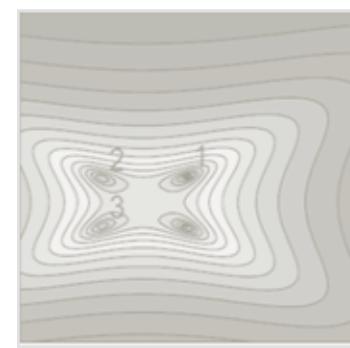


Introduction to Nonrigid SfM

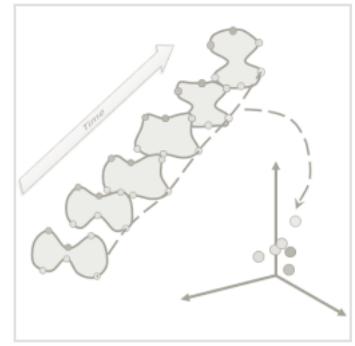
Shape Representation



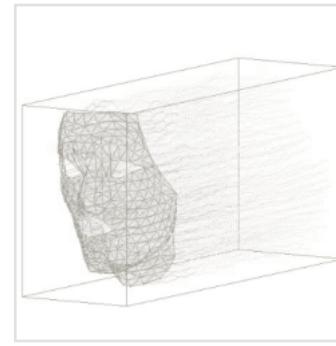
Shape Estimation



Ambiguity of Orthogonality Constraints

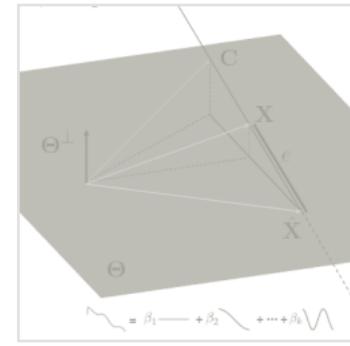


Trajectory Representation



Shape-Trajectory Duality

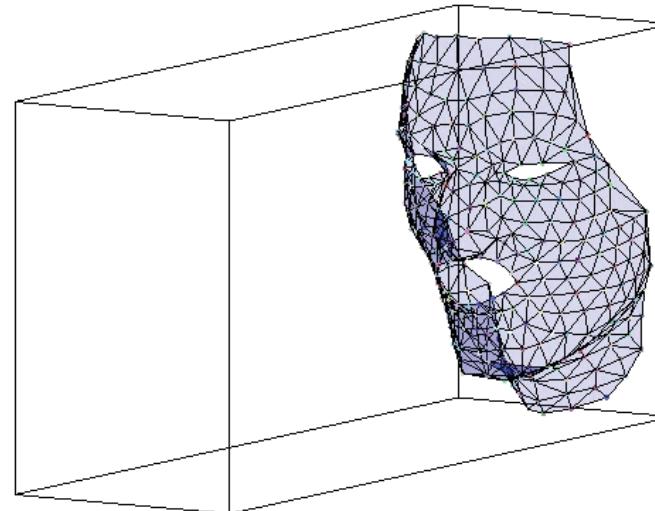
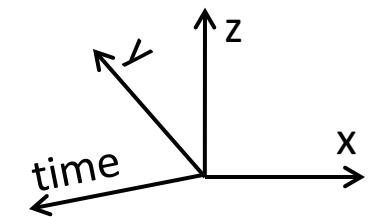
Trajectory Estimation



Reconstructibility and limitations

NONRIGID STRUCTURE

3D Structure That Deforms Over Time



4D DYNAMIC STRUCTURE

IMAGE MOTION

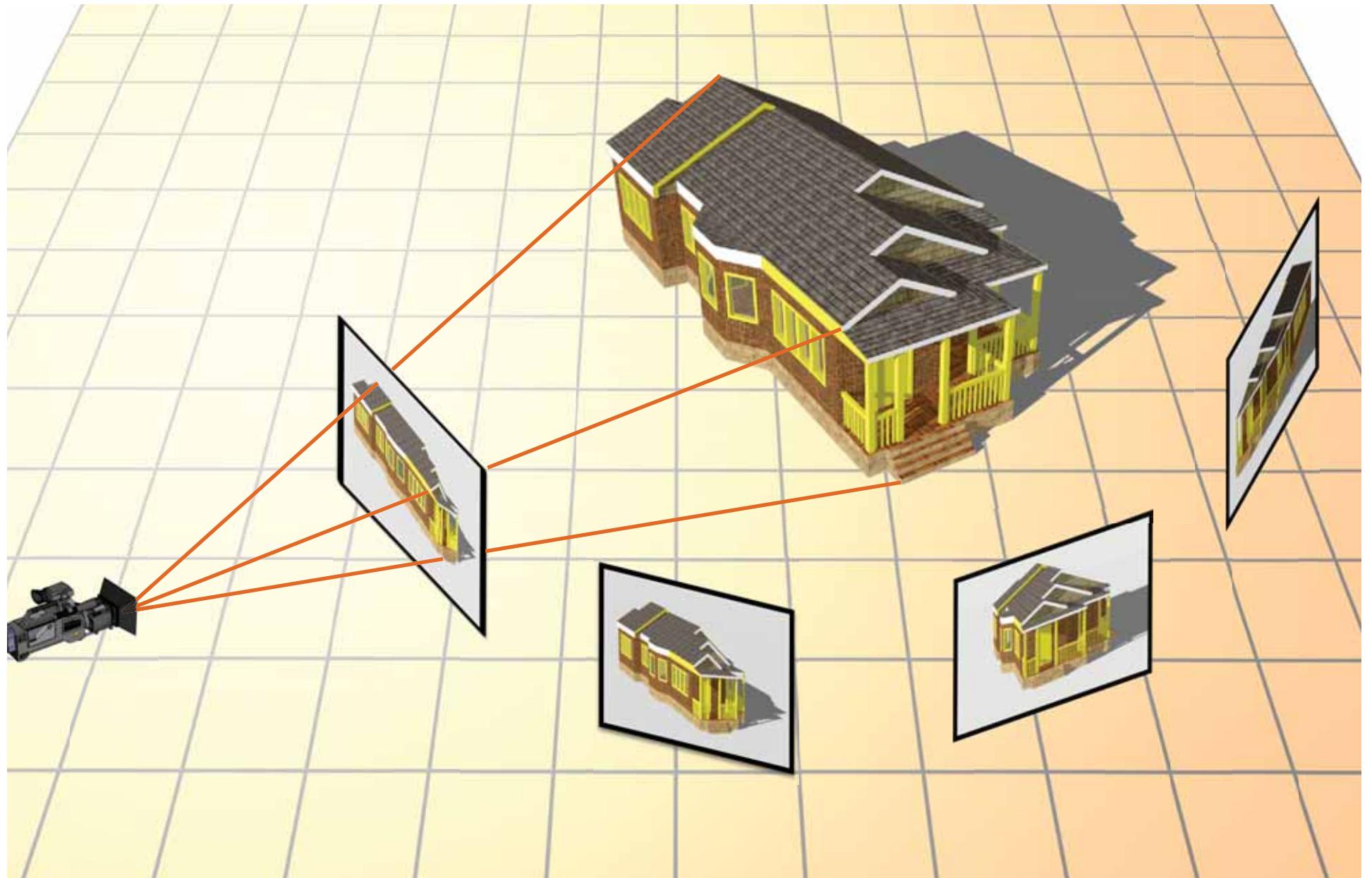
OBJECT MOTION

CAMERA MOTION

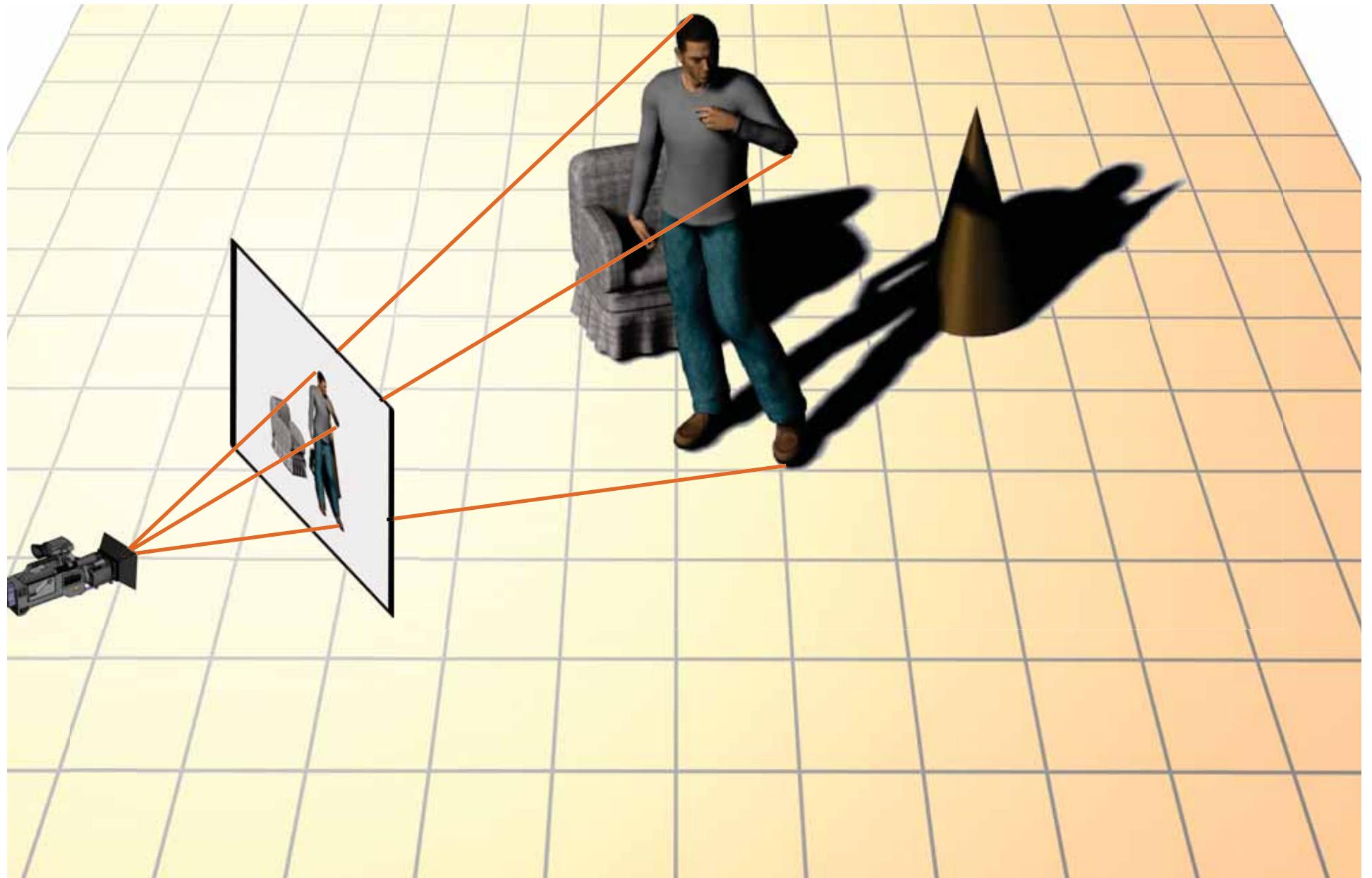
IMAGE MOTION

OBJECT MOTION AND **CAMERA MOTION**

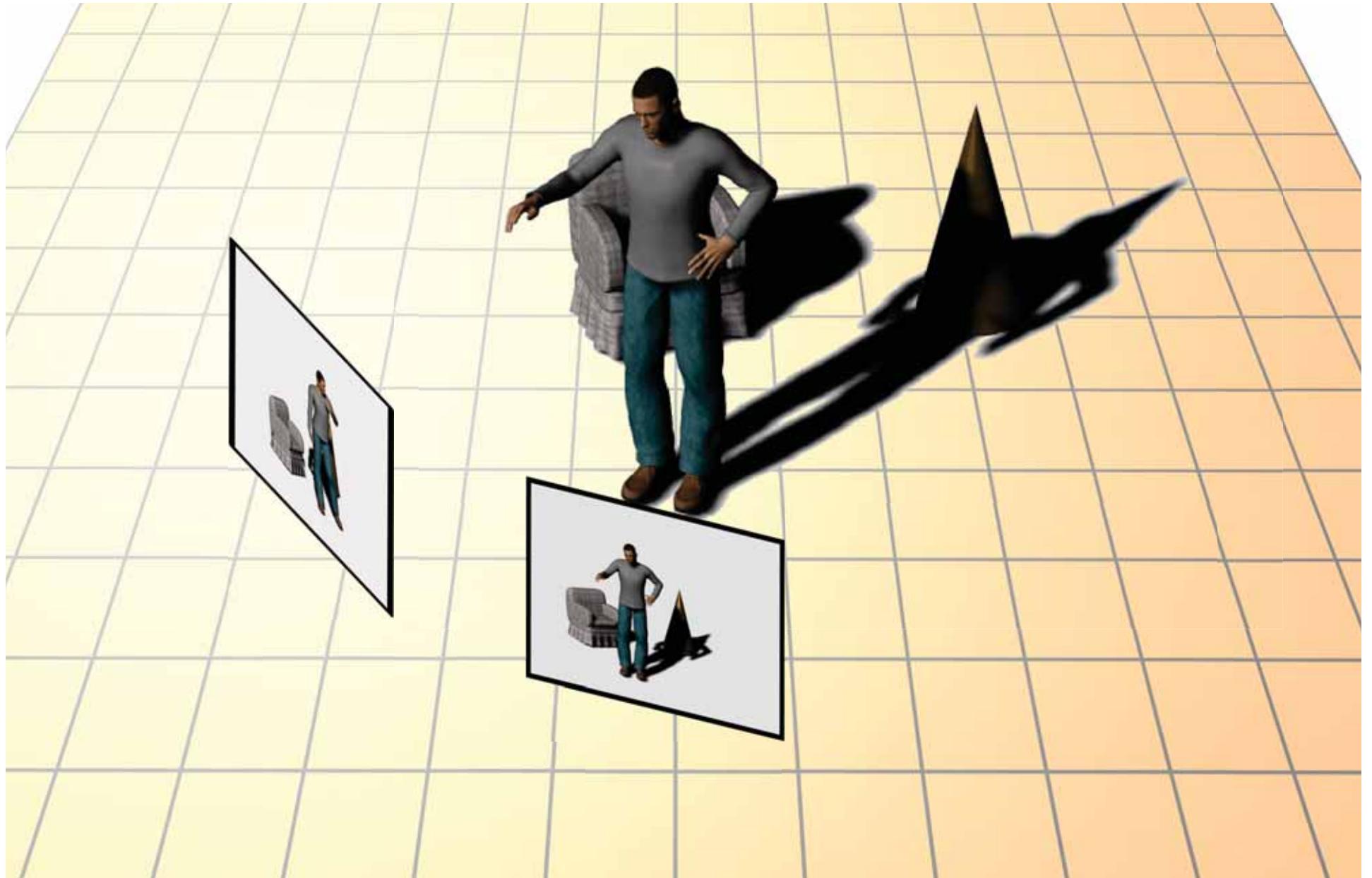
RIGID STRUCTURE FROM MOTION



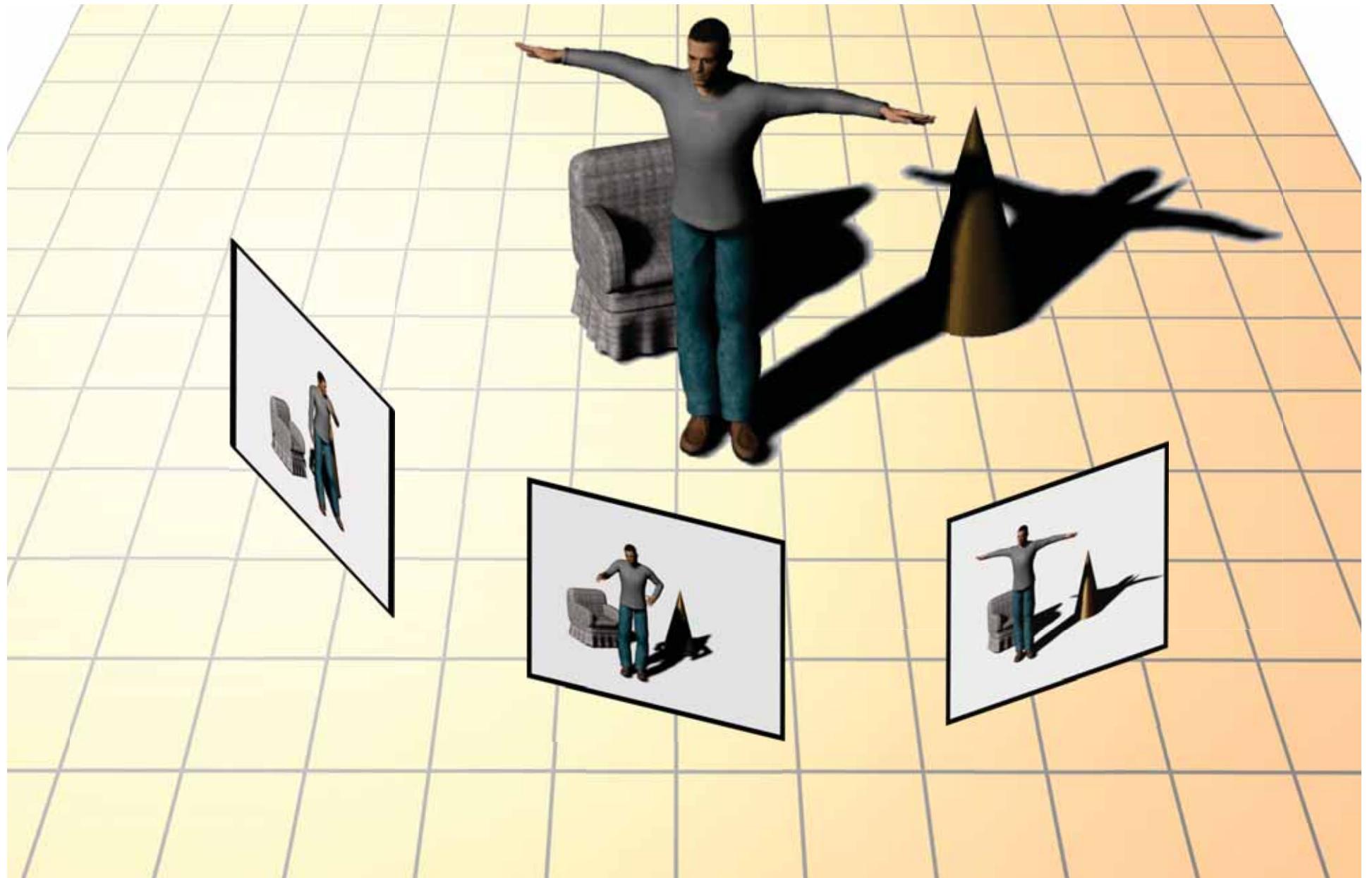
NONRIGID STRUCTURE FROM MOTION



NONRIGID STRUCTURE FROM MOTION



NONRIGID STRUCTURE FROM MOTION



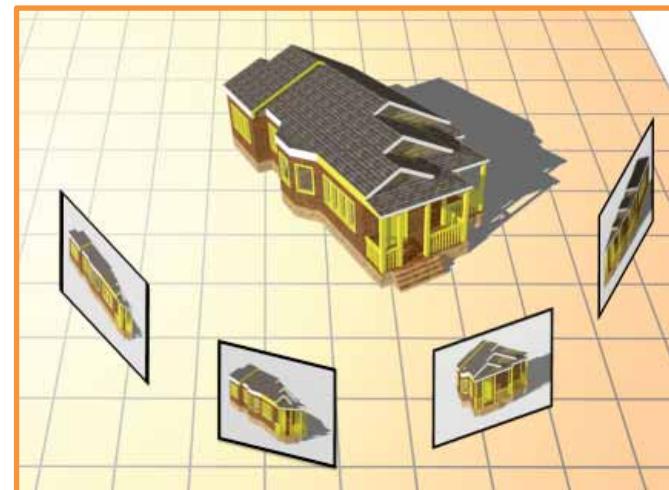
NONRIGID STRUCTURE FROM MOTION

FACTORIZATION METHOD FOR RIGID SFM

Kontsevich *et al.* 1987, Tomasi and Kanade 1992

ASSUMPTIONS

- Orthographic Camera
- At least 3 images
- Rigid Scene
- Camera Motion
- Corresponding points available

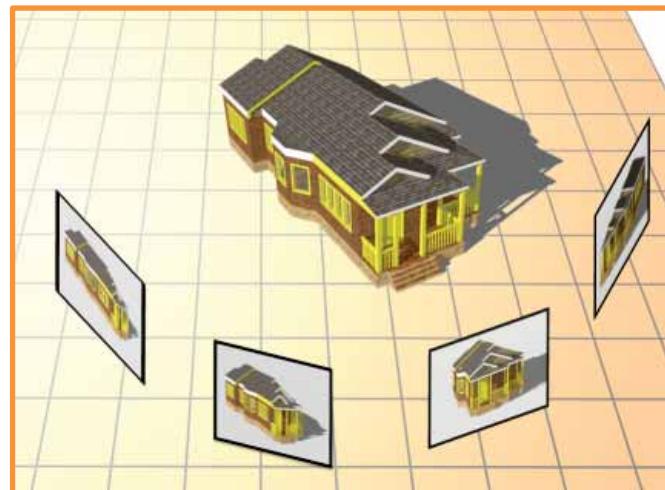


FACTORIZATION METHOD FOR RIGID SFM

Kontsevich *et al.* 1987, Tomasi and Kanade 1992

NOTATION

- P 3D points seen in F frames
- $\mathbf{X}_j = [X_j, Y_j, Z_j]$ is j^{th} 3D point
 $1 \leq j \leq P$
- $\mathbf{x}_{ij} = [x_{ij}, y_{ij}]$ is the projection of
 \mathbf{X}_j in i^{th} frame $1 \leq i \leq F$
- \mathbf{P}_i is the camera projection matrix
if the i^{th} frame $1 \leq i \leq F$



FACTORIZATION METHOD FOR RIGID SFM

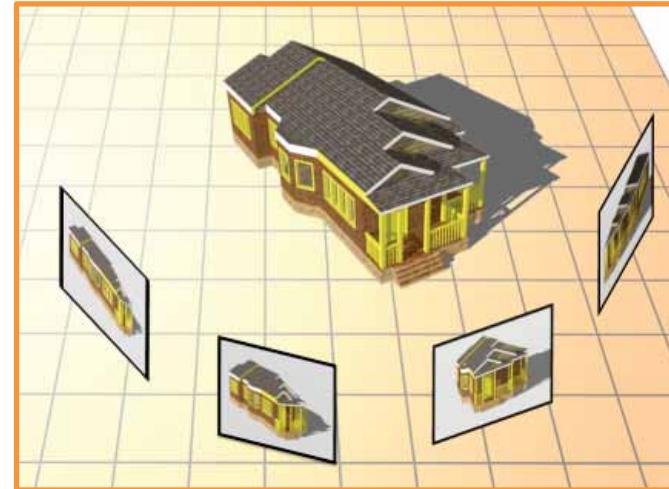
Kontsevich *et al.* 1987, Tomasi and Kanade 1992

$$\begin{array}{ccc} \text{2D image} & \text{orthographic} & \text{3D scene} \\ \text{point} & \text{projection} & \text{point} \\ \downarrow & \downarrow & \downarrow \\ \mathbf{x}_{ij} & = & \mathbf{P}_i \mathbf{X}_j \\ 2 \times 1 & & 2 \times 4 \quad 4 \times 1 \end{array}$$

$$\mathbf{x}_{ij} = \mathbf{K} [\mathbf{R}'_i | \mathbf{T}'_i] \mathbf{X}_j$$

$$\begin{bmatrix} x_{ij} \\ y_{ij} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_i^1 & r_i^2 & r_i^3 & t_i^x \\ r_i^4 & r_i^5 & r_i^6 & t_i^y \\ r_i^7 & r_i^8 & r_i^9 & t_i^z \end{bmatrix} \begin{bmatrix} X_j \\ Y_j \\ Z_j \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_{ij} \\ y_{ij} \end{bmatrix} = \begin{bmatrix} r_i^1 & r_i^2 & r_i^3 \\ r_i^4 & r_i^5 & r_i^6 \end{bmatrix} \begin{bmatrix} X_j \\ Y_j \\ Z_j \end{bmatrix} + \begin{bmatrix} t_i^x \\ t_i^y \end{bmatrix}$$



FACTORIZATION METHOD FOR RIGID SFM

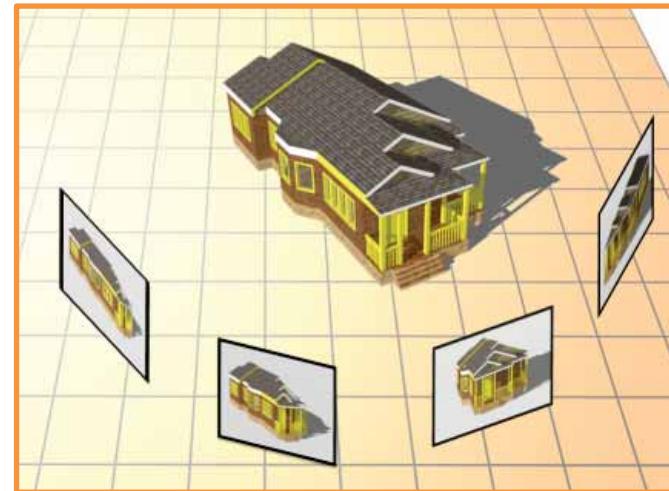
Kontsevich *et al.* 1987, Tomasi and Kanade 1992

$$\mathbf{x}_{ij} = \mathbf{R}_i \mathbf{X}_j + \mathbf{t}_i$$

2 rows of a 3D rotation matrix

image offset

2 × 1 2 × 3 3 × 1 2 × 1



TRICK

- Choose scene origin to be center of 3D points
- Choose image origins to be center of 2D points
- Allows us to drop camera translation

FACTORIZATION METHOD FOR RIGID SFM

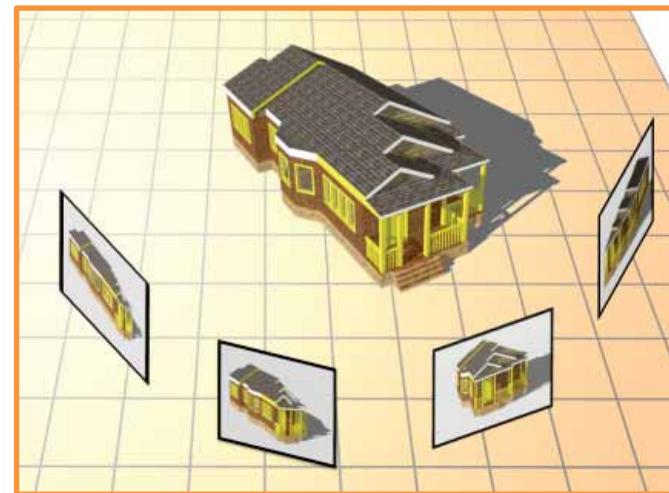
Kontsevich *et al.* 1987, Tomasi and Kanade 1992

$$\mathbf{x}_{ij} = \mathbf{R}_i \mathbf{X}_j + \mathbf{t}_i$$

2 rows of a 3D rotation matrix

2 × 1 2 × 3 3 × 1 2 × 1

image offset



TRICK

- Choose scene origin to be center of 3D points
- Choose image origins to be center of 2D points
- Allows us to drop camera translation

FACTORIZATION METHOD FOR RIGID SFM

Kontsevich *et al.* 1987, Tomasi and Kanade 1992

PROJECTION OF P 3D POINTS IN i^{th} IMAGE

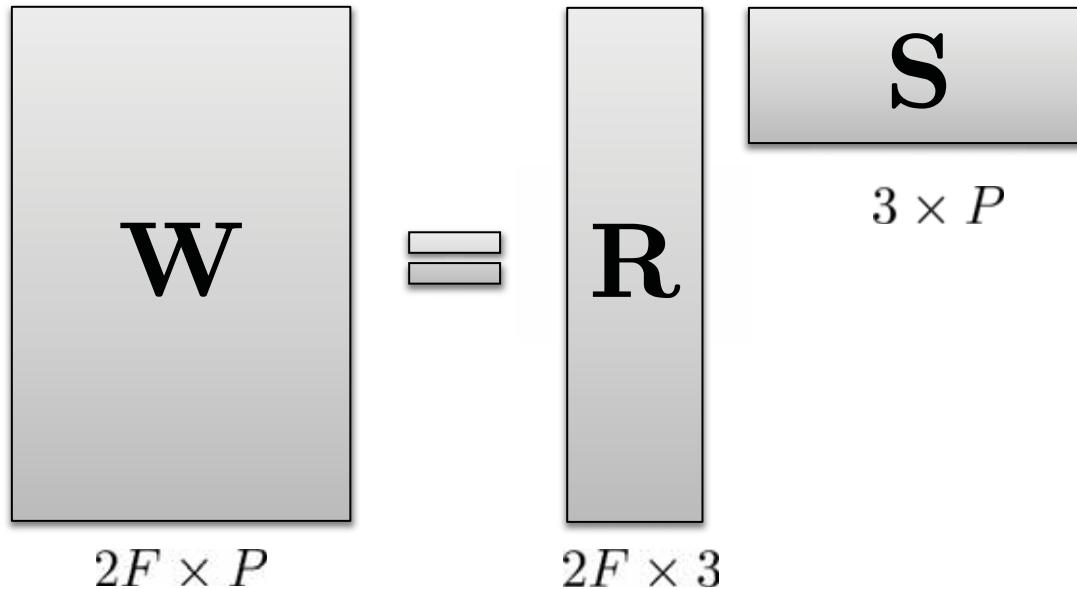
PROJECTION OF P 3D POINTS IN F IMAGES

$$\begin{bmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} & \dots & \mathbf{x}_{1P} \\ \mathbf{x}_{21} & \mathbf{x}_{22} & \dots & \mathbf{x}_{2P} \\ \vdots & \vdots & & \vdots \\ \mathbf{x}_{F1} & \mathbf{x}_{F2} & \dots & \mathbf{x}_{FP} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{R}_2 \\ \vdots \\ \mathbf{R}_F \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \dots & \mathbf{X}_P \end{bmatrix}$$

FACTORIZATION METHOD FOR RIGID SFM

Kontsevich *et al.* 1987, Tomasi and Kanade 1992

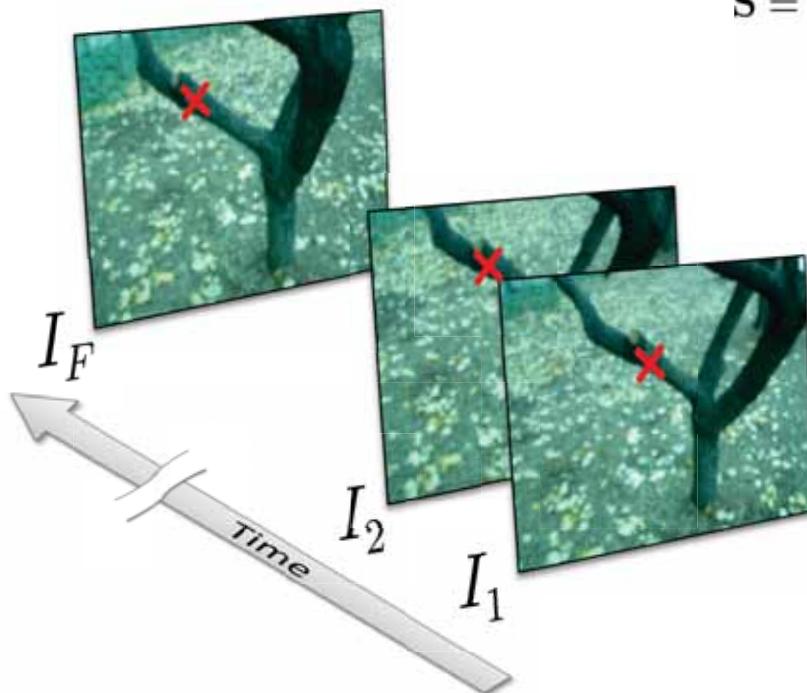
PROJECTION OF P 3D POINTS IN F IMAGES



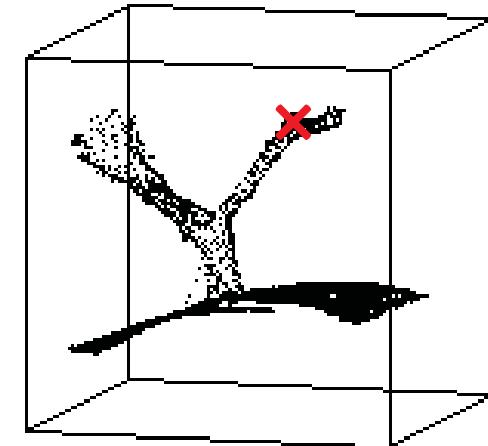
$$\mathbf{W}_{\text{measurement}} = \mathbf{R}_{\text{motion}} \times \mathbf{S}_{\text{shape}}$$

FACTORIZATION METHOD FOR RIGID SFM

Kontsevich *et al.* 1987, Tomasi and Kanade 1992



$$\mathbf{S} = \begin{bmatrix} X_1 & X_2 & \dots & X_P \\ Y_1 & Y_2 & \dots & Y_P \\ Z_1 & Z_2 & \dots & Z_P \end{bmatrix}$$



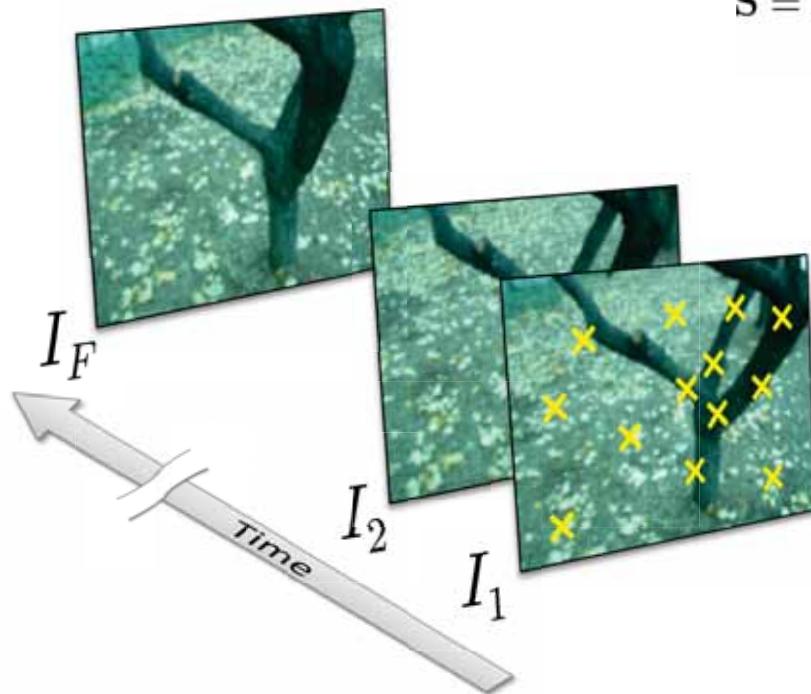
$$\begin{bmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} & \dots & \mathbf{x}_{1P} \\ \mathbf{x}_{21} & \mathbf{x}_{22} & \dots & \mathbf{x}_{2P} \\ \vdots & \vdots & & \vdots \\ \mathbf{x}_{F1} & \mathbf{x}_{F2} & \dots & \mathbf{x}_{FP} \end{bmatrix}$$

Image Observations Matrix, \mathbf{W}

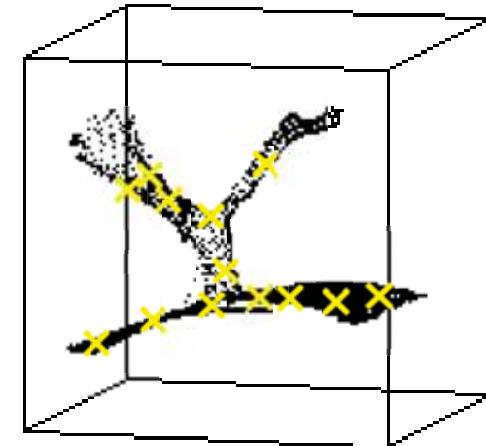
$2F \times P$

FACTORIZATION METHOD FOR RIGID SFM

Kontsevich *et al.* 1987, Tomasi and Kanade 1992



$$\mathbf{S} = \begin{bmatrix} X_1 & X_2 & \dots & X_P \\ Y_1 & Y_2 & \dots & Y_P \\ Z_1 & Z_2 & \dots & Z_P \end{bmatrix}$$



$$\begin{bmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} & \dots & \mathbf{x}_{1P} \\ \mathbf{x}_{21} & \mathbf{x}_{22} & \dots & \mathbf{x}_{2P} \\ \vdots & \vdots & & \vdots \\ \mathbf{x}_{F1} & \mathbf{x}_{F2} & \dots & \mathbf{x}_{FP} \end{bmatrix}$$

Image Observations Matrix, \mathbf{W}

$2F \times P$

FACTORIZATION METHOD FOR RIGID SFM

Kontsevich *et al.* 1987, Tomasi and Kanade 1992

HOW TO SOLVE FOR \mathbf{Q}

- Observation: The correct \mathbf{Q} will result in an \mathbf{R} whose rows are pair-wise orthonormal

$$\mathbf{R} = \hat{\mathbf{R}}\mathbf{Q}$$

- The i^{th} image results in the following 3 constraints on \mathbf{Q}

$$\mathbf{R}_{2i-1:2i}\mathbf{R}_{2i-1:2i}^T = \mathbf{I}_{2 \times 2} = (\hat{\mathbf{R}}_{2i-1:2i}\mathbf{Q}) (\hat{\mathbf{R}}_{2i-1:2i}\mathbf{Q})^T$$

ORTHONORMALITY
CONSTRAINTS

$$\hat{\mathbf{R}}_{2i-1:2i}\mathbf{Q}\mathbf{Q}^T\hat{\mathbf{R}}_{2i-1:2i} = \mathbf{I}_{2 \times 2}$$

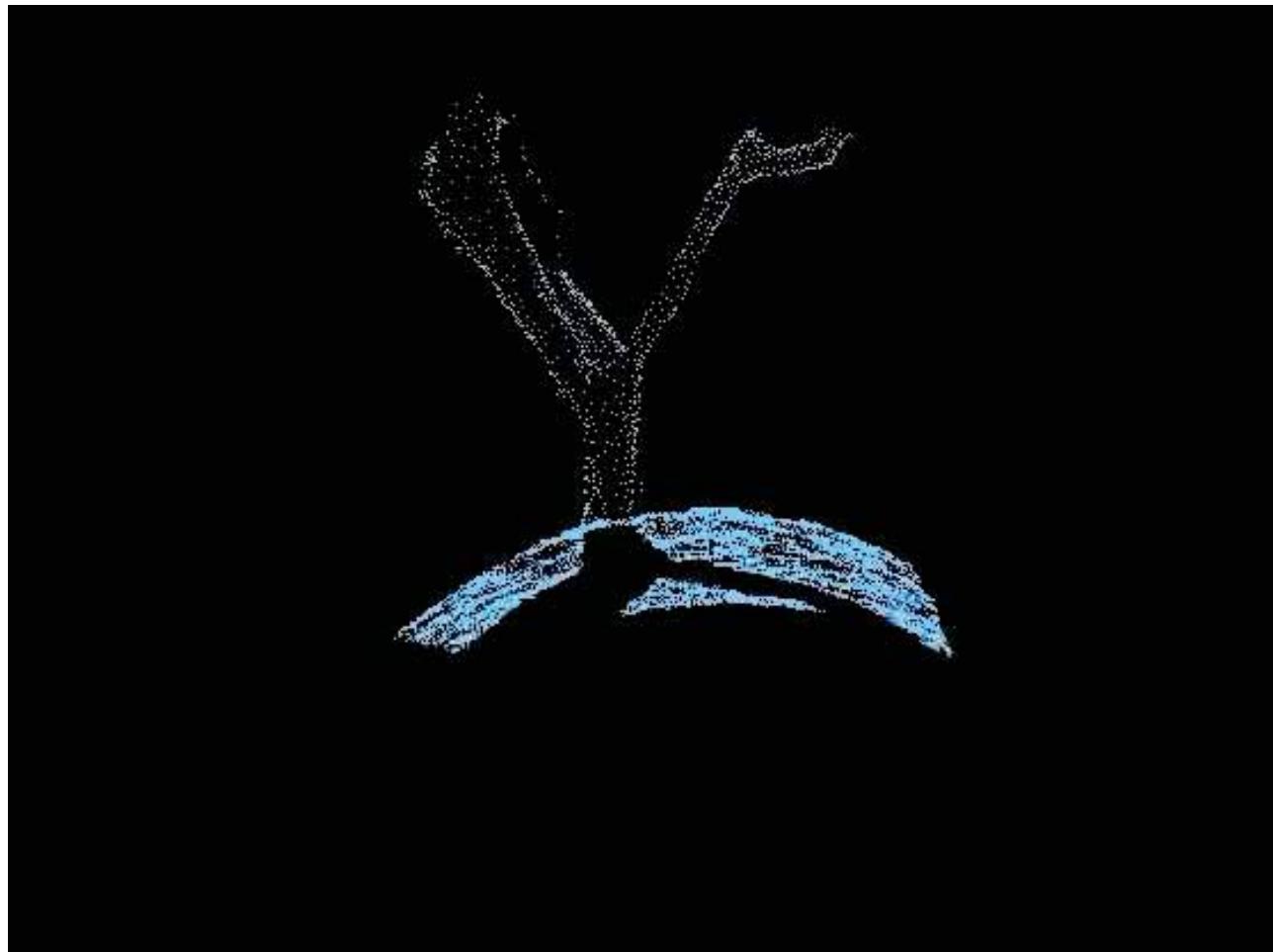
- Total $3F$ constraints on 6 terms of $\mathbf{Q}\mathbf{Q}^T$
- Can be solved linearly for $\mathbf{G} = \mathbf{Q}\mathbf{Q}^T$ for $F \geq 3$

