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NONRIGID STRUCTURE

x

z

3D Structure That Deforms Over Time

4D DYNAMIC STRUCTURE
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NONRIGID STRUCTURE FROM MOTION

ONLY ONE VIEW PER 3D CONFIGURATON: ILL-POSED PROBLEM 
EQUIVALENT TO FINDING 3D FROM SINGLE IMAGE



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 

ASSUMPTIONS
� Orthographic Camera
� At least 3 images
� Rigid Scene
� Camera Motion
� Corresponding points available



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 

NOTATION
� P 3D points seen in F frames

� Xj = [Xj, Yj, Zj] is jth 3D point 
1��j ��P

� xij = [xij, yij] is the projection of 
Xj in ith frame 1��i ��F

� Pi is the camera projection matrix 
if the ith frame 1��i ��F



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 

orthographic
projection

matrix
2D image 

point

3D scene
point



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 

TRICK
� Choose scene origin to be center of 3D points
� Choose image origins to be center of 2D points
� Allows us to drop camera translation

2 rows of a 
3D rotation 

matrix

image
offset



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 

TRICK
� Choose scene origin to be center of 3D points
� Choose image origins to be center of 2D points
� Allows us to drop camera translation

2 rows of a 
3D rotation 

matrix

image
offset



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 

PROJECTION OF PP 3D POINTS IN ith IMAGE

PROJECTION OF P 3D POINTS IN F IMAGES



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 

PROJECTION OF PP 3D POINTS IN F IMAGES

W R

S



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 

Image Observations Matrix, W

×



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 

Image Observations Matrix, W



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 

HOW TO SOLVE FOR Q
� Observation: The correct Q will result in an R whose rows 

are pair-wise orthonormal

� The ith image results in the following 3 constraints on Q

� Total 3F constraints on 6 terms of QQT

� Can be solved linearly for G = QQT for F ����

ORTHONORMALITY
CONSTRAINTS



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 



FACTORIZATION METHOD FOR RIGID SFM
Kontsevich et al. 1987, Tomasi and Kanade 1992 
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NONRIGID STRUCTURE
3D Structure That Deforms Over Time

RIGID STRUCTURE NONRIGID STRUCTURE



NONRIGID STRUCTURE FROM MOTION
Comparison with Rigid Structure from Motion

RIGID SFM NONRIGID SFM

W R

S

W R
S

S(1)

S(2)

S(F)

S(3)...

R1

R2

R3

� � �

RF



NONRIGID STRUCTURE FROM MOTION

RIGID SFM
� Inputs:

100 pts x 40 sec x 30 fps x 2 (x,y)
= 240,000 observations

� Unknowns:
100 points x 3 (X,Y,Z) 
= 300 unknowns

NONRIGID SFM

Explosion of Unknowns

Example: Given a 40 second video with 100 tracked points

� Inputs:
100 pts x 40 sec x 30 fps x 2
= 240,000 observations

� Unknowns:
100 points x 40 sec x 30 fps x 3  
= 360,000 unknowns



NONRIGID STRUCTURE FROM MOTION
Explosion of Unknowns

IN GENERAL, NRSFM HAS MORE UNKNOWNS THAN CONSTRAINTS

ILL-POSED PROBLEM: Additional assumptions are necessary to constrain the solution.

HOWEVER…
Motion is not random: 
3D points are often highly 
correlated in space and time
Points move because an 
actuator exerts force on them 

Hence their acceleration is 
limited by the actuating force
Therefore, shape does not 
deform arbitrarily over time

4D STRUCTURE OFTEN LIES IN A LOW DIMENSIONAL SUBSPACE



NONRIGID STRUCTURE FROM MOTION
Two Major Approaches

Shape Basis
3D points at each time instant lie 
in a low dimensional subspace

Trajectory Basis
Trajectory of each point over time lies 
in a low dimensional subspace



EXAMPLES OF APPLICATIONS
Match Moving in Movies

Akhter et al. NIPS 2008



EXAMPLES OF APPLICATIONS
Motion-Capture

Input Video Two views of the reconstruction

Akhter et al. NIPS 2008



EXAMPLES OF APPLICATIONS
Motion-Capture Cleanup

ReconstructionUnlabeled DataVideo
Input Output

Disney Research, Pittsburgh



EXAMPLES OF APPLICATIONS
Tracking in 2D and 3D

Credit: Iain Matthews



EXAMPLES OF APPLICATIONS
Animation

Jain et al. SCA 2010



EXAMPLES OF APPLICATIONS
Browsing Image Collections

Credit:  Hyun Soo Park
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DYNAMIC STRUCTURE

S3F×P =

⎡
⎢⎢⎢⎣

X11 X12 · · · X1P

X21 X22 · · · X2P

...
...