FACTORIZATION METHOD FOR RIGID SFM

Kontsevich *et al.* 1987, Tomasi and Kanade 1992

FACTORIZATION METHOD FOR RIGID SFM

Kontsevich *et al.* 1987, Tomasi and Kanade 1992

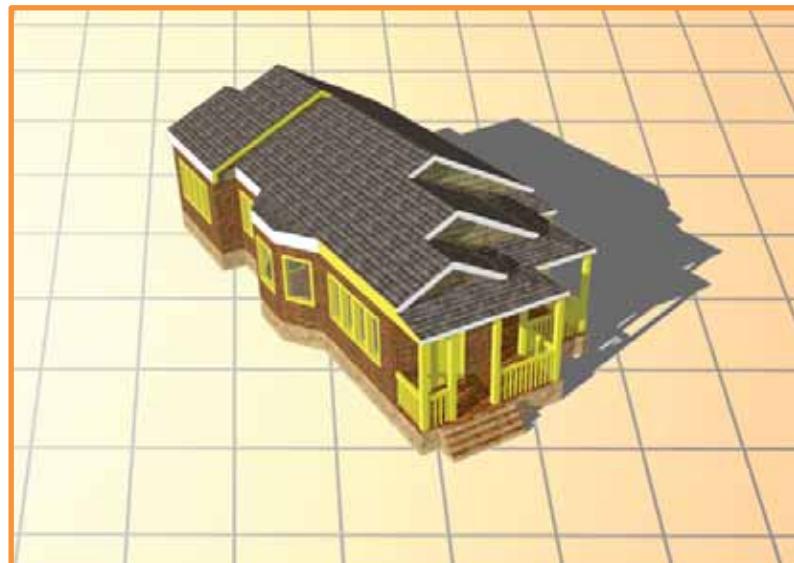


NONRIGID STRUCTURE

3D Structure That Deforms Over Time

RIGID STRUCTURE

$$\mathbf{S}_{3 \times P} = \begin{bmatrix} X_1 & X_2 & \dots & X_P \\ Y_1 & Y_2 & \dots & Y_P \\ Z_1 & Z_2 & \dots & Z_P \end{bmatrix}$$

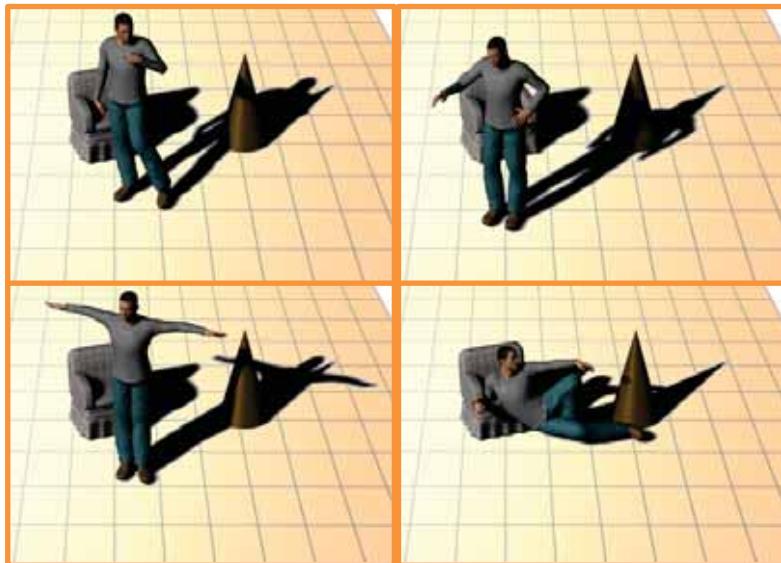


NONRIGID STRUCTURE

3D Structure That Deforms Over Time

RIGID STRUCTURE

$$\mathbf{S}_{3 \times P} = \begin{bmatrix} X_1 & X_2 & \dots & X_P \\ Y_1 & Y_2 & \dots & Y_P \\ Z_1 & Z_2 & \dots & Z_P \end{bmatrix}$$



NONRIGID STRUCTURE

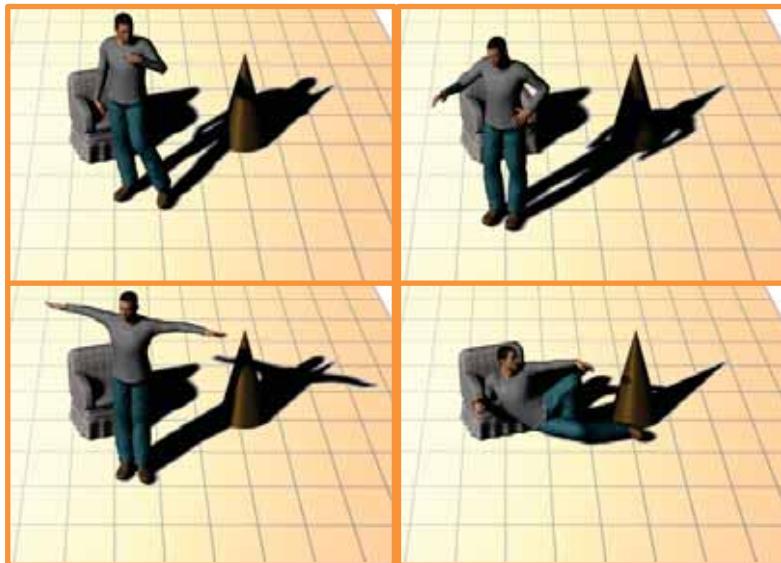
$$\mathbf{S}_{3F \times P} = \begin{bmatrix} \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1P} \\ Y_{11} & Y_{12} & \dots & Y_{1P} \\ Z_{11} & Z_{12} & \dots & Z_{1P} \end{bmatrix}_{3 \times P} \\ \vdots \\ \begin{bmatrix} X_{F1} & X_{F2} & \dots & X_{FP} \\ Y_{F1} & Y_{F2} & \dots & Y_{FP} \\ Z_{F1} & Z_{F2} & \dots & Z_{FP} \end{bmatrix}_{3 \times P} \end{bmatrix}_{3F \times P}$$

NONRIGID STRUCTURE

3D Structure That Deforms Over Time

RIGID STRUCTURE

$$\mathbf{S}_{3 \times P} = \begin{bmatrix} X_1 & X_2 & \dots & X_P \\ Y_1 & Y_2 & \dots & Y_P \\ Z_1 & Z_2 & \dots & Z_P \end{bmatrix}$$



NONRIGID STRUCTURE

$$\mathbf{S}_{3F \times P} = \begin{bmatrix} \mathbf{X}_{11} & \mathbf{X}_{12} & \dots & \mathbf{X}_{1P} \\ \mathbf{X}_{21} & \mathbf{X}_{22} & \dots & \mathbf{X}_{2P} \\ \vdots & \vdots & & \vdots \\ \mathbf{X}_{F1} & \mathbf{X}_{F2} & \dots & \mathbf{X}_{FP} \end{bmatrix}$$

NONRIGID STRUCTURE FROM MOTION

Comparison with Rigid Structure from Motion

RIGID SFM

$$\mathbf{W} = \mathbf{R} \mathbf{S}$$

\mathbf{W} $2F \times P$

\mathbf{R} $2F \times 3$

\mathbf{S} $3 \times P$

NONRIGID SFM

$$\mathbf{W} = \mathbf{R}_1 \mathbf{S}(1) + \mathbf{R}_2 \mathbf{S}(2) + \mathbf{R}_3 \mathbf{S}(3) + \dots + \mathbf{R}_F \mathbf{S}(F)$$

\mathbf{W} $2F \times P$

$\mathbf{R}_1, \mathbf{R}_2, \mathbf{R}_3, \dots, \mathbf{R}_F$ $2F \times 3F$

$\mathbf{S}(1), \mathbf{S}(2), \mathbf{S}(3), \dots, \mathbf{S}(F)$ $3F \times P$

$$\text{Rank}(\mathbf{W}) \leq 3$$

$$\text{Rank}(\mathbf{W}) \leq \min(2F, P)$$

NONRIGID STRUCTURE FROM MOTION

Explosion of Unknowns

Example: Given a 40 second video with 100 tracked points

RIGID SFM

- Inputs:
100 pts x 40 sec x 30 fps x 2 (x, y)
= 240,000 observations
- Unknowns:
100 points x 3 (X, Y, Z)
= **300** unknowns

NONRIGID SFM

- Inputs:
100 pts x 40 sec x 30 fps x 2
= 240,000 observations
- Unknowns:
100 points x 40 sec x 30 fps x 3
= **360,000** unknowns

NONRIGID STRUCTURE FROM MOTION

Explosion of Unknowns

IN GENERAL, NRSFM HAS MORE UNKNOWNS THAN CONSTRAINTS

ILL-POSED PROBLEM: Additional assumptions are necessary to constrain the solution.

HOWEVER...

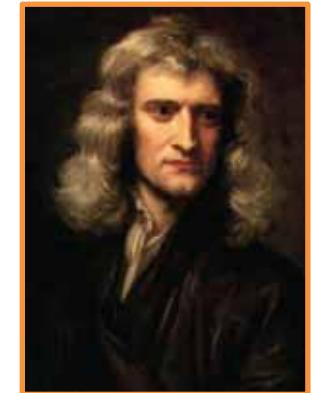
Motion is not random:

3D points are often highly correlated in space and time

Points move because an actuator exerts force on them

$$F = ma \dots$$

Hence their acceleration is limited by the actuating force
Therefore, shape does not deform arbitrarily over time



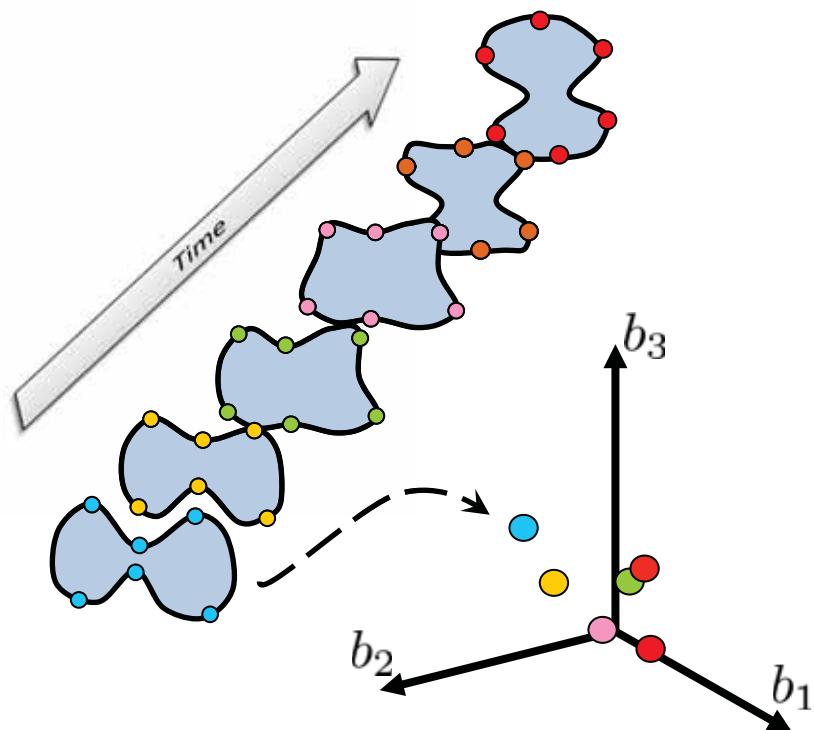
4D STRUCTURE OFTEN LIES IN A LOW DIMENSIONAL SUBSPACE

NONRIGID STRUCTURE FROM MOTION

Two Major Approaches

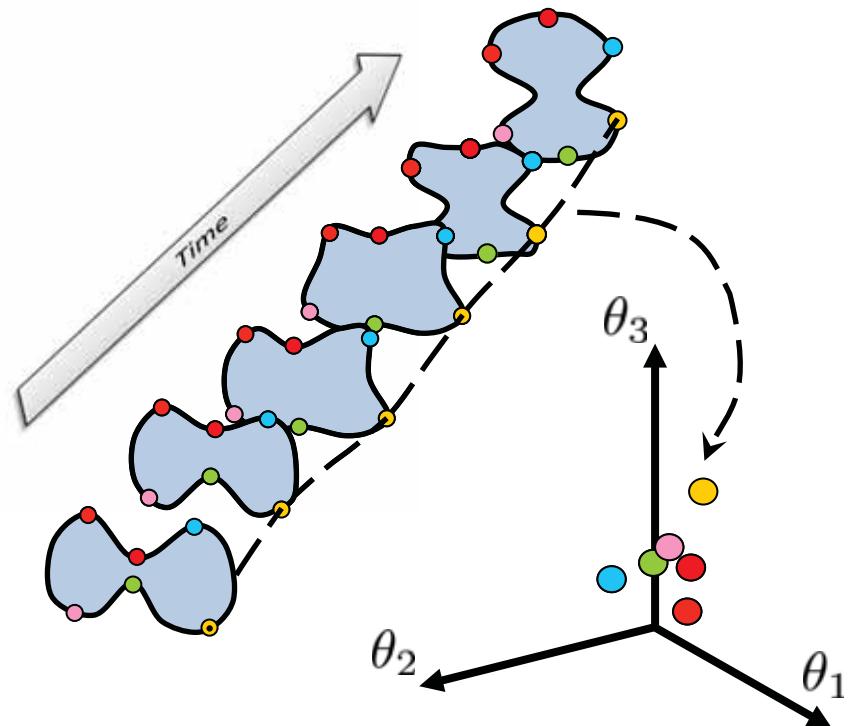
Shape Basis

3D points at each time instant lie in a low dimensional subspace



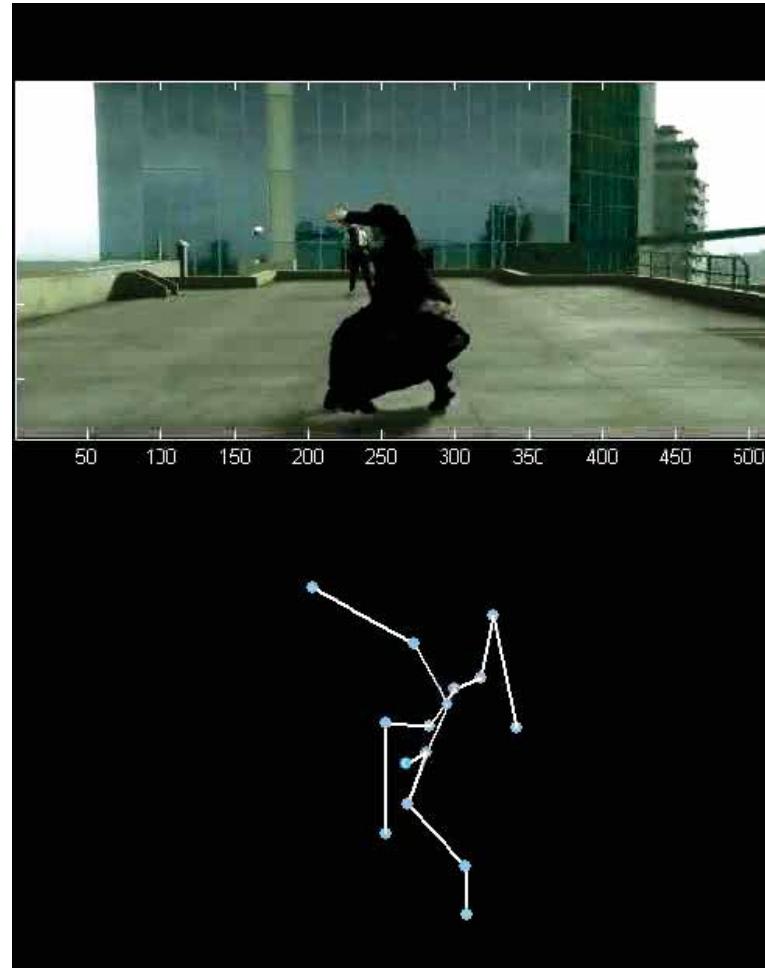
Trajectory Basis

Trajectory of each point over time lies in a low dimensional subspace



EXAMPLES OF APPLICATIONS

Match Moving in Movies



Akhter *et al.* NIPS 2008

EXAMPLES OF APPLICATIONS

Motion-Capture

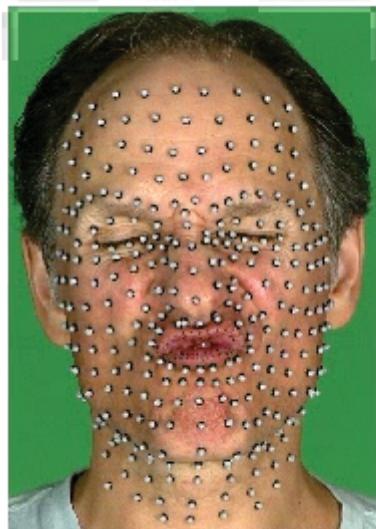
Input Video

Two views of the reconstruction

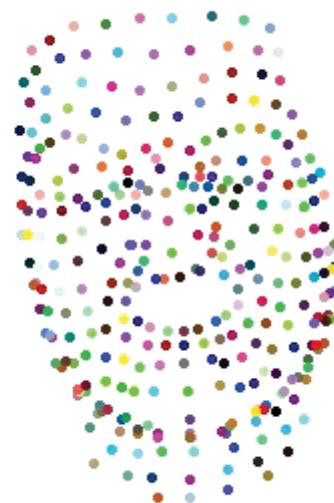
Akhter *et al.* NIPS 2008

EXAMPLES OF APPLICATIONS

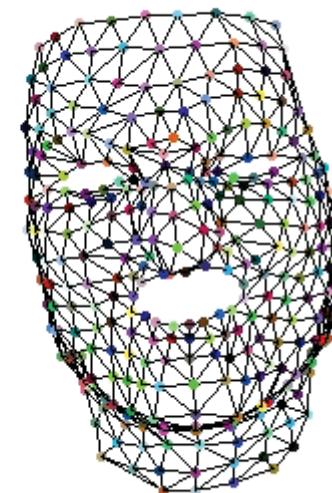
Motion-Capture Cleanup



Video



Unlabeled Data
Input

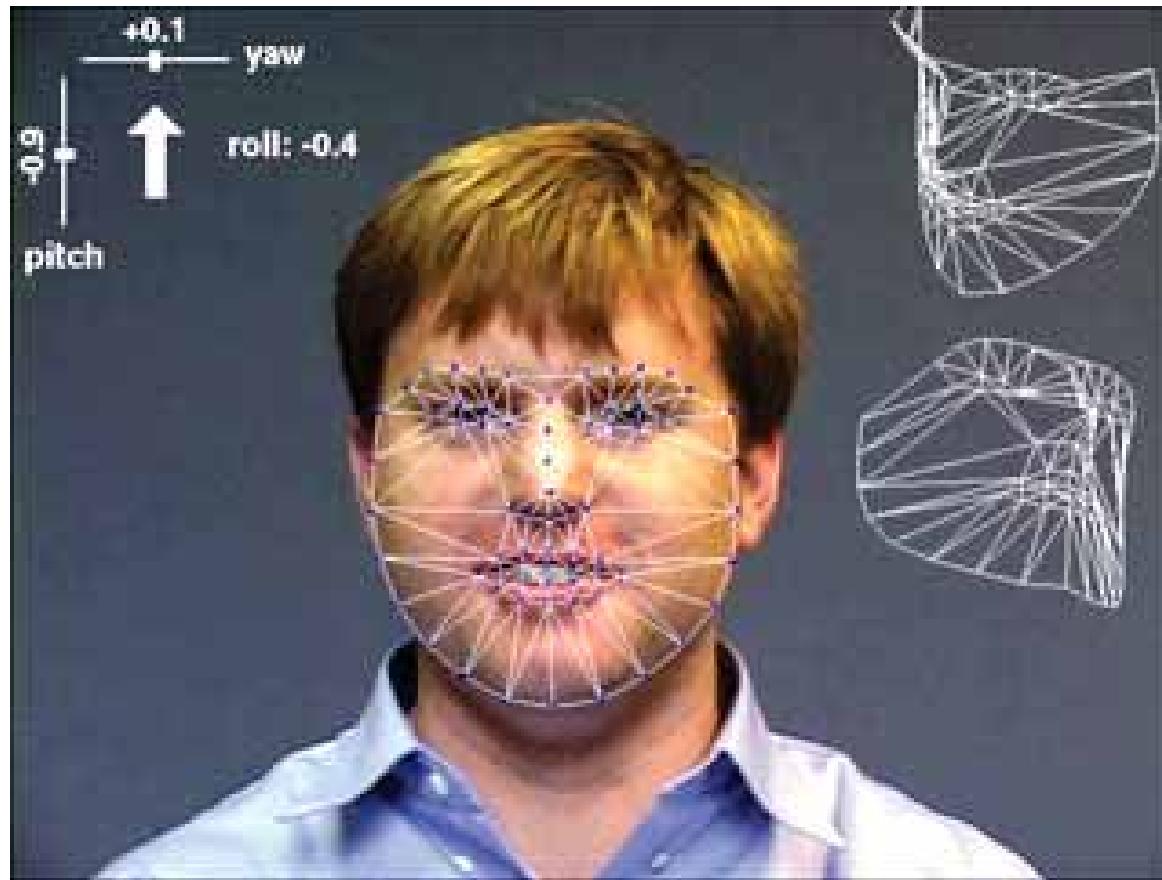


Reconstruction
Output

Disney Research, Pittsburgh

EXAMPLES OF APPLICATIONS

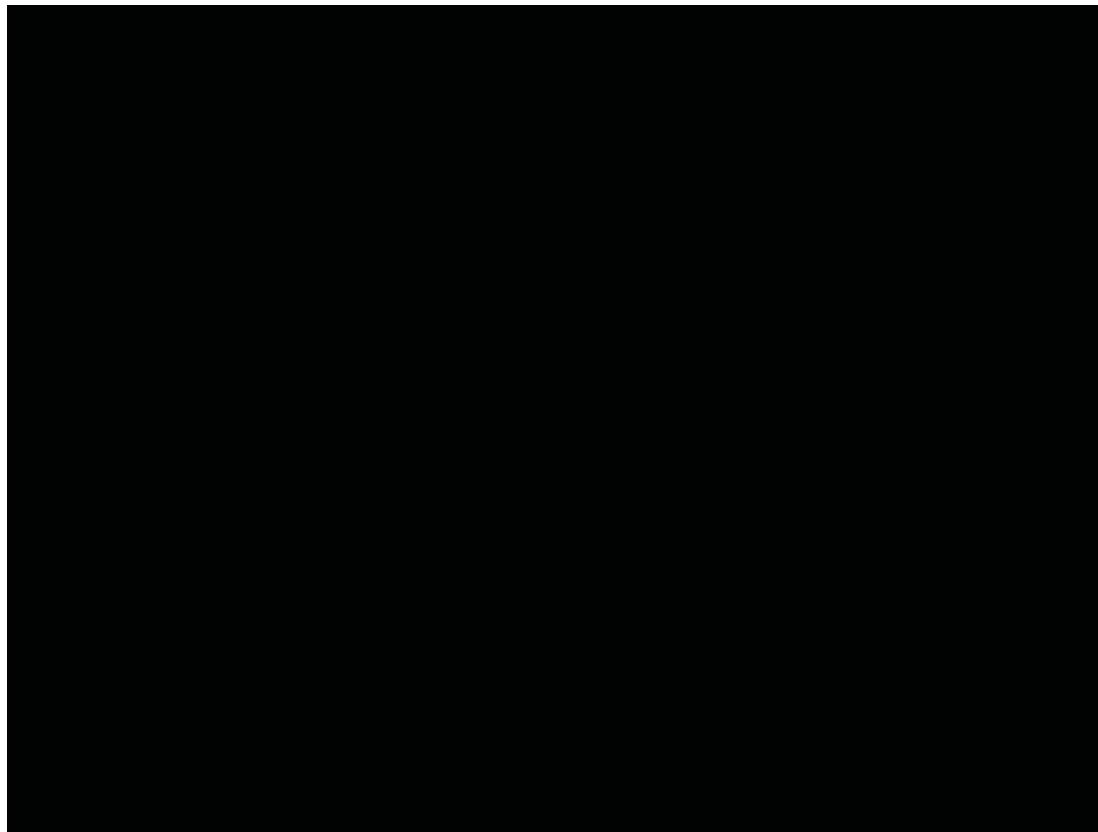
Tracking in 2D and 3D



Credit: Iain Matthews

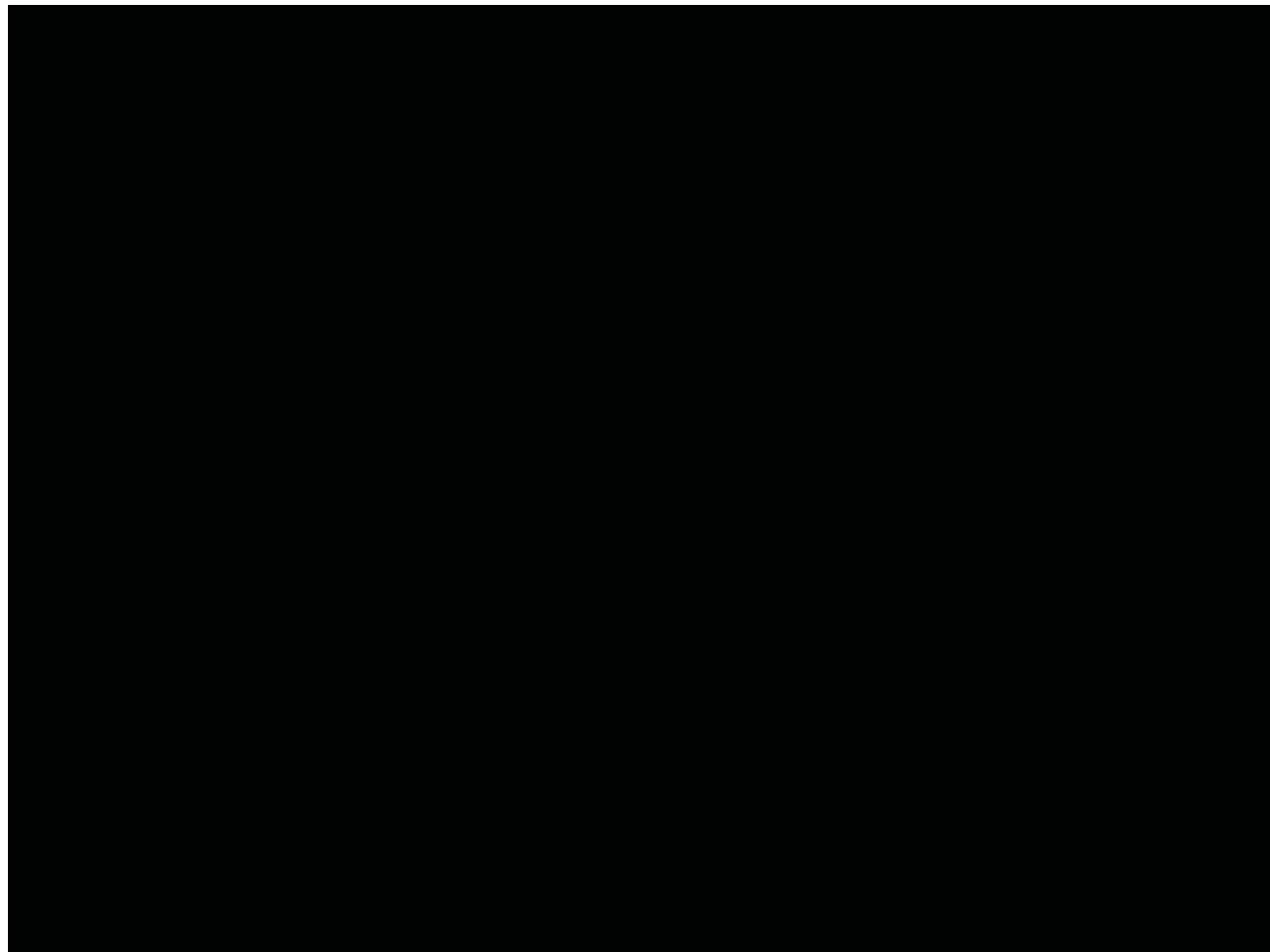
EXAMPLES OF APPLICATIONS

Animation



EXAMPLES OF APPLICATIONS

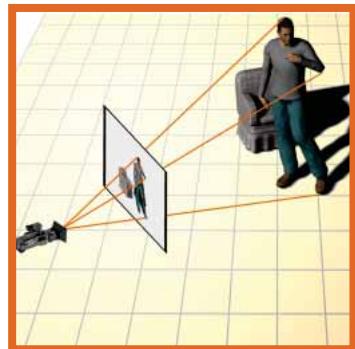
Browsing Image Collections



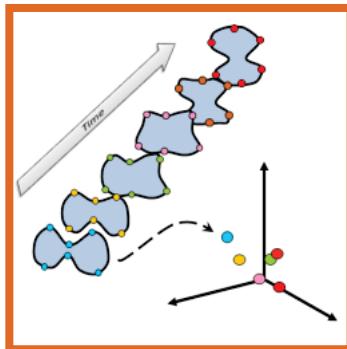
Credit: Hyun Soo Park

NONRIGID STRUCTURE FROM MOTION

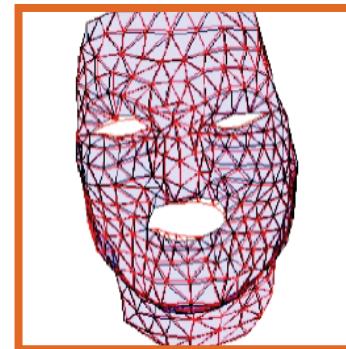
Tutorial Outline



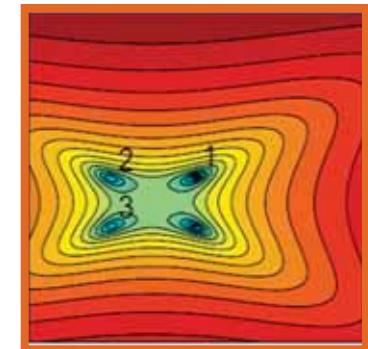
Introduction to
Nonrigid SfM



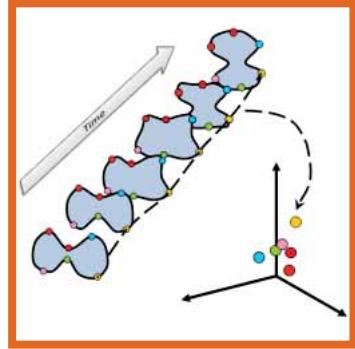
Shape
Representation



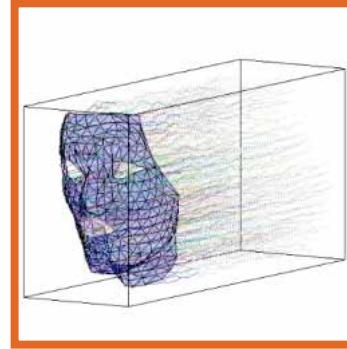
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

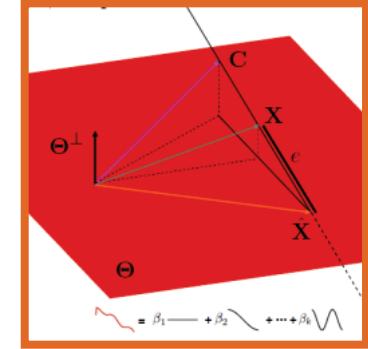


Trajectory
Representation



Shape-Trajectory
Duality

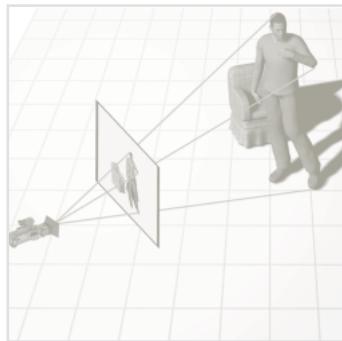
Trajectory
Estimation



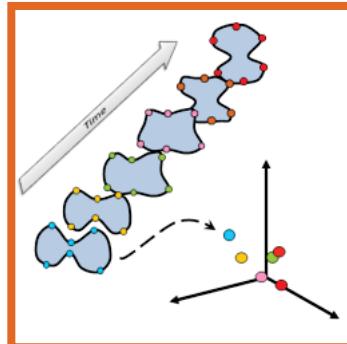
Reconstructibility
and limitations

NONRIGID STRUCTURE FROM MOTION

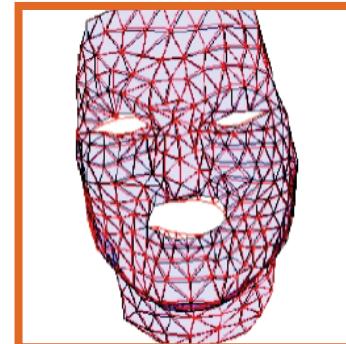
Tutorial Outline



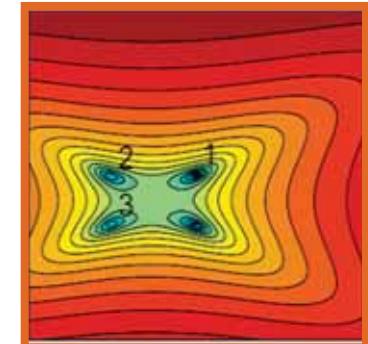
Introduction to
Nonrigid SfM



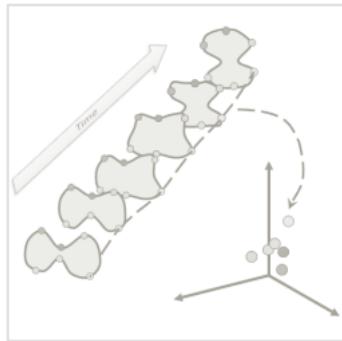
Shape
Representation



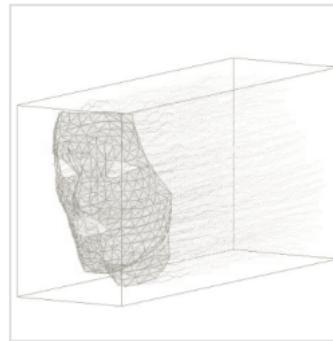
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

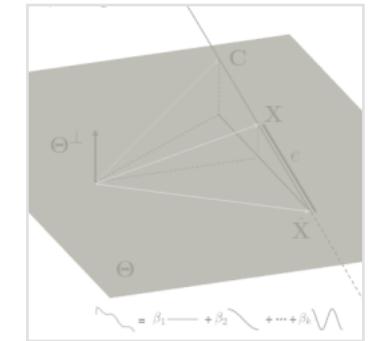


Trajectory
Representation



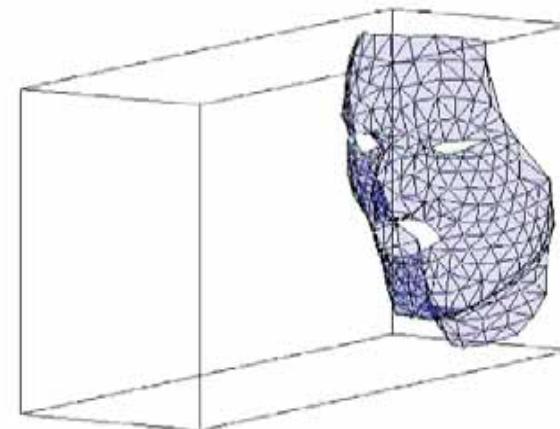
Shape-Trajectory
Duality

Trajectory
Estimation



Reconstructibility
and limitations

DYNAMIC STRUCTURE



$$\mathbf{S}_{3F \times P} = \left[\begin{array}{cccc} \mathbf{X}_{11} & \mathbf{X}_{12} & \cdots & \mathbf{X}_{1P} \\ \mathbf{X}_{21} & \mathbf{X}_{22} & \cdots & \mathbf{X}_{2P} \\ \vdots & \vdots & & \vdots \\ \mathbf{X}_{F1} & \mathbf{X}_{F2} & \cdots & \mathbf{X}_{FP} \end{array} \right] \quad \begin{array}{c} \text{space} \\ \hline \text{time} \end{array}$$

DYNAMIC STRUCTURE

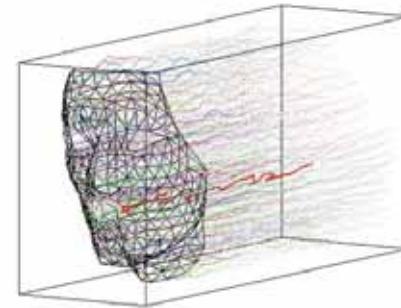
UNDER ORTHOGRAPHIC PROJECTION

$$\begin{bmatrix} \mathbf{x}_{11} & \cdots & \mathbf{x}_{1P} \\ \mathbf{x}_{21} & & \mathbf{x}_{2P} \\ \vdots & & \vdots \\ \mathbf{x}_{F1} & \cdots & \mathbf{x}_{FP} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_1 & & & \\ & \mathbf{R}_2 & & \\ & & \ddots & \\ & & & \mathbf{R}_F \end{bmatrix} \begin{bmatrix} \mathbf{X}_{11} & \cdots & \mathbf{X}_{1P} \\ \mathbf{X}_{21} & & \mathbf{X}_{2P} \\ \vdots & & \vdots \\ \mathbf{X}_{F1} & \cdots & \mathbf{X}_{FP} \end{bmatrix}$$

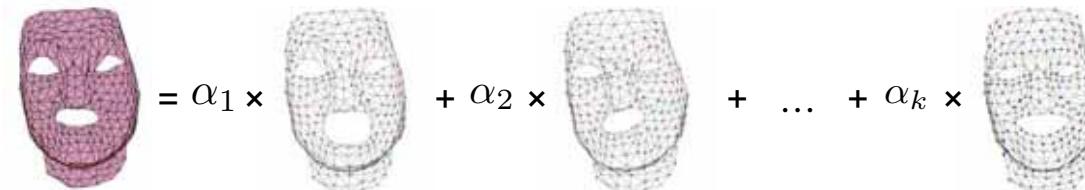
$$\mathbf{W} = \mathbf{R}\mathbf{X}$$

LINEAR SHAPE MODEL

[T. Cootes et al. 91, Bregler et al. 97]



$$\begin{bmatrix} \mathbf{X}_{11} & \cdots & \mathbf{X}_{1P} \\ \mathbf{X}_{21} & & \mathbf{X}_{2P} \\ \vdots & & \vdots \\ \mathbf{X}_{F1} & \cdots & \mathbf{X}_{FP} \end{bmatrix}$$

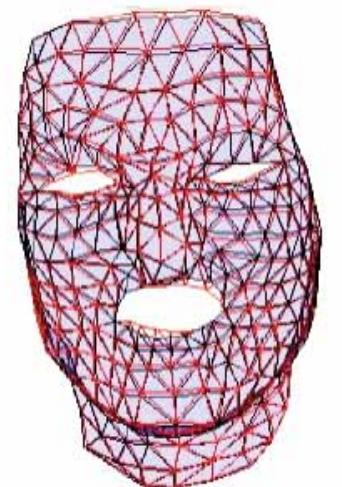

$$= \alpha_1 \times \text{mesh}_1 + \alpha_2 \times \text{mesh}_2 + \dots + \alpha_k \times \text{mesh}_k$$

LINEAR SHAPE MODEL

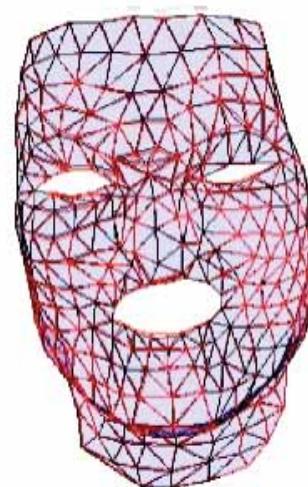
$$\begin{bmatrix} \mathbf{X}_{11} & \cdots & \mathbf{X}_{1P} \\ \mathbf{X}_{21} & & \mathbf{X}_{2P} \\ \vdots & & \vdots \\ \mathbf{X}_{F1} & \cdots & \mathbf{X}_{FP} \end{bmatrix} = \begin{bmatrix} \omega_{11} & \cdots & \omega_{1k} \\ \omega_{21} & & \omega_{2k} \\ \vdots & & \vdots \\ \omega_{F1} & \cdots & \omega_{Fk} \end{bmatrix} \begin{bmatrix} -\mathbf{b}_1 - \\ -\mathbf{b}_2 - \\ \vdots \\ -\mathbf{b}_k - \end{bmatrix}$$

LINEAR SHAPE MODEL

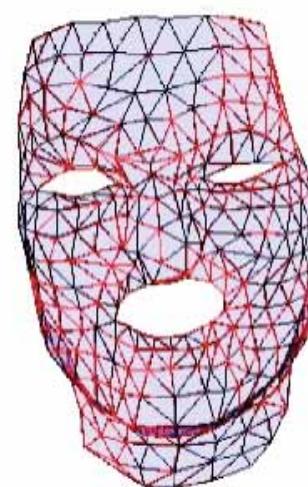
RECONSTRUCTION



5 Basis



15 Basis



25 Basis

LINEAR SHAPE MODEL

UNDER ORTHOGRAPHIC PROJECTION

$$\underbrace{\begin{bmatrix} \mathbf{x}_{11} & \cdots & \mathbf{x}_{1P} \\ \mathbf{x}_{21} & & \mathbf{x}_{2P} \\ \vdots & & \vdots \\ \mathbf{x}_{F1} & \cdots & \mathbf{x}_{FP} \end{bmatrix}}_{2F \times P} = \underbrace{\begin{bmatrix} \mathbf{R}_1 & & & \\ & \mathbf{R}_2 & & \\ & & \ddots & \\ & & & \mathbf{R}_F \end{bmatrix}}_{2F \times 3F (6F)} \underbrace{\begin{bmatrix} \mathbf{X}_{11} & \cdots & \mathbf{X}_{1P} \\ \mathbf{X}_{21} & & \mathbf{X}_{2P} \\ \vdots & & \vdots \\ \mathbf{X}_{F1} & \cdots & \mathbf{X}_{FP} \end{bmatrix}}_{3F \times P}$$

$$= \underbrace{\begin{bmatrix} \mathbf{R}_1 & & & \\ & \mathbf{R}_2 & & \\ & & \ddots & \\ & & & \mathbf{R}_F \end{bmatrix}}_{2F \times 3F (6F)} \underbrace{\begin{bmatrix} \omega_{11} & \cdots & \omega_{1k} \\ \omega_{21} & & \omega_{2k} \\ \vdots & & \vdots \\ \omega_{F1} & \cdots & \omega_{Fk} \end{bmatrix}}_{3F \times 3k} \underbrace{\begin{bmatrix} -\mathbf{b}_1- \\ -\mathbf{b}_2- \\ \vdots \\ -\mathbf{b}_k- \end{bmatrix}}_{3k \times P}$$

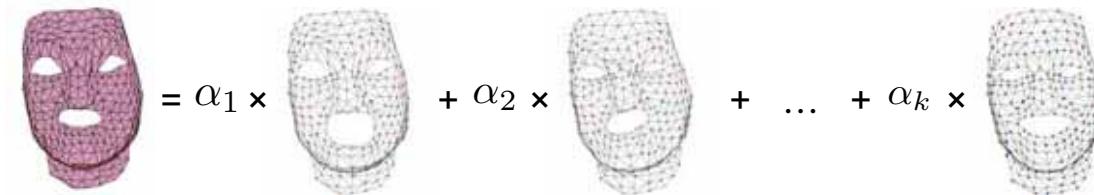
KNOWNS VS UNKNOWNS

KNOWNS: $2F \times P$

UNKNOWNS: $6F + (3F \times k) + (k \times P)$

$2F \times P \geq 6F + (3F \times k) + (k \times P)$

LINEAR SHAPE MODEL



$$\mathbf{Y} = \mathbf{R} \left(\sum_{i=1}^K \omega_i \mathbf{b}_i \right) + \mathbf{T}$$

Annotations above the equation point to the rigid component and the nonrigid component:

- A bracket labeled "RIGID COMPONENT" spans the term $\mathbf{R} \left(\sum_{i=1}^K \omega_i \mathbf{b}_i \right)$.
- A bracket labeled "NONRIGID COMPONENT" points to the term \mathbf{T} .

IDEA: RIGID COMPONENT GETS FOLDED INTO PROJECTION

CHALLENGE

TRILINEAR ESTIMATION

$$\begin{bmatrix} \mathbf{R}_1 \\ \mathbf{R}_2 \\ \vdots \\ \mathbf{R}_F \end{bmatrix} \begin{bmatrix} \omega_{11} & \cdots & \omega_{1k} \\ \omega_{21} & & \omega_{2k} \\ \vdots & & \vdots \\ \omega_{F1} & \cdots & \omega_{Fk} \end{bmatrix} \begin{bmatrix} -\mathbf{b}_1- \\ -\mathbf{b}_2- \\ \vdots \\ -\mathbf{b}_k- \end{bmatrix}$$

$$\mathbf{W} = \mathbf{R}\boldsymbol{\Omega}\mathbf{B}$$

BREGLER *et al.* 2000

Nested SVD

$$\begin{bmatrix}
 \mathbf{x}_{11} & \cdots & \mathbf{x}_{1P} \\
 \mathbf{x}_{21} & & \mathbf{x}_{2P} \\
 \vdots & & \vdots \\
 \mathbf{x}_{F1} & \cdots & \mathbf{x}_{FP}
 \end{bmatrix} = \begin{bmatrix}
 \mathbf{R}_1 & & \\
 & \mathbf{R}_2 & \\
 & & \ddots \\
 & & & \mathbf{R}_F
 \end{bmatrix} \begin{bmatrix}
 \omega_{11} & \cdots & \omega_{1k} \\
 \omega_{21} & & \omega_{2k} \\
 \vdots & & \vdots \\
 \omega_{F1} & \cdots & \omega_{Fk}
 \end{bmatrix} \begin{bmatrix}
 -\mathbf{b}_1- \\
 -\mathbf{b}_2- \\
 \vdots \\
 -\mathbf{b}_k-
 \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix}
 \omega_{11}\mathbf{R}_1 & \cdots & \omega_{1k}\mathbf{R}_1 \\
 \omega_{21}\mathbf{R}_2 & & \omega_{2k}\mathbf{R}_2 \\
 \vdots & & \vdots \\
 \omega_{F1}\mathbf{R}_F & \cdots & \omega_{Fk}\mathbf{R}_F
 \end{bmatrix}}_{2F \times 3k} \underbrace{\begin{bmatrix}
 -\mathbf{b}_1- \\
 -\mathbf{b}_2- \\
 \vdots \\
 -\mathbf{b}_k-
 \end{bmatrix}}_{3k \times P}$$

BREGLER *et al.* 2000

Outer SVD

$$\mathbf{W} = \mathbf{H} \mathbf{B}$$
$$\begin{bmatrix} \mathbf{x}_{11} & \cdots & \mathbf{x}_{1P} \\ \mathbf{x}_{21} & & \mathbf{x}_{2P} \\ \vdots & & \vdots \\ \mathbf{x}_{F1} & \cdots & \mathbf{x}_{FP} \end{bmatrix} = \underbrace{\begin{bmatrix} \omega_{11}\mathbf{R}_1 & \cdots & \omega_{1k}\mathbf{R}_1 \\ \omega_{21}\mathbf{R}_2 & & \omega_{2k}\mathbf{R}_2 \\ \vdots & & \vdots \\ \omega_{F1}\mathbf{R}_F & \cdots & \omega_{Fk}\mathbf{R}_F \end{bmatrix}}_{2F \times 3k} \underbrace{\begin{bmatrix} -\mathbf{b}_1 \\ -\mathbf{b}_2 \\ \vdots \\ -\mathbf{b}_k \end{bmatrix}}_{3k \times P}$$

SVD

$$\mathbf{W} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

$$\mathbf{W} = (\mathbf{U}\mathbf{D}^{\frac{1}{2}})(\mathbf{D}^{\frac{1}{2}}\mathbf{V}^T)$$

$$\mathbf{W} = \hat{\mathbf{H}}\hat{\mathbf{B}}$$

BREGLER *et al.* 2000

Inner SVD

$$\mathbf{W} = \hat{\mathbf{H}}\hat{\mathbf{B}}$$

$$\mathbf{H} = \begin{bmatrix} \omega_{11}\mathbf{R}_1 & \cdots & \omega_{1k}\mathbf{R}_1 \\ \omega_{21}\mathbf{R}_2 & & \omega_{2k}\mathbf{R}_2 \\ \vdots & & \vdots \\ \omega_{F1}\mathbf{R}_F & \cdots & \omega_{Fk}\mathbf{R}_1 \end{bmatrix}$$

$$\mathbf{h}_1 = \begin{bmatrix} \omega_{11}r_1^1 & \omega_{11}r_1^2 & \omega_{11}r_1^3 & \cdots & \omega_{1k}r_1^1 & \omega_{1k}r_1^2 & \omega_{1k}r_1^3 \\ \omega_{11}r_1^4 & \omega_{11}r_1^5 & \omega_{11}r_1^6 & \cdots & \omega_{1k}r_1^4 & \omega_{1k}r_1^5 & \omega_{1k}r_1^6 \end{bmatrix}$$

$$\mathbf{h}'_1 = \begin{bmatrix} \omega_{11}r_1^1 & \omega_{11}r_1^2 & \omega_{11}r_1^3 & \omega_{11}r_1^4 & \omega_{11}r_1^5 & \omega_{11}r_1^6 \\ \omega_{12}r_1^1 & \omega_{12}r_1^2 & \omega_{12}r_1^3 & \omega_{12}r_1^4 & \omega_{12}r_1^5 & \omega_{12}r_1^6 \\ \vdots & & & & \vdots & \\ \omega_{1k}r_1^1 & \omega_{1k}r_1^2 & \omega_{1k}r_1^3 & \omega_{1k}r_1^4 & \omega_{1k}r_1^5 & \omega_{1k}r_1^6 \end{bmatrix} = \begin{bmatrix} \omega_{11} \\ \omega_{12} \\ \vdots \\ \omega_{1k} \end{bmatrix} \begin{bmatrix} r_1^1 & r_1^2 & r_1^3 & r_1^4 & r_1^5 & r_1^6 \end{bmatrix}$$

rank 1

$$\mathbf{SVD} \quad \mathbf{h}'_1 = \mathbf{u}\mathbf{d}\mathbf{v}^T = \hat{\omega}\hat{\mathbf{r}}$$

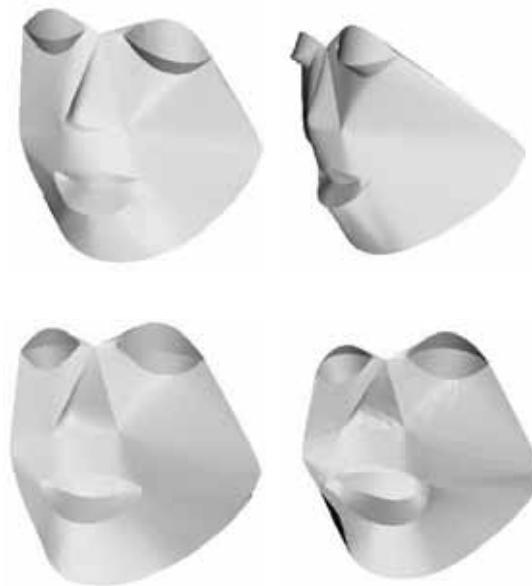
METRIC RECTIFICATION USING ORTHONORMALITY CONSTRAINTS

BREGLER *et al.* 2000

OVERVIEW

- OUTER SVD: PERFORM SVD ON \mathbf{W} TO GET ESTIMATES OF:
 - \mathbf{H} : CAMERA PROJECTIONS AND COEFFICIENTS
 - INNER SVD: PERFORM SVD ON \mathbf{H} TO GET ESTIMATES OF:
 - OMEGA: COEFFICIENTS
 - \mathbf{R} : CAMERA PROJECTIONS
 - METRIC RECTIFY USING ORTHONORMALITY CONSTRAINTS
 - \mathbf{B} : THE SHAPE BASIS

RESULTS



BREGLER *et al.* 2000

IN PERSPECTIVE

- **SEMINAL WORK:** SHOWED THAT FACTORIZATION METHODS CAN BE APPLIED TO NONRIGID OBJECTS
- **CASCADING ERROR:** ANY OUTER SVD ESTIMATION ERROR CASCADES INTO INNER SVD ESTIMATION
- **AMBIGUITY ERROR:** ESTIMATION OF METRIC RECTIFICATION
- **NUMBER OF BASIS:** LARGE NUMBER OF BASIS REQUIRED
- **MISSING DATA:** NEEDS COMPLETE \mathbf{W} MATRIX

METRIC RECTIFICATION

AMBIGUITY

$$\mathbf{W} = \hat{\mathbf{H}} \hat{\mathbf{B}}$$

$$\mathbf{W} = \hat{\mathbf{H}} \mathbf{G} \mathbf{G}^{-1} \hat{\mathbf{B}}$$

$$\mathbf{H} = \hat{\mathbf{H}} \mathbf{G}$$

$$\mathbf{B} = \mathbf{G}^{-1} \hat{\mathbf{B}}$$

$$\mathbf{H} = \begin{bmatrix} & \hat{\mathbf{H}} & \end{bmatrix} \begin{bmatrix} & & & & & \\ | & & & | & & \\ \mathbf{g}_1 & \mathbf{g}_2 & \dots & \mathbf{g}_k & & \\ | & | & & | & & \end{bmatrix} = \begin{bmatrix} \omega_{11} \mathbf{R}_1 & \dots & \omega_{1k} \mathbf{R}_1 \\ \omega_{21} \mathbf{R}_2 & \dots & \omega_{2k} \mathbf{R}_2 \\ \vdots & \ddots & \vdots \\ \omega_{F1} \mathbf{R}_F & \dots & \omega_{Fk} \mathbf{R}_1 \end{bmatrix}$$

$\mathbf{G}_{3k \times 3k}$

METRIC RECTIFICATION

ORTHONORMALITY CONSTRAINT

$$\mathbf{H} = \begin{bmatrix} & \hat{\mathbf{H}} & \end{bmatrix} \begin{bmatrix} & & & & & & | & \\ | & & & & & & | & \\ \mathbf{g}_1 & \mathbf{g}_2 & \cdots & \mathbf{g}_k & & & | & \\ | & | & & & & & | & \\ & & & & & & & \end{bmatrix} = \begin{bmatrix} \omega_{11}\mathbf{R}_1 & \cdots & \omega_{1k}\mathbf{R}_1 \\ \omega_{21}\mathbf{R}_2 & \cdots & \omega_{2k}\mathbf{R}_2 \\ \vdots & & \vdots \\ \omega_{F1}\mathbf{R}_F & \cdots & \omega_{Fk}\mathbf{R}_1 \end{bmatrix}$$

$$\mathbf{R}_i \mathbf{R}_i^T = \mathbf{I}$$

ORTHONORMALITY CONSTRAINT

$$\begin{bmatrix} & \hat{\mathbf{H}} & \end{bmatrix} \begin{bmatrix} & | & \\ & \mathbf{g}_k & \\ & | & \end{bmatrix} = \begin{bmatrix} \omega_{1k}\mathbf{R}_1 \\ \omega_{2k}\mathbf{R}_2 \\ \vdots \\ \omega_{Fk}\mathbf{R}_F \end{bmatrix}$$

$$\omega_{ik}\mathbf{R}_i = \hat{\mathbf{H}}_{2i-1:2i}\mathbf{g}_k$$

$$\mathbf{H}_{2i-1:2i}\mathbf{g}_k \mathbf{g}_k^T \hat{\mathbf{H}}_{2i-1:2i} = \omega_{ik}^2 \mathbf{I}$$

METRIC RECTIFICATION

ORTHONORMALITY CONSTRAINT

$$\mathbf{R}_i \mathbf{R}_i^T = \mathbf{I}$$

ORTHONORMALITY CONSTRAINT

$$\mathbf{H}_{2i-1:2i} \mathbf{g}_k \mathbf{g}_k^T \hat{\mathbf{H}}_{2i-1:2i} = \omega_{ik}^2 \mathbf{I} = \begin{bmatrix} \omega_{ik}^2 & 0 \\ 0 & \omega_{ik}^2 \end{bmatrix}$$

$$\mathbf{H}_{2i} \mathbf{g}_k \mathbf{g}_k^T \hat{\mathbf{H}}_{2i-1} = \mathbf{0}$$

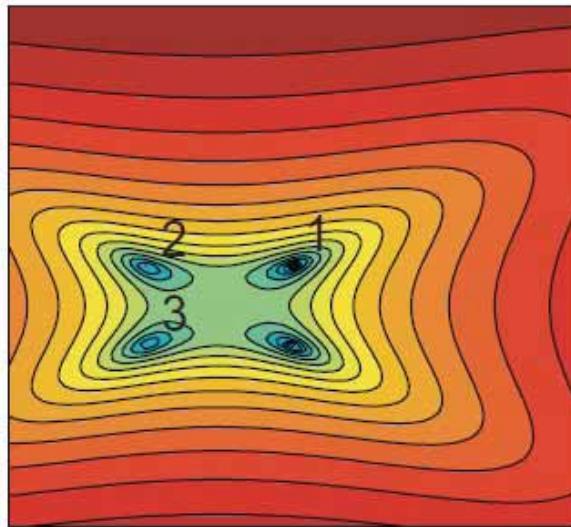
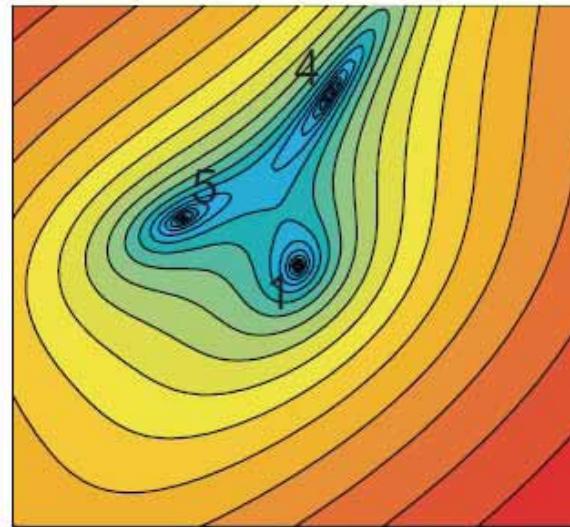
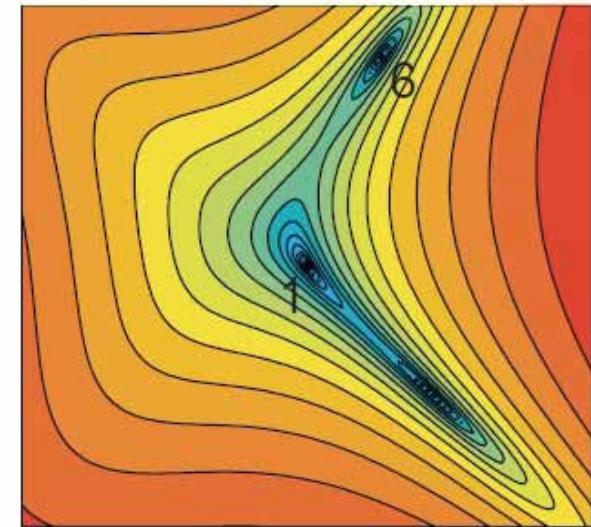
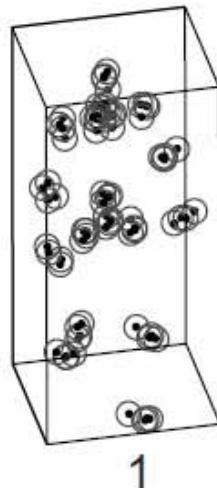
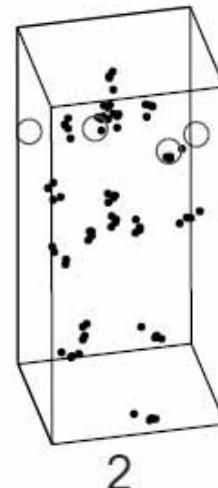
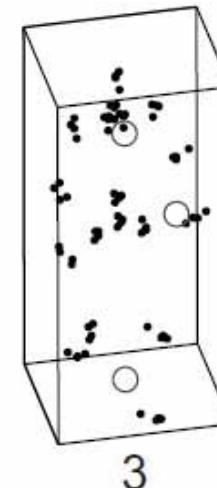
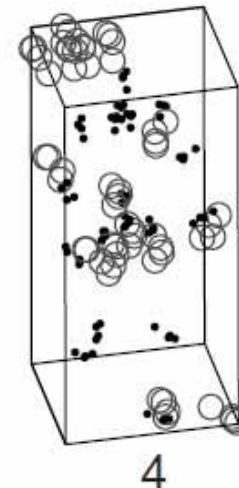
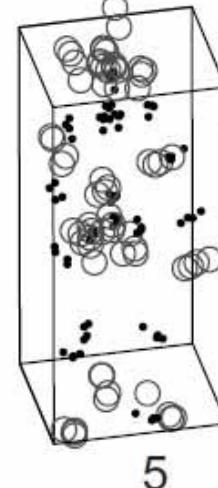
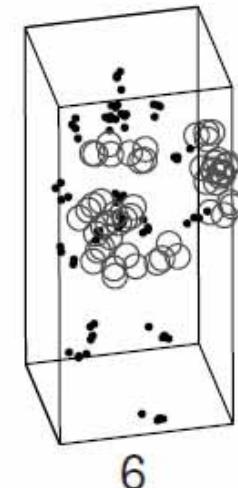
$$\mathbf{H}_{2i-1} \mathbf{g}_k \mathbf{g}_k^T \hat{\mathbf{H}}_{2i-1} = \omega_{ik}^2 \quad \mathbf{H}_{2i} \mathbf{g}_k \mathbf{g}_k^T \hat{\mathbf{H}}_{2i} = \omega_{ik}^2$$

$$\mathbf{H}_{2i-1} \mathbf{g}_k \mathbf{g}_k^T \hat{\mathbf{H}}_{2i-1} = \mathbf{H}_{2i} \mathbf{g}_k \mathbf{g}_k^T \hat{\mathbf{H}}_{2i}$$

CHALLENGE?

AMBIGUITY

OPTIMIZATION



CHALLENGE

MISSING DATA

- A.M. Buchanan and A.W. Fitzgibbon, “Damped Newton Algorithms for Matrix Factorization with Missing Data,” IEEE International Conference on Computer Vision and Pattern Recognition, 2005.
- L.Torresani, A. Hertzmann, and Christoph Bregler, “Nonrigid Structure-from-Motion: Estimating Shape and Motion with Hierarchical Priors,” Transactions on Pattern Analysis and Machine Intelligence, 2008.
- SPANISH FOLKS
- CVPR 2010 BEST PAPER
- BRANCH AND BOUND

CHALLENGES

OVERVIEW

- MISSING DATA
- BEST K
- TRILINEAR OPTIMIZATION

LINEAR SHAPE MODEL

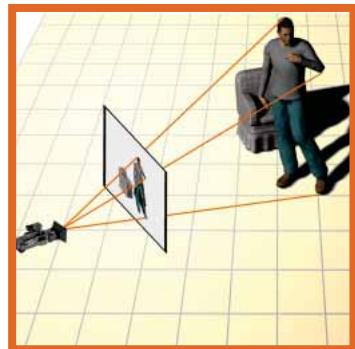
PERSPECTIVE PROJECTION

LINEAR SHAPE MODEL

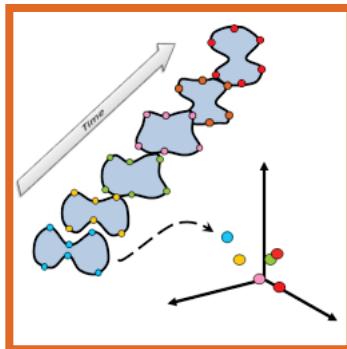
MAXIMUM LIKELIHOOD SOLUTION

NONRIGID STRUCTURE FROM MOTION

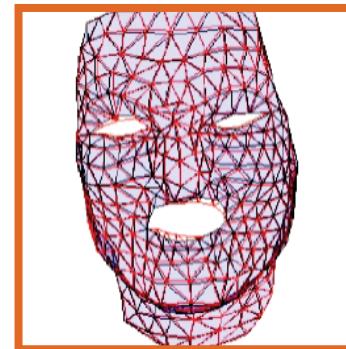
Tutorial Outline



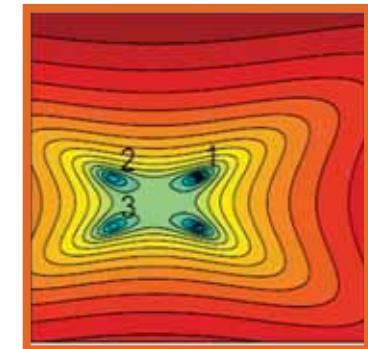
Introduction to
Nonrigid SfM



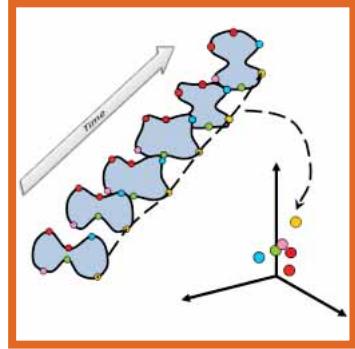
Shape
Representation



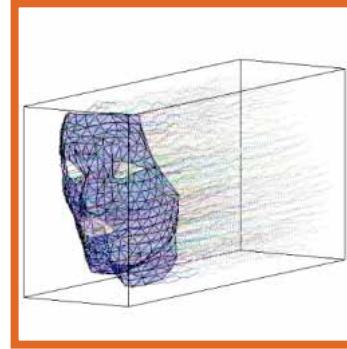
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

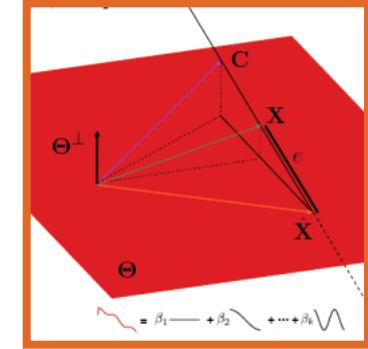


Trajectory
Representation



Shape-Trajectory
Duality

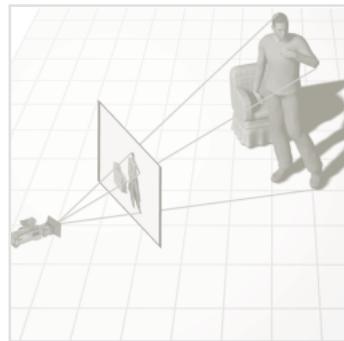
Trajectory
Estimation



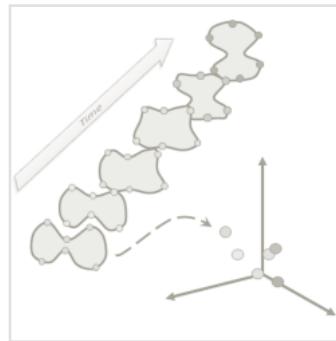
Reconstructibility
and limitations

NONRIGID STRUCTURE FROM MOTION

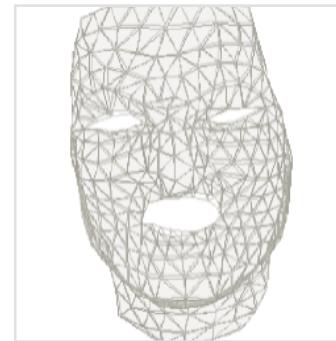
Tutorial Outline



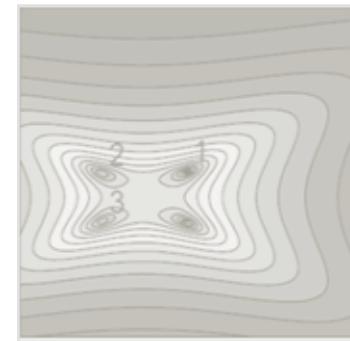
Introduction to
Nonrigid SfM



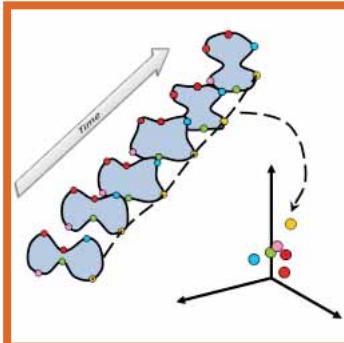
Shape
Representation



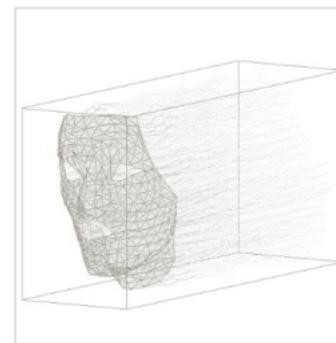
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

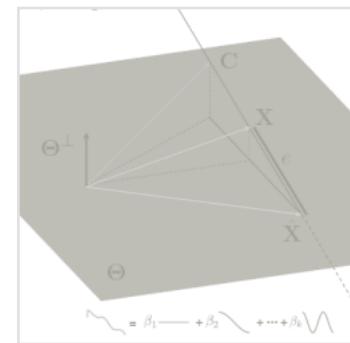


Trajectory
Representation



Shape-Trajectory
Duality

Trajectory
Estimation



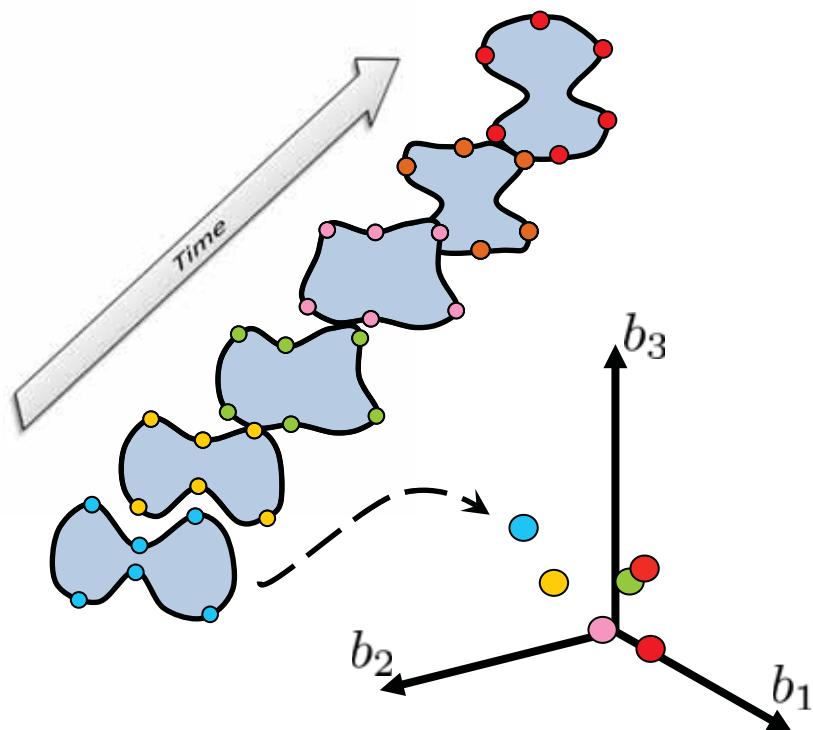
Reconstructibility
and limitations

NONRIGID STRUCTURE FROM MOTION

Two Major Approaches

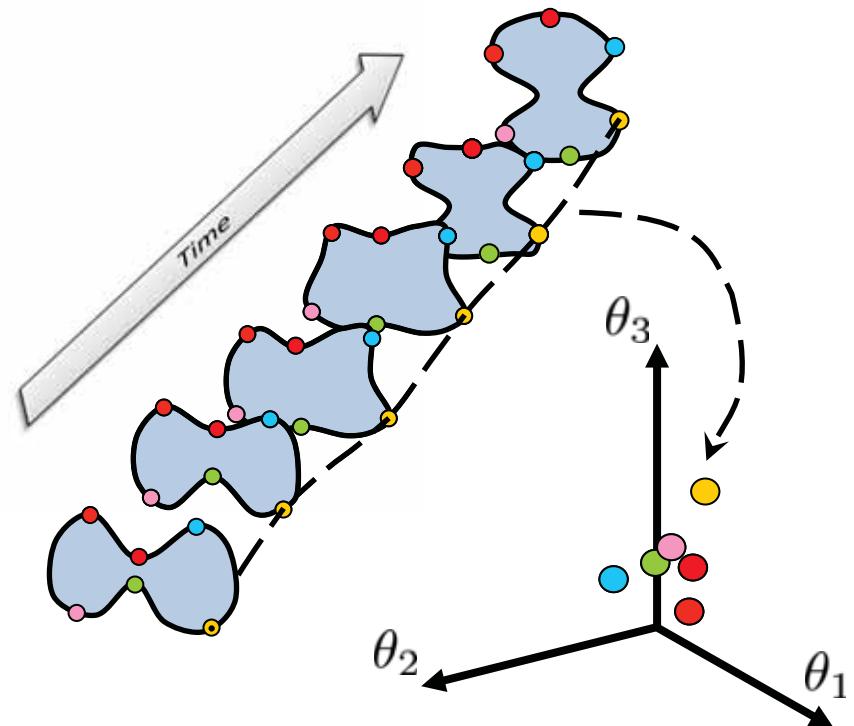
Shape Basis

3D points at each time instant lie in a low dimensional subspace

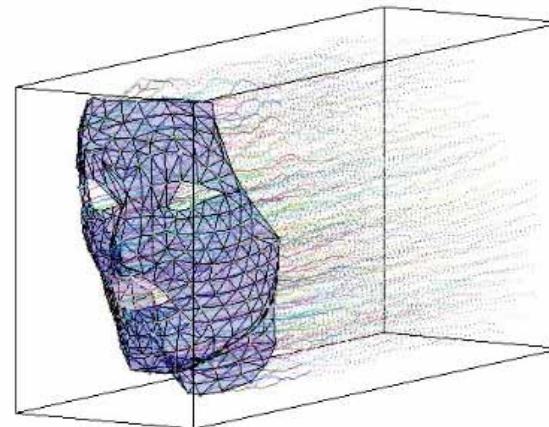


Trajectory Basis

Trajectory of each point over time lies in a low dimensional subspace



DYNAMIC STRUCTURE



$$\mathbf{S}_{3F \times P} = \begin{bmatrix} \mathbf{X}_{11} & \mathbf{X}_{12} & \cdots & \mathbf{X}_{1P} \\ \mathbf{X}_{21} & \mathbf{X}_{22} & \cdots & \mathbf{X}_{2P} \\ \vdots & \vdots & & \vdots \\ \mathbf{X}_{F1} & \mathbf{X}_{F2} & \cdots & \mathbf{X}_{FP} \end{bmatrix}$$

→ **Shape**

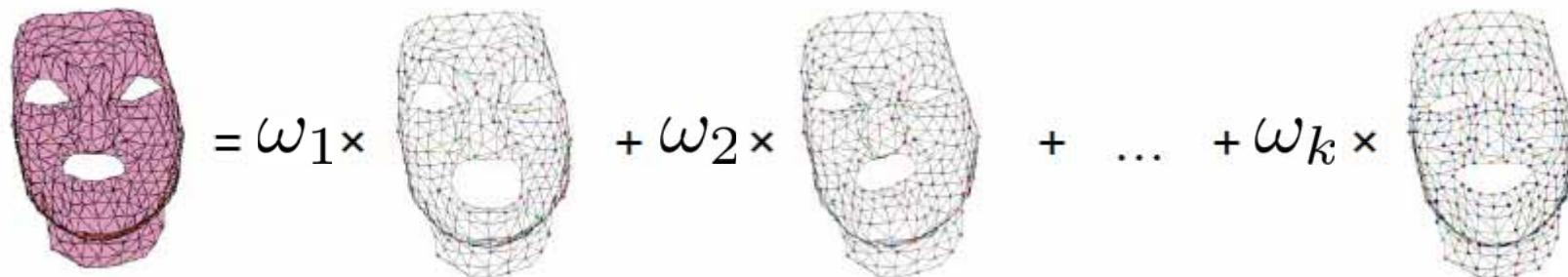
Trajectory ↓

DYNAMIC STRUCTURE

Shape Representation

$$\mathbf{S}_{3F \times P} = \begin{bmatrix} \mathbf{X}_{11} & \mathbf{X}_{12} & \cdots & \mathbf{X}_{1P} \\ \mathbf{X}_{21} & \mathbf{X}_{22} & \cdots & \mathbf{X}_{2P} \\ \vdots & \vdots & & \vdots \\ \mathbf{X}_{F1} & \mathbf{X}_{F2} & \cdots & \mathbf{X}_{FP} \end{bmatrix} \xrightarrow{\text{Shape}}$$

LINEAR SHAPE MODEL

$$\text{Target Shape} = \omega_1 \times \text{Shape}_1 + \omega_2 \times \text{Shape}_2 + \dots + \omega_k \times \text{Shape}_k$$


DYNAMIC STRUCTURE

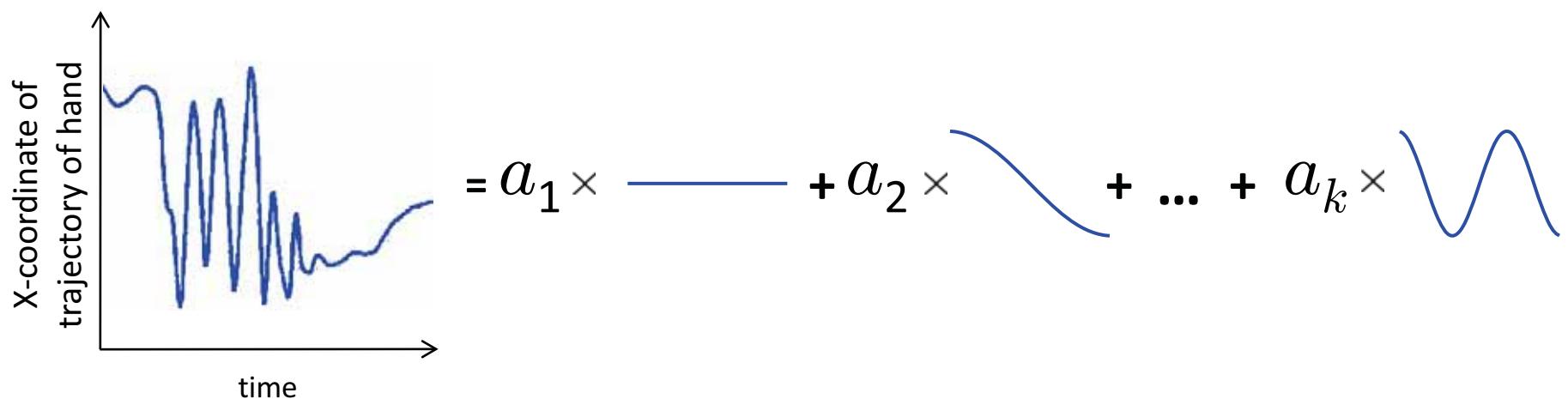
Trajectory Representation



$$\mathbf{S}_{3F \times P} = \begin{bmatrix} \mathbf{X}_{11} & \mathbf{X}_{12} & \cdots & \mathbf{X}_{1P} \\ \mathbf{X}_{21} & \mathbf{X}_{22} & \cdots & \mathbf{X}_{2P} \\ \vdots & \vdots & & \vdots \\ \mathbf{X}_{F1} & \mathbf{X}_{F2} & \cdots & \mathbf{X}_{FP} \end{bmatrix}$$