...
XF1 XF2 · · · XFP

⎤
⎥⎥⎥⎦

Saturday, September 4, 2010



DYNAMIC STRUCTURE
UNDER ORTHOGRAPHIC PROJECTION

⎡
⎢⎢⎢⎣

x11 · · · x1P

x21 x2P

...
...

xF1 · · · xFP

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

X11 · · · X1P

X21 X2P

...
...

XF1 · · · XFP

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

R1

R2

. . .

RF

⎤
⎥⎥⎥⎦=

W = RX

Saturday, September 4, 2010



LINEAR SHAPE MODEL
[T. Cootes et al. 91, Bregler et al. 97]

w1 × +  w2 × +   …   +  wK × = α1 α2 αk

⎡
⎢⎢⎢⎣

X11 · · · X1P

X21 X2P

...
...

XF1 · · · XFP

⎤
⎥⎥⎥⎦

Saturday, September 4, 2010



⎡
⎢⎢⎢⎣

X11 · · · X1P

X21 X2P

...
...

XF1 · · · XFP

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ω11 · · · ω1k

ω21 ω2k

...
...

ωF1 · · · ωFk

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−b1−
−b2−

...
−bk−

⎤
⎥⎥⎥⎦

LINEAR SHAPE MODEL

5
Saturday, September 4, 2010



LINEAR SHAPE MODEL 
RECONSTRUCTION

5 Basis 15 Basis 25 Basis

6
Saturday, September 4, 2010



LINEAR SHAPE MODEL 
UNDER ORTHOGRAPHIC PROJECTION

⎡
⎢⎢⎢⎣

x11 · · · x1P

x21 x2P

...
...

xF1 · · · xFP

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

X11 · · · X1P

X21 X2P

...
...

XF1 · · · XFP

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

R1

R2

. . .

RF

⎤
⎥⎥⎥⎦=

=

⎡
⎢⎢⎢⎣

R1

R2

. . .

RF

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ω11 · · · ω1k

ω21 ω2k

...
...

ωF1 · · · ωFk

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−b1−
−b2−

...
−bk−

⎤
⎥⎥⎥⎦

2F x P 2F x 3F (6F) 3F x P

2F x 3F (6F) 3F x 3k 3k x P

Saturday, September 4, 2010



KNOWNS  VS  UNKNOWNS

2F × P

6F + (3F × k) + (k × P )

2F × P ≥ 6F + (3F × k) + (k × P )

KNOWNS:
UNKNOWNS:

Saturday, September 4, 2010



LINEAR SHAPE MODEL

w1 × +  w2 × +   …   +  wK × = α1 α2 αk

Y = R(

K∑
i=1

ωibi) +T

RIGID COMPONENT

NONRIGID COMPONENT

IDEA: RIGID COMPONENT GETS FOLDED INTO PROJECTION

Saturday, September 4, 2010



CHALLENGE
TRILINEAR ESTIMATION

W = RΩB

⎡
⎢⎢⎢⎣

R1

R2

. . .

RF

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ω11 · · · ω1k

ω21 ω2k

...
...

ωF1 · · · ωFk

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−b1−
−b2−

...
−bk−

⎤
⎥⎥⎥⎦

Saturday, September 4, 2010



BREGLER et al. 2000
Nested SVD

⎡
⎢⎢⎢⎣

x11 · · · x1P

x21 x2P

...
...

xF1 · · · xFP

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

R1

R2

. . .

RF

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ω11 · · · ω1k

ω21 ω2k

...
...

ωF1 · · · ωFk

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−b1−
−b2−

...
−bk−

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ω11R1 · · · ω1kR1

ω21R2 ω2kR2

...
...

ωF1RF · · · ωFkRF

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−b1−
−b2−

...
−bk−

⎤
⎥⎥⎥⎦=

2F x 3k 3k x P

Saturday, September 4, 2010



BREGLER et al. 2000
Outer SVD

⎡
⎢⎢⎢⎣

x11 · · · x1P

x21 x2P

...
...

xF1 · · · xFP

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

ω11R1 · · · ω1kR1

ω21R2 ω2kR2

...
...