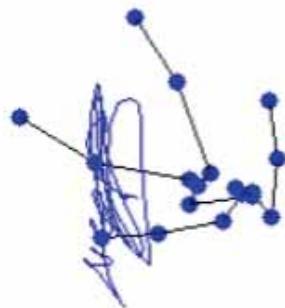
Trajectory

LINEAR TRAJECTORY MODEL



DYNAMIC STRUCTURE

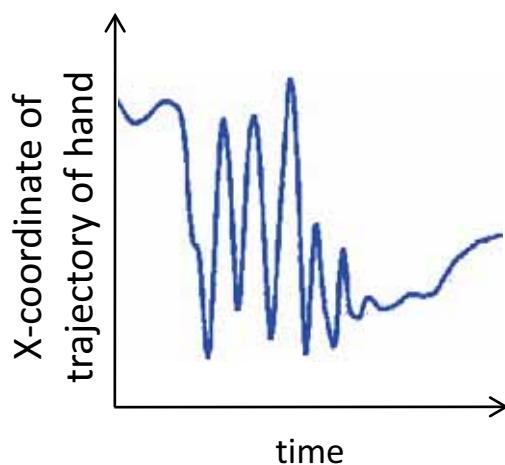
Trajectory Representation



$$\mathbf{S}_{3F \times P} = \begin{bmatrix} \mathbf{X}_{11} & \mathbf{X}_{12} & \cdots & \mathbf{X}_{1P} \\ \mathbf{X}_{21} & \mathbf{X}_{22} & \cdots & \mathbf{X}_{2P} \\ \vdots & \vdots & & \vdots \\ \mathbf{X}_{F1} & \mathbf{X}_{F2} & \cdots & \mathbf{X}_{FP} \end{bmatrix}$$

Trajectory

LINEAR TRAJECTORY MODEL



$$T_j^X = \sum_{k=1}^K a_{jk}^X \theta^k$$

→ **Trajectory Coefficient**
Contribution of k^{th} basis in the trajectory of j^{th} point

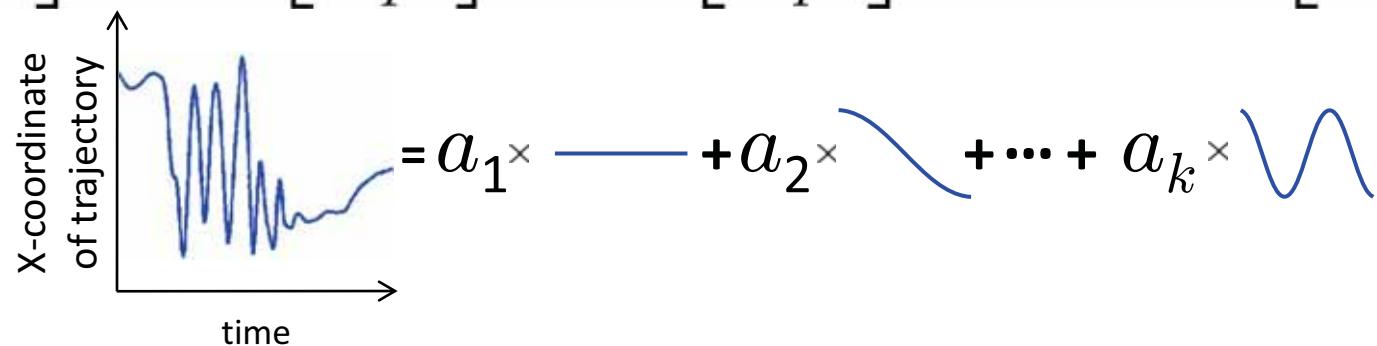
→ k^{th} trajectory basis vector

→ Trajectory of j^{th} point (X -component only)

TRAJECTORY REPRESENTATION OF DYNAMIC STRUCTURE

$$T_j^X = \sum_{k=1}^K a_{jk}^X \theta^k \quad T_j^Y = \sum_{k=1}^K a_{jk}^Y \theta^k \quad T_j^Z = \sum_{k=1}^K a_{jk}^Z \theta^k$$

$$\begin{bmatrix} X_{1j} \\ X_{2j} \\ \vdots \\ X_{Fj} \end{bmatrix} = a_{j1}^X \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \\ \vdots \\ \theta_F^1 \end{bmatrix} + a_{j2}^X \begin{bmatrix} \theta_1^2 \\ \theta_2^2 \\ \vdots \\ \theta_F^2 \end{bmatrix} + \dots + a_{jK}^X \begin{bmatrix} \theta_1^K \\ \theta_2^K \\ \vdots \\ \theta_F^K \end{bmatrix}$$



TRAJECTORY REPRESENTATION OF DYNAMIC STRUCTURE

$$\begin{bmatrix} X_{1j} \\ X_{2j} \\ \vdots \\ X_{Fj} \end{bmatrix} = a_{j1}^X \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \\ \vdots \\ \theta_F^1 \end{bmatrix} + a_{j2}^X \begin{bmatrix} \theta_1^2 \\ \theta_2^2 \\ \vdots \\ \theta_F^2 \end{bmatrix} + \dots + a_{jK}^X \begin{bmatrix} \theta_1^K \\ \theta_2^K \\ \vdots \\ \theta_F^K \end{bmatrix}$$

X-component of trajectory of *j*th point as linear combination of *K* basis trajectories

X-component of trajectory of **all** point as linear combination of *K* basis trajectories

$$\begin{bmatrix} X_{11} & X_{12} & \dots & X_{1P} \\ X_{21} & X_{22} & \dots & X_{2P} \\ \vdots & \vdots & \vdots & \vdots \\ X_{F1} & X_{F2} & \dots & X_{FP} \end{bmatrix} = \begin{bmatrix} \theta_1^1 & \theta_1^2 & \dots & \theta_1^K \\ \theta_2^1 & \theta_2^2 & \dots & \theta_2^K \\ \vdots & \vdots & \vdots & \vdots \\ \theta_F^1 & \theta_F^2 & \dots & \theta_F^K \end{bmatrix} \begin{bmatrix} a_{11}^X & a_{21}^X & \dots & a_{P1}^X \\ a_{12}^X & a_{22}^X & \dots & a_{P2}^X \\ \vdots & \vdots & \vdots & \vdots \\ a_{1K}^X & a_{2K}^X & \dots & a_{PK}^X \end{bmatrix}$$

$$\mathbf{S}^X = \boldsymbol{\Theta}^X \times \mathbf{A}^X$$

F × *P*

F × *K*

K × *P*

X-component of trajectory of all points

$$\begin{bmatrix} X_{11} & X_{12} & \dots & X_{1P} \\ X_{21} & X_{22} & \dots & X_{2P} \\ \vdots & \vdots & \vdots & \vdots \\ X_{F1} & X_{F2} & \dots & X_{FP} \end{bmatrix} = \begin{bmatrix} \theta_1^1 & \theta_1^2 & \dots & \theta_1^K \\ \theta_2^1 & \theta_2^2 & \dots & \theta_2^K \\ \vdots & \vdots & \vdots & \vdots \\ \theta_F^1 & \theta_F^2 & \dots & \theta_F^K \end{bmatrix} \begin{bmatrix} a_{11}^X & a_{21}^X & \dots & a_{P1}^X \\ a_{12}^X & a_{22}^X & \dots & a_{P2}^X \\ \vdots & \vdots & \vdots & \vdots \\ a_{1K}^X & a_{2K}^X & \dots & a_{PK}^X \end{bmatrix}$$

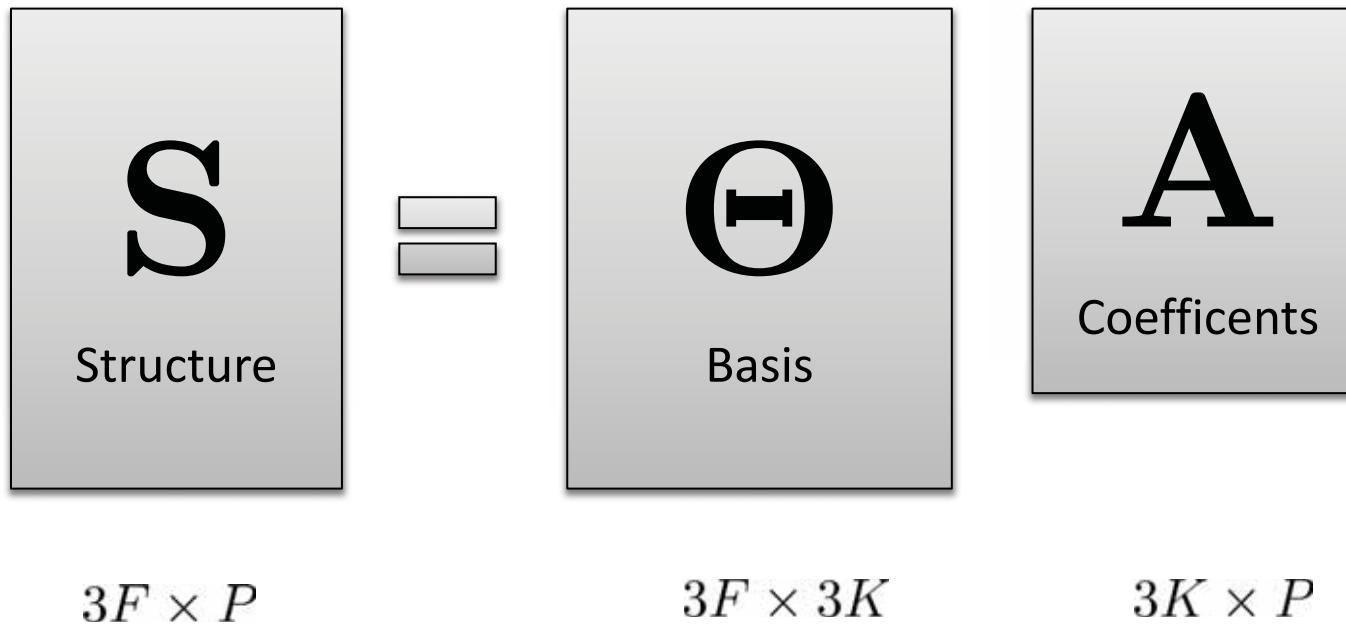
X, Y and Z-components of trajectory of all points

$$\begin{bmatrix} X_{11} & \dots & X_{1P} \\ Y_{11} & \dots & Y_{1P} \\ Z_{11} & \dots & Z_{1P} \\ X_{21} & \dots & X_{2P} \\ Y_{21} & \dots & Y_{2P} \\ Z_{21} & \dots & Z_{2P} \\ \vdots & \vdots & \vdots \\ X_{F1} & \dots & X_{FP} \\ Y_{F1} & \dots & Y_{FP} \\ Z_{F1} & \dots & Z_{FP} \end{bmatrix} = \begin{bmatrix} \theta_1^1 & \dots & \theta_1^K & \theta_1^1 & \dots & \theta_1^K & \theta_1^1 & \dots & \theta_1^K \\ \theta_2^1 & \dots & \theta_2^K & \theta_2^1 & \dots & \theta_2^K & \theta_2^1 & \dots & \theta_2^K \\ \vdots & & & \vdots & & & \vdots & & \vdots \\ \theta_F^1 & \dots & \theta_F^K & \theta_F^1 & \dots & \theta_F^K & \theta_F^1 & \dots & \theta_F^K \end{bmatrix} \begin{bmatrix} a_{11}^X & a_{21}^X & \dots & a_{P1}^X \\ a_{1K}^X & a_{2K}^X & \dots & a_{PK}^X \\ a_{11}^Y & a_{21}^Y & \dots & a_{P1}^Y \\ a_{1K}^Y & a_{2K}^Y & \dots & a_{PK}^Y \\ a_{11}^Z & a_{21}^Z & \dots & a_{P1}^Z \\ a_{1K}^Z & a_{2K}^Z & \dots & a_{PK}^Z \end{bmatrix}_{A^X} \begin{bmatrix} a_{11}^Y & a_{21}^Y & \dots & a_{P1}^Y \\ a_{1K}^Y & a_{2K}^Y & \dots & a_{PK}^Y \\ a_{11}^Z & a_{21}^Z & \dots & a_{P1}^Z \\ a_{1K}^Z & a_{2K}^Z & \dots & a_{PK}^Z \end{bmatrix}_{A^Y} \begin{bmatrix} a_{11}^Z & a_{21}^Z & \dots & a_{P1}^Z \\ a_{1K}^Z & a_{2K}^Z & \dots & a_{PK}^Z \end{bmatrix}_{A^Z}$$

$$\mathbf{S}_{3F \times P} = \Theta_{3F \times 3K} \mathbf{A}_{3K \times P}$$

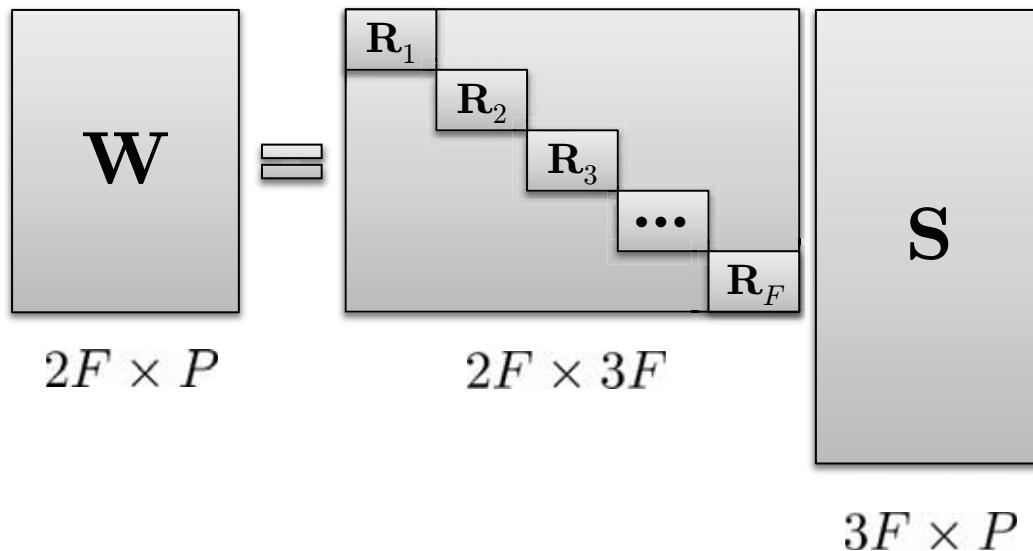
TRAJECTORY REPRESENTATION

of Dynamic Structure



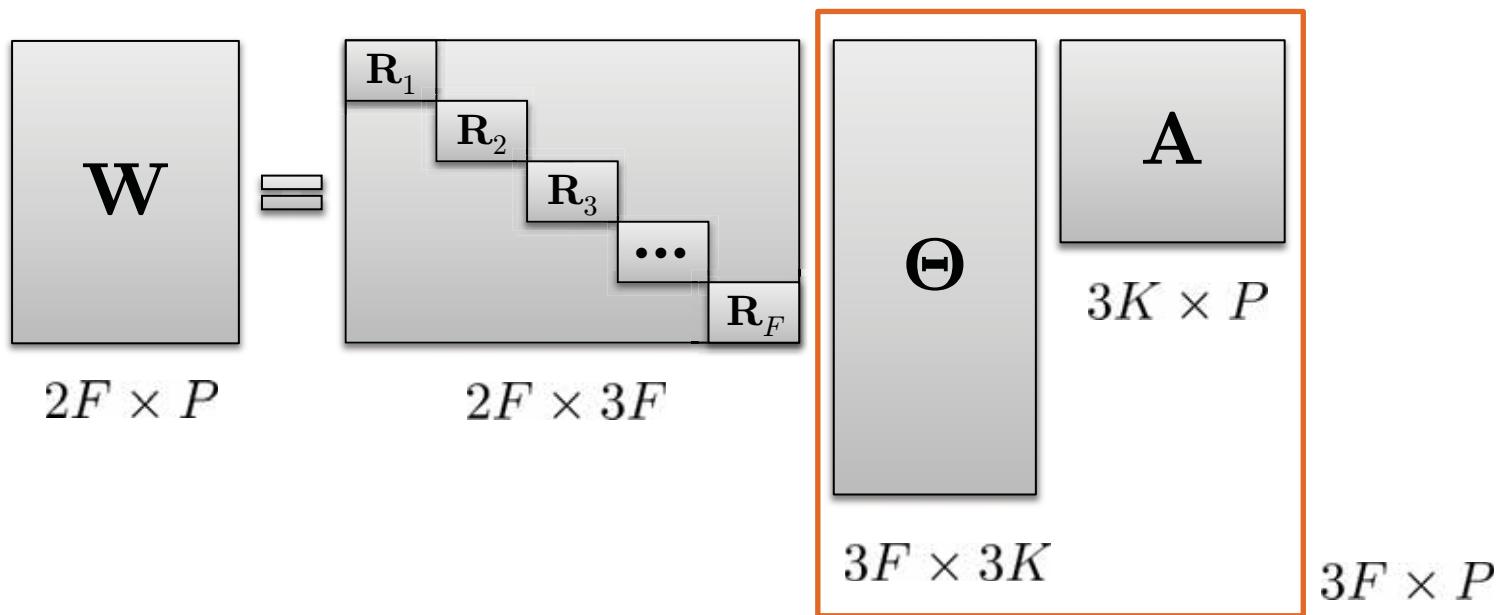
TRAJECTORY REPRESENTATION

of Dynamic Structure *Under Orthographic Projection*



TRAJECTORY REPRESENTATION

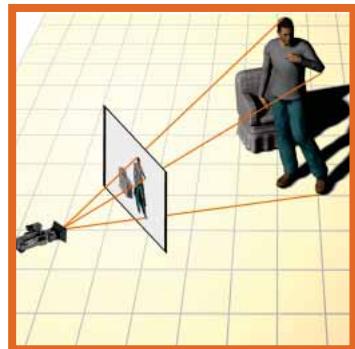
of Dynamic Structure *Under Orthographic Projection*



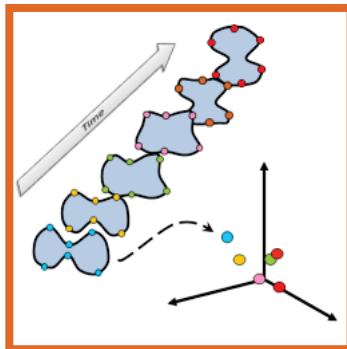
Structure S , in trajectory
subspace represented
by K trajectory basis

NONRIGID STRUCTURE FROM MOTION

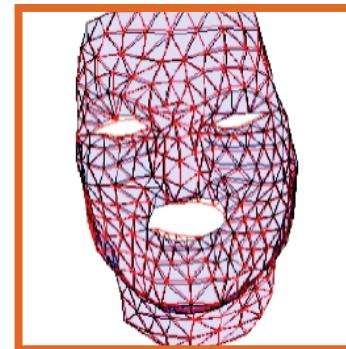
Tutorial Outline



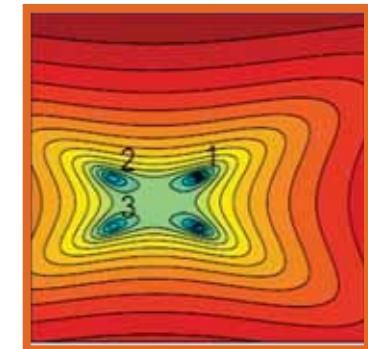
Introduction to
Nonrigid SfM



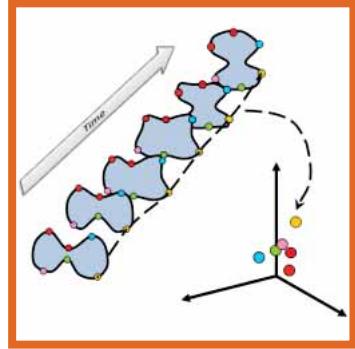
Shape
Representation



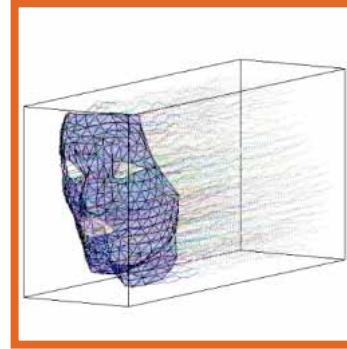
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

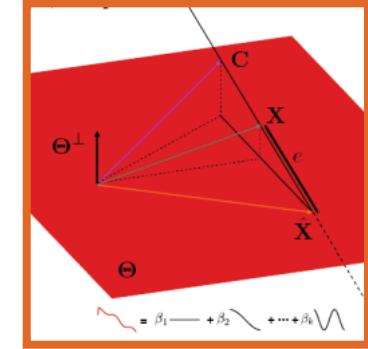


Trajectory
Representation



Shape-Trajectory
Duality

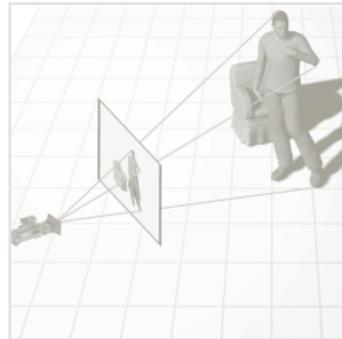
Trajectory
Estimation



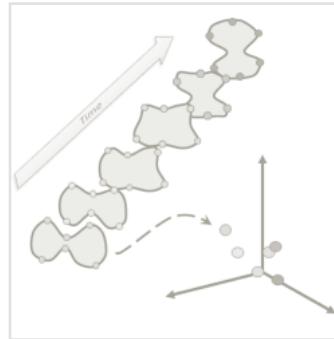
Reconstructibility
and limitations

NONRIGID STRUCTURE FROM MOTION

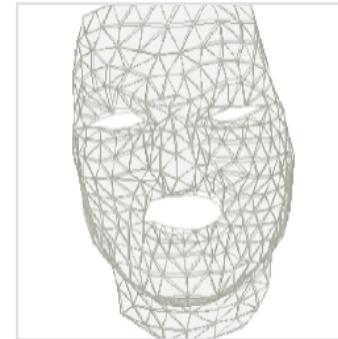
Tutorial Outline



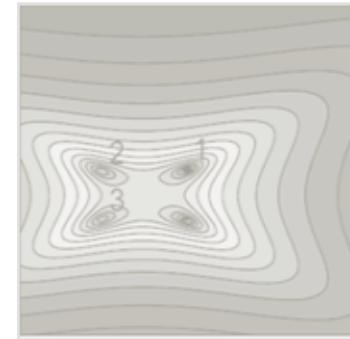
Introduction to
Nonrigid SfM



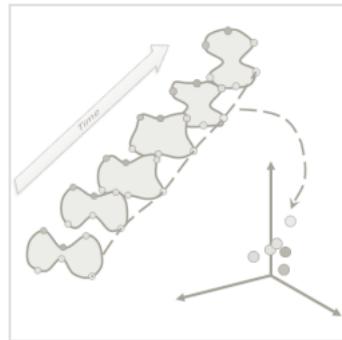
Shape
Representation



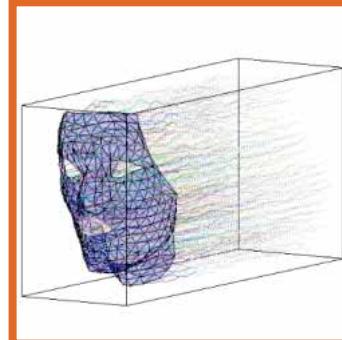
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

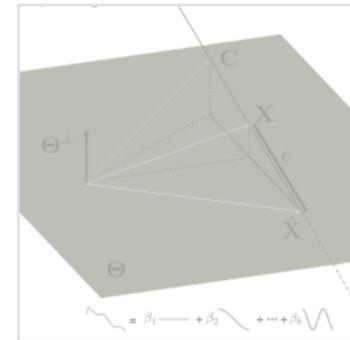


Trajectory
Representation



Shape-Trajectory
Duality

Trajectory
Estimation



Reconstructibility
and limitations

DUALITY

Weights and Bases

SHAPE FACTORIZATION

$$W = R \begin{matrix} \Omega \\ \text{Weights} \end{matrix} B$$

Shape basis

TRAJECTORY FACTORIZATION

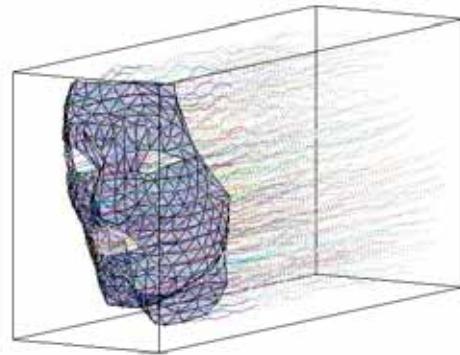
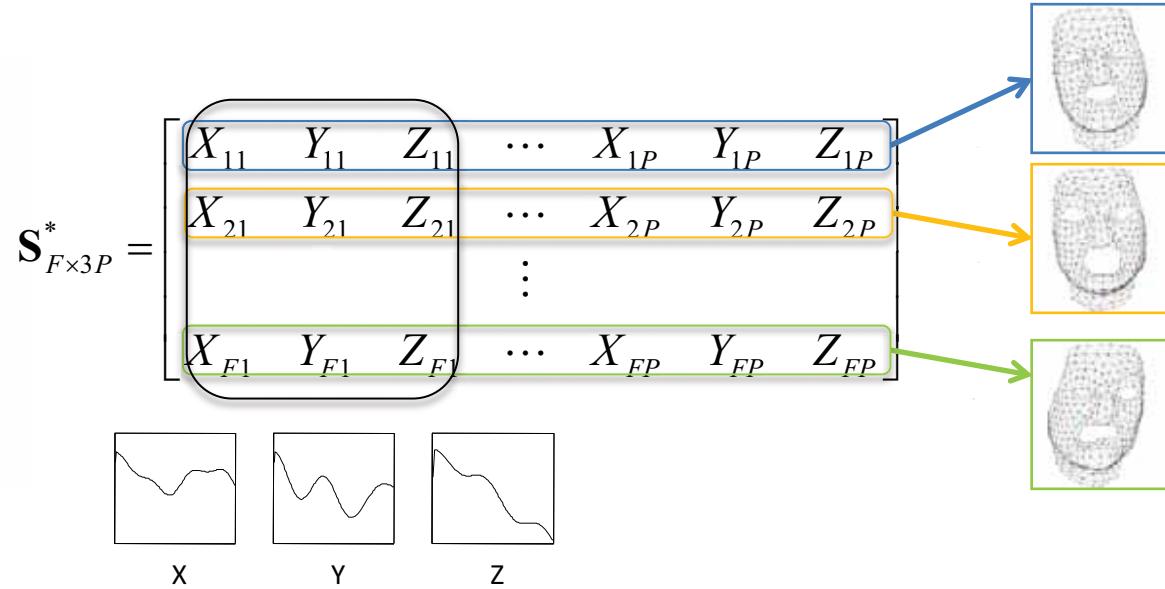
$$W = R \begin{matrix} \Theta \\ \text{Traj basis} \end{matrix} A$$

Weights

Shape weights are trajectory basis and trajectory weights are shape basis

DUALITY

Weights and Bases



- rank of columns = rank of rows
- Shape model and trajectory model has equal compaction power

PROOF OF DUALITY

Weights and Bases

Consider rearranged structure matrix \mathbf{S}^*

$$\mathbf{S}_{F \times 3P}^* = \begin{bmatrix} X_{11} & Y_{11} & Z_{11} & \cdots & X_{1P} & Y_{1P} & Z_{1P} \\ X_{21} & Y_{21} & Z_{21} & \cdots & X_{2P} & Y_{2P} & Z_{2P} \\ & & & \vdots & & & \\ X_{F1} & Y_{F1} & Z_{F1} & \cdots & X_{FP} & Y_{FP} & Z_{FP} \end{bmatrix}$$

$$\mathbf{S}_{F \times 3P}^* = \Omega^* \times \mathbf{B}^*$$

PROOF OF DUALITY

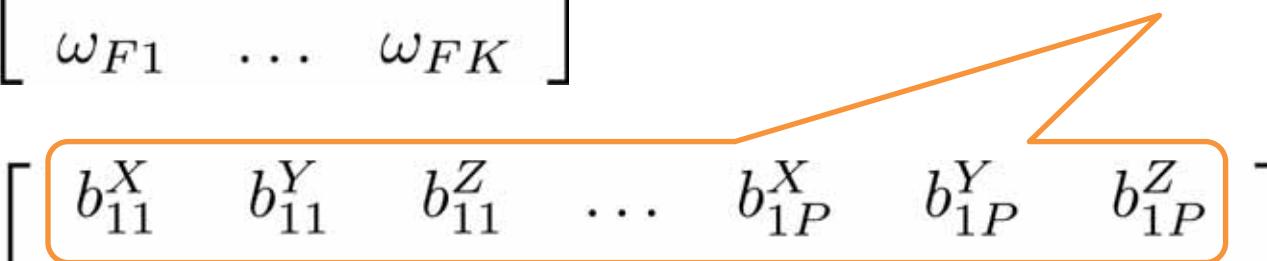
Weights and Bases

Consider rearranged structure matrix \mathbf{S}^*

$$\mathbf{S}_{F \times 3P}^* = \Omega^* \times \mathbf{B}^*$$

where

$$\Omega^* = \begin{bmatrix} \omega_{11} & \dots & \omega_{1K} \\ \vdots & & \vdots \\ \omega_{F1} & \dots & \omega_{FK} \end{bmatrix}$$

\mathbf{B}^* = 
$$\begin{bmatrix} b_{11}^X & b_{11}^Y & b_{11}^Z & \dots & b_{1P}^X & b_{1P}^Y & b_{1P}^Z \\ \vdots & & & \dots & & \vdots & \\ b_{K1}^X & b_{K1}^Y & b_{K1}^Z & \dots & b_{KP}^X & b_{KP}^Y & b_{KP}^Z \end{bmatrix}$$

PROOF OF DUALITY

Weights and Bases

$$\mathbf{S}^* = \Omega^* \times \mathbf{B}^* = \begin{bmatrix} \omega_{11} & \dots & \omega_{1K} \\ \vdots & & \vdots \\ \omega_{F1} & \dots & \omega_{FK} \end{bmatrix} \begin{bmatrix} b_{11}^X & b_{11}^Y & b_{11}^Z & \dots & b_{1P}^X & b_{1P}^Y & b_{1P}^Z \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots & \vdots \\ b_{K1}^X & b_{K1}^Y & b_{K1}^Z & \dots & b_{KP}^X & b_{KP}^Y & b_{KP}^Z \end{bmatrix}$$

To link shape to j^{th} trajectory, we select the coefficients related to j^{th} point

$$\begin{bmatrix} T_j^X & T_j^Y & T_j^Z \end{bmatrix} = \begin{bmatrix} \omega_{11} & \dots & \omega_{1K} \\ \vdots & & \vdots \\ \omega_{F1} & \dots & \omega_{FK} \end{bmatrix} \begin{bmatrix} b_{1j}^X & b_{1j}^Y & b_{1j}^Z \\ \vdots & \vdots & \vdots \\ b_{Kj}^X & b_{Kj}^Y & b_{Kj}^Z \end{bmatrix}$$

PROOF OF DUALITY

Weights and Bases

$$\begin{bmatrix} T_j^X & T_j^Y & T_j^Z \end{bmatrix} = \begin{bmatrix} \omega_{11} & \dots & \omega_{1K} \\ \vdots & & \vdots \\ \omega_{F1} & \dots & \omega_{FK} \end{bmatrix} \begin{bmatrix} b_{1j}^X & b_{1j}^Y & b_{1j}^Z \\ \vdots & \vdots & \vdots \\ b_{Kj}^X & b_{Kj}^Y & b_{Kj}^Z \end{bmatrix}$$

Can be rewritten as

$$T_j^X = \sum_{k=1}^K b_{kj}^X \omega^k$$

$$T_j^Y = \sum_{k=1}^K b_{kj}^Y \omega^k$$

$$T_j^Z = \sum_{k=1}^K b_{kj}^Z \omega^k$$

Compare to Trajectory Representation

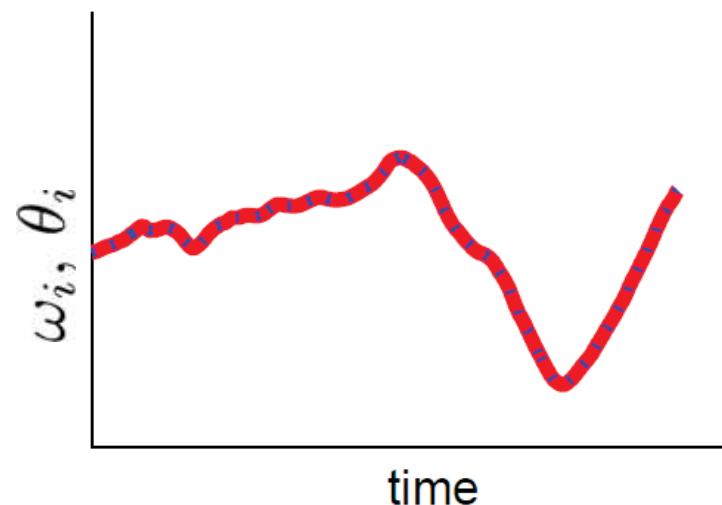
$$T_j^X = \sum_{k=1}^K a_{jk}^X \theta^k$$

$$T_j^Y = \sum_{k=1}^K a_{jk}^Y \theta^k$$

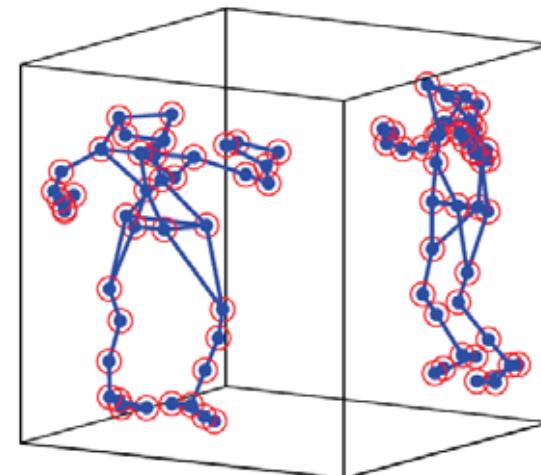
$$T_j^Z = \sum_{k=1}^K a_{jk}^Z \theta^k$$

ILLUSTRATION OF DUALITY

SVD Shape and Trajectory Basis for Mocap Structure



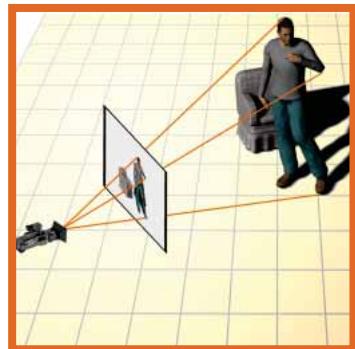
Shape Coefficients \equiv Trajectory Basis



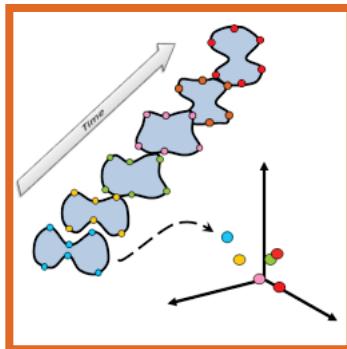
Trajectory Coefficients \equiv Shape Basis

NONRIGID STRUCTURE FROM MOTION

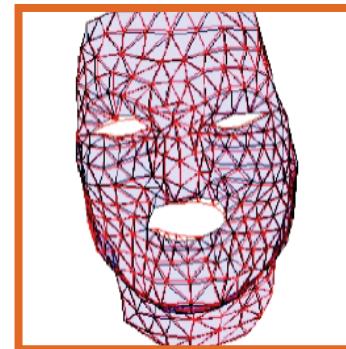
Tutorial Outline



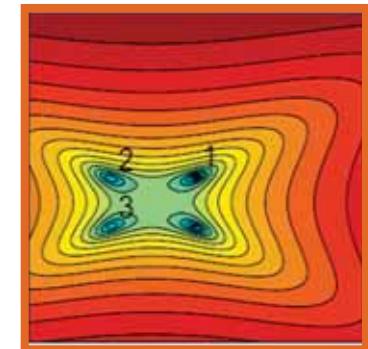
Introduction to
Nonrigid SfM



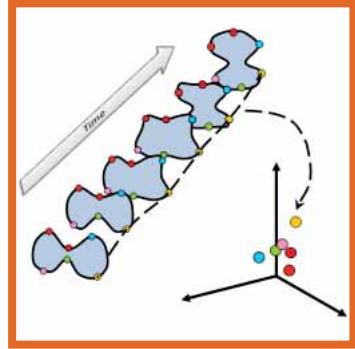
Shape
Representation



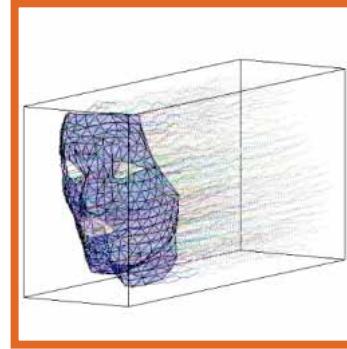
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

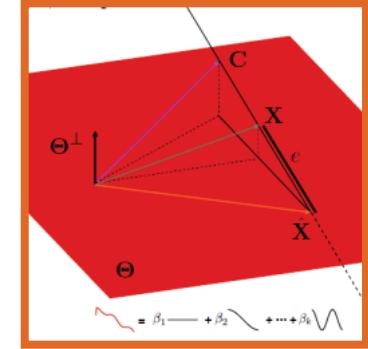


Trajectory
Representation



Shape-Trajectory
Duality

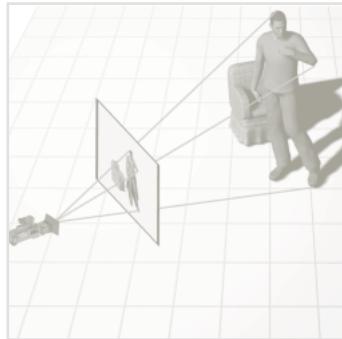
Trajectory
Estimation



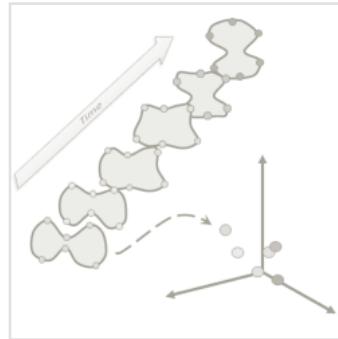
Reconstructibility
and limitations

NONRIGID STRUCTURE FROM MOTION

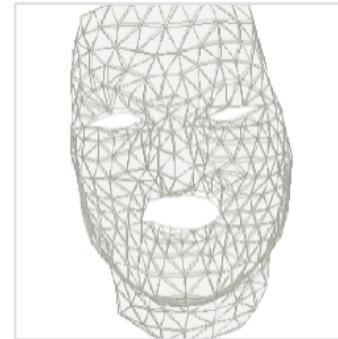
Tutorial Outline



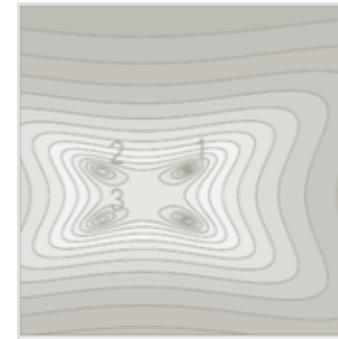
Introduction to
Nonrigid SfM



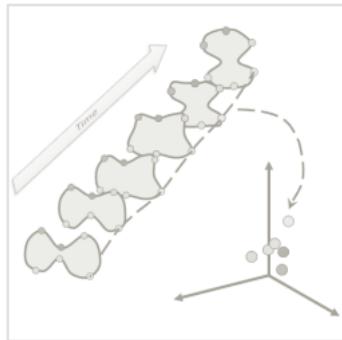
Shape
Representation



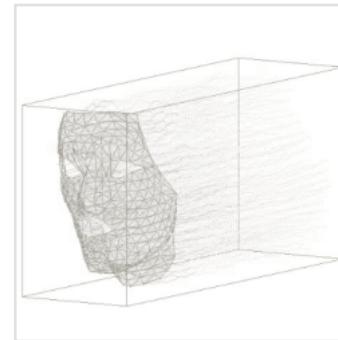
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

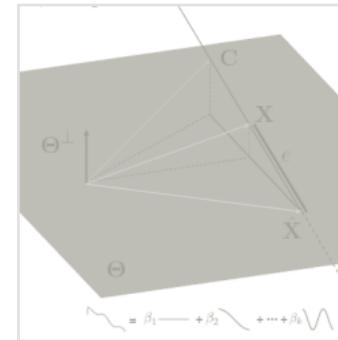


Trajectory
Representation



Shape-Trajectory
Duality

Trajectory
Estimation



Reconstructibility
and limitations

ESTIMATING STRUCTURE VIA TRAJECTORY MODEL

$$\begin{array}{c} \mathbf{W} \\ \hline 2F \times P \end{array} = \begin{array}{c} \mathbf{R} \\ \hline 2F \times 3F \end{array} \begin{array}{c} \mathbf{\Theta} \\ \hline 3F \times 3K \end{array} \begin{array}{c} \mathbf{A} \\ \hline 3K \times P \end{array}$$

ESTIMATING STRUCTURE VIA TRAJECTORY MODEL

$$\mathbf{W} = \mathbf{R} \mathbf{A}$$

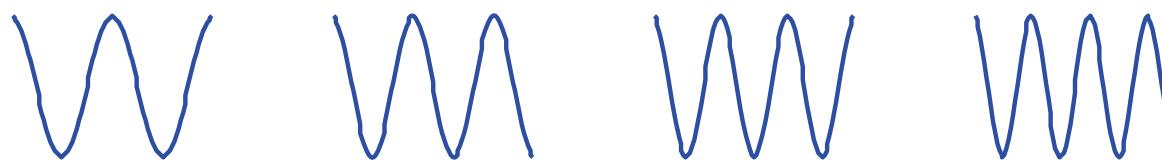
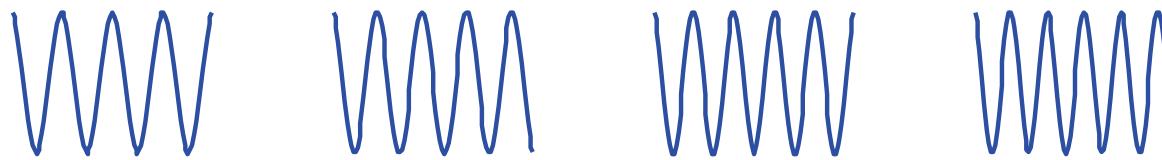
$2F \times P$ $2F \times 3F$ $3F \times 3K$ $3K \times P$

Object Independent Basis

1. Deformation constrained by physical actuation
2. Trajectories vary smoothly and not randomly
3. Can be compactly represented by predefined basis
e.g. Discrete Cosine Transform

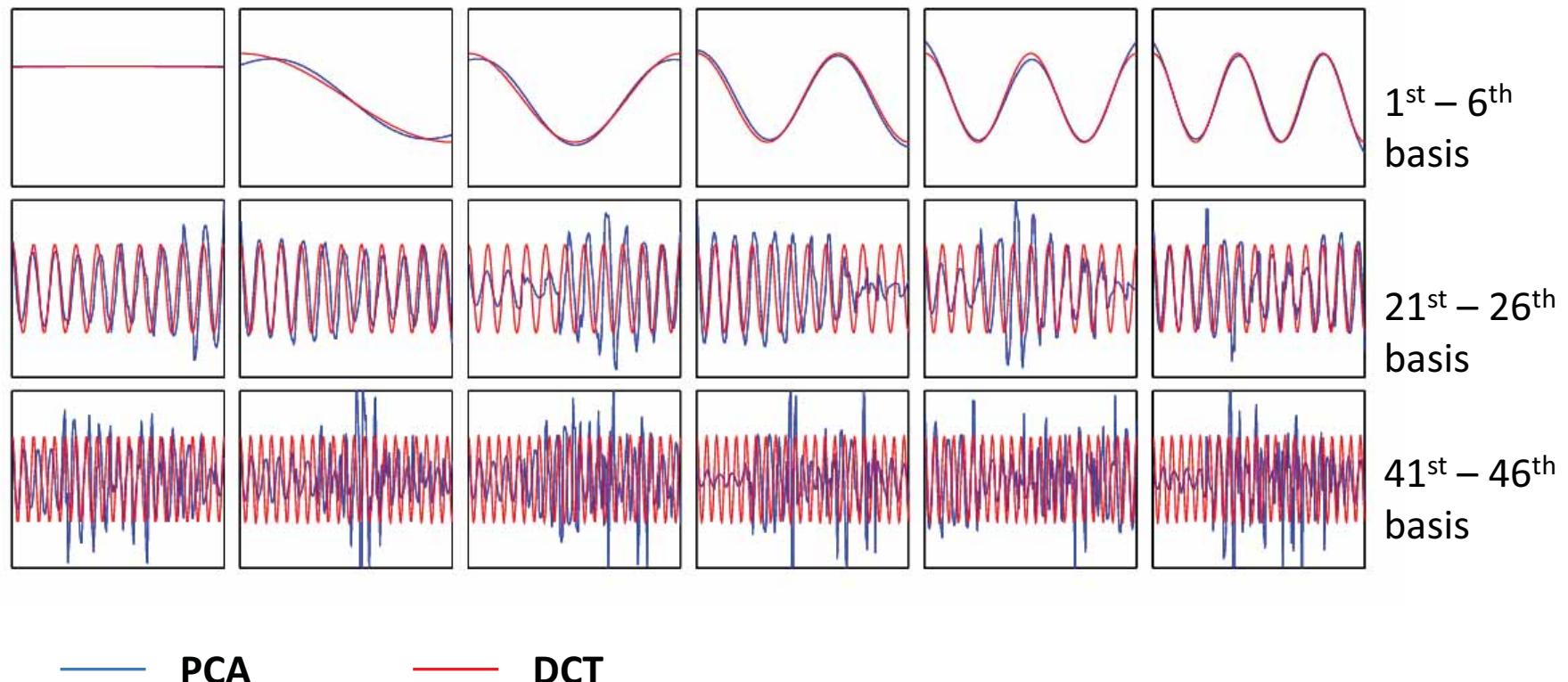
$$F = ma$$

DCT BASIS

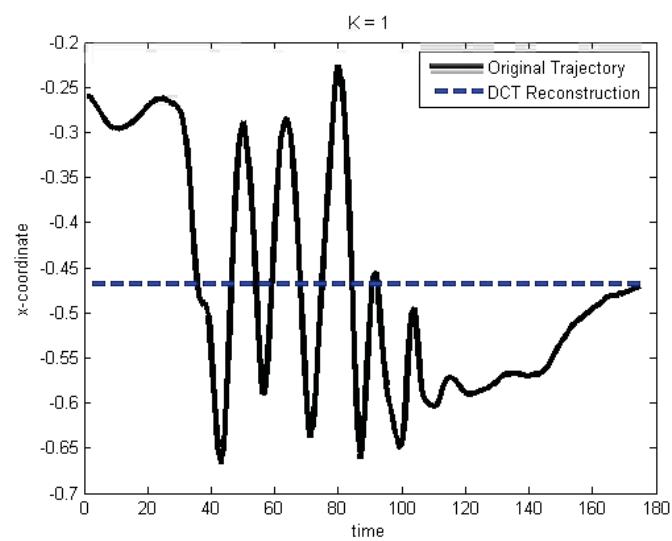


PREDEFINING TRAJECTORY BASIS

- We showed that PCA approaches DCT (Discrete Cosine Transform) on CMU's body MOCAP database.



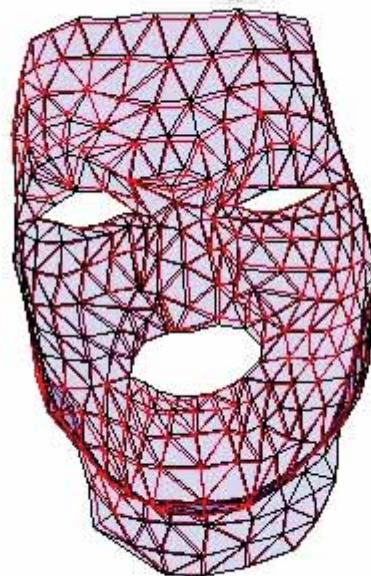
COMPACTNESS OF DCT BASIS



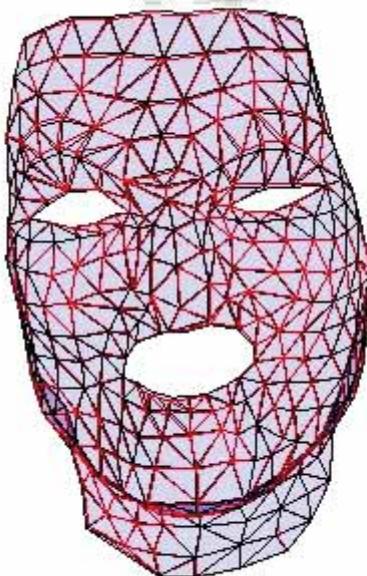
DCT RECONSTRUCTION

$$A = \Theta \setminus S$$

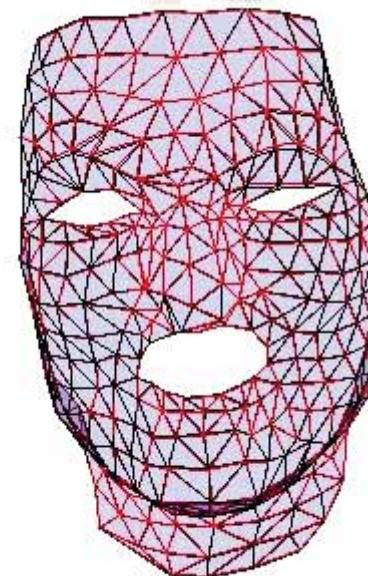
$$\hat{S} = \Theta A$$



35 Basis

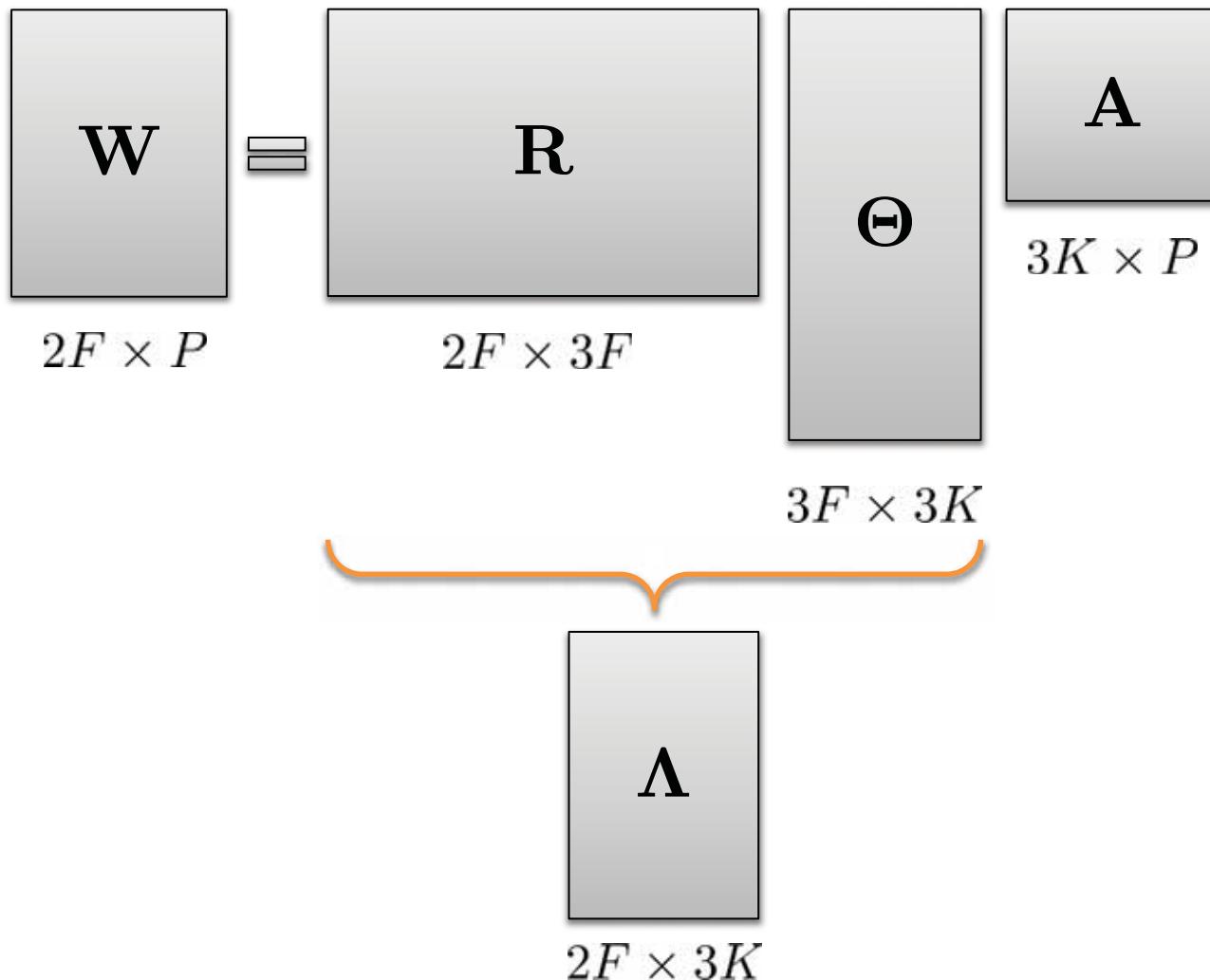


50 Basis



65 Basis

ESTIMATING STRUCTURE VIA TRAJECTORY MODEL



ESTIMATING STRUCTURE VIA TRAJECTORY MODEL

$$\begin{array}{ccc} \boxed{\mathbf{W}} & = & \boxed{\Lambda} \quad \boxed{\mathbf{A}} \\ 2F \times P & & 2F \times 3K \quad 3K \times P \\ & & \end{array} \quad \begin{array}{l} \text{Rank}(\mathbf{W}) \leq 3K \\ 3K < \min(2F, P) \end{array}$$

Solution

1. By SVD, compute $\hat{\Lambda}$, $\hat{\mathbf{A}}$ $\mathbf{W} = \hat{\Lambda} \hat{\mathbf{A}}$
2. Correct solution differs by a linear transform

$$\Lambda = \hat{\Lambda} \mathbf{Q} \quad \mathbf{A} = \mathbf{Q}^{-1} \hat{\mathbf{A}}$$

3. Solving for \mathbf{Q} ? $3K \times 3K$

FINDING \mathbf{Q}

The correct \mathbf{Q} will yield the correct form of Λ

$$\Lambda = \begin{bmatrix} \theta_{11}R_1 & \dots & \theta_{1K}R_1 \\ \vdots & & \vdots \\ \theta_{F1}R_F & \dots & \theta_{FK}R_F \end{bmatrix}$$

We can just estimate first 3 columns of \mathbf{Q} instead of estimating full \mathbf{Q}

$$\hat{\Lambda} \mathbf{Q}_{|||} = \begin{bmatrix} \theta_{11}R_1 \\ \vdots \\ \theta_{F1}R_F \end{bmatrix}$$

If $\mathbf{Q}_{|||}$ is known:

- Compute \mathbf{R}
- Compute Λ $\Lambda_{2F \times 3K} = \mathcal{R}_{2F \times 3F} \Theta_{3F \times 3K}$
- Compute \mathbf{A}

$$\Lambda_{2F \times 3K} \mathbf{A}_{3K \times P} = \mathbf{W}_{2F \times P}$$

FINDING $\mathbf{Q}_{|||}$

The correct \mathbf{Q} will yield the correct form of Λ

$$\Lambda = \begin{bmatrix} \theta_{11}R_1 & \dots & \theta_{1K}R_1 \\ \vdots & & \vdots \\ \theta_{F1}R_F & \dots & \theta_{FK}R_F \end{bmatrix}$$

Orthonormality Constraints

$$\hat{\Lambda}_{2i-1:2i} \mathbf{Q}_{|||} \mathbf{Q}_{|||}^T \hat{\Lambda}_{2i-1:2i}^T = \theta_{i1}^2 I_{2 \times 2}$$

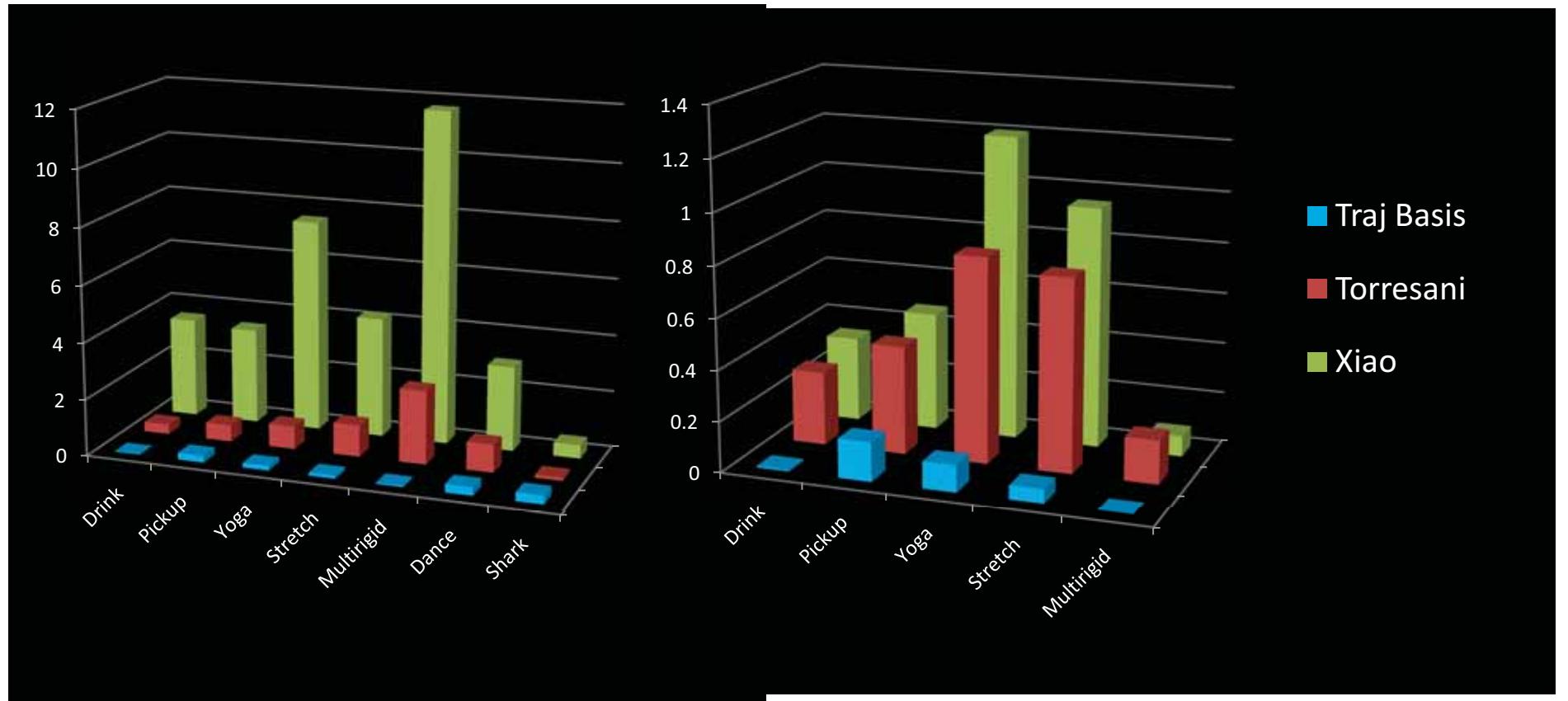
Each image yields 3 constraints because θ is known

F images yield $3F$ constraints

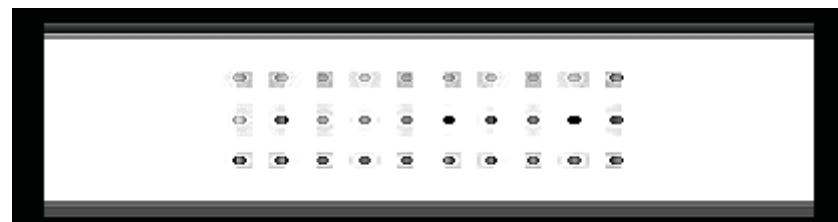
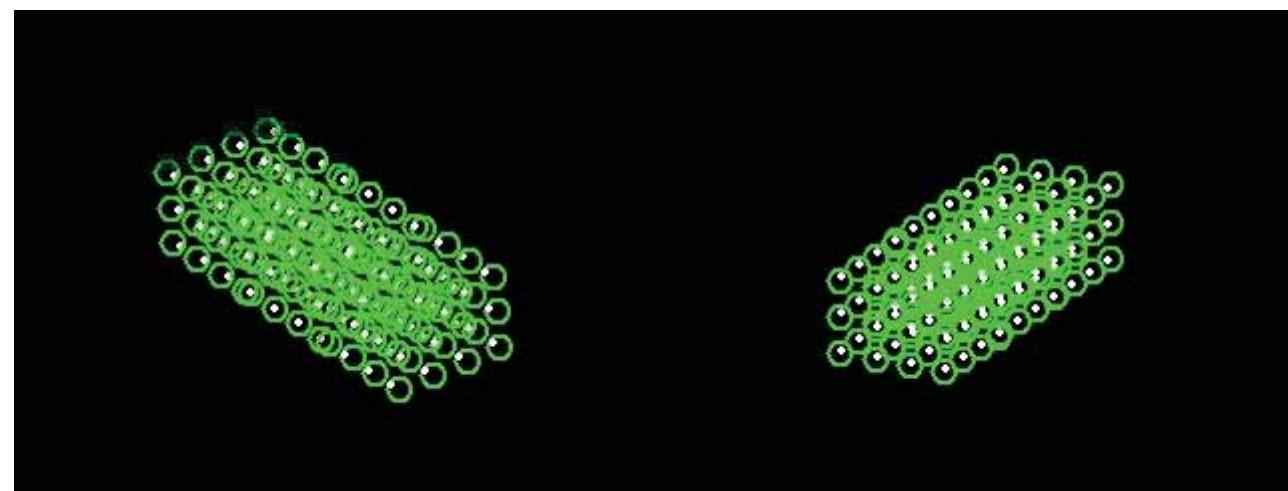
At least $3K$ images needed to constrain the solution

RESULTS

QUANTITATIVE RESULTS



We use synthetic and Motion captured data for quantitative experiments



MOTION CAPTURE DATASETS

DANCE DATASET

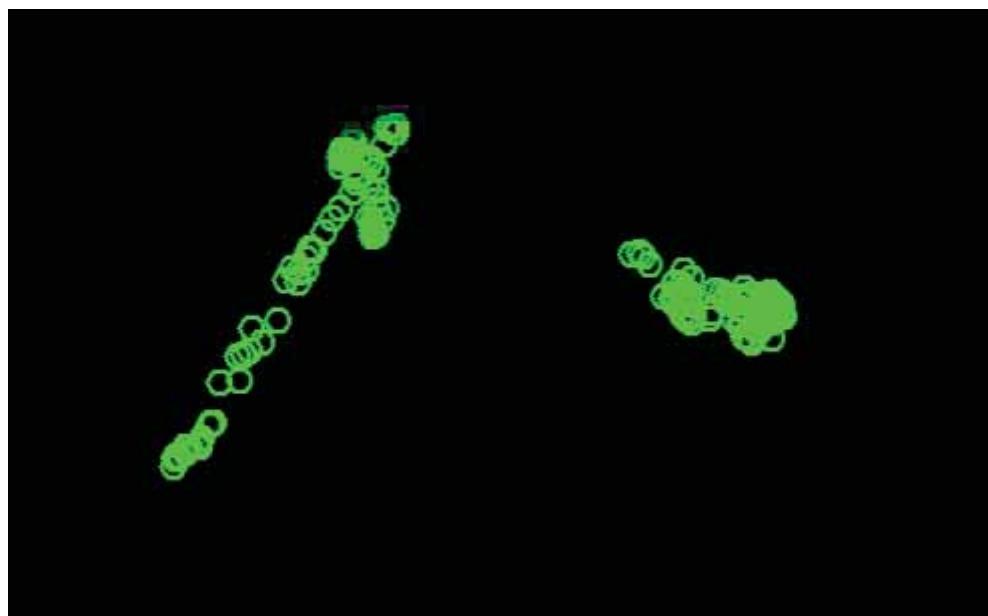
75 points, 264 frames, K=5

Input Video

Two views of the reconstruction

Torresani *et al.* 2005

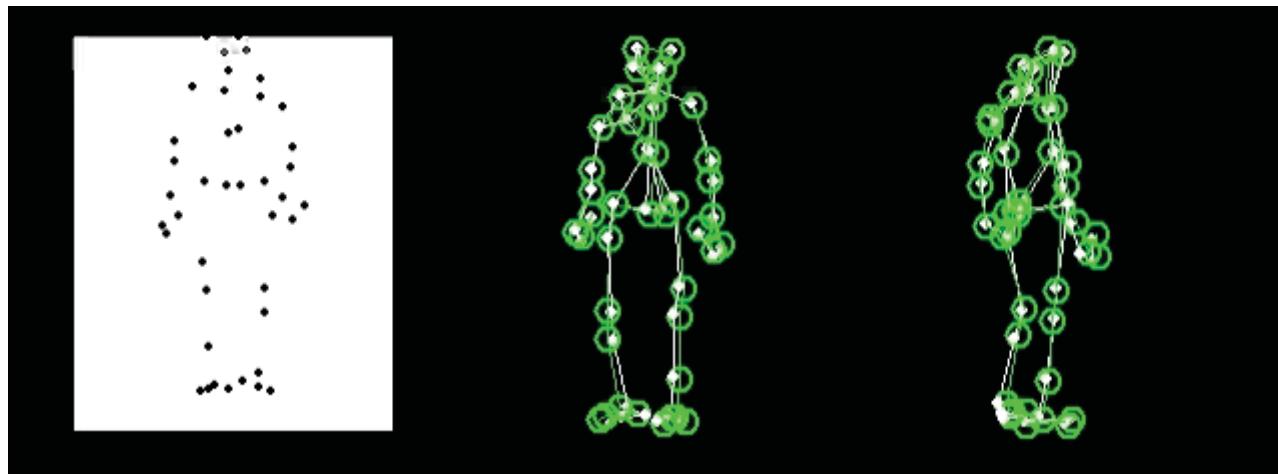
Xiao *et al.* 2004



MOTION CAPTURE DATASETS

STRETCH DATASET

41 points, 370 frames, K=12



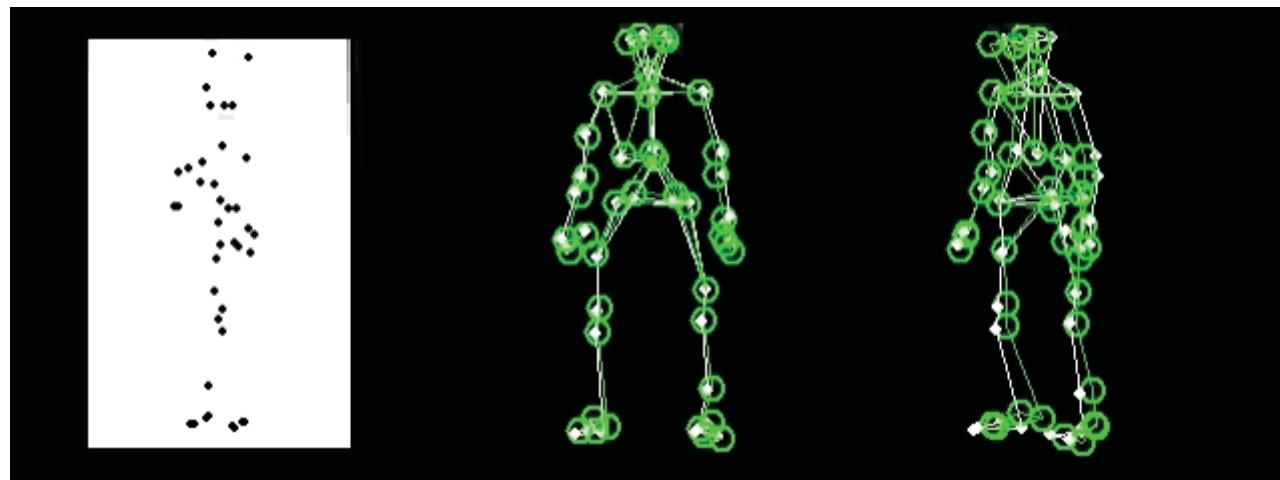
Input Data

Two views of the reconstruction

MOTION CAPTURE DATASETS

PICKUP DATASET

41 points, 357 frames, K=12



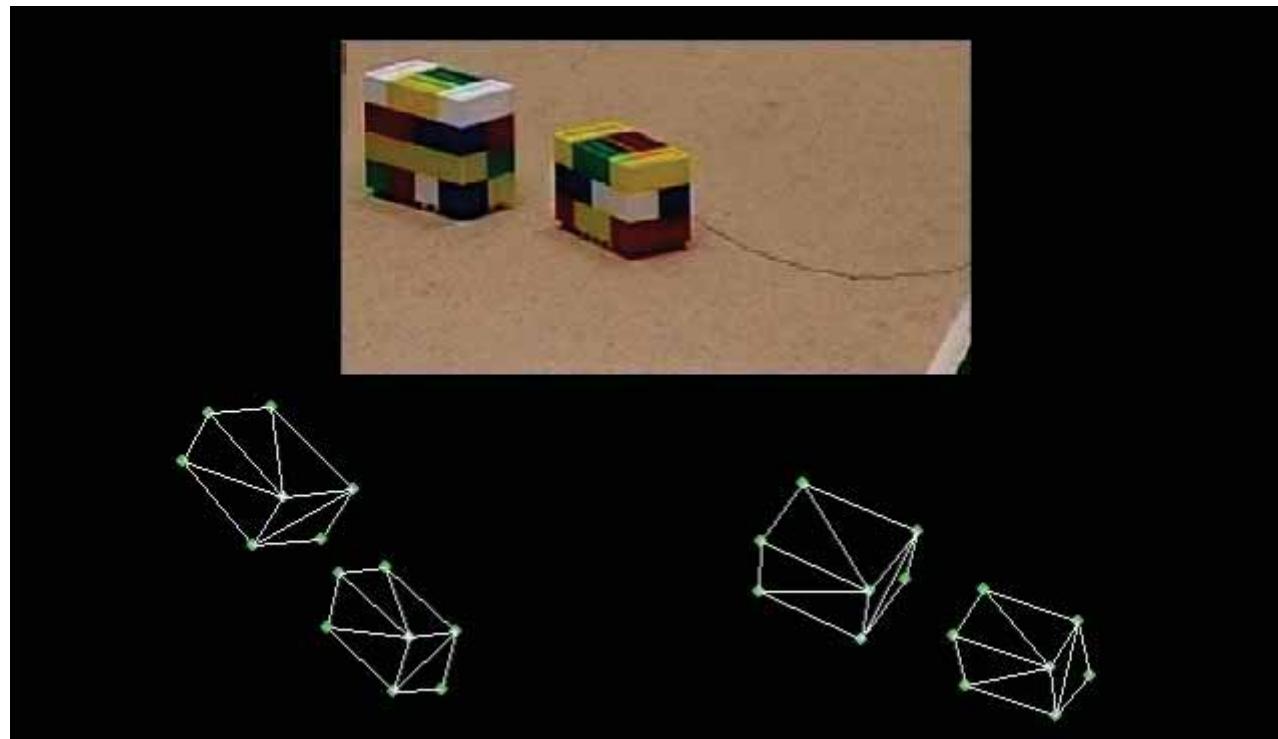
Input Data

Two views of the reconstruction

RESULTS ON REAL VIDEOS

CUBES SEQUENCES

14 points, 200 frames, K=2

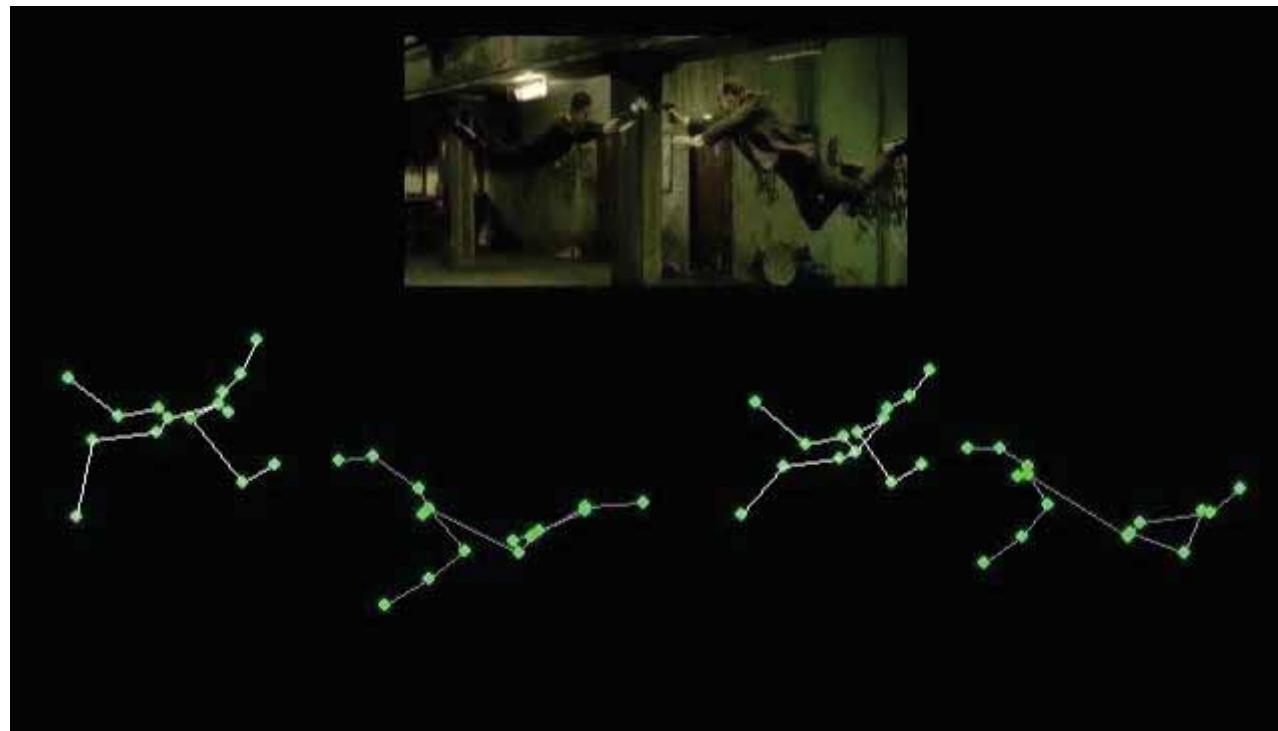


Two views of the reconstruction

RESULTS ON REAL VIDEOS

MATRIX SEQUENCE

30 points, 93 frames, K=3



Two views of the reconstruction

RESULTS ON REAL VIDEOS

PIE DATASET

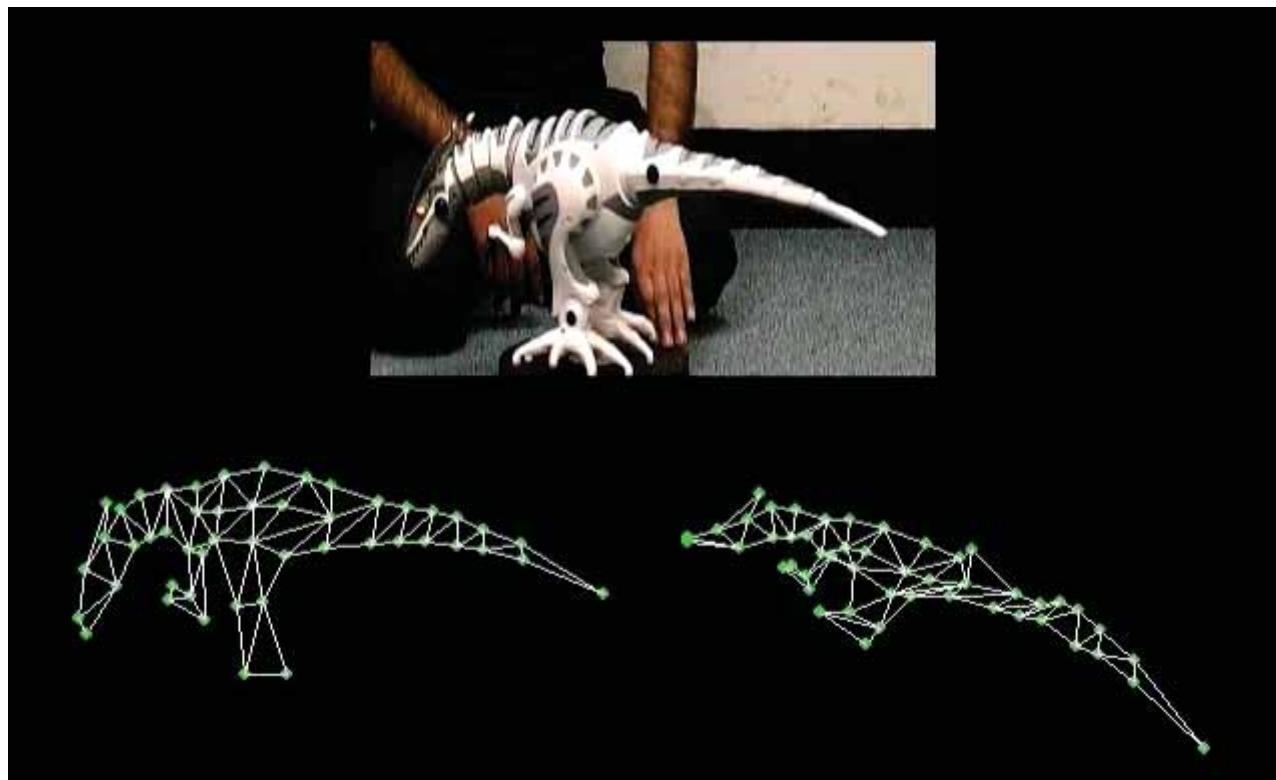
68 points, 240 frames, K=2

Two views of the reconstruction

RESULTS ON REAL VIDEOS

DINOSAUR SEQUENCE

49 points, 231 frames, K=12

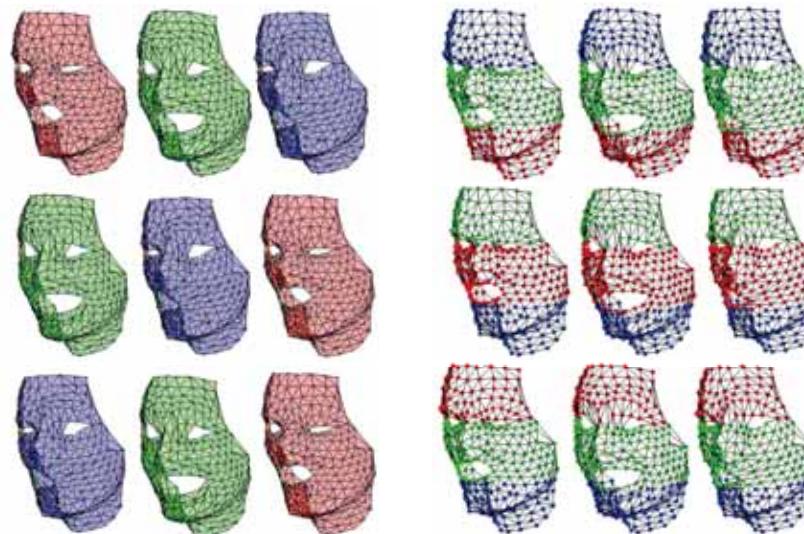


Two views of the reconstruction

**RECONSTRUCTION STABILITY INCREASES
AS CAMERA MOTION INCREASES
AS OBJECT MOTION DECREASES**

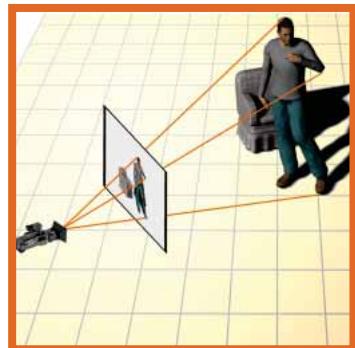
SHAPE MODEL VS. TRAJECTORY MODEL

	Shape	Trajectory
Model	Can be learnt	Hard to specialize
Specificity	Object dependent	Generalize
Ordering of frames	Irrelevant	Exploited
Ordering of points	Exploited	Irrelevant