ωF1RF · · · ωFkRF

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−b1−
−b2−

...
−bk−

⎤
⎥⎥⎥⎦

2F x 3k 3k x P

SVD

W H B=

W = UDVT

W = (UD
1
2 )(D

1
2VT )

W = ĤB̂

Saturday, September 4, 2010



BREGLER et al. 2000
Inner SVD

SVD

W = ĤB̂⎡
⎢⎢⎢⎣

ω11R1 · · · ω1kR1

ω21R2 ω2kR2

...
...

ωF1RF · · · ωFkR1

⎤
⎥⎥⎥⎦H

[
ω11r

1
1 ω11r

2
1 ω11r

3
1 · · · ω1kr

1
1 ω1kr

2
1 ω1kr

3
1

ω11r
4
1 ω11r

5
1 ω11r

6
1 · · · ω1kr

4
1 ω1kr

5
1 ω1kr

6
1

]

⎡
⎢⎢⎢⎣

ω11r
1
1 ω11r

2
1 ω11r

3
1 ω11r

4
1 ω11r

5
1 ω11r

6
1

ω12r
1
1 ω12r

2
1 ω12r

3
1 ω12r

4
1 ω12r

5
1 ω12r

6
1

...
...

ω1kr
1
1 ω1kr

2
1 ω1kr

3
1 ω1kr

4
1 ω1kr

5
1 ω1kr

6
1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ω11

ω12

...
ω1k

⎤
⎥⎥⎥⎦
[
r11 r21 r31 r41 r51 r61

]

rank 1

=

=h1

h′
1

=

h′
1 = udvT = ω̂r̂

=

METRIC RECTIFICATION USING ORTHONORMALITY CONSTRAINTS

Saturday, September 4, 2010



BREGLER et al. 2000
OVERVIEW

• OUTER SVD: PERFORM SVD ON W TO GET ESTIMATES OF:

• H: CAMERA PROJECTIONS AND COEFFICIENTS 

• INNER SVD: PERFORM SVD ON H TO GET ESTIMATES OF:

• OMEGA: COEFFICIENTS

• R: CAMERA PROJECTIONS

• METRIC RECTIFY USING ORTHONORMALITY CONSTRAINTS

• B: THE SHAPE BASIS

Saturday, September 4, 2010



RESULTS

Saturday, September 4, 2010



BREGLER et al. 2000
IN PERSPECTIVE

• SEMINAL WORK: SHOWED THAT FACTORIZATION METHODS 
CAN BE APPLIED TO NONRIGID OBJECTS

• CASCADING ERROR: ANY OUTER SVD ESTIMATION ERROR 
CASCADES INTO INNER SVD ESTIMATION

• AMBIGUITY ERROR: ESTIMATION OF METRIC RECTIFICATION

• NUMBER OF BASIS: LARGE NUMBER OF BASIS REQUIRED

• MISSING DATA: NEEDS COMPLETE W MATRIX

Saturday, September 4, 2010



METRIC RECTIFICATION
AMBIGUITY

W = ĤB̂

W = ĤGG−1B̂

H = ĤG B = G−1B̂

⎡
⎢⎢⎢⎣

ω11R1 · · · ω1kR1

ω21R2 ω2kR2

...
...

ωF1RF · · · ωFkR1

⎤
⎥⎥⎥⎦H ==

⎡
⎣ Ĥ

⎤
⎦
⎡
⎣ | | |

g1 g2 . . . gk

| | |

⎤
⎦

G
3k X 3k

Saturday, September 4, 2010



METRIC RECTIFICATION
ORTHONORMALITY CONSTRAINT

⎡
⎢⎢⎢⎣

ω11R1 · · · ω1kR1

ω21R2 ω2kR2

...
...