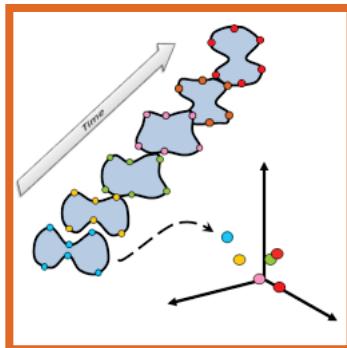


NONRIGID STRUCTURE FROM MOTION

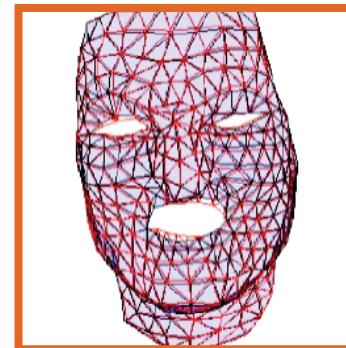
Tutorial Outline



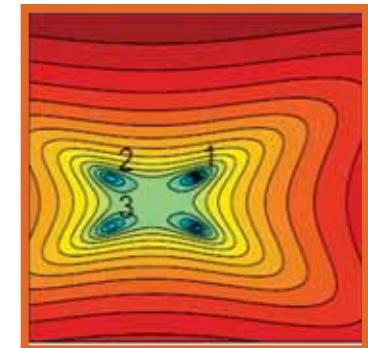
Introduction to
Nonrigid SfM



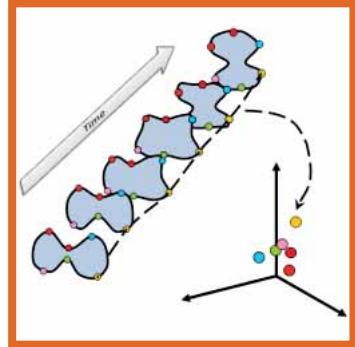
Shape
Representation



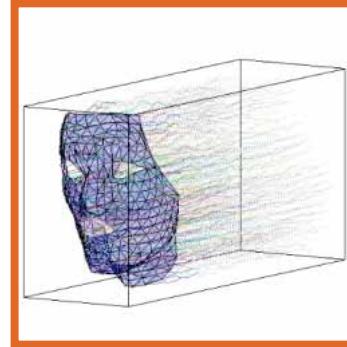
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

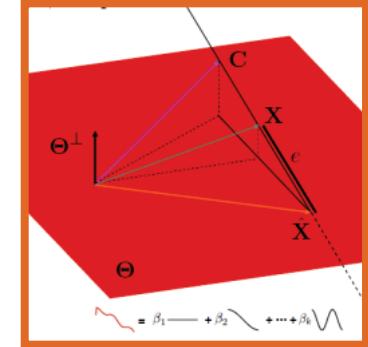


Trajectory
Representation



Shape-Trajectory
Duality

Trajectory
Estimation

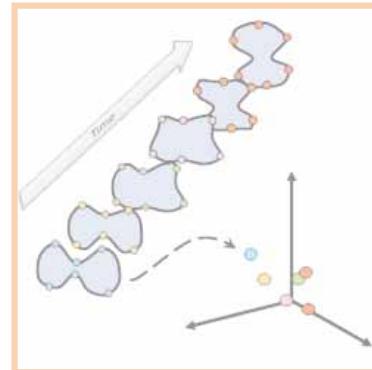


Reconstructibility
and limitations

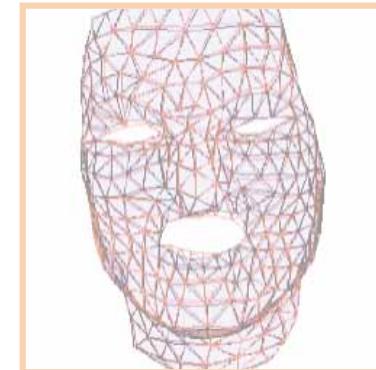
NONRIGID STRUCTURE FROM MOTION

Tutorial Outline

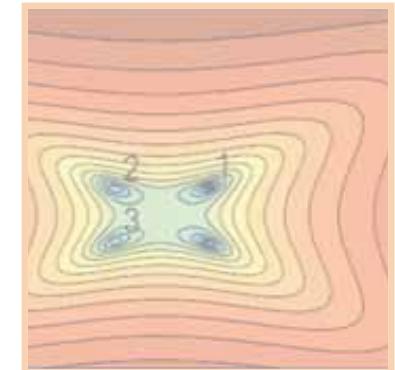
Introduction to
Nonrigid SfM



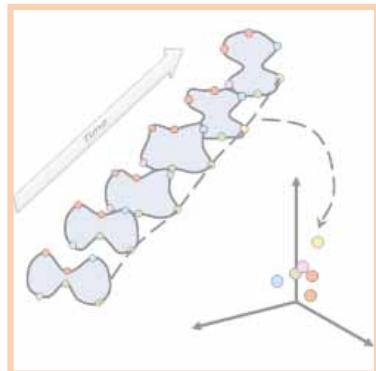
Shape
Representation



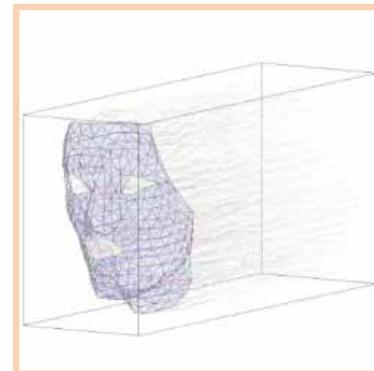
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

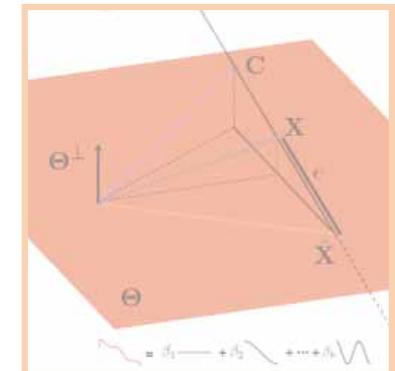


Trajectory
Representation

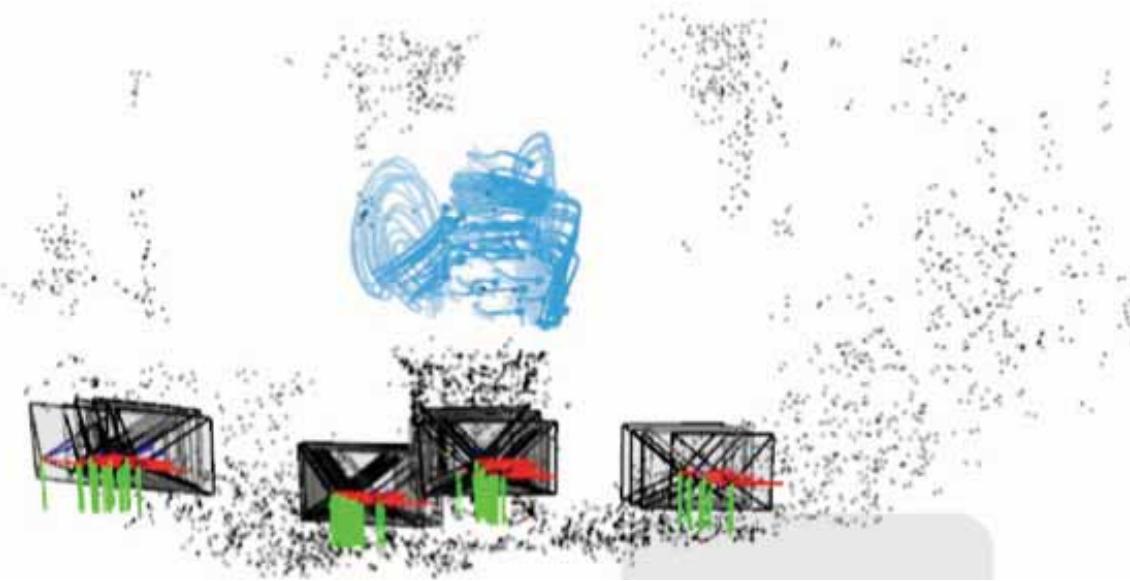


Shape-Trajectory
Duality

Trajectory
Estimation



Reconstructibility
and Limitations



3D TRAJECTORY ESTIMATION

ECCV 2010

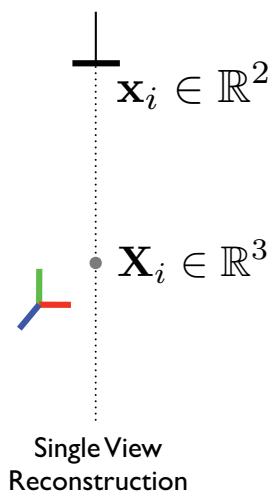
CHALLENGE

TRILINEAR ESTIMATION

$$\begin{bmatrix} \mathbf{R}_1 \\ \mathbf{R}_2 \\ \vdots \\ \mathbf{R}_F \end{bmatrix} \begin{bmatrix} \omega_{11} & \cdots & \omega_{1k} \\ \omega_{21} & & \omega_{2k} \\ \vdots & & \vdots \\ \omega_{F1} & \cdots & \omega_{Fk} \end{bmatrix} \begin{bmatrix} -\mathbf{b}_1- \\ -\mathbf{b}_2- \\ \vdots \\ -\mathbf{b}_k- \end{bmatrix}$$

$$\mathbf{W} = \mathbf{R}\boldsymbol{\Omega}\mathbf{B}$$

SINGLE VIEW RECONSTRUCTION



SINGLE VIEW RECONSTRUCTION

$$\begin{array}{c} \perp \\ \text{x}_i \in \mathbb{R}^2 \\ \cdot \quad \mathbf{X}_i \in \mathbb{R}^3 \\ \text{Single View} \\ \text{Reconstruction} \end{array} \quad s_i \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} = \mathbf{P}_i \begin{bmatrix} \mathbf{X}_i \\ 1 \end{bmatrix}$$

SINGLE VIEW RECONSTRUCTION

$$\begin{array}{ll} \perp \quad \mathbf{x}_i \in \mathbb{R}^2 & s_i \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} = \mathbf{P}_i \begin{bmatrix} \mathbf{X}_i \\ 1 \end{bmatrix} \\ \bullet \quad \mathbf{X}_i \in \mathbb{R}^3 & \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} \times \mathbf{P}_i \begin{bmatrix} \mathbf{X}_i \\ 1 \end{bmatrix} = 0 \\ \text{Single View} \\ \text{Reconstruction} \end{array}$$

A diagram illustrating the constraints for single view reconstruction. It shows two cases: a 2D point $\mathbf{x}_i \in \mathbb{R}^2$ and a 3D point $\mathbf{X}_i \in \mathbb{R}^3$. For the 2D case, a perpendicular symbol (\perp) indicates that the point lies on a line defined by the camera parameters s_i and the projection matrix \mathbf{P}_i . For the 3D case, a cross symbol (\times) indicates that the point lies on a plane defined by the camera parameters s_i and the projection matrix \mathbf{P}_i . The text "Single View Reconstruction" is at the bottom.

SINGLE VIEW RECONSTRUCTION

$$\begin{array}{ll} \perp \quad \mathbf{x}_i \in \mathbb{R}^2 & s_i \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} = \mathbf{P}_i \begin{bmatrix} \mathbf{X}_i \\ 1 \end{bmatrix} \\ \bullet \quad \mathbf{X}_i \in \mathbb{R}^3 & \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} \times \mathbf{P}_i \begin{bmatrix} \mathbf{X}_i \\ 1 \end{bmatrix} = 0 \\ \text{---} & \mathbf{Q}_i \mathbf{X}_i = -\mathbf{q}_i \end{array}$$

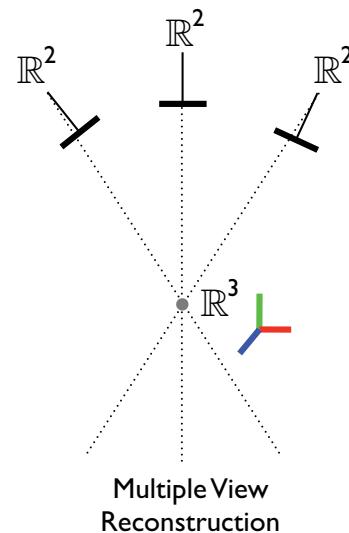
Single View Reconstruction

SINGLE VIEW RECONSTRUCTION

$$\begin{array}{ll} \text{---} \mathbf{x}_i \in \mathbb{R}^2 & s_i \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} = \mathbf{P}_i \begin{bmatrix} \mathbf{X}_i \\ 1 \end{bmatrix} \\ \bullet \mathbf{X}_i \in \mathbb{R}^3 & \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} \times \mathbf{P}_i \begin{bmatrix} \mathbf{X}_i \\ 1 \end{bmatrix} = 0 \\ \text{---} & \mathbf{Q}_i \mathbf{X}_i = -\mathbf{q}_i \\ \text{---} & \begin{smallmatrix} 2 \times 3 & 3 \times 1 & 2 \times 1 \end{smallmatrix} \end{array}$$

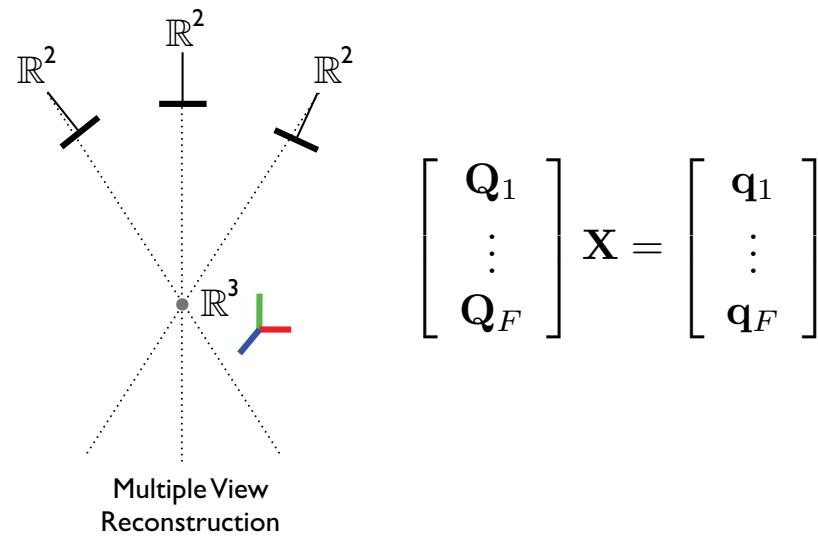
Single View Reconstruction

STRUCTURE FROM MOTION

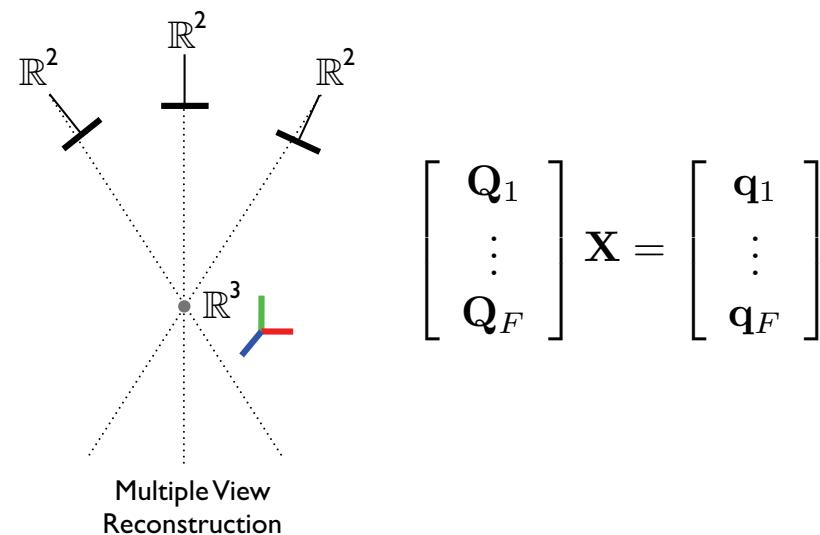


$$\begin{bmatrix} \mathbf{Q}_1 \\ \vdots \\ \mathbf{Q}_F \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{q}_1 \\ \vdots \\ \mathbf{q}_F \end{bmatrix}$$

STRUCTURE FROM MOTION



STRUCTURE FROM MOTION



IDEA: ESTIMATE CAMERA FROM RIGID PART

CHALLENGE

TRILINEAR ESTIMATION

$$\begin{bmatrix} \mathbf{R}_1 \\ \mathbf{R}_2 \\ \vdots \\ \mathbf{R}_F \end{bmatrix} \begin{bmatrix} \omega_{11} & \cdots & \omega_{1k} \\ \omega_{21} & & \omega_{2k} \\ \vdots & & \vdots \\ \omega_{F1} & \cdots & \omega_{Fk} \end{bmatrix} \begin{bmatrix} -\mathbf{b}_1- \\ -\mathbf{b}_2- \\ \vdots \\ -\mathbf{b}_k- \end{bmatrix}$$

$$\mathbf{W} = \mathbf{R}\boldsymbol{\Omega}\mathbf{B}$$

CHALLENGE

TRILINEAR ESTIMATION

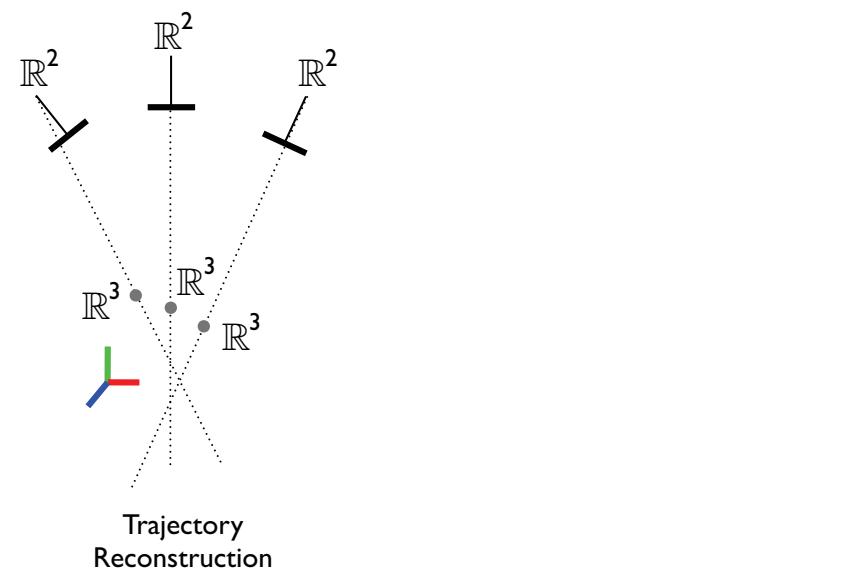
$$\begin{bmatrix} \mathbf{R}_1 \\ \mathbf{R}_2 \\ \vdots \\ \mathbf{R}_F \end{bmatrix} \begin{bmatrix} \omega_{11} & \cdots & \omega_{1k} \\ \omega_{21} & & \omega_{2k} \\ \vdots & & \vdots \\ \omega_{F1} & \cdots & \omega_{Fk} \end{bmatrix} \begin{bmatrix} -\mathbf{b}_1- \\ -\mathbf{b}_2- \\ \vdots \\ -\mathbf{b}_k- \end{bmatrix}$$

$$\mathbf{W} = \mathbf{R}\boldsymbol{\Omega}\mathbf{B}$$

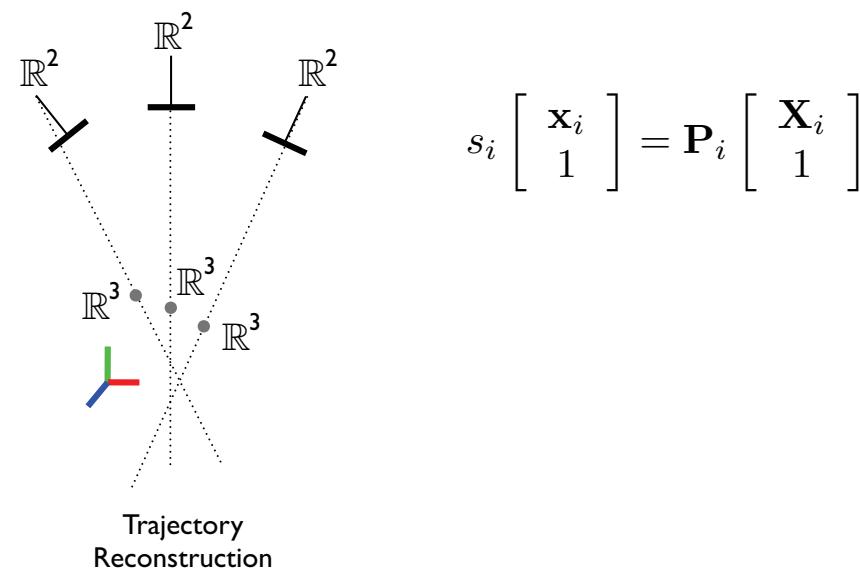
RECONSTRUCTION EVENTS

Trajectory
Reconstruction

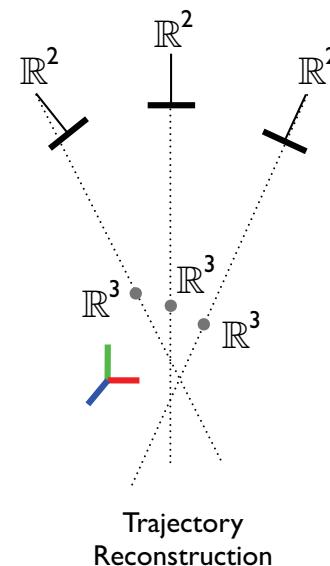
RECONSTRUCTION EVENTS



RECONSTRUCTION EVENTS



RECONSTRUCTION EVENTS

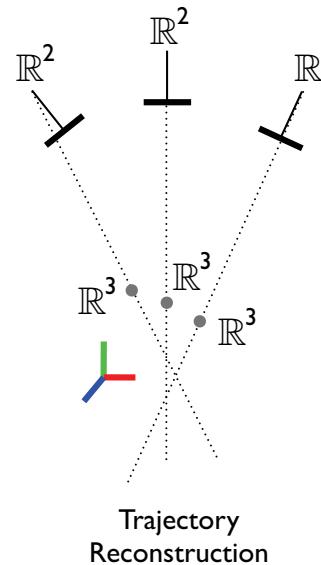


$$s_i \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} = \mathbf{P}_i \begin{bmatrix} \mathbf{X}_i \\ 1 \end{bmatrix}$$

Structure from Motion

$$\begin{array}{c} s_i \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} = \mathbf{P}_i \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} \\ \left[\begin{array}{c} \mathbf{Q}_1 \\ \vdots \\ \mathbf{Q}_F \end{array} \right] \mathbf{X} = \left[\begin{array}{c} \mathbf{q}_1 \\ \vdots \\ \mathbf{q}_F \end{array} \right] \\ \hline 2F \times 3 \quad 3 \times 1 \quad 2F \times 1 \end{array}$$

RECONSTRUCTION EVENTS



$$s_i \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} = \mathbf{P}_i \begin{bmatrix} \mathbf{X}_i \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{Q}_1 & & \\ & \ddots & \\ & & \mathbf{Q}_F \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_F \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 \\ \vdots \\ \mathbf{q}_F \end{bmatrix}$$

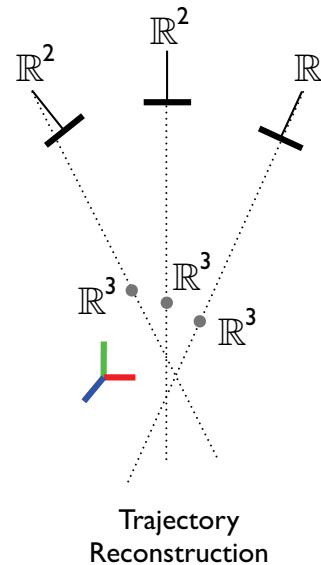
$\frac{2F \times 3F}{2F \times 3}$ $\frac{3F \times 1}{3 \times 1}$ $\frac{2F \times 1}{2 \times 1}$

Structure from Motion

$$s_i \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} = \mathbf{P}_i \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{Q}_1 \\ \vdots \\ \mathbf{Q}_F \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{q}_1 \\ \vdots \\ \mathbf{q}_F \end{bmatrix}$$

$\frac{2F \times 3}{2F \times 3}$ $\frac{3 \times 1}{3 \times 1}$ $\frac{2F \times 1}{2 \times 1}$

RECONSTRUCTION EVENTS



$$s_i \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} = \mathbf{P}_i \begin{bmatrix} \mathbf{X}_i \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{Q}_1 & & \\ & \ddots & \\ & & \mathbf{Q}_F \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_F \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 \\ \vdots \\ \mathbf{q}_F \end{bmatrix}$$

$\frac{2F \times 3F}{2F \times 3}$ $\frac{3F \times 1}{3 \times 1}$ $\frac{2F \times 1}{2 \times 1}$

Structure from Motion

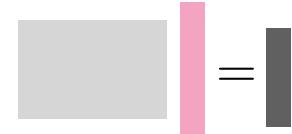
$$s_i \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} = \mathbf{P}_i \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{Q}_1 \\ \vdots \\ \mathbf{Q}_F \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{q}_1 \\ \vdots \\ \mathbf{q}_F \end{bmatrix}$$

$\frac{2F \times 3}{2F \times 3}$ $\frac{3 \times 1}{3 \times 1}$ $\frac{2F \times 1}{2 \times 1}$

$$\begin{bmatrix} \mathbf{Q}_1 & & \\ & \ddots & \\ & & \mathbf{Q}_F \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_F \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 \\ \vdots \\ \mathbf{q}_F \end{bmatrix}$$
$$\mathbf{Q}\mathbf{X} = \mathbf{q}$$

$$\begin{bmatrix} \mathbf{Q}_1 & & \\ & \ddots & \\ & & \mathbf{Q}_F \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_F \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 \\ \vdots \\ \mathbf{q}_F \end{bmatrix}$$

$$\mathbf{Q}\mathbf{X} = \mathbf{q}$$



A diagram illustrating a matrix equation. It consists of three main parts: a gray square, a pink vertical bar, and a dark gray vertical bar. The gray square is positioned to the left of the pink bar. To the right of the pink bar is an equals sign. To the right of the equals sign is the dark gray vertical bar. This visual representation corresponds to the equation $\mathbf{Q}\mathbf{X} = \mathbf{q}$ above it.

Trajectory Reconstruction

$$\begin{bmatrix} \mathbf{X}_{11} \\ \mathbf{X}_{12} \\ \vdots \\ \mathbf{X}_{1F} \end{bmatrix}_{3F \times 1} = \begin{bmatrix} | & | & & | \\ \theta_1 & \theta_2 & \cdots & \theta_k \\ | & | & & | \\ \hline & \curvearrowleft & & \curvearrowright \end{bmatrix}_{3F \times k} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix}_{k \times 1} = \Theta\beta$$

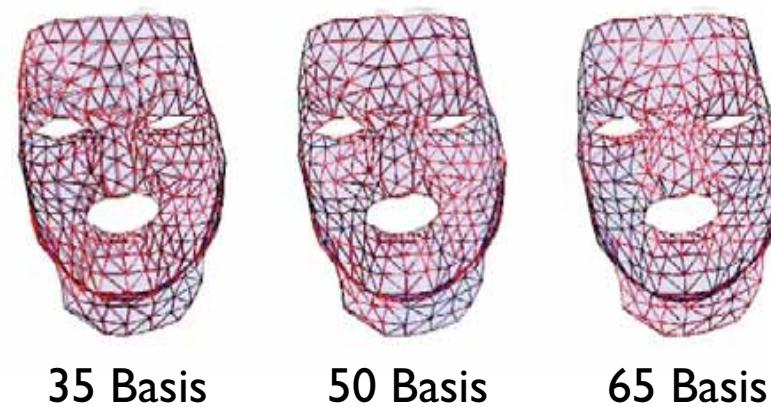
35 Basis

50 Basis

65 Basis

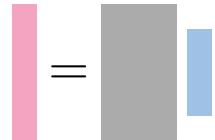
Trajectory Reconstruction

$$\begin{bmatrix} \mathbf{X}_{11} \\ \mathbf{X}_{12} \\ \vdots \\ \mathbf{X}_{1F} \end{bmatrix}_{3F \times 1} = \begin{bmatrix} | & | & \cdots & | \\ \theta_1 & \theta_2 & \cdots & \theta_k \\ | & | & \curvearrowleft & | \end{bmatrix}_{3F \times k} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix}_{k \times 1} = \Theta\beta$$

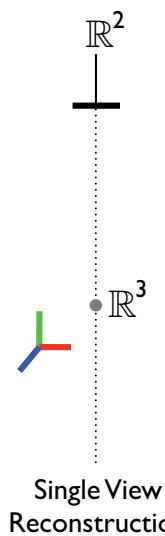


$$\begin{bmatrix} \mathbf{X}_{11} \\ \mathbf{X}_{12} \\ \vdots \\ \mathbf{X}_{1F} \end{bmatrix}_{3F \times 1} = \begin{bmatrix} | & | & & | \\ \theta_1 & \theta_2 & \cdots & \theta_k \\ | & | & & | \end{bmatrix}_{3F \times 3k} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix}_{3k \times 1} = \Theta\beta$$

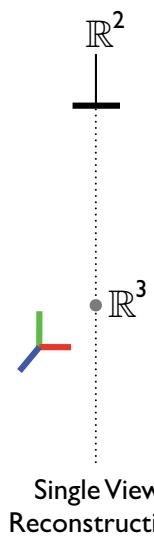
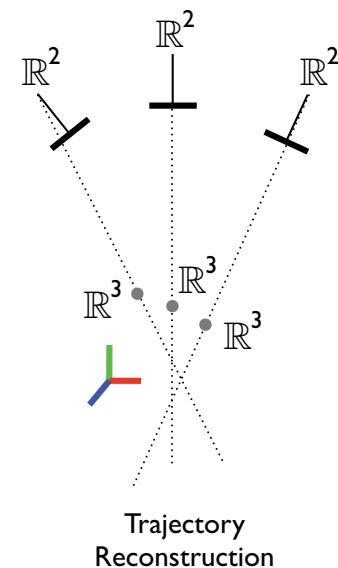
$$\mathbf{X} = \Theta\beta$$



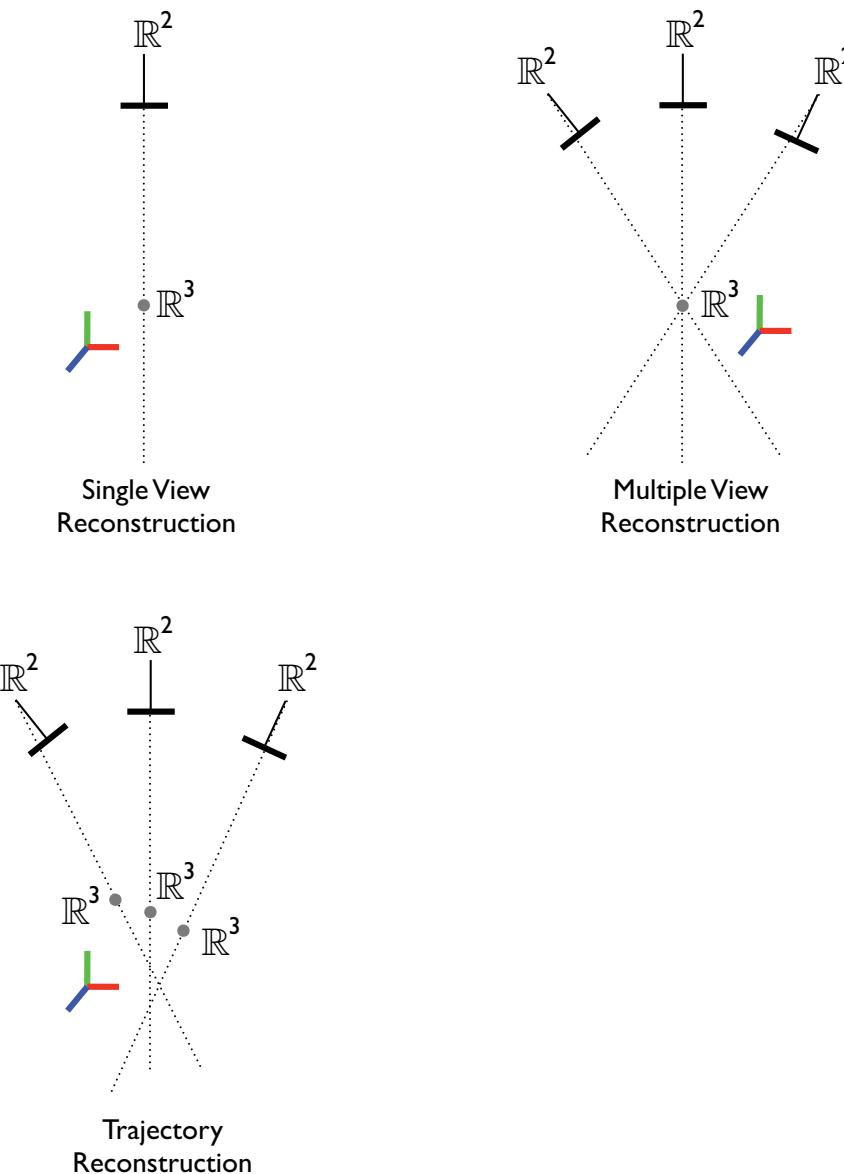
Trajectory Reconstruction



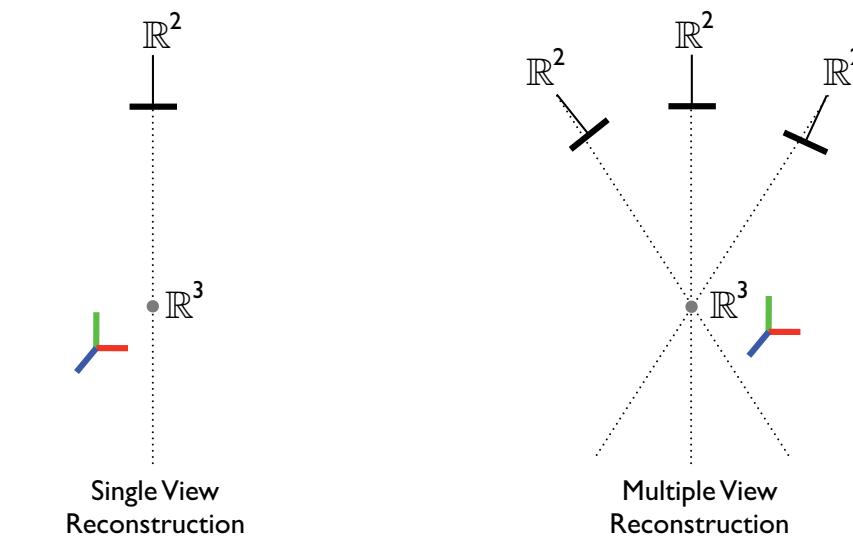
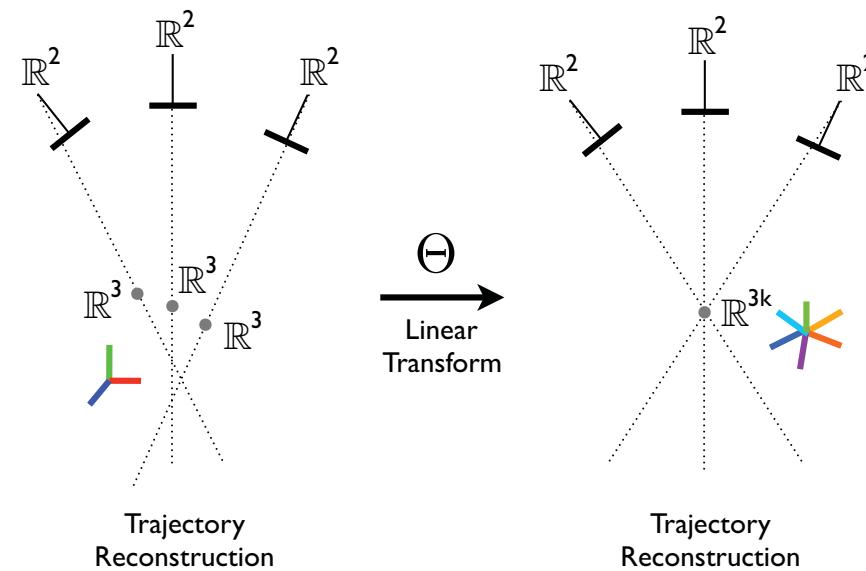
Trajectory Reconstruction



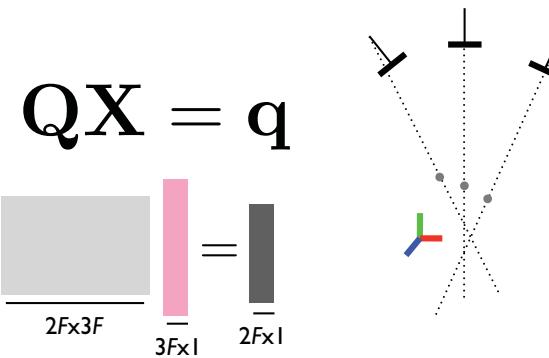
Trajectory Reconstruction



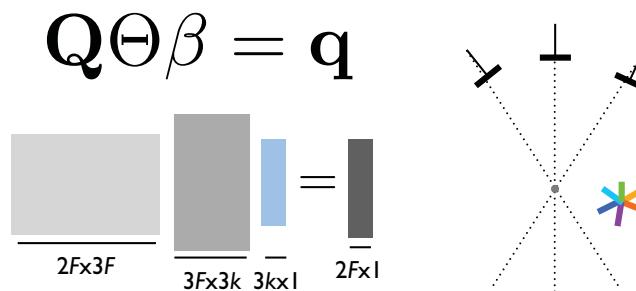
Trajectory Reconstruction



LINEAR SOLUTION

$$QX = q$$


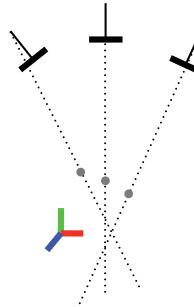
$\overline{2Fx3F}$ $\overline{3Fx1}$ $\overline{2Fx1}$

$$Q\Theta\beta = q$$


$\overline{2Fx3F}$ $\overline{3Fx3k}$ $\overline{3kx1}$ $\overline{2Fx1}$

LINEAR SOLUTION

$$Q_X = q$$

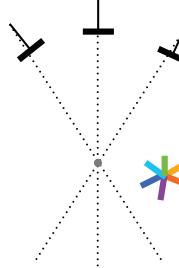


$$X = \Theta \beta$$

$$3Fx1 = 3Fx3k + 3kx$$

$$\text{---} = \beta_1 \text{---} + \beta_2 \text{---} + \cdots + \beta_k \text{---}$$

$$Q\Theta \beta = q$$



ALGORITHM

ALGORITHM

- GIVEN POINT CORRESPONDENCES AND EXIF DATA

ALGORITHM

- GIVEN POINT CORRESPONDENCES AND EXIF DATA
 - ESTIMATE THE CAMERA MATRICES USING RANSAC

ALGORITHM

- GIVEN POINT CORRESPONDENCES AND EXIF DATA
 - ESTIMATE THE CAMERA MATRICES USING RANSAC
 - USING CAMERA MATRICES AND DYNAMIC POINT CORRESPONDENCES:

ALGORITHM

- GIVEN POINT CORRESPONDENCES AND EXIF DATA
 - ESTIMATE THE CAMERA MATRICES USING RANSAC
 - USING CAMERA MATRICES AND DYNAMIC POINT CORRESPONDENCES:
 - CREATE OVERLOADED LINEAR SYSTEM USING DCT BASIS

ALGORITHM

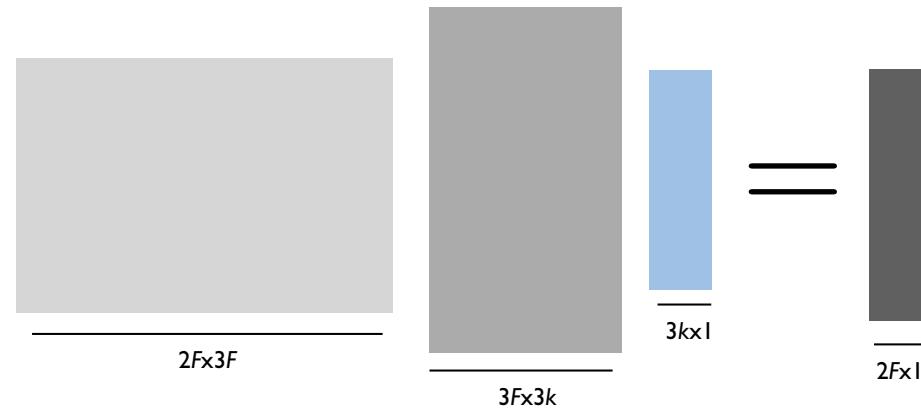
- GIVEN POINT CORRESPONDENCES AND EXIF DATA
 - ESTIMATE THE CAMERA MATRICES USING RANSAC
 - USING CAMERA MATRICES AND DYNAMIC POINT CORRESPONDENCES:
 - CREATE OVERLOADED LINEAR SYSTEM USING DCT BASIS
 - SOLVE LINEAR SYSTEM FOR DCT COEFFICIENTS

ALGORITHM

- GIVEN POINT CORRESPONDENCES AND EXIF DATA
 - ESTIMATE THE CAMERA MATRICES USING RANSAC
 - USING CAMERA MATRICES AND DYNAMIC POINT CORRESPONDENCES:
 - CREATE OVERLOADED LINEAR SYSTEM USING DCT BASIS
 - SOLVE LINEAR SYSTEM FOR DCT COEFFICIENTS
 - BUNDLE ADJUSTMENT

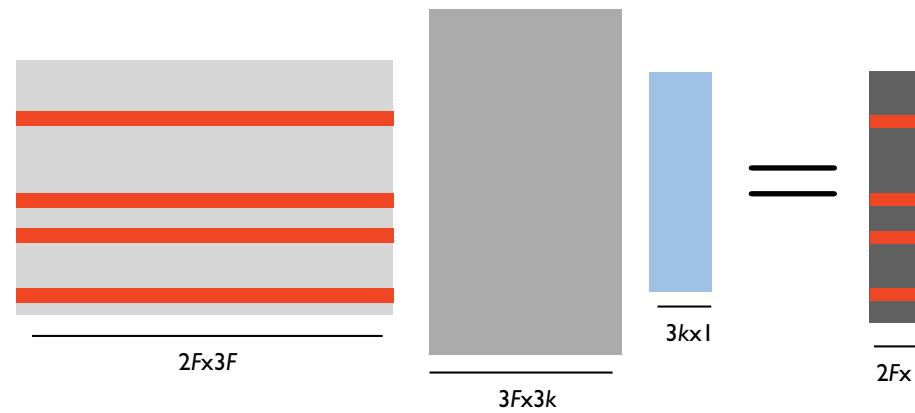
MISSING DATA

$$\mathbf{Q}\Theta\beta = \mathbf{q}$$



MISSING DATA

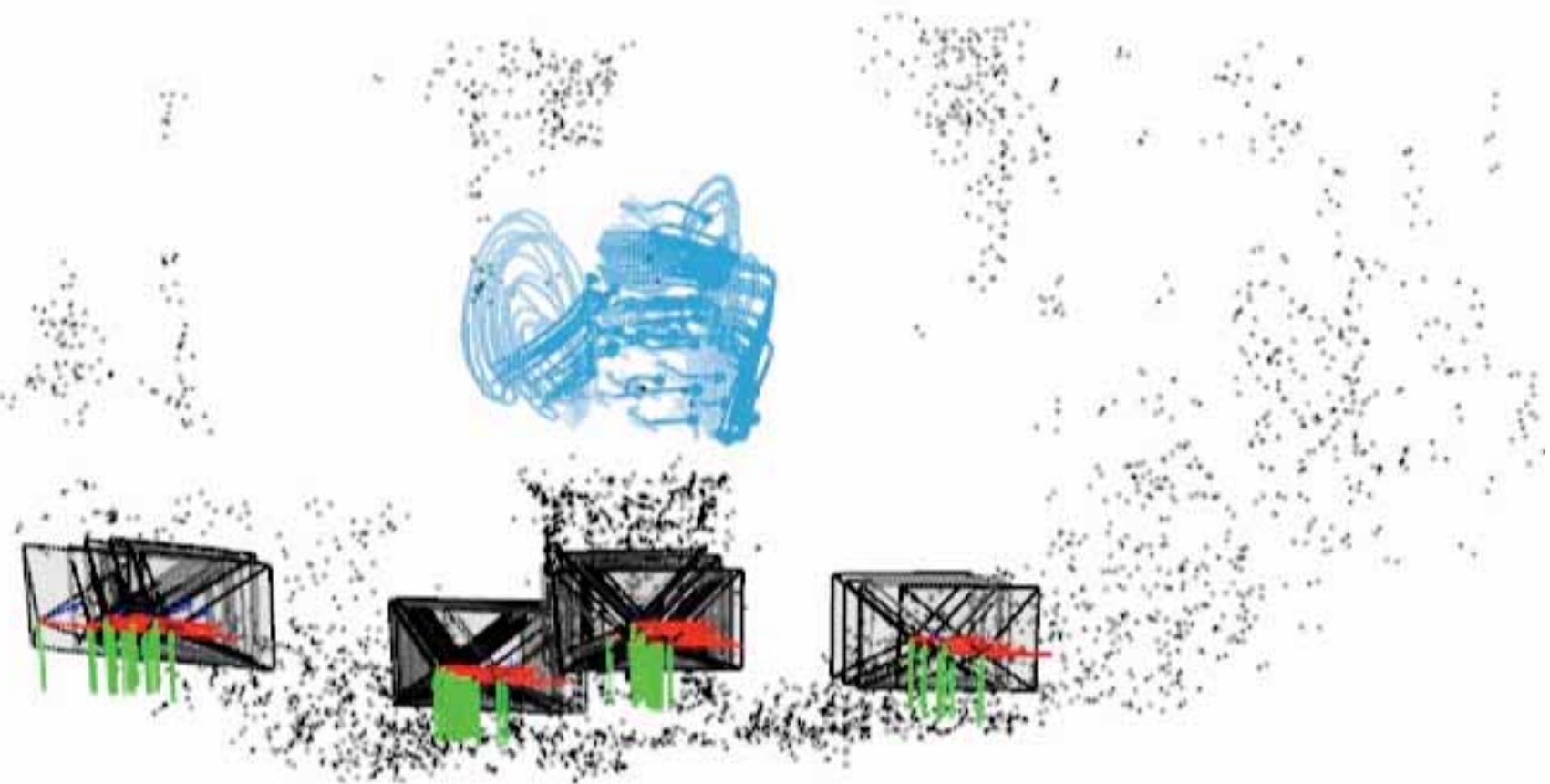
$$\mathbf{Q}\boldsymbol{\Theta}\boldsymbol{\beta} = \mathbf{q}$$



PARK ET AL., ECCV 2010

3D Reconstruction of a Moving Point from a Series of 2D Projections

Blue: measured
moving points

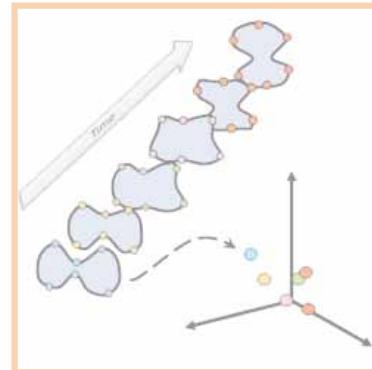


Result of 3D trajectory reconstruction

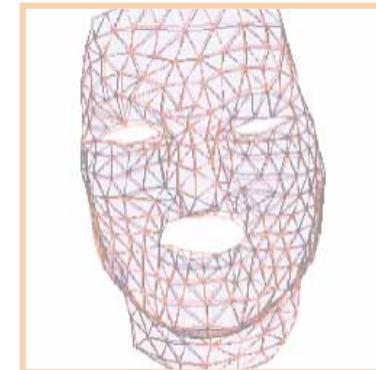
NONRIGID STRUCTURE FROM MOTION

Tutorial Outline

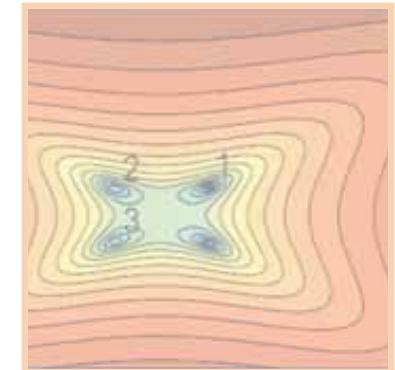
Introduction to
Nonrigid SfM



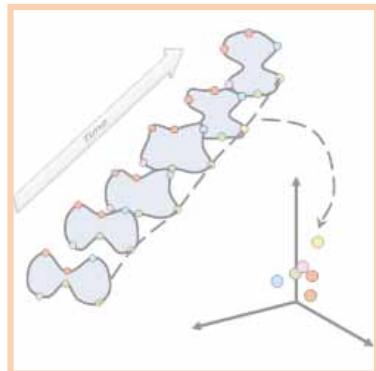
Shape
Representation



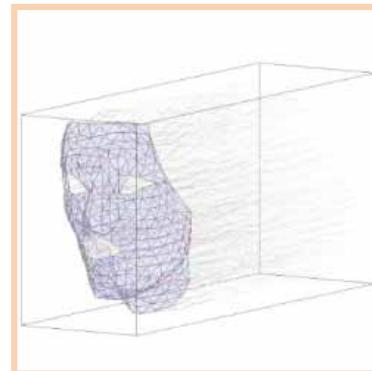
Shape
Estimation



Ambiguity of
Orthogonality
Constraints

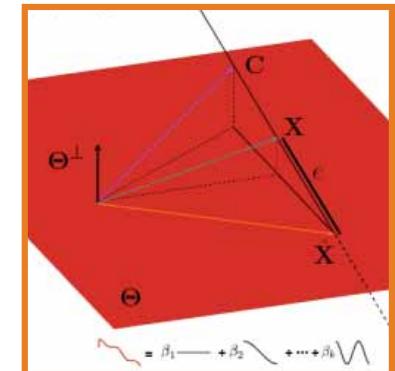


Trajectory
Representation



Shape-Trajectory
Duality

Trajectory
Estimation



Reconstructibility
and Limitations

AMBIGUITY

AMBIGUITY

THEOREM I: Trajectory reconstruction using any linear trajectory basis is impossible if $\text{corr}(X, C) = \pm 1$

AMBIGUITY

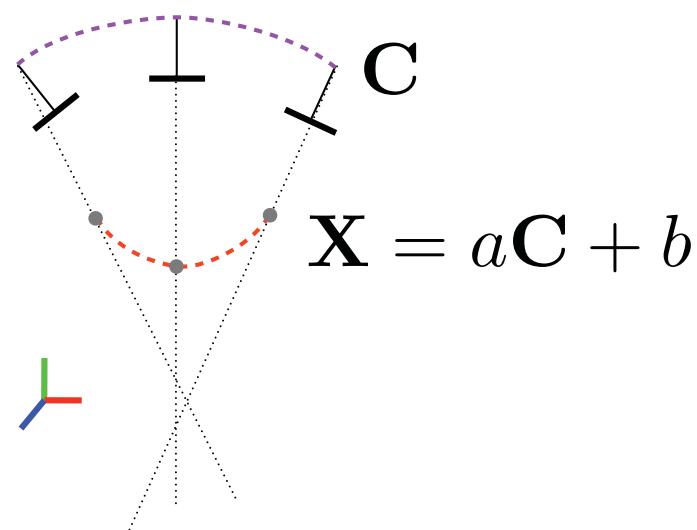
THEOREM 1: Trajectory reconstruction using any linear trajectory basis is impossible if $\text{corr}(\mathbf{X}, \mathbf{C}) = \pm 1$

THEOREM 2: $\lim_{\eta \rightarrow \inf} \beta = \hat{\beta}$

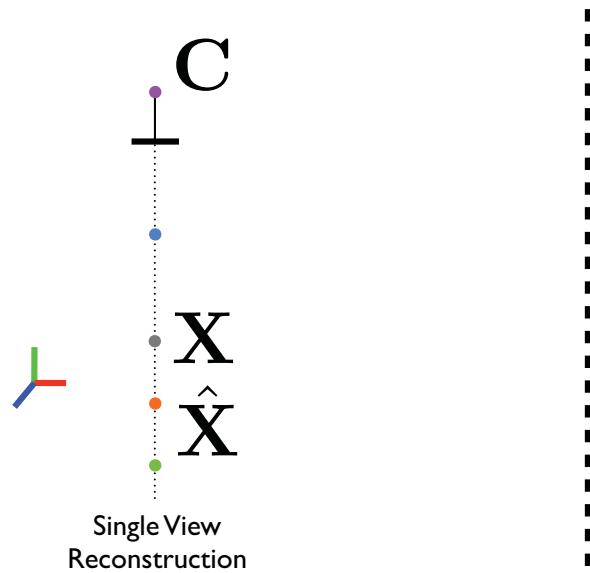
$$\eta = \frac{\|\Theta^\perp \beta_{\mathbf{C}}^\perp\|}{\|\Theta^\perp \beta_{\mathbf{X}}^\perp\|}$$

CORRELATED \mathbf{X} and \mathbf{C}

THEOREM I: Trajectory reconstruction using any linear trajectory basis is impossible if $\text{corr}(\mathbf{X}, \mathbf{C}) = \pm 1$



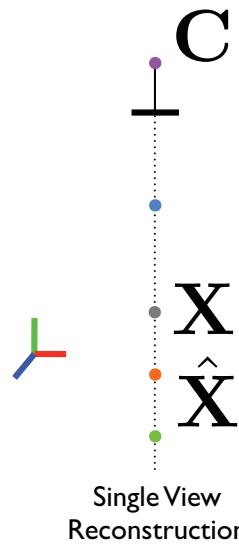
HYPERPLANE OF SOLUTIONS



$$\hat{\mathbf{X}} = a\mathbf{X} + (1 - a)\mathbf{C}$$

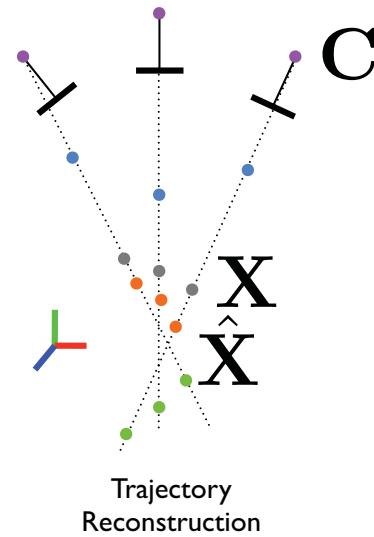
SINGLEVIEW
3D RECONSTRUCTION

HYPERPLANE OF SOLUTIONS



$$\hat{\mathbf{X}} = a\mathbf{X} + (1 - a)\mathbf{C}$$

SINGLEVIEW
3D RECONSTRUCTION



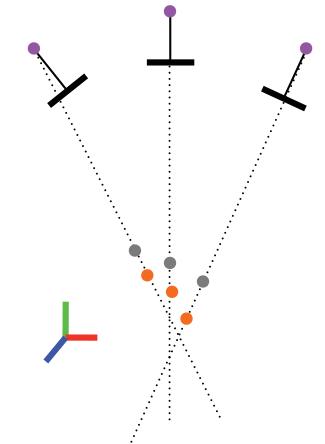
$$\hat{\mathbf{X}} = \mathbf{A}\mathbf{X} + (1 - \mathbf{A})\mathbf{C}$$

MULTIPLEVIEW
DYNAMIC 3D
RECONSTRUCTION

GEOMETRY OF **C** AND **X**

\mathbb{R}^{3F}

$$\mathbf{Q}\Theta\beta = \mathbf{q}$$

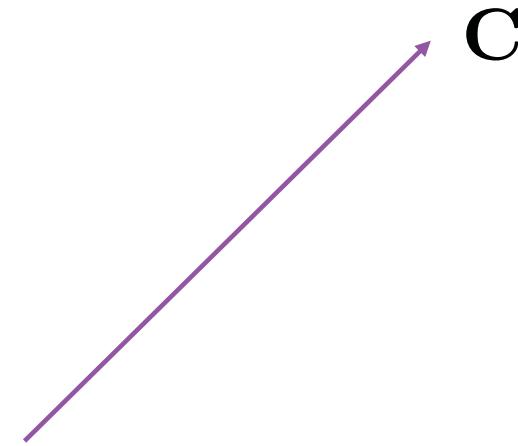
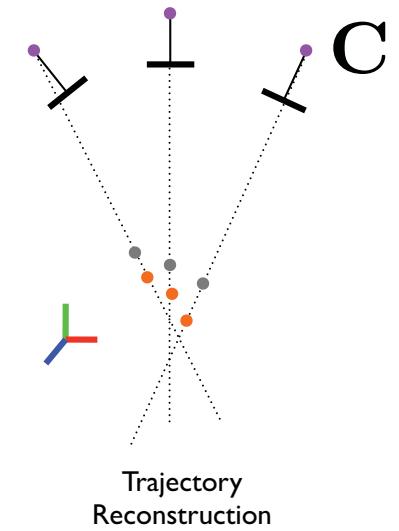


Trajectory
Reconstruction

GEOMETRY OF **C** AND **X**

\mathbb{R}^{3F}

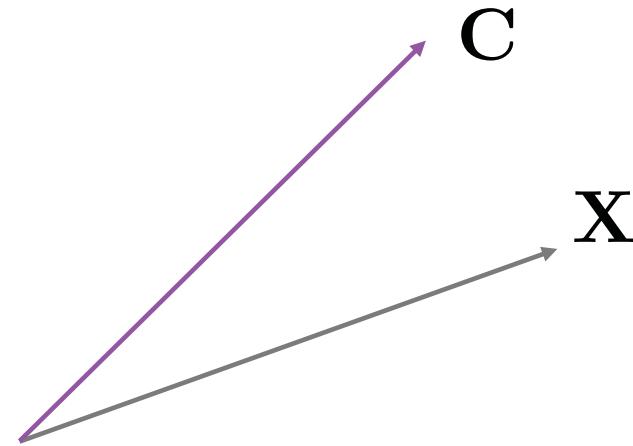
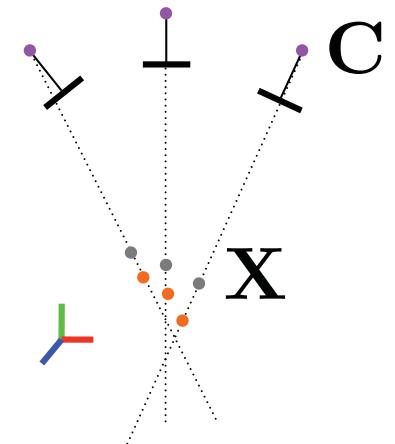
$$Q\Theta\beta = q$$



GEOMETRY OF **C** AND **X**

\mathbb{R}^{3F}

$$Q\Theta\beta = q$$

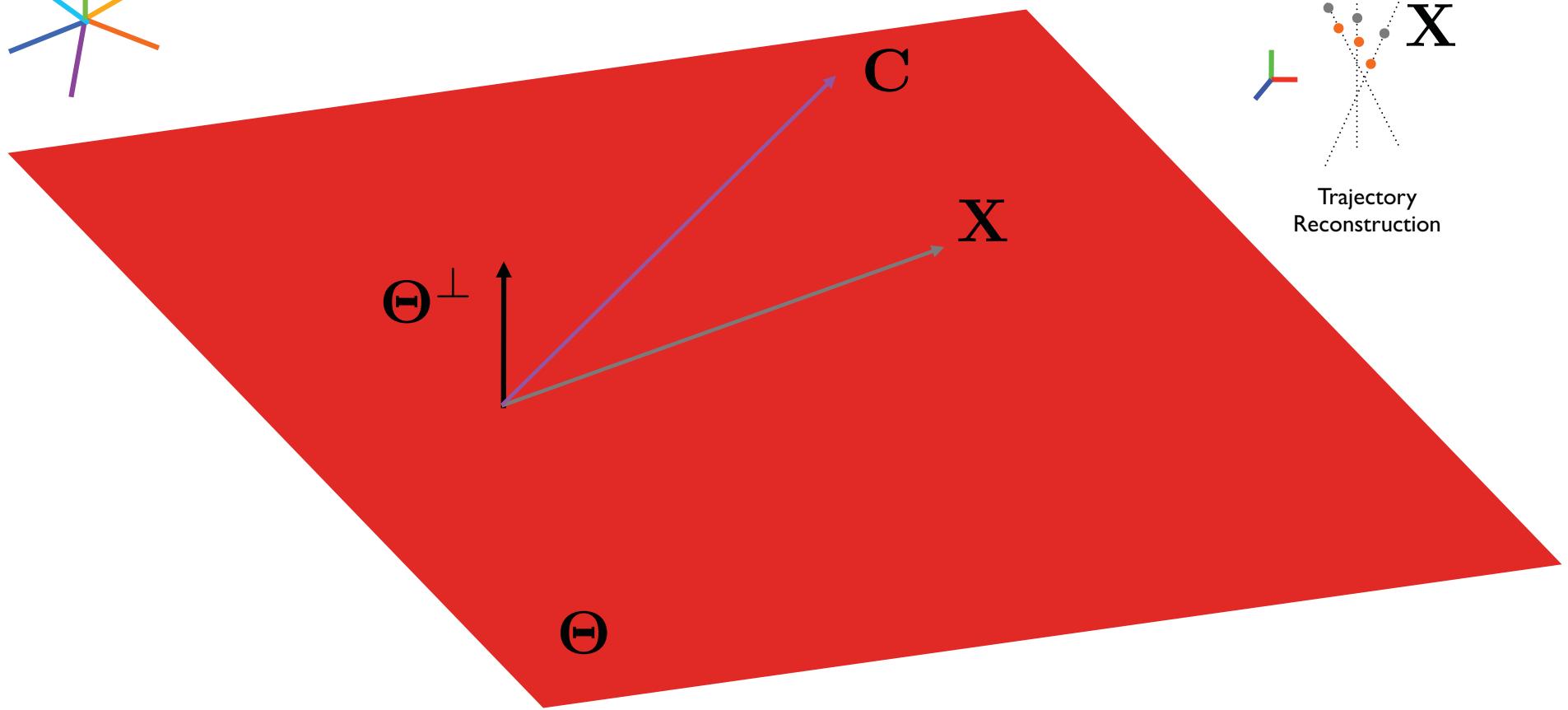


Trajectory
Reconstruction

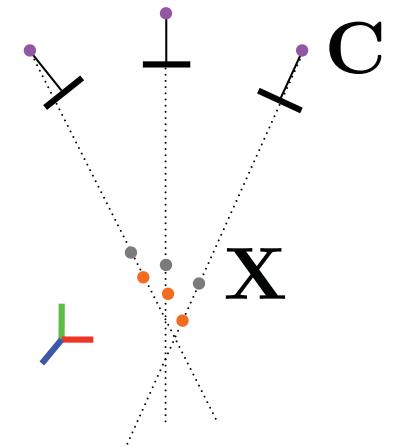
GEOMETRY OF **C** AND **X**

\mathbb{R}^{3F}

$$Q\Theta\beta = q$$



$$\text{---} = \beta_1 \text{---} + \beta_2 \text{---} + \dots + \beta_k \text{---}$$

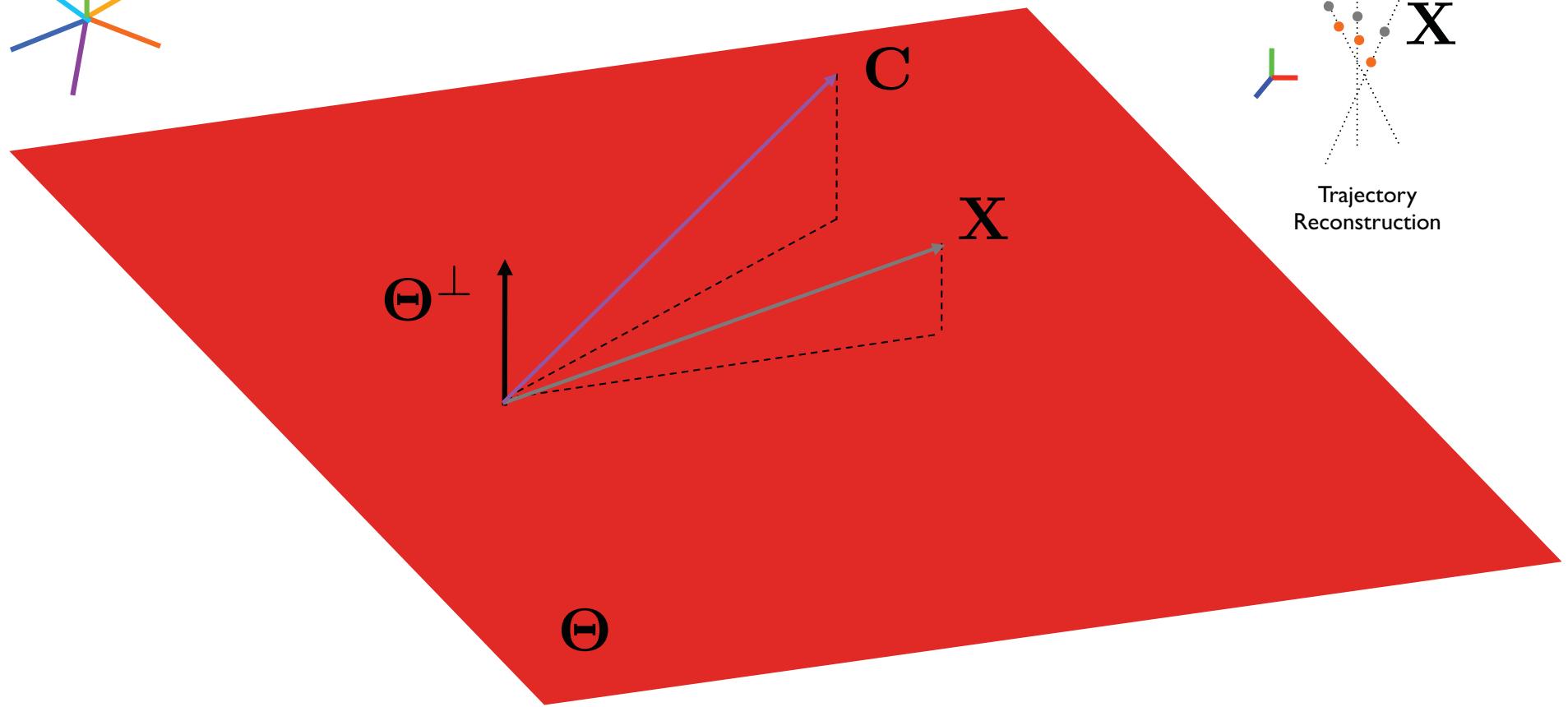


Trajectory
Reconstruction

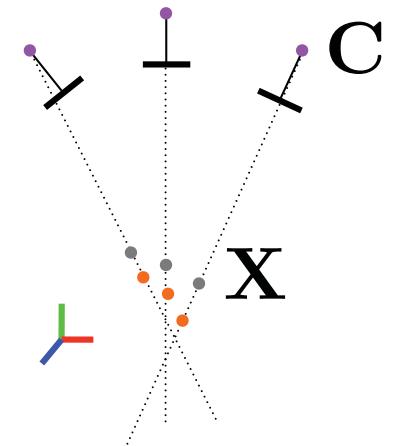
GEOMETRY OF **C** AND **X**

\mathbb{R}^{3F}

$$Q\Theta\beta = q$$



$$\text{Wavy Line} = \beta_1 \text{---} + \beta_2 \text{~~~} + \cdots + \beta_k \text{~~~}$$



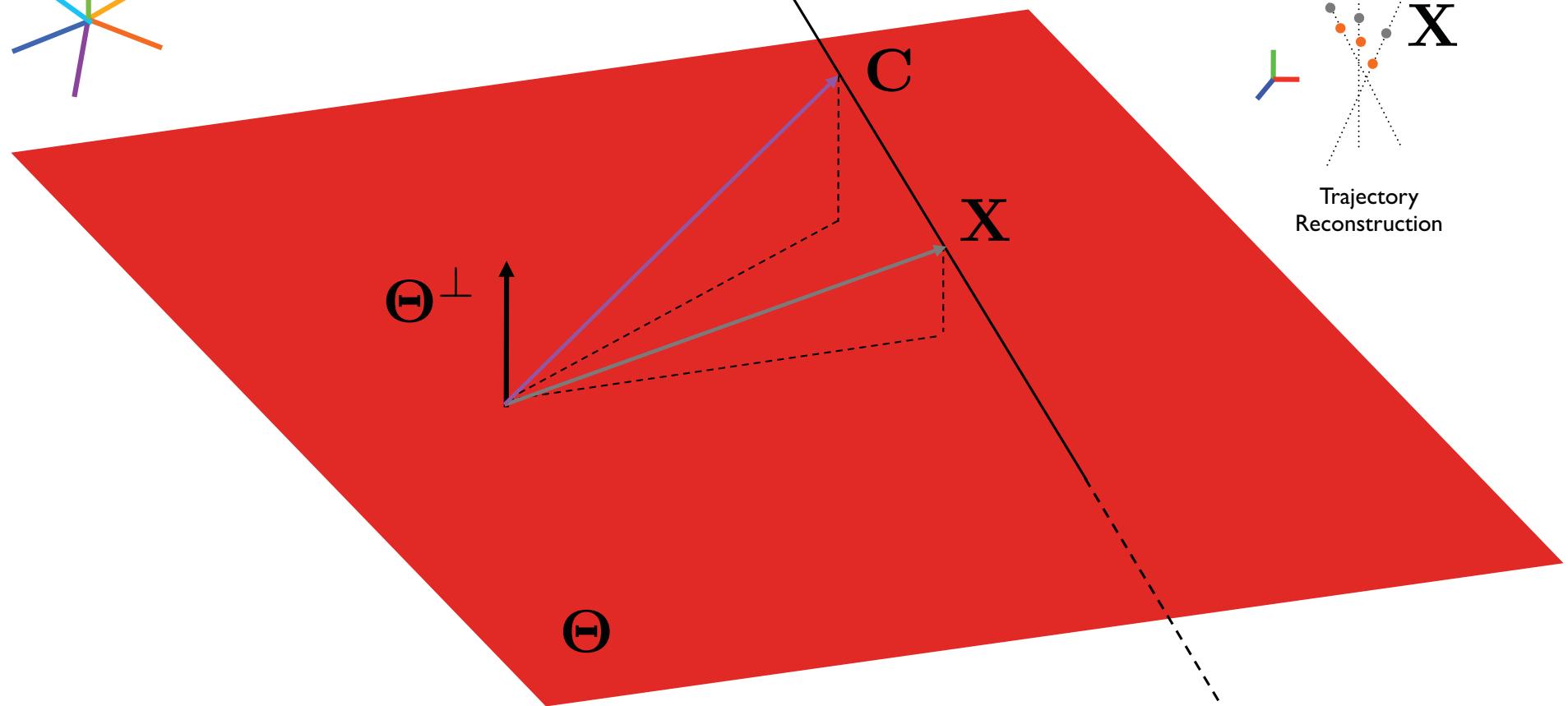
Trajectory
Reconstruction

GEOMETRY OF \mathbf{C} AND \mathbf{X}

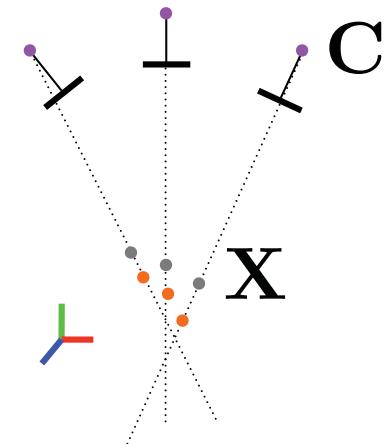
\mathbb{R}^{3F}

$$\mathbf{Q}\Theta\beta = \mathbf{q}$$

$$\hat{\mathbf{X}} = \mathbf{AX} + (1 - \mathbf{A})\mathbf{C}$$



$$\text{wavy line} = \beta_1 \text{ straight line} + \beta_2 \text{ wavy line} + \dots + \beta_k \text{ wavy line}$$



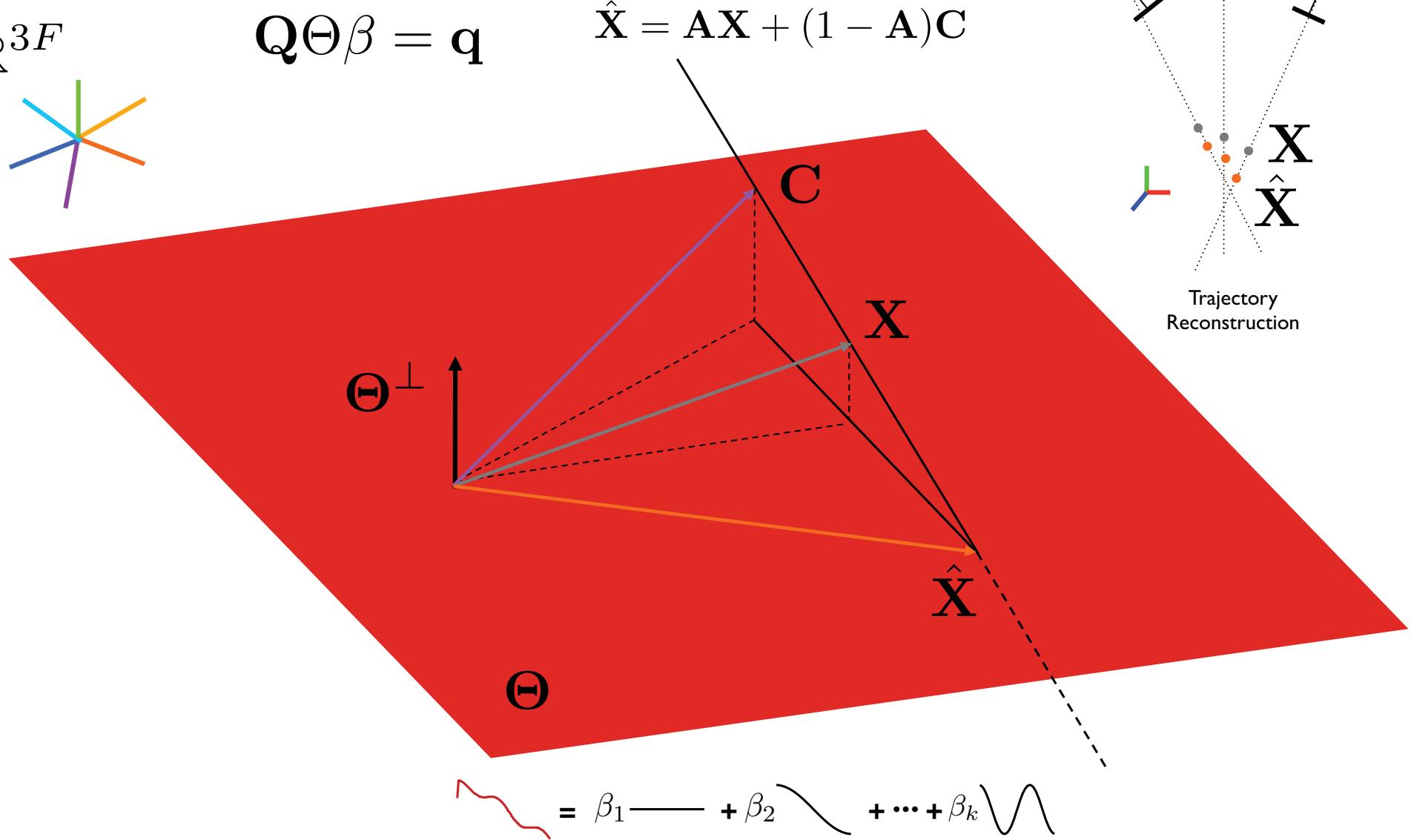
Trajectory
Reconstruction

GEOMETRY OF C AND X

$$\mathbb{R}^{3F}$$

$$Q\Theta\beta = q$$

$$\hat{\mathbf{X}} = \mathbf{AX} + (1 - \mathbf{A})\mathbf{C}$$

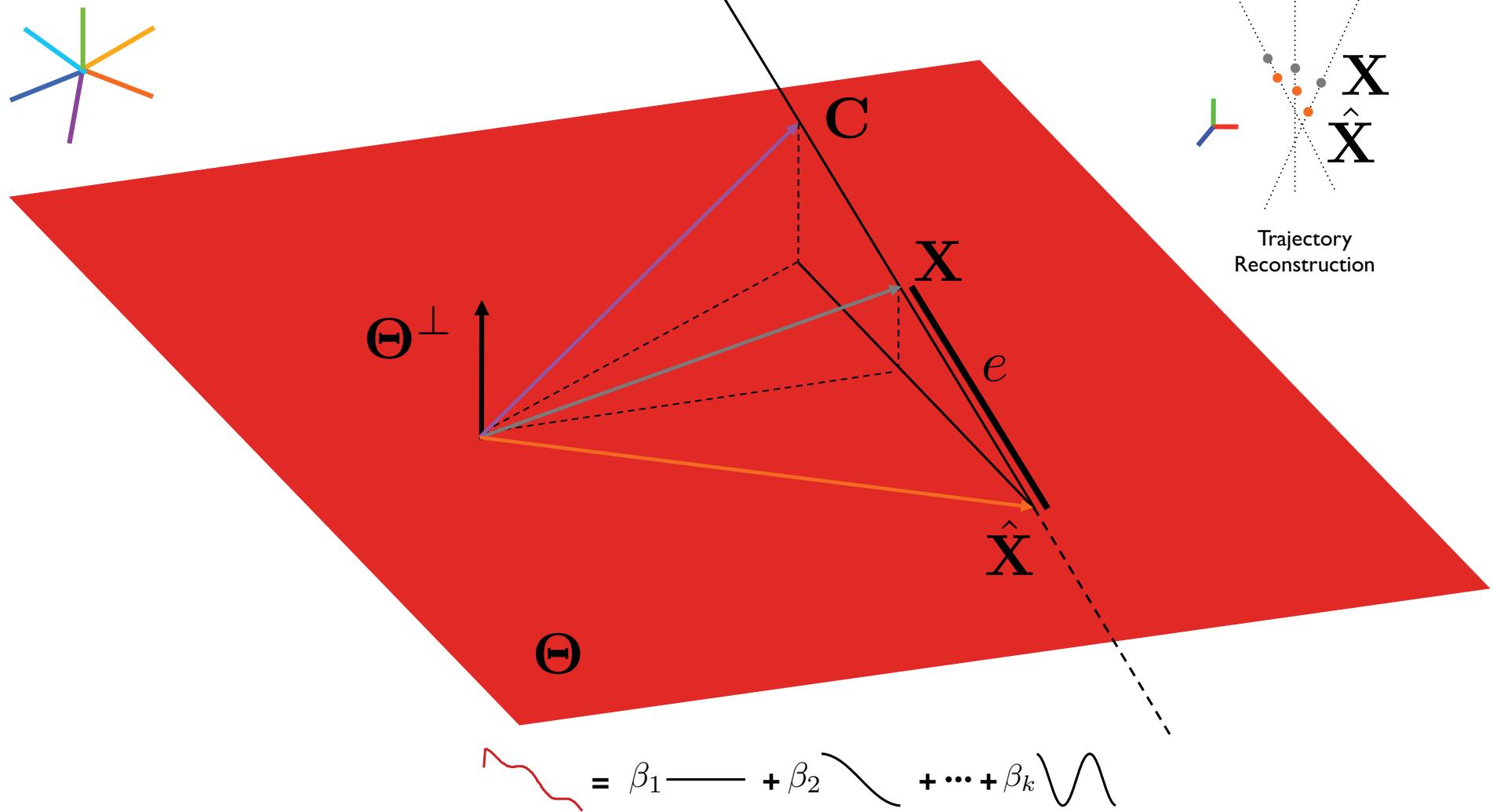
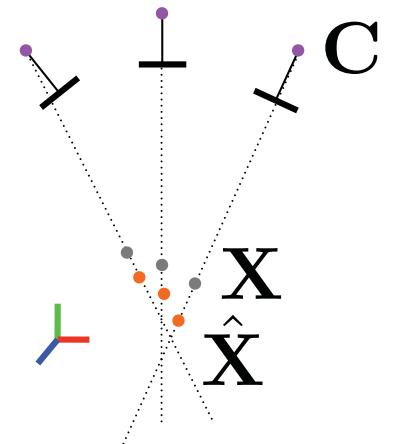