ωF1RF · · · ωFkR1

⎤
⎥⎥⎥⎦H ==

⎡
⎣ Ĥ

⎤
⎦
⎡
⎣ | | |

g1 g2 . . . gk

| | |

⎤
⎦

⎡
⎣ Ĥ

⎤
⎦
⎡
⎣ |

gk

|

⎤
⎦ =

⎡
⎢⎢⎢⎣

ω1kR1

ω2kR2

...
ωFkRF

⎤
⎥⎥⎥⎦

ωikRi = Ĥ2i−1:2igk

RiR
T
i = I

ORTHONORMALITY CONSTRAINT

H2i−1:2igkg
T
k Ĥ2i−1:2i = ω2

ikI

Saturday, September 4, 2010



METRIC RECTIFICATION
ORTHONORMALITY CONSTRAINT

RiR
T
i = I

ORTHONORMALITY CONSTRAINT

H2igkg
T
k Ĥ2i−1 = 0

H2igkg
T
k Ĥ2i = ω2

ikH2i−1gkg
T
k Ĥ2i−1 = ω2

ik

H2i−1gkg
T
k Ĥ2i−1 = H2igkg

T
k Ĥ2i

H2i−1:2igkg
T
k Ĥ2i−1:2i = ω2

ikI =

[
ω2
ik 0
0 ω2

ik

]

Saturday, September 4, 2010



CHALLENGE?
AMBIGUITY

Saturday, September 4, 2010



OPTIMIZATION

Saturday, September 4, 2010



CHALLENGE
MISSING DATA

• A.M. Buchanan and A.W. Fitzgibbon, “Damped Newton Algorithms for Matrix Factorization with Missing Data,” IEEE International 
Conference on Computer Vision and Pattern Recognition, 2005.

• L. Torresani, A. Hertzmann, and Christoph Bregler, “Nonrigid Structure-from-Motion: Estimating Shape and Motion with Hierarchical 
Priors,” Transactions on Pattern Analysis and Machine Intelligence, 2008.

• SPANISH FOLKS

• CVPR 2010 BEST PAPER

• BRANCH AND BOUND

Saturday, September 4, 2010



CHALLENGES
OVERVIEW

• MISSING DATA

• BEST K

• TRILINEAR OPTIMIZATION

Saturday, September 4, 2010



LINEAR SHAPE MODEL 
PERSPECTIVE PROJECTION

Saturday, September 4, 2010



LINEAR SHAPE MODEL 
MAXIMUM LIKELIHOOD SOLUTION

Saturday, September 4, 2010
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NONRIGID STRUCTURE FROM MOTION
Two Major Approaches

Shape Basis
3D points at each time instant lie 
in a low dimensional subspace

Trajectory Basis
Trajectory of each point over time lies 
in a low dimensional subspace



DYNAMIC STRUCTURE
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DYNAMIC STRUCTURE

Shape

Shape Representation

LINEAR SHAPE MODEL
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Trajectory Representation

LINEAR TRAJECTORY MODEL
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DYNAMIC STRUCTURE
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Trajectory Representation

LINEAR TRAJECTORY MODEL

X-
co

or
di

na
te

 o
f 

tr
aj

ec
to

ry
 o

f h
an

d

time

kth trajectory basis vector

Trajectory of jth point (X-component only)

Trajectory Coefficient 
Contribution of kth basis in the 
trajectory of jth point



TRAJECTORY REPRESENTATION OF
DYNAMIC STRUCTURE
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TRAJECTORY REPRESENTATION OF
DYNAMIC STRUCTURE X-component of trajectory 

of jth point as linear 
combination of K basis 
trajectories

X-component of trajectory 
of all point as linear 
combination of K basis 
trajectories



X-component of trajectory of all points

X, Y and Z-components of trajectory of all points



TRAJECTORY REPRESENTATION

S
Structure

£
Basis

A
Coefficents

of Dynamic Structure



TRAJECTORY REPRESENTATION
of Dynamic Structure Under Orthographic Projection

W R
S

R1

R2

R3

� � �

RF



TRAJECTORY REPRESENTATION
of Dynamic Structure Under Orthographic Projection

W R

R1

R2

R3

� � �

RF

£

A

Structure S, in trajectory 
subspace represented 
by K trajectory basis
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W £
A= R

W B= R

SHAPE FACTORIZATION

TRAJECTORY FACTORIZATION

Weights

Traj basis

Shape basis

Weights

DUALITY
Weights and Bases

Shape weights are 
trajectory basis and 
trajectory weights are 
shape basis
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PPP
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ZYXZYX
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111