GEOMETRY OF \mathbf{C} AND \mathbf{X}

$$\mathbb{R}^{3F}$$

$$\mathbf{Q}\Theta\beta = \mathbf{q}$$

$$\hat{\mathbf{X}} = \mathbf{AX} + (1 - \mathbf{A})\mathbf{C}$$

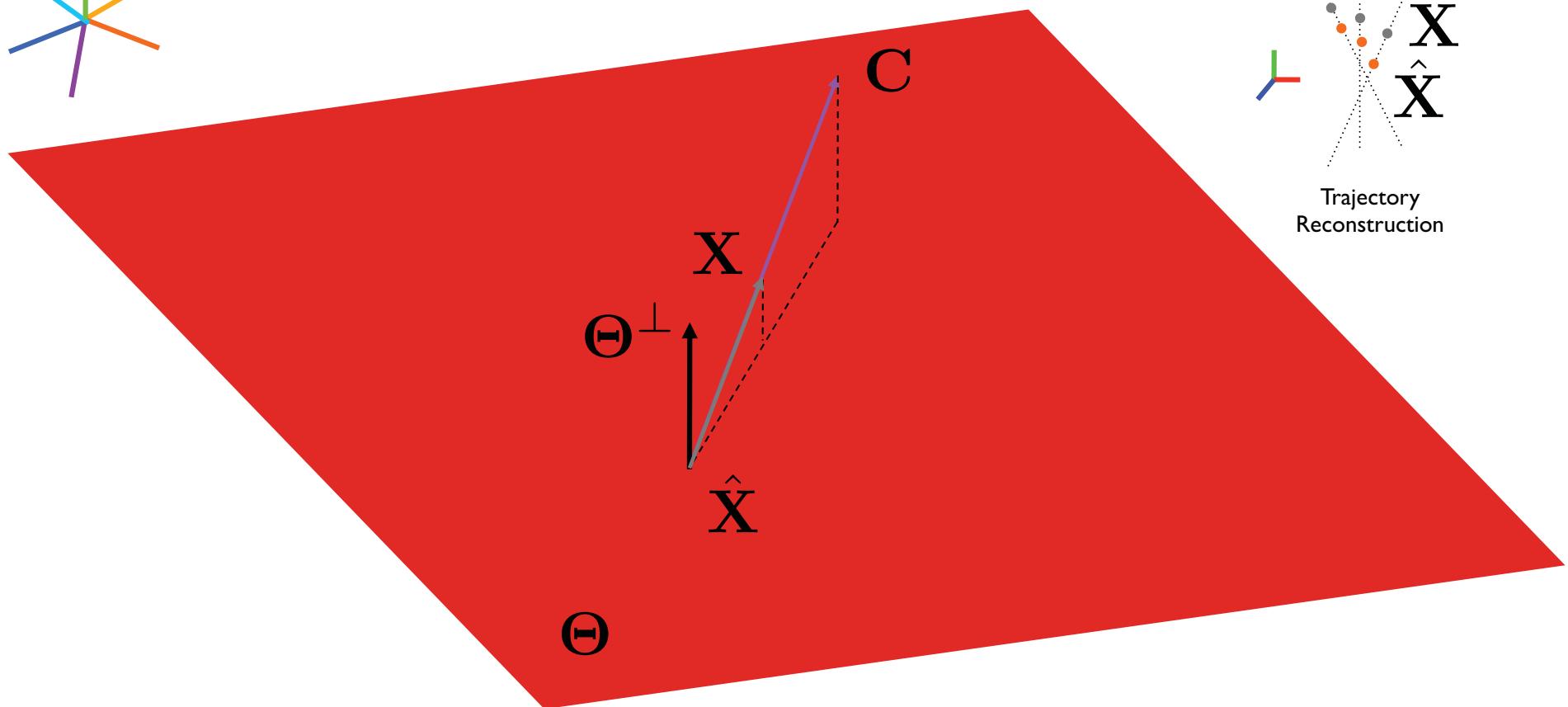
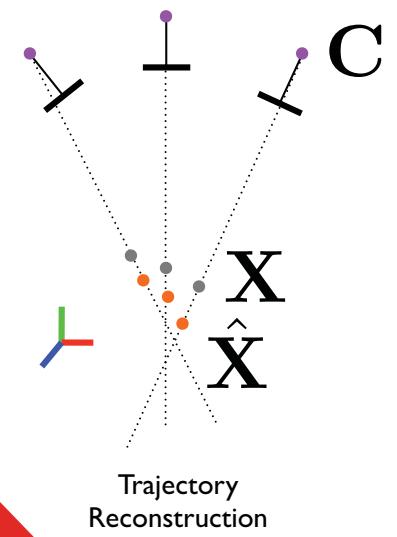


Trajectory
Reconstruction

THEOREM I: CORRELATED \mathbf{C} AND \mathbf{X}

$$\mathbf{X} = a\mathbf{C}$$

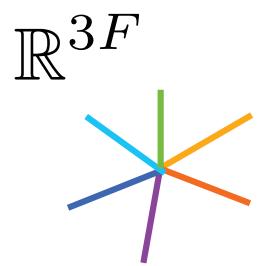
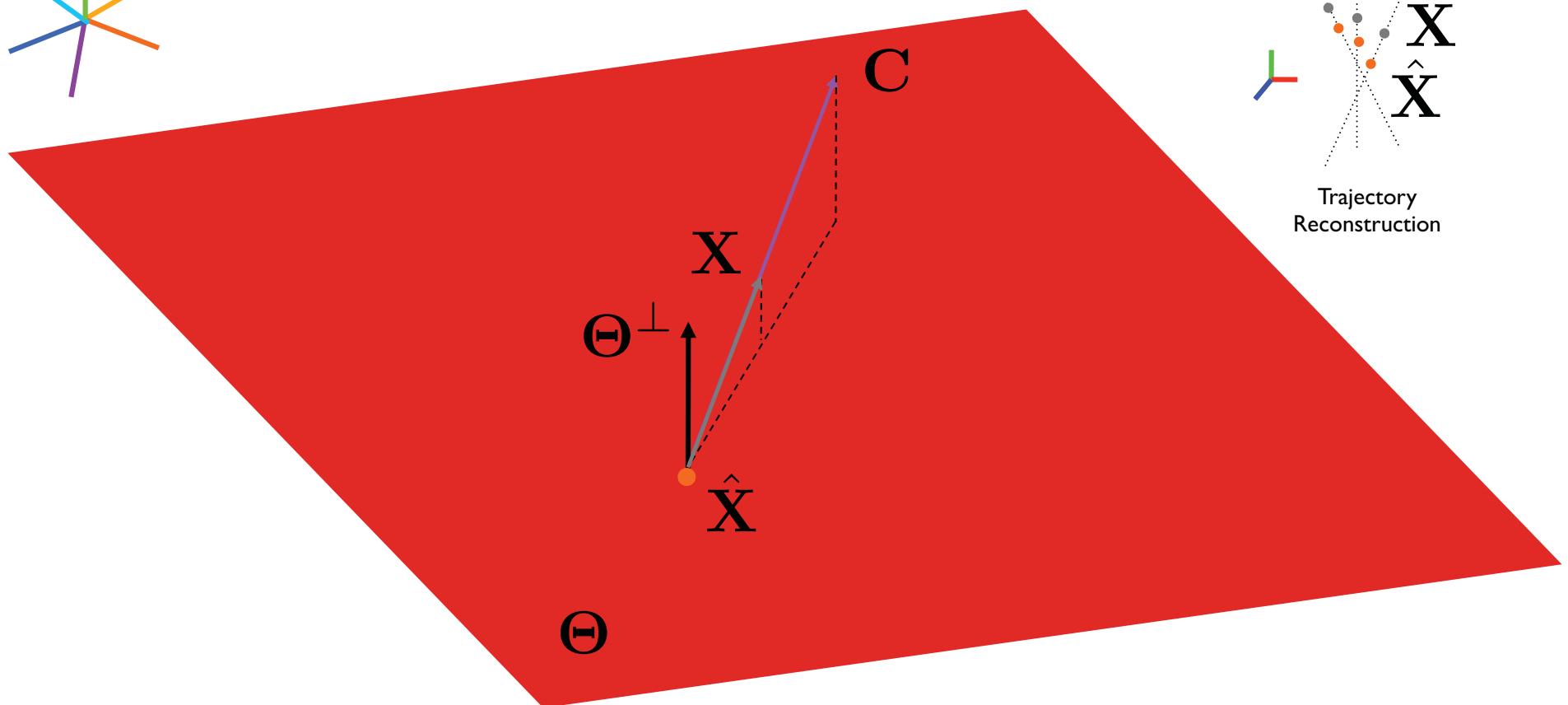
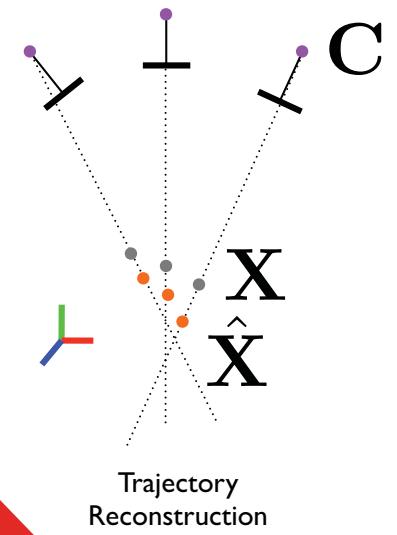
\mathbb{R}^{3F}



Trajectory
Reconstruction

THEOREM I: CORRELATED \mathbf{C} AND \mathbf{X}

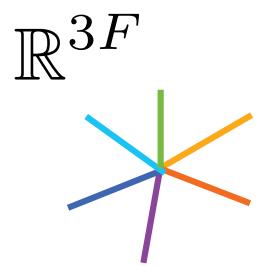
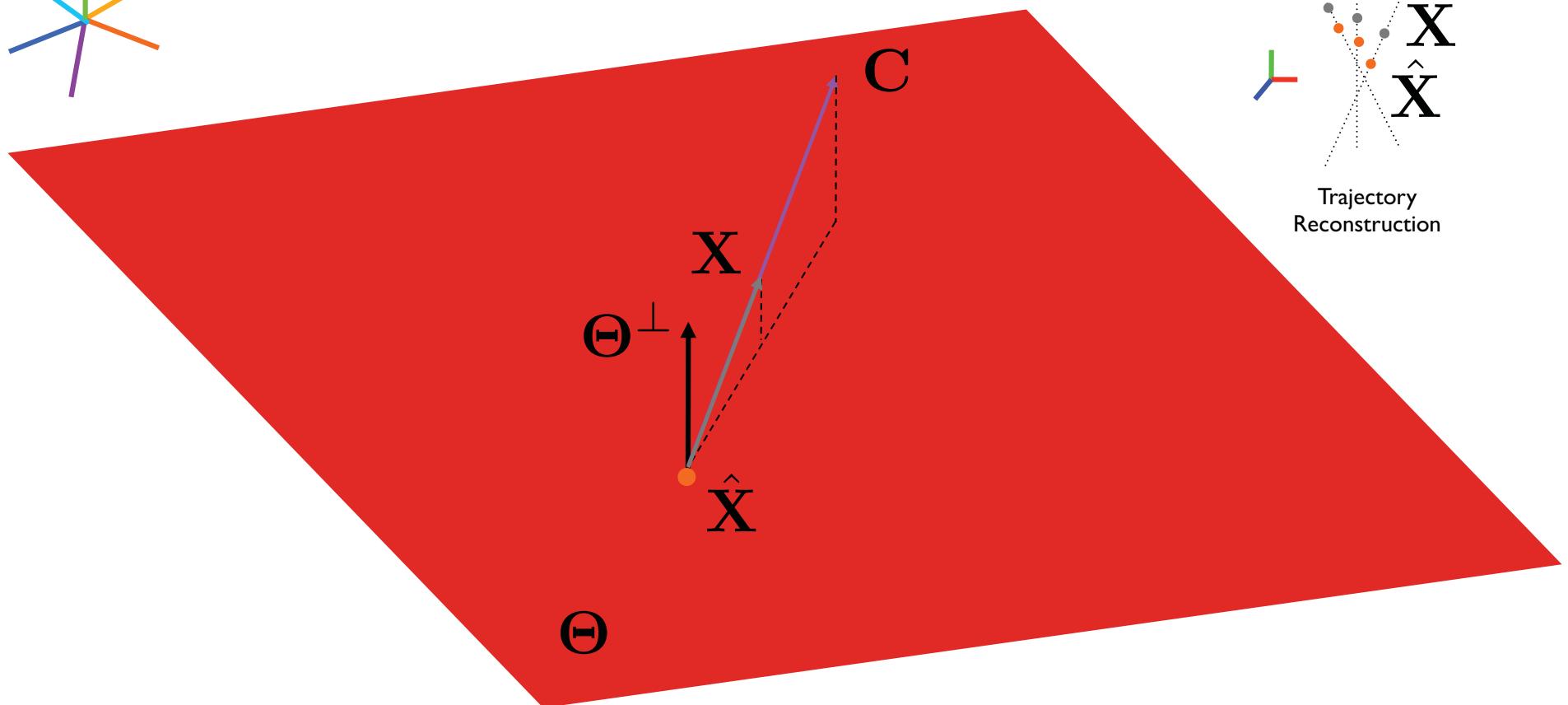
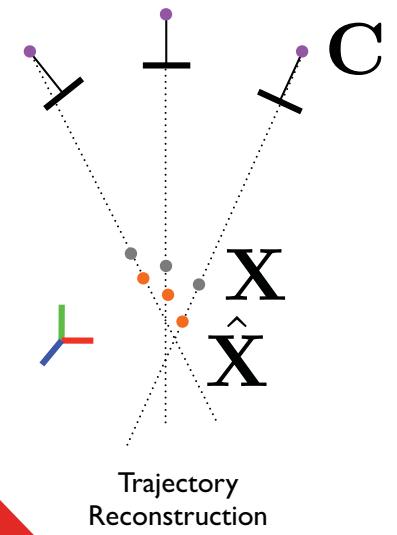
$$\mathbf{X} = a\mathbf{C}$$



Trajectory
Reconstruction

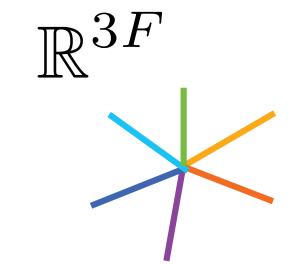
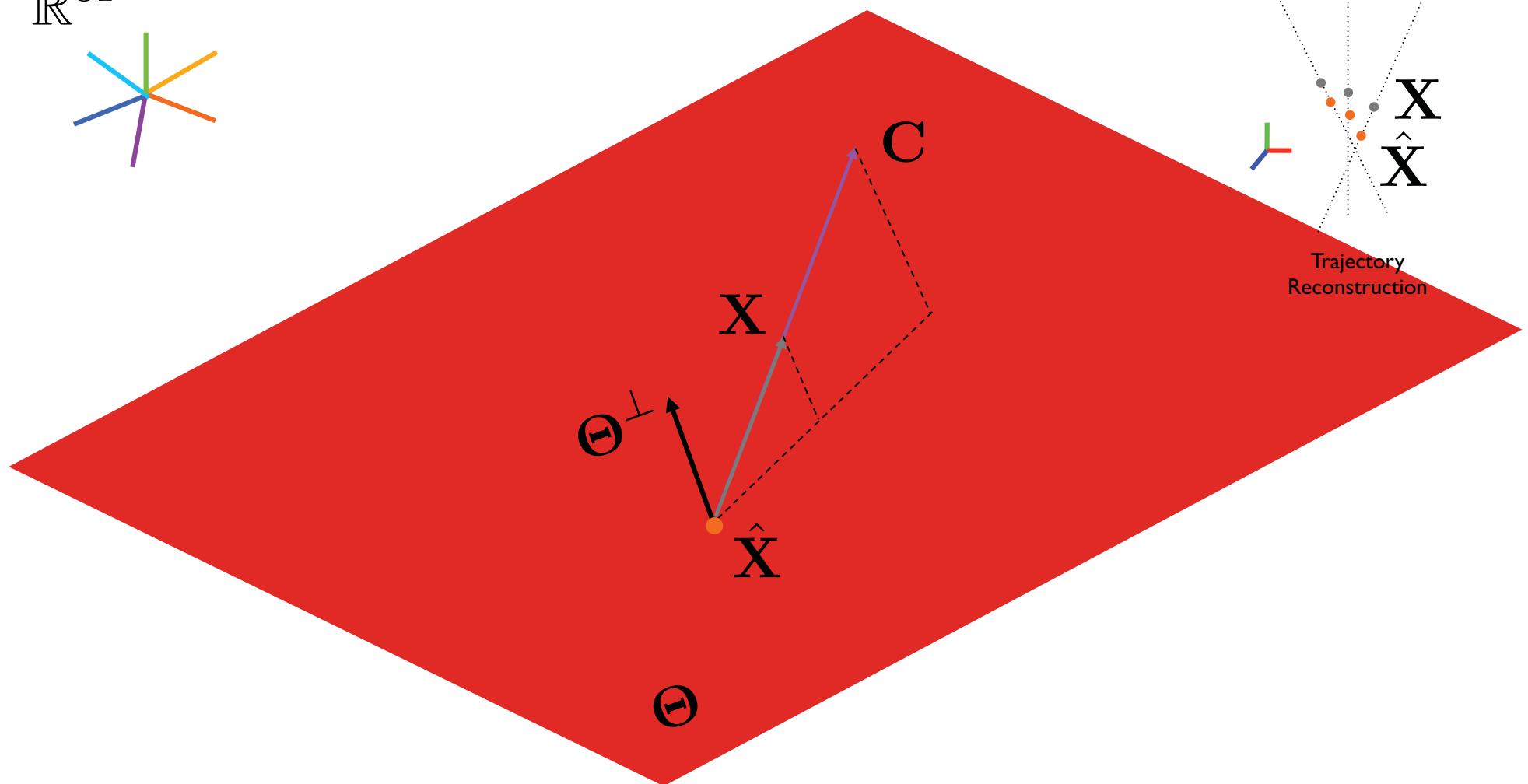
THEOREM I: CORRELATED \mathbf{C} AND \mathbf{X}

$$\mathbf{X} = a\mathbf{C}$$



THEOREM I: CORRELATED \mathbf{C} AND \mathbf{X}

$$\mathbf{X} = a\mathbf{C}$$



RECONSTRUCTIBILITY

THEOREM 2: $\lim_{\eta \rightarrow \inf} \beta = \hat{\beta}$

$$\eta = \frac{\|\Theta^\perp \beta_{\mathbf{C}}^\perp\|}{\|\Theta^\perp \beta_{\mathbf{X}}^\perp\|}$$

RECONSTRUCTIBILITY

THEOREM 2: $\lim_{\eta \rightarrow \inf} \beta = \hat{\beta}$

$$\eta = \frac{\|\Theta^\perp \beta_{\mathbf{C}}^\perp\|}{\|\Theta^\perp \beta_{\mathbf{X}}^\perp\|}$$

$\eta \propto$ HOW POORLY THE BASIS DESCRIBES $\mathbf{C} = \|\Theta^\perp \beta_{\mathbf{C}}^\perp\|$

RECONSTRUCTIBILITY

THEOREM 2: $\lim_{\eta \rightarrow \inf} \beta = \hat{\beta}$

$$\eta = \frac{\|\Theta^\perp \beta_{\mathbf{C}}^\perp\|}{\|\Theta^\perp \beta_{\mathbf{X}}^\perp\|}$$

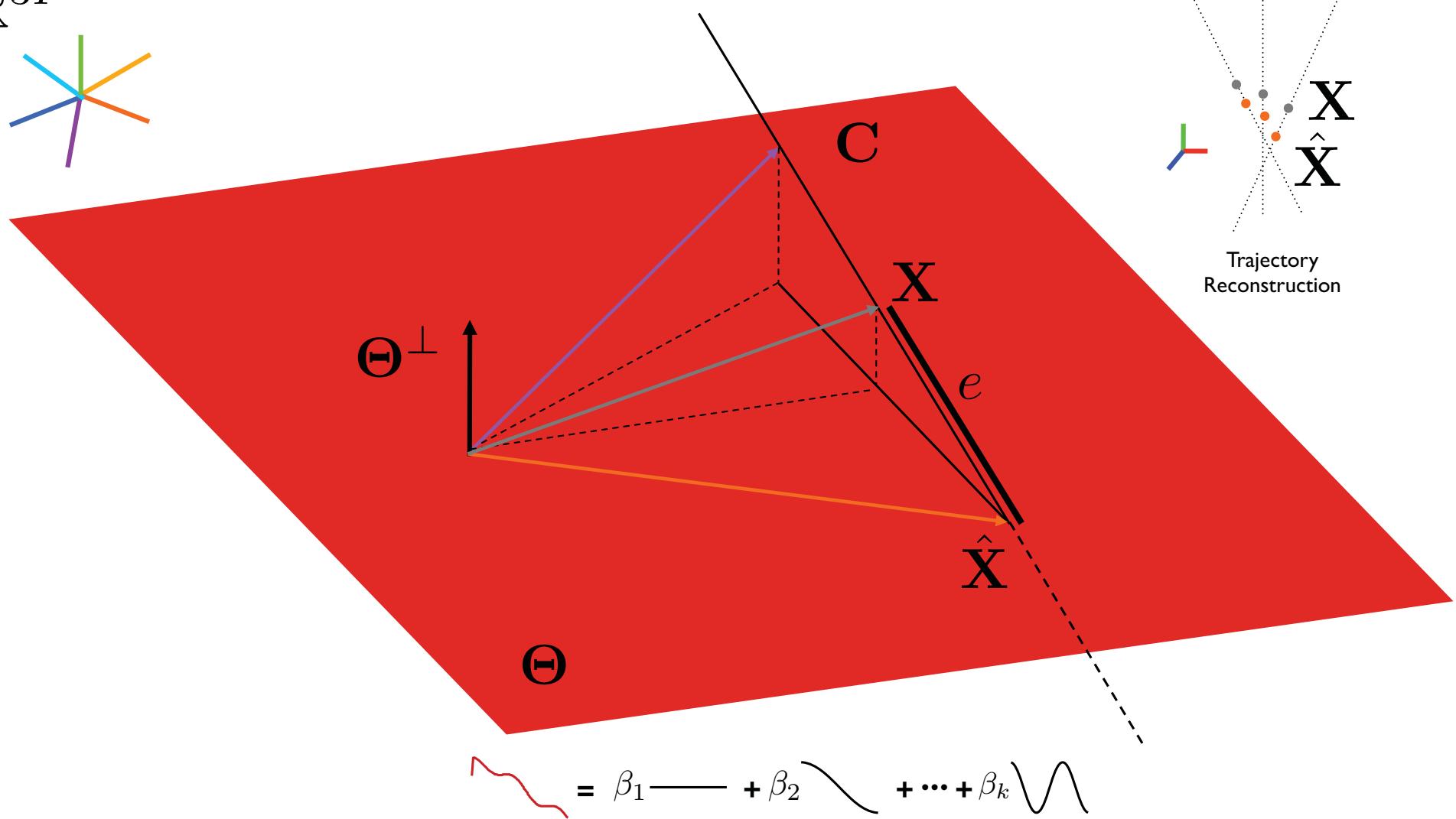
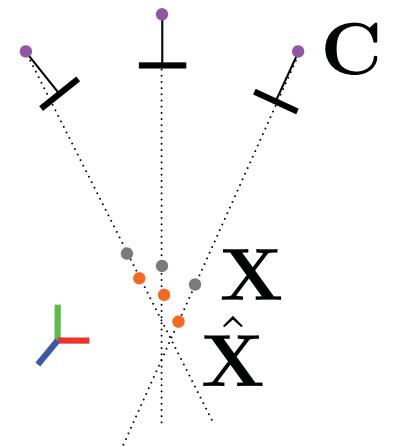
$\eta \propto$ HOW POORLY THE BASIS DESCRIBES $\mathbf{C} = \|\Theta^\perp \beta_{\mathbf{C}}^\perp\|$

$\eta \propto$ HOW WELL THE BASIS DESCRIBES $\mathbf{X} = \frac{1}{\|\Theta^\perp \beta_{\mathbf{X}}^\perp\|}$

GEOMETRY OF **C** AND **X**

\mathbb{R}^{3F}

$$\hat{\mathbf{X}} = \mathbf{A}\mathbf{X} + (1 - \mathbf{A})\mathbf{C}$$

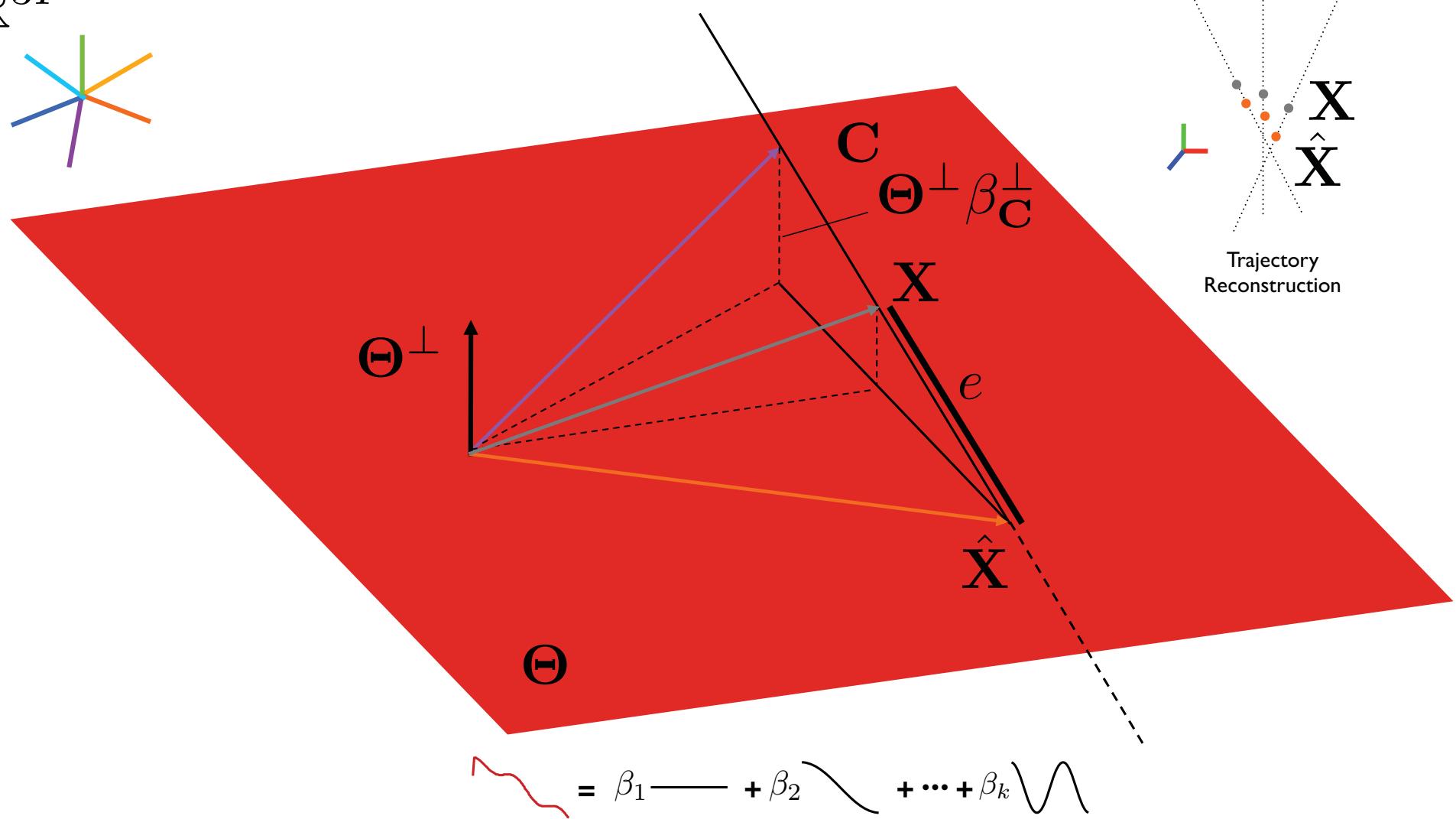
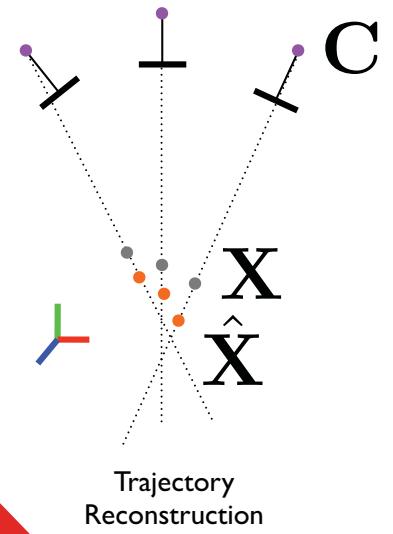


Trajectory
Reconstruction

GEOMETRY OF \mathbf{C} AND \mathbf{X}

\mathbb{R}^{3F}

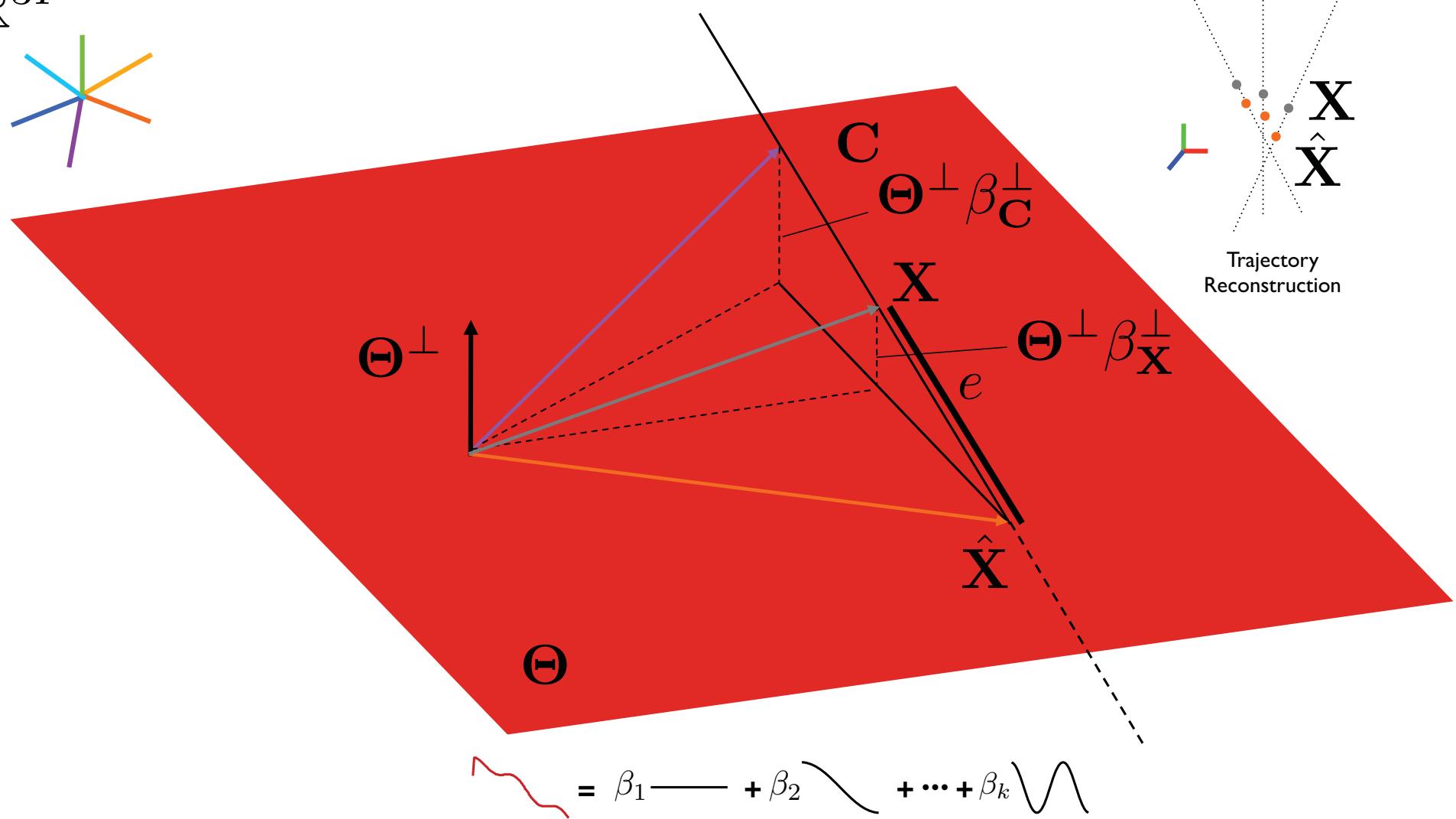
$$\hat{\mathbf{X}} = \mathbf{A}\mathbf{X} + (1 - \mathbf{A})\mathbf{C}$$



GEOMETRY OF \mathbf{C} AND \mathbf{X}

\mathbb{R}^{3F}

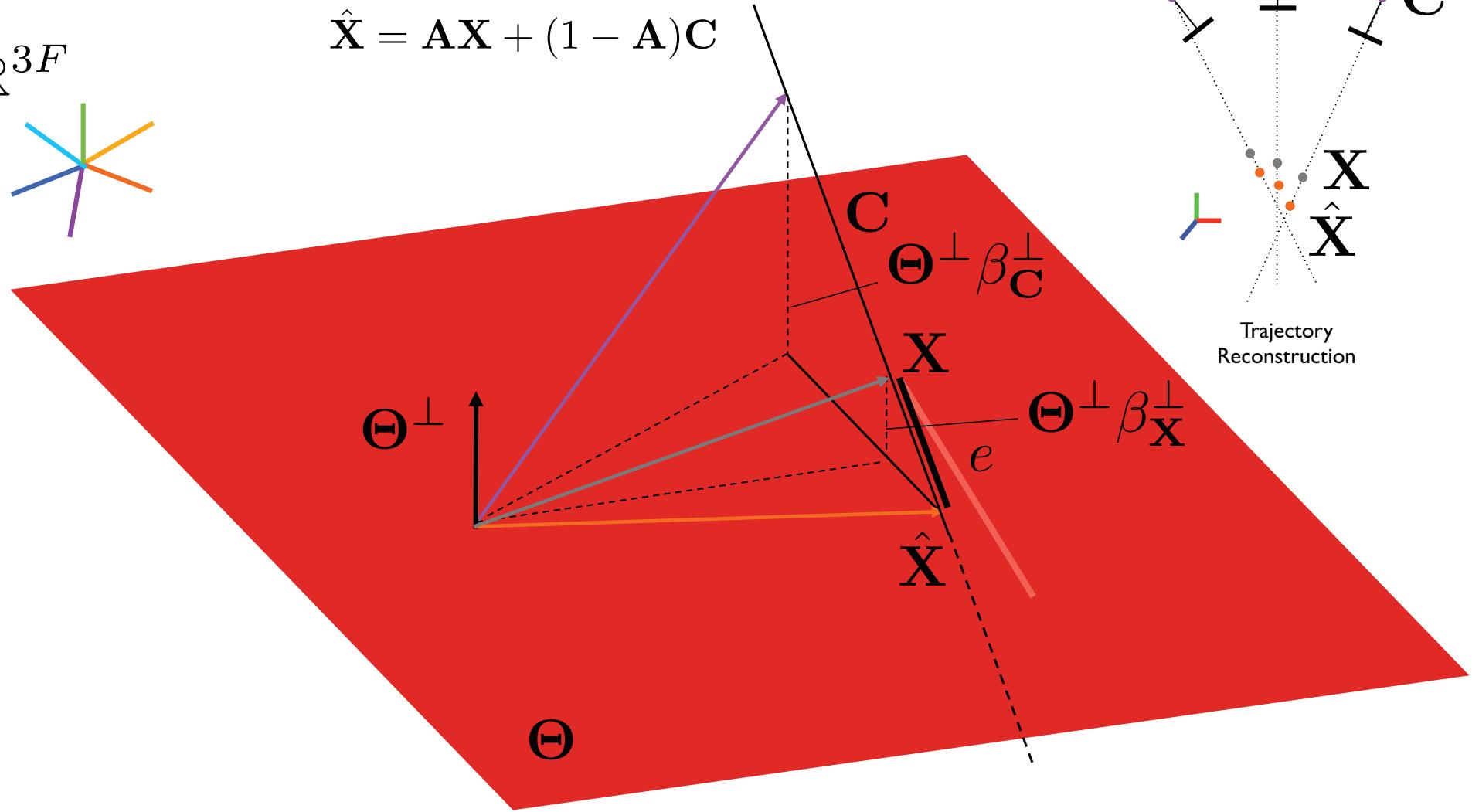
$$\hat{\mathbf{X}} = \mathbf{A}\mathbf{X} + (1 - \mathbf{A})\mathbf{C}$$



GEOMETRY OF \mathbf{C} AND \mathbf{X}

\mathbb{R}^{3F}

$$\hat{\mathbf{X}} = \mathbf{A}\mathbf{X} + (1 - \mathbf{A})\mathbf{C}$$



$$\text{Wavy line} = \beta_1 \text{ straight line} + \beta_2 \text{ wavy line} + \dots + \beta_k \text{ wavy line}$$

WHAT DOES THIS TELL US?

- DE-CORRELATE CAMERA AND OBJECT MOTION

Hand Shake

Greeting

Dance

Rock Climbing

Navigation view

Playback controls

Display controls

- Trajectory
- Mesh
- Image history
- Texture
- Background color
- Image behind the 3D points

Navigation methods

- Content based navigation
- Free-flight view
- Stay with this photographer
- Move as little as possible
- Move camera through all the images
- Move as much as possible
- Focus on the action

Navigation view

Playback controls

Display controls

- Trajectory
- Mesh
- Image history
- Texture
- Background color
- Image behind the 3D points

Navigation methods

- Content based navigation
- Stay with this photographer
- Move camera through all the images
- Focus on the action
- Free-flight view
- Move as little as possible
- Move as much as possible

PARK ET AL. 2010

IN PERSPECTIVE

- **PROBLEMS SOLVED:**

- PERSPECTIVE RECONSTRUCTION
- HANDLES MISSING DATA
- LINEAR SOLVE (FAST, GLOBAL OPTIMUM)

- **OPEN PROBLEMS:**

- HANDLING SMOOTHLY MOVING CAMERAS
- AUTOMATIC COMPUTATION OF K
- EXPLOITING DEPENDENCIES BETWEEN TRAJECTORIES
- “PHYSICS-AWARE” ESTIMATION

COLLABORATORS

Ijaz Akhter
Hyun Soo Park
Eakta Jain
Moshe Mahler
Takaaki Shiratori
Iain Matthews
Jessica Hodgins
Takeo Kanade

<http://www.cs.cmu.edu/~yaser/ECCV2010Tutorial.html>

yaser@cs.cmu.edu

sohaib@lums.edu.pk