222212121
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*
3S

� rank of columns = rank of rows
� Shape model and trajectory model has equal compaction 

power

�
�
�
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�PPP ZYX� 11YY1XX ��

�
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�
�
��
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PPP ZYX� 22YY2�

�FPFPFP� �FPFPFP ZYFX F�
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� ZYX 1111YY11XX
ZYX 2121YY21

� FFF 111 FFF ZYFX F 111

DUALITY
Weights and Bases
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PROOF OF DUALITY
Weights and Bases

Consider rearranged structure matrix SS*



PROOF OF DUALITY
Weights and Bases

Consider rearranged structure matrix SS*

where

1st shape basis



PROOF OF DUALITY
Weights and Bases

To link shape to jjth trajectory, we select  the coefficients related to jth point



PROOF OF DUALITY
Weights and Bases

Can be rewritten as Compare to Trajectory Representation



ILLUSTRATION OF DUALITY
SVD Shape and Trajectory Basis for Mocap Structure

Shape Coefficients �������	
����
���� Trajectory Coefficients ��������
����
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ESTIMATING STRUCTURE VIA TRAJECTORY MODEL

1. Deformation constrained by physical actuation
2. Trajectories vary smoothly and not randomly
3. Can be compactly represented by predefined basis 

e.g. Discrete Cosine Transform 

Object Independent Basis
ion



DCT BASIS



PREDEFINING TRAJECTORY BASIS

� We showed that PCA approaches DCT (Discrete 
Cosine Transform) on CMU’s body MOCAP database.
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ESTIMATING STRUCTURE VIA TRAJECTORY MODEL

�

1. By SVD, compute
2. Correct solution differs by a linear transform

3. Solving for QQ ?

Solution



FINDING Q

The correct Q will yield the correct form of �

We can just estimate first 3 columns of Q instead of estimating full Q

If Q|||is known:
� Compute R
� Compute �
� Compute  A



FINDING QIII

The correct Q will yield the correct form of �

Orthonormality Constraints

Each image yields 3 constraints because � is known

F images yield 3F  constraints
At least 3K images needed to constrain the solution
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We use synthetic and Motion captured data for quantitative experiments





MOTION CAPTURE DATASETS

Input Video Two views of the reconstruction

DANCE DATASET
75 points, 264 frames, K=5
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MOTION CAPTURE DATASETS

Input Data Two views of the reconstruction

STRETCH DATASET
41 points, 370 frames, K=12
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PICKUP DATASET
41 points, 357 frames, K=12



Two views of the reconstruction

CUBES SEQUENCES
14 points, 200 frames, K=2

RESULTS ON REAL VIDEOS



Two views of the reconstruction

MATRIX SEQUENCE
30 points, 93 frames, K=3
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Two views of the reconstruction

PIE DATASET
68 points, 240 frames, K=2

RESULTS ON REAL VIDEOS



Two views of the reconstruction

DINOSAUR SEQUENCE
49 points, 231 frames, K=12

RESULTS ON REAL VIDEOS



AS CAMERA MOTION INCREASES
AS OBJECT MOTION DECREASES

RECONSTRUCTION STABILITY INCREASES



SHAPE MODEL VS. TRAJECTORY MODEL

Shape Trajectory

Model Can be learnt Hard to specialize

Specificity Object dependent Generalize

Ordering of frames Irrelevant Exploited

Ordering of points Exploited Irrelevant
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WHAT DOES THIS TELL US?

• DE-CORRELATE CAMERA AND OBJECT MOTION
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PARK ET AL. 2010
IN PERSPECTIVE

• PROBLEMS SOLVED:

• PERSPECTIVE RECONSTRUCTION

• HANDLES MISSING DATA

• LINEAR SOLVE (FAST, GLOBAL OPTIMUM)

• OPEN PROBLEMS:

• HANDLING SMOOTHLY MOVING CAMERAS

• AUTOMATIC COMPUTATION OF K

• EXPLOITING DEPENDENCIES BETWEEN TRAJECTORIES

• “PHYSICS-AWARE” ESTIMATION
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http://www.cs.cmu.edu/~yaser/ECCV2010Tutorial.html 
yaser@cs.cmu.edu

sohaib@lums.edu.pk
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COLLABORATORS

Ijaz Akhter
Hyun Soo Park

Eakta Jain
Moshe Mahler

Takaaki Shiratori
Iain Matthews
Jessica Hodgins
Takeo Kanade
